1
|
Tao T, Zhang Y, Guan C, Wang S, Liu X, Wang M. Ubiquitin Ligase TRIM22 Inhibits Ovarian Cancer Malignancy via TCF4 Degradation. Mol Cancer Res 2024; 22:943-956. [PMID: 38842601 DOI: 10.1158/1541-7786.mcr-23-0962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/27/2023] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Ovarian cancer is one of the most common malignancies in women. Tripartite motif-containing protein 22 (TRIM22) plays an important role in the initiation and progression of malignant tumors. Similarly, the transcription factor 4 (TCF4) is an essential factor involved in the initiation and progression of many tumors. However, it is still unclear whether TRIM22 can affect TCF4 in ovarian cancer. Therefore, this study aims to investigate the mechanism related to TRIM22 and TCF4 in ovarian cancer. TRIM22 protein and mRNA levels were analyzed in samples from clinical and cell lines. The effects of TRIM22 knockdown and overexpression on cell proliferation, colony formation, migration, invasion, and related biomarkers were evaluated. In addition, the role of ubiquitination-mediated degradation of TCF4 was investigated by qRT-PCR and Western blotting. The association between TRIM22 and TCF4 was evaluated by Western blotting, coimmunoprecipitation, proliferation, colony formation, invasion, migration, and related biomarkers. The results showed that the expression of TRIM22 was minimal in ovarian cancer tissues. Furthermore, upregulation of TRIM22 significantly inhibited ovarian cancer cell proliferation, colony formation, migration, and invasion. In addition, TRIM22 was observed to regulate the degradation of TCF4 through the ubiquitination pathway. TCF4 can reverse the effects of TRIM22 on proliferation, colony formation, migration, and invasion in ovarian cancer cells. TRIM22-mediated ubiquitination of TCF4 at K48 is facilitated by the RING domain. Implications: In conclusion, ubiquitination of TCF4 protein in ovarian cancer is regulated by TRIM22, which has the potential to limit the proliferation, migration, and invasion of ovarian cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yongqi Zhang
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | | | - Shuxiang Wang
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | - Xiaoli Liu
- Department of Gynecology, The Red Cross Center Hospital of Harbin, Harbin, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Büki G, Antal G, Bene J. Rare Germline Variants in the Adenomatous Polyposis Coli Gene Associated with Dental and Osseous Anomalies. Int J Mol Sci 2024; 25:8189. [PMID: 39125758 PMCID: PMC11312143 DOI: 10.3390/ijms25158189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
APC is a tumor suppressor gene that exerts its effect through the regulation of the Wnt signaling pathway. Loss of function mutations of the gene are associated with familial adenomatous polyposis (FAP). Early diagnosis in FAP patients is essential to prevent the development of colorectal cancer. Extraintestinal manifestations often precede the formation of the polyposis; therefore, these manifestations may serve as a clinical indicator for the condition. The aim of this study was to assess genotype-phenotype associations between the location of APC mutations and various extraintestinal features, mainly focusing on osseous and dental anomalies. Analyses of our cases and the mutations available in the literature with these manifestations revealed that mutations in the N-terminal region (amino acids 1-~1000) of the protein are more frequently associated with only osseous anomalies, whereas dental manifestations are more prevalent in mutations in the middle region (amino acids 1000-~2100). In addition, supernumerary teeth were found to be the most common dental feature. Since dental abnormalities often precede intestinal polyposis, dentists have a crucial role in the early identification of patients at risk.
Collapse
Affiliation(s)
- Gergely Büki
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Gréta Antal
- Department of Dentistry, Oral and Maxillofacial Surgery, Clinical Center, Medical School, University of Pécs, 7623 Pécs, Hungary;
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
3
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
4
|
Nasu H, Nishio S, Park J, Tasaki K, Terada A, Tsuda N, Kawano K, Kojiro-Sanada S, Akiba J, Ushijima K. Comprehensive Molecular Profiling and Clinicopathological Characteristics of Gastric-Type Mucinous Carcinoma of the Uterine Cervix in Japanese Women. Kurume Med J 2024; 69:237-249. [PMID: 38369337 DOI: 10.2739/kurumemedj.ms6934018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Gastric-type mucinous carcinoma (GAS) of the uterine cervix is the most common adenocarcinoma that develops independently of human papillomavirus infection; it is typically diagnosed at an advanced stage and has a poorer prognosis than usual-type endocervical adenocarcinoma. Few studies have examined the molecular profile of GAS, but genetic alterations in TP53 and STK11 have been repeatedly reported. We analyzed the clinicopathological characteristics and molecular profile of GAS. Fresh-frozen tissue specimens and formalin-fixed paraffin-embedded (FFPE) tissues from 13 patients with GAS treated between January 2000 and December 2020 were analyzed. We performed next-generation sequencing on eight fresh-frozen GAS specimens using the Cancer Hotspot Panel v2 (cases 1-8) and the FoundationOne companion diagnostic (F1CDx) assay on six FFPE samples (cases 8-13). Seventy-four genomic alterations were identified in 42 genes. In order of frequency, TP53, ATRX, CDKN2A, KRAS, APC, and STK11 were altered in at least three cases. Targetable genomic alterations were identified in all six patients' specimens analyzed using the F1CDx assay. GAS harbors various genomic alterations associated with sustained activation of signaling pathways or cell cycle regulation in addition to abnormalities in TP53, and precision medicine based on molecular profiling will be necessary to overcome GAS.
Collapse
Affiliation(s)
- Hiroki Nasu
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Shin Nishio
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Jongmyung Park
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Kazuto Tasaki
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Atsumu Terada
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | - Naotake Tsuda
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| | | | | | - Jun Akiba
- Department of Diagnostic Pathology, Kurume University Hospital
| | - Kimio Ushijima
- Department of Obstetrics and Gynecology, Kurume University School of Medicine
| |
Collapse
|
5
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Hashimoto M, Kojima Y, Sakamoto T, Ozato Y, Nakano Y, Abe T, Hosoda K, Saito H, Higuchi S, Hisamatsu Y, Toshima T, Yonemura Y, Masuda T, Hata T, Nagayama S, Kagawa K, Goto Y, Utou M, Gamachi A, Imamura K, Kuze Y, Zenkoh J, Suzuki A, Takahashi K, Niida A, Hirose H, Hayashi S, Koseki J, Fukuchi S, Murakami K, Yoshizumi T, Kadomatsu K, Tobo T, Oda Y, Uemura M, Eguchi H, Doki Y, Mori M, Oshima M, Shibata T, Suzuki Y, Shimamura T, Mimori K. Spatial and single-cell colocalisation analysis reveals MDK-mediated immunosuppressive environment with regulatory T cells in colorectal carcinogenesis. EBioMedicine 2024; 103:105102. [PMID: 38614865 PMCID: PMC11121171 DOI: 10.1016/j.ebiom.2024.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/15/2024] Open
Abstract
BACKGROUND Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.
Collapse
Affiliation(s)
- Masahiro Hashimoto
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yasuhiro Kojima
- Division of Computational Bioscience, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata, 573-1010, Japan.
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Tadashi Abe
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Kiyotaka Hosoda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of General Surgical Science, Gastroenterological Surgery, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Satoshi Higuchi
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan; Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichi Hisamatsu
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Takeo Toshima
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yusuke Yonemura
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Satoshi Nagayama
- Department of Surgery, Uji-Tokushukai Medical Center, Uji, 611-0041, Japan
| | - Koichi Kagawa
- Department of Gastroenterology, Shin Beppu Hospital, Beppu, 874-8538, Japan
| | - Yasuhiro Goto
- Department of Gastroenterology, Shin Beppu Hospital, Beppu, 874-8538, Japan
| | - Mitsuaki Utou
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Ayako Gamachi
- Department of Pathology, Oita Oka Hospital, Oita, 870-0192, Japan
| | - Kiyomi Imamura
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yuta Kuze
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Junko Zenkoh
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Ayako Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Kazuki Takahashi
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Atsushi Niida
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Shuto Hayashi
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Jun Koseki
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Satoshi Fukuchi
- Department of Gastroenterological Medicine, Almeida Memorial Hospital, Oita, 870-1195, Japan
| | - Kazunari Murakami
- Department of Gastroenterology, Oita University Hospital, Yufu, 879-5593, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenji Kadomatsu
- Department of Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Taro Tobo
- Department of Pathology, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Masaki Mori
- Tokai University School of Medicine, Isehara, 259-1193, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan; Department of Computational and Systems Biology, Medical Research Insitute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-0034, Japan.
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Beppu, 874-0838, Japan.
| |
Collapse
|
7
|
Raghav A, Jeong GB. Nanoquercetin and Extracellular Vesicles as Potential Anticancer Therapeutics in Hepatocellular Carcinoma. Cells 2024; 13:638. [PMID: 38607076 PMCID: PMC11011524 DOI: 10.3390/cells13070638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Despite world-class sophisticated technologies, robotics, artificial intelligence, and machine learning approaches, cancer-associated mortalities and morbidities have shown continuous increments posing a healthcare burden. Drug-based interventions were associated with systemic toxicities and several limitations. Natural bioactive compounds derived nanoformulations, especially nanoquercetin (nQ), are alternative options to overcome drug-associated limitations. Moreover, the EVs-based cargo targeted delivery of nQ can have enormous potential in treating hepatocellular carcinoma (HCC). EVs-based nQ delivery synergistically regulates and dysregulates several pathways, including NF-κB, p53, JAK/STAT, MAPK, Wnt/β-catenin, and PI3K/AKT, along with PBX3/ERK1/2/CDK2, and miRNAs intonation. Furthermore, discoveries on possible checkpoints of anticancer signaling pathways were studied, which might lead to the development of modified EVs infused with nQ for the development of innovative treatments for HCC. In this work, we abridged the control of such signaling systems using a synergetic strategy with EVs and nQ. The governing roles of extracellular vesicles controlling the expression of miRNAs were investigated, particularly in relation to HCC.
Collapse
Affiliation(s)
| | - Goo Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
8
|
Matejcic M, Teer JK, Hoehn HJ, Diaz DB, Shankar K, Gong J, Nguyen NT, Lorona N, Coppola D, Fulmer C, Saglam O, Jiang K, Cress D, Muñoz-Antonia T, Flores I, Gordian E, Oliveras Torres JA, Felder SI, Sanchez JA, Fleming J, Siegel EM, Freedman JA, Dutil J, Stern MC, Fridley BL, Figueiredo JC, Schmit SL. Spectrum of somatic mutational features of colorectal tumors in ancestrally diverse populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.11.24303880. [PMID: 38558992 PMCID: PMC10980113 DOI: 10.1101/2024.03.11.24303880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ancestrally diverse and admixed populations, including the Hispanic/Latino/a/x/e community, are underrepresented in cancer genetic and genomic studies. Leveraging the Latino Colorectal Cancer Consortium, we analyzed whole exome sequencing data on tumor/normal pairs from 718 individuals with colorectal cancer (128 Latino, 469 non-Latino) to map somatic mutational features by ethnicity and genetic ancestry. Global proportions of African, East Asian, European, and Native American ancestries were estimated using ADMIXTURE. Associations between global genetic ancestry and somatic mutational features across genes were examined using logistic regression. TP53 , APC , and KRAS were the most recurrently mutated genes. Compared to non-Latino individuals, tumors from Latino individuals had fewer KRAS (OR=0.64, 95%CI=0.41-0.97, p=0.037) and PIK3CA mutations (OR=0.55, 95%CI=0.31-0.98, p=0.043). Genetic ancestry was associated with presence of somatic mutations in 39 genes (FDR-adjusted LRT p<0.05). Among these genes, a 10% increase in African ancestry was associated with significantly higher odds of mutation in KNCN (OR=1.34, 95%CI=1.09-1.66, p=5.74×10 -3 ) and TMEM184B (OR=1.53, 95%CI=1.10-2.12, p=0.011). Among RMGs, we found evidence of association between genetic ancestry and mutation status in CDC27 (LRT p=0.0084) and between SMAD2 mutation status and AFR ancestry (OR=1.14, 95%CI=1.00-1.30, p=0.046). Ancestry was not associated with tumor mutational burden. Individuals with above-average Native American ancestry had a lower frequency of microsatellite instable (MSI-H) vs microsatellite stable tumors (OR=0.45, 95%CI=0.21-0.99, p=0.048). Our findings provide new knowledge about the relationship between ancestral haplotypes and somatic mutational profiles that may be useful in developing precision medicine approaches and provide additional insight into genomic contributions to cancer disparities. Significance Our data in ancestrally diverse populations adds essential information to characterize mutational features in the colorectal cancer genome. These results will help enhance equity in the development of precision medicine strategies.
Collapse
|
9
|
Hurst ZA, Liyanarachchi S, Brock P, He H, Nabhan F, Veloski C, Toland AE, Ringel MD, Jhiang SM. Presumed Pathogenic Germ Line and Somatic Variants in African American Thyroid Cancer. Thyroid 2024; 34:378-387. [PMID: 38062767 PMCID: PMC10951570 DOI: 10.1089/thy.2023.0487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background: African American (AA) thyroid cancer patients have worse prognoses than European Americans (EA), which has been attributed to both health care disparities and possible genetic differences. We investigated the impact of both germ line and somatic variants on clinical outcome in a cohort of AA nonmedullary thyroid cancer (NMTC) patients who had received therapeutic intervention from cancer centers. Methods: Whole-exome sequencing was performed on DNA from available blood/normal tissues (N = 37) and paired tumor samples (N = 32) collected from 37 and 29 AA NMTC patients, respectively. Variants with Combined Annotation Depletion Dependent (CADD) score of ≥20 and VarSome Clinical classification of likely pathogenic or pathogenic were classified as presumed pathogenic germ line or somatic variants (PPGVs/PPSVs). PPGVs/PPSVs in cancer-related genes and PPGVs in cardiovascular risk genes were further investigated, and PPGVs/PPSVs associated with African (AFR) ancestry were identified. Results: Among 17 PPGVs identified in 16 cancer predisposition or known cancer-related genes, only WRN was previously known to associate with NMTC predisposition. Among PPSVs, BRAFV600E was most the prevalent and detected in 12 of the 29 (41%) tumors. Examining PPGVs/PPSVs among three patients who died from NMTC, one patient who died from papillary thyroid carcinoma/anaplastic thyroid carcinoma (PTC/ATC) led us to speculate that the PPGV ERCC4R799W may have increased the risk of PPSV TP53R273H acquisition. Among PPGVs identified in 18 cardiovascular risk genes, PPGVs in SC5NA, GYG1, CBS, CFTR, and SI are known to have causal and pathogenic implications in cardiovascular disease. Conclusion: In this cohort, most AA-NMTC patients exhibit favorable outcomes after therapeutic intervention given at cancer centers, suggesting that health care disparity is the major contributor for worse prognoses among AA-NMTC patients. Nevertheless, the clinical impact of PPGVs that might facilitate the acquisition of TP53 tumor mutations, and/or PPGVs that predispose individuals to adverse cardiovascular events, which could be exacerbated by therapy-induced cardiotoxicity, needs to be further explored. Integrated analysis of PPGV/PPSV profiles among NMTC patients with different stages of disease may help to identify NMTC patients who require close monitoring or proactive intervention.
Collapse
Affiliation(s)
- Zachary A. Hurst
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Sandya Liyanarachchi
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Pamela Brock
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Huiling He
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Fadi Nabhan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Colleen Veloski
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Amanda E. Toland
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Matthew D. Ringel
- Department of Molecular Medicine and Therapeutics, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, The Ohio State University College of Medicine and Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Sissy M. Jhiang
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
10
|
Iizuka D, Sasatani M, Ishikawa A, Daino K, Hirouchi T, Kamiya K. Newly discovered genomic mutation patterns in radiation-induced small intestinal tumors of ApcMin/+ mice. PLoS One 2023; 18:e0292643. [PMID: 37824459 PMCID: PMC10569626 DOI: 10.1371/journal.pone.0292643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/28/2023] [Indexed: 10/14/2023] Open
Abstract
Among the small intestinal tumors that occur in irradiated mice of the established mouse model B6/B6-Chr18MSM-F1 ApcMin/+, loss of heterozygosity analysis can be utilized to estimate whether a deletion in the wild-type allele containing the Adenomatous polyposis coli (Apc) region (hereafter referred to as Deletion), a duplication in the mutant allele with a nonsense mutation at codon 850 of Apc (Duplication), or no aberration (Unidentified) has occurred. Previous research has revealed that the number of Unidentified tumors tends to increase with the radiation dose. In the present study, we investigated the molecular mechanisms underlying the development of an Unidentified tumor type in response to radiation exposure. The mRNA expression levels of Apc were significantly lower in Unidentified tumors than in normal tissues. We focused on epigenetic suppression as the mechanism underlying this decreased expression; however, hypermethylation of the Apc promoter region was not observed. To investigate whether deletions occur that cannot be captured by loss of heterozygosity analysis, we analyzed chromosome 18 using a customized array comparative genomic hybridization approach designed to detect copy-number changes in chromosome 18. However, the copy number of the Apc region was not altered in Unidentified tumors. Finally, gene mutation analysis of the Apc region using next-generation sequencing suggested the existence of a small deletion (approximately 3.5 kbp) in an Unidentified tumor from a mouse in the irradiated group. Furthermore, nonsense and frameshift mutations in Apc were found in approximately 30% of the Unidentified tumors analyzed. These results suggest that radiation-induced Unidentified tumors arise mainly due to decreased Apc expression of an unknown regulatory mechanism that does not depend on promoter hypermethylation, and that some tumors may result from nonsense mutations which are as-yet undefined point mutations.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tokuhisa Hirouchi
- Department of Radiobiology, Institute for Environmental Sciences, Rokkasho, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
11
|
Tufail M, Wu C. WNT5A: a double-edged sword in colorectal cancer progression. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108465. [PMID: 37495091 DOI: 10.1016/j.mrrev.2023.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
The Wnt signaling pathway is known to play a crucial role in cancer, and WNT5A is a member of this pathway that binds to the Frizzled (FZD) and Receptor Tyrosine Kinase-Like Orphan Receptor (ROR) family members to activate non-canonical Wnt signaling pathways. The WNT5A pathway is involved in various cellular processes, such as proliferation, differentiation, migration, adhesion, and polarization. In the case of colorectal cancer (CRC), abnormal activation or inhibition of WNT5A signaling can lead to both oncogenic and antitumor effects. Moreover, WNT5A is associated with inflammation, metastasis, and altered metabolism in cancer cells. This article aims to discuss the molecular mechanisms and dual roles of WNT5A in CRC.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Changxin Wu
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Schaaf CR, Polkoff KM, Carter A, Stewart AS, Sheahan B, Freund J, Ginzel J, Snyder JC, Roper J, Piedrahita JA, Gonzalez LM. A LGR5 reporter pig model closely resembles human intestine for improved study of stem cells in disease. FASEB J 2023; 37:e22975. [PMID: 37159340 PMCID: PMC10446885 DOI: 10.1096/fj.202300223r] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model. We applied histology, immunofluorescence, fluorescence-activated cell sorting, flow cytometry, gene expression quantification, and 3D organoid cultures to whole tissue and single cells from the duodenum, jejunum, ileum, and colon of LGR5-H2B-GFP and wild-type pigs. Ileum and colon LGR5-H2B-GFP, healthy human, and murine biopsies were compared by mRNA fluorescent in situ hybridization (FISH). To model CRC, adenomatous polyposis coli (APC) mutation was induced by CRISPR/Cas9 editing in porcine LGR5-H2B-GFP colonoids. Crypt-base, green fluorescent protein (GFP) expressing cells co-localized with ISC biomarkers. LGR5-H2B-GFPhi cells had significantly higher LGR5 expression (p < .01) and enteroid forming efficiency (p < .0001) compared with LGR5-H2B-GFPmed/lo/neg cells. Using FISH, similar LGR5, OLFM4, HOPX, LYZ, and SOX9 expression was identified between human and LGR5-H2B-GFP pig crypt-base cells. LGR5-H2B-GFP/APCnull colonoids had cystic growth in WNT/R-spondin-depleted media and significantly upregulated WNT/β-catenin target gene expression (p < .05). LGR5+ ISCs are reproducibly isolated in LGR5-H2B-GFP pigs and used to model CRC in an organoid platform. The known anatomical and physiologic similarities between pig and human, and those shown by crypt-base FISH, underscore the significance of this novel LGR5-H2B-GFP pig to translational ISC research.
Collapse
Affiliation(s)
- Cecilia R. Schaaf
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kathryn M. Polkoff
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amber Carter
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Amy S. Stewart
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Breanna Sheahan
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - John Freund
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Joshua Ginzel
- Department of SurgeryDuke UniversityDurhamNorth CarolinaUSA
| | - Joshua C. Snyder
- Department of SurgeryDuke UniversityDurhamNorth CarolinaUSA
- Department of Cell BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jatin Roper
- Department of Medicine, Division of GastroenterologyDuke UniversityDurhamNorth CarolinaUSA
- Department of Pharmacology and Cancer BiologyDuke UniversityDurhamNorth CarolinaUSA
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Liara M. Gonzalez
- Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
13
|
Manirakiza F, Rutaganda E, Yamada H, Iwashita Y, Rugwizangoga B, Seminega B, Dusabejambo V, Ntakirutimana G, Ruhangaza D, Uwineza A, Shinmura K, Sugimura H. Clinicopathological Characteristics and Mutational Landscape of APC, HOXB13, and KRAS among Rwandan Patients with Colorectal Cancer. Curr Issues Mol Biol 2023; 45:4359-4374. [PMID: 37232746 PMCID: PMC10217012 DOI: 10.3390/cimb45050277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Cancer research in Rwanda is estimated to be less than 1% of the total African cancer research output with limited research on colorectal cancer (CRC). Rwandan patients with CRC are young, with more females being affected than males, and most patients present with advanced disease. Considering the paucity of oncological genetic studies in this population, we investigated the mutational status of CRC tissues, focusing on the Adenomatous polyposis coli (APC), Kirsten rat sarcoma (KRAS), and Homeobox B13 (HOXB13) genes. Our aim was to determine whether there were any differences between Rwandan patients and other populations. To do so, we performed Sanger sequencing of the DNA extracted from formalin-fixed paraffin-embedded adenocarcinoma samples from 54 patients (mean age: 60 years). Most tumors were located in the rectum (83.3%), and 92.6% of the tumors were low-grade. Most patients (70.4%) reported never smoking, and 61.1% of patients had consumed alcohol. We identified 27 variants of APC, including 3 novel mutations (c.4310_4319delAAACACCTCC, c.4463_4470delinsA, and c.4506_4507delT). All three novel mutations are classified as deleterious by MutationTaster2021. We found four synonymous variants (c.330C>A, c.366C>T, c.513T>C, and c.735G>A) of HOXB13. For KRAS, we found six variants (Asp173, Gly13Asp, Gly12Ala, Gly12Asp, Gly12Val, and Gln61His), the last four of which are pathogenic. In conclusion, here we contribute new genetic variation data and provide clinicopathological information pertinent to CRC in Rwanda.
Collapse
Affiliation(s)
- Felix Manirakiza
- Department of Pathology, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (F.M.)
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Eric Rutaganda
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Belson Rugwizangoga
- Department of Pathology, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda; (F.M.)
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Benoit Seminega
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Vincent Dusabejambo
- Department of Internal Medicine, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | - Gervais Ntakirutimana
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
| | | | - Annette Uwineza
- Department of Pathology, University Teaching Hospital of Kigali, Kigali P.O. Box 655, Rwanda
- Department of Biochemistry, Molecular Biology and Genetics, College of Medicine and Health Sciences, University of Rwanda, Kigali P.O. Box 3286, Rwanda
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-Ku, Shizuoka 431-3192, Japan; (H.Y.); (Y.I.)
- Sasaki Institute Sasaki Foundation, 2-2 Kanda Surugadai, Chiyoda-Ku, Tokyo 101-0062, Japan
| |
Collapse
|
14
|
Electrochemical biosensors for analysis of DNA point mutations in cancer research. Anal Bioanal Chem 2023; 415:1065-1085. [PMID: 36289102 DOI: 10.1007/s00216-022-04388-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 02/07/2023]
Abstract
Cancer is a genetic disease induced by mutations in DNA, in particular point mutations in important driver genes that lead to protein malfunctioning and ultimately to tumorigenesis. Screening for the most common DNA point mutations, especially in such genes as TP53, BRCA1 and BRCA2, EGFR, KRAS, or BRAF, is crucial to determine predisposition risk for cancer or to predict response to therapy. In this review, we briefly depict how these genes are involved in cancer, followed by a description of the most common techniques routinely applied for their analysis, including high-throughput next-generation sequencing technology and less expensive low-throughput options, such as real-time PCR, restriction fragment length polymorphism, or high resolution melting analysis. We then introduce benefits of electrochemical biosensors as interesting alternatives to the standard methods in terms of cost, speed, and simplicity. We describe most common strategies involved in electrochemical biosensing of point mutations, relying mostly on PCR or isothermal amplification techniques, and critically discuss major challenges and obstacles that, until now, prevented their more widespread application in clinical settings.
Collapse
|
15
|
Sin SH, Yoon JH, Kim SW, Park WS, Chae HS. A Case of Sporadic Multiple Colonic Polyps in a Young Woman. Curr Oncol 2023; 30:1293-1299. [PMID: 36826061 PMCID: PMC9955090 DOI: 10.3390/curroncol30020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Sporadic colorectal cancer arises from an adenoma. As mutations in the adenomatous polyposis coli (APC) tumor suppressor gene have been frequently detected in colorectal adenomas, the APC gene is considered a gatekeeper in colorectal carcinogenesis. Here, we report a case of sporadic multiple colonic adenomas that were accompanied by an APC-truncating mutation. A 25-year-old Korean woman presented with dozens of incidentally found colonic polyps. There was no family history of colorectal polyposis or colon cancer in her first or second-degree relatives. All the polyps were removed endoscopically at once, and their pathological examination revealed tubular adenoma. Mutational analysis showed a 2-bp deletion mutation at codon 443, which generates a premature stop codon at codon 461 of the APC gene, and Western blot analysis demonstrated both wild-type and truncated APC proteins in adenoma tissue. This study suggests that a single truncating mutation of the APC gene may initiate adenoma formation.
Collapse
Affiliation(s)
- Seung Ho Sin
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, 271, Cheonbo-ro, Uijeongbu-si 11765, Gyeonggi-do, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology and Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Sang Woo Kim
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, 271, Cheonbo-ro, Uijeongbu-si 11765, Gyeonggi-do, Republic of Korea
| | - Won Sang Park
- Department of Pathology and Functional RNomics Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Correspondence: (W.S.P.); (H.S.C.)
| | - Hiun Suk Chae
- Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, 271, Cheonbo-ro, Uijeongbu-si 11765, Gyeonggi-do, Republic of Korea
- Correspondence: (W.S.P.); (H.S.C.)
| |
Collapse
|
16
|
Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep (Oxf) 2022; 10:goac035. [PMID: 35975243 PMCID: PMC9373935 DOI: 10.1093/gastro/goac035] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/24/2022] [Accepted: 05/22/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies have mapped key genetic changes in colorectal cancer (CRC) that impact important pathways contributing to the multistep models for CRC initiation and development. In parallel with genetic changes, normal and cancer tissues harbor epigenetic alterations impacting regulation of critical genes that have been shown to play profound roles in the tumor initiation. Cumulatively, these molecular changes are only loosely associated with heterogenous transcriptional programs, reflecting the heterogeneity in the various CRC molecular subtypes and the paths to CRC development. Studies from mapping molecular alterations in early CRC lesions and use of experimental models suggest that the intricate dependencies of various genetic and epigenetic hits shape the early development of CRC via different pathways and its manifestation into various CRC subtypes. We highlight the dependency of epigenetic and genetic changes in driving CRC development and discuss factors affecting epigenetic alterations over time and, by extension, risk for cancer.
Collapse
Affiliation(s)
- Sehej Parmar
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hariharan Easwaran
- Cancer Genetics and Epigenetics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Becker WR, Nevins SA, Chen DC, Chiu R, Horning AM, Guha TK, Laquindanum R, Mills M, Chaib H, Ladabaum U, Longacre T, Shen J, Esplin ED, Kundaje A, Ford JM, Curtis C, Snyder MP, Greenleaf WJ. Single-cell analyses define a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer. Nat Genet 2022; 54:985-995. [PMID: 35726067 PMCID: PMC9279149 DOI: 10.1038/s41588-022-01088-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
Abstract
To chart cell composition and cell state changes that occur during the transformation of healthy colon to precancerous adenomas to colorectal cancer (CRC), we generated single-cell chromatin accessibility profiles and single-cell transcriptomes from 1,000 to 10,000 cells per sample for 48 polyps, 27 normal tissues and 6 CRCs collected from patients with or without germline APC mutations. A large fraction of polyp and CRC cells exhibit a stem-like phenotype, and we define a continuum of epigenetic and transcriptional changes occurring in these stem-like cells as they progress from homeostasis to CRC. Advanced polyps contain increasing numbers of stem-like cells, regulatory T cells and a subtype of pre-cancer-associated fibroblasts. In the cancerous state, we observe T cell exhaustion, RUNX1-regulated cancer-associated fibroblasts and increasing accessibility associated with HNF4A motifs in epithelia. DNA methylation changes in sporadic CRC are strongly anti-correlated with accessibility changes along this continuum, further identifying regulatory markers for molecular staging of polyps.
Collapse
Affiliation(s)
- Winston R Becker
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Program in Biophysics, Stanford University, Stanford, CA, USA
| | - Stephanie A Nevins
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek C Chen
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Roxanne Chiu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron M Horning
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tuhin K Guha
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rozelle Laquindanum
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Meredith Mills
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Hassan Chaib
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Uri Ladabaum
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Teri Longacre
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Jeanne Shen
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Edward D Esplin
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - James M Ford
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
18
|
Allen J, Rosendahl Huber A, Pleguezuelos-Manzano C, Puschhof J, Wu S, Wu X, Boot C, Saftien A, O’Hagan HM, Wang H, van Boxtel R, Clevers H, Sears CL. Colon Tumors in Enterotoxigenic Bacteroides fragilis (ETBF)-Colonized Mice Do Not Display a Unique Mutational Signature but Instead Possess Host-Dependent Alterations in the APC Gene. Microbiol Spectr 2022; 10:e0105522. [PMID: 35587635 PMCID: PMC9241831 DOI: 10.1128/spectrum.01055-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Bacteroides fragilis (ETBF) is consistently found at higher frequency in individuals with sporadic and hereditary colorectal cancer (CRC) and induces tumorigenesis in several mouse models of CRC. However, whether specific mutations induced by ETBF lead to colon tumor formation has not been investigated. To determine if ETBF-induced mutations impact the Apc gene, and other tumor suppressors or proto-oncogenes, we performed whole-exome sequencing and whole-genome sequencing on tumors isolated after ETBF and sham colonization of Apcmin/+ and Apcmin/+Msh2fl/flVC mice, as well as whole-genome sequencing of organoids cocultured with ETBF. Our results indicate that ETBF-induced tumor formation results from loss of heterozygosity (LOH) of Apc, unless the mismatch repair system is disrupted, in which case, tumor formation results from new acquisition of protein-truncating mutations in Apc. In contrast to polyketide synthase-positive Escherichia coli (pks+ E. coli), ETBF does not produce a unique mutational signature; instead, ETBF-induced tumors arise from errors in DNA mismatch repair and homologous recombination DNA damage repair, established pathways of tumor formation in the colon, and the same genetic mechanism accounting for sham tumors in these mouse models. Our analysis informs how this procarcinogenic bacterium may promote tumor formation in individuals with inherited predispositions to CRC, such as Lynch syndrome or familial adenomatous polyposis (FAP). IMPORTANCE Many studies have shown that microbiome composition in both the mucosa and the stool differs in individuals with sporadic and hereditary colorectal cancer (CRC). Both human and mouse models have established a strong association between particular microbes and colon tumor induction. However, the genetic mechanisms underlying putative microbe-induced colon tumor formation are not well established. In this paper, we applied whole-exome sequencing and whole-genome sequencing to investigate the impact of ETBF-induced genetic changes on tumor formation. Additionally, we performed whole-genome sequencing of human colon organoids exposed to ETBF to validate the mutational patterns seen in our mouse models and begin to understand their relevance in human colon epithelial cells. The results of this study highlight the importance of ETBF colonization in the development of sporadic CRC and in individuals with hereditary tumor conditions, such as Lynch syndrome and familial adenomatous polyposis (FAP).
Collapse
Affiliation(s)
- Jawara Allen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Axel Rosendahl Huber
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinqun Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charelle Boot
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - Aurelia Saftien
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
| | - Heather M. O’Hagan
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana, USA
- Cell, Molecular and Cancer Biology Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Hao Wang
- Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
| | - Ruben van Boxtel
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cynthia L. Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine Institutions, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Genomic landscape of pathogenic mutation of APC, KRAS, TP53, PIK3CA, and MLH1 in Indonesian colorectal cancer. PLoS One 2022; 17:e0267090. [PMID: 35709138 PMCID: PMC9202917 DOI: 10.1371/journal.pone.0267090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Colorectal cancer (CRC) needs several mutations to occur in various genes, and can vary widely in different individuals; hence it is essential to be discovered in a specific population. Until recently, there has been no known study describing APC, TP53, PIK3CA, KRAS, and MLH1 of CRC in Indonesian population. This study describes the nature and location of mutation in CRC patients treated at three different hospitals in Jakarta. Methods This descriptive study was conducted on CRC patients who underwent neoadjuvant, surgical, and adjuvant therapy at RSCM, RSKJ, and MRCCC in 2017–2018. DNA analysis was performed using next-generation sequencing and aligned against GRCh38. The pathogenic variant was identified using ACMG classification and FATHMM score. Data related to behavior and survival were collected from medical records. Results Twenty-two subjects in which APC, TP53, and PIKCA were mutated. KRAS mutation occurred in 64%, while MLH1 in 45%. There were five mutation types: nonsense, missense, frameshift, splice-site, and silent mutation. There are four groups of co-occurring mutations: APC, TP53, PIK3CA (triple mutation/TM) alone; TM+KRAS; TM+MLH1; and TM+KRAS+MLH1, presenting different nature and survival. Conclusion Indonesia has a distinct profile of pathogenic mutation, mainly presenting with locally-advanced stage with various outcomes and survival rate.
Collapse
|
20
|
The potential of PIK3CA, KRAS, BRAF, and APC hotspot mutations as a non-invasive detection method for colorectal cancer. Mol Cell Probes 2022; 63:101807. [DOI: 10.1016/j.mcp.2022.101807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
|
21
|
Yoshizawa T, Uehara T, Iwaya M, Asaka S, Kobayashi S, Nakajima T, Kinugawa Y, Nagaya T, Kamakura M, Shimizu A, Kubota K, Notake T, Masuo H, Hosoda K, Sakai H, Hayashi H, Umemura K, Kamachi A, Goto T, Tomida H, Yamazaki S, Ota H, Soejima Y. Correlation of LGR5 expression and clinicopathological features in intrahepatic cholangiocarcinoma. Pathol Res Pract 2022; 232:153832. [DOI: 10.1016/j.prp.2022.153832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
|
22
|
Karagiannakos A, Adamaki M, Tsintarakis A, Vojtesek B, Fåhraeus R, Zoumpourlis V, Karakostis K. Targeting Oncogenic Pathways in the Era of Personalized Oncology: A Systemic Analysis Reveals Highly Mutated Signaling Pathways in Cancer Patients and Potential Therapeutic Targets. Cancers (Basel) 2022; 14:cancers14030664. [PMID: 35158934 PMCID: PMC8833388 DOI: 10.3390/cancers14030664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is the second leading cause of death globally. One of the main hallmarks in cancer is the functional deregulation of crucial molecular pathways via driver genetic events that lead to abnormal gene expression, giving cells a selective growth advantage. Driver events are defined as mutations, fusions and copy number alterations that are causally implicated in oncogenesis. Molecular analysis on tissues that have originated from a wide range of anatomical areas has shown that mutations in different members of several pathways are implicated in different cancer types. In recent decades, significant efforts have been made to incorporate this knowledge into daily medical practice, providing substantial insight towards clinical diagnosis and personalized therapies. However, since there is still a strong need for more effective drug development, a deep understanding of the involved signaling mechanisms and the interconnections between these pathways is highly anticipated. Here, we perform a systemic analysis on cancer patients included in the Pan-Cancer Atlas project, with the aim to select the ten most highly mutated signaling pathways (p53, RTK-RAS, lipids metabolism, PI-3-Kinase/Akt, ubiquitination, b-catenin/Wnt, Notch, cell cycle, homology directed repair (HDR) and splicing) and to provide a detailed description of each pathway, along with the corresponding therapeutic applications currently being developed or applied. The ultimate scope is to review the current knowledge on highly mutated pathways and to address the attractive perspectives arising from ongoing experimental studies for the clinical implementation of personalized medicine.
Collapse
Affiliation(s)
- Alexandros Karagiannakos
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Antonis Tsintarakis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
| | - Robin Fåhraeus
- Research Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 65653 Brno, Czech Republic; (B.V.); (R.F.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Department of Medical Biosciences, Umeå University, 90185 Umeå, Sweden
- International Centre for Cancer Vaccine Science, University of Gdansk, 80-822 Gdansk, Poland
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Correspondence: (V.Z.); (K.K.)
| | - Konstantinos Karakostis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.K.); (M.A.); (A.T.)
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: (V.Z.); (K.K.)
| |
Collapse
|
23
|
Canonical Wnt Signaling in the Pathology of Iron Overload-Induced Oxidative Stress and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7163326. [PMID: 35116092 PMCID: PMC8807048 DOI: 10.1155/2022/7163326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Abstract
Iron accumulates in the vital organs with aging. This is associated with oxidative stress, inflammation, and mitochondrial dysfunction leading to age-related disorders. Abnormal iron levels are linked to neurodegenerative diseases, liver injury, cancer, and ocular diseases. Canonical Wnt signaling is an evolutionarily conserved signaling pathway that regulates many cellular functions including cell proliferation, apoptosis, cell migration, and stem cell renewal. Recent evidences indicate that iron regulates Wnt signaling, and iron chelators like deferoxamine and deferasirox can inhibit Wnt signaling and cell growth. Canonical Wnt signaling is implicated in the pathogenesis of many diseases, and there are significant efforts ongoing to develop innovative therapies targeting the aberrant Wnt signaling. This review examines how intracellular iron accumulation regulates Wnt signaling in various tissues and their potential contribution in the progression of age-related diseases.
Collapse
|
24
|
Philipovskiy A, Ghafouri R, Dwivedi AK, Alvarado L, McCallum R, Maegawa F, Konstantinidis IT, Hakim N, Shurmur S, Awasthi S, Gaur S, Corral J. Association Between Tumor Mutation Profile and Clinical Outcomes Among Hispanic-Latino Patients With Metastatic Colorectal Cancer. Front Oncol 2022; 11:772225. [PMID: 35141142 PMCID: PMC8819001 DOI: 10.3389/fonc.2021.772225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
In the United States, CRC is the third most common type of cancer and the second leading cause of cancer-related death. Although the incidence of CRC among the Hispanic population has been declining, recently, a dramatic increase in CRC incidents among HL younger than 50 years of age has been reported. The incidence of early-onset CRC is more significant in HL population (45%) than in non-Hispanic Whites (27%) and African-Americans (15%). The reason for these racial disparities and the biology of CRC in the HL are not well understood. We performed this study to understand the biology of the disease in HL patients. We analyzed formalin-fixed paraffin-embedded tumor tissue samples from 52 HL patients with mCRC. We compared the results with individual patient clinical histories and outcomes. We identified commonly altered genes in HL patients (APC, TP53, KRAS, GNAS, and NOTCH). Importantly, mutation frequencies in the APC gene were significantly higher among HL patients. The combination of mutations in the APC, NOTCH, and KRAS genes in the same tumors was associated with a higher risk of progression after first-line of chemotherapy and overall survival. Our data support the notion that the molecular drivers of CRC might be different in HL patients.
Collapse
Affiliation(s)
- Alexander Philipovskiy
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center Lubbock, Lubbock, TX, United States
- *Correspondence: Alexander Philipovskiy,
| | - Reshad Ghafouri
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Alok Kumar Dwivedi
- Department of Molecular and Translational Medicine, Division of Biostatistics & Epidemiology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Luis Alvarado
- Department of Molecular and Translational Medicine, Division of Biostatistics & Epidemiology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Richard McCallum
- Department of Internal Medicine, Division of Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Felipe Maegawa
- Department of Surgery, Southern Arizona VA Health Care System, University of Arizona, Tucson, AZ, United States
| | - Ioannis T. Konstantinidis
- Department of Surgery, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Nawar Hakim
- Department of Pathology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Scott Shurmur
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center Lubbock, Lubbock, TX, United States
| | - Sanjay Awasthi
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center Lubbock, Lubbock, TX, United States
| | - Sumit Gaur
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Javier Corral
- Department of Internal Medicine, Division of Hematology-Oncology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| |
Collapse
|
25
|
Lebedeva A, Shaykhutdinova Y, Seriak D, Ignatova E, Rozhavskaya E, Vardhan D, Manicka S, Sharova M, Grigoreva T, Baranova A, Mileyko V, Ivanov M. Incidental germline findings during molecular profiling of tumor tissues for precision oncology: molecular survey and methodological obstacles. J Transl Med 2022; 20:29. [PMID: 35033101 PMCID: PMC8760669 DOI: 10.1186/s12967-022-03230-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/05/2022] [Indexed: 12/13/2022] Open
Abstract
Background A fraction of patients referred for complex molecular profiling of biopsied tumors may harbor germline variants in genes associated with the development of hereditary cancer syndromes (HCS). Neither the bioinformatic analysis nor the reporting of such incidental germline findings are standardized. Methods Data from Next-Generation Sequencing (NGS) of biopsied tumor samples referred for complex molecular profiling were analyzed for germline variants in HCS-associated genes. Analysis of variant origin was performed employing bioinformatic algorithms followed by manual curation. When possible, the origin of the variant was validated by Sanger sequencing of the sample of normal tissue. The variants’ pathogenicity was assessed according to ACMG/AMP. Results Tumors were sampled from 183 patients (Males: 75 [41.0%]; Females: 108 [59.0%]; mean [SD] age, 57.7 [13.3] years) and analysed by targeted NGS. The most common tumor types were colorectal (19%), pancreatic (13%), and lung cancer (10%). A total of 56 sequence variants in genes associated with HCS were detected in 40 patients. Of them, 17 variants found in 14 patients were predicted to be of germline origin, with 6 variants interpreted as pathogenic (PV) or likely pathogenic (LPV), and 9 as variants of uncertain significance (VUS). For the 41 out of 42 (97%) missense variants in HCS-associated genes, the results of computational prediction of variant origin were concordant with that of experimental examination. We estimate that Sanger sequencing of a sample of normal tissue would be required for ~ 1–7% of the total assessed cases with PV or LPV, when necessity to follow with genetic counselling referral in ~ 2–15% of total assessed cases (PV, LPV or VUS found in HCS genes). Conclusion Incidental findings of pathogenic germline variants are common in data from cancer patients referred for complex molecular profiling. We propose an algorithm for the management of patients with newly detected variants in genes associated with HCS.
Collapse
Affiliation(s)
- Alexandra Lebedeva
- Atlas Oncodiagnostics, LLC, Moscow, Russia. .,Sechenov University, Moscow, Russia.
| | | | | | - Ekaterina Ignatova
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Department of chemotherapy №2, Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology» of the Ministry of Health of the Russian Federation, Moscow, Russia.,Department of Oncogenetics, Institute of Higher and Additional Professional Education, Research Centre for Medical Genetics, Moscow, Russia
| | | | | | - Sofia Manicka
- School of Systems Biology, George Mason University, Mannas, VA, USA
| | | | | | - Ancha Baranova
- School of Systems Biology, George Mason University, Mannas, VA, USA
| | | | - Maxim Ivanov
- Atlas Oncodiagnostics, LLC, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia
| |
Collapse
|
26
|
Zhang M, Yang D, Gold B. Origins of nonsense mutations in human tumor suppressor genes. Mutat Res 2021; 823:111761. [PMID: 34461460 DOI: 10.1016/j.mrfmmm.2021.111761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/27/2020] [Accepted: 08/12/2021] [Indexed: 11/26/2022]
Abstract
Understanding the origins of mutations in tumor suppressor genes and oncogenes associated with cancers in different tissues is critical to the development of potential prevention strategies. Analysis of >10,000 nonsense mutations in 63 tumor suppressor genes based on the ratio of the number of nonsense mutations per codon type is reported for each gene. The ratio for C•G→T•A nonsense mutations at Arg CGA codons to the number of CGA codons in all cancers is 23 (3088 total nonsense mutations for 134 CGA codons in the 63 suppressor genes). The ratio for this codon, which is attributed to hydrolytic deamination of 5-methylcytosine at CpG sites based on the sequence context, is 6-fold higher than the next highest ratio that involves a C•G→T•A transition at Trp TGG codons. C•G→A•T transversions at Glu, Ser, Tyr, Gly and Cys codons account for 25 % of the total nonsense mutations but the mutation per codon ratio for these codons is 1.0. Analysis of the bases 5' of the mutated CGA codons in the 63 tumor suppressor genes in all cancers shows a preference of 5'-G > C ∼ T ∼ A, which is not indicative of a role for enzymatic deamination by deaminases. Overall C•G→T•A mutations account for 61 % of all of the nonsense mutations in the collection of tumor suppressor genes. It is demonstrated that the ratio of C•G→T•A deamination-associated nonsense mutations at CGA codons (hydrolytic deamination) to the number of frame shift insertion/deletion mutations (i.e., replication based) for 5 major tumor suppressors genes are very similar in 3 different tissues that undergo a wide range of stem cell divisions. Therefore, the frequency of deamination mutations parallels the number of stem cell replications. This may reflect the generation of more solvent accessible single-stranded DNA regions during polymerization that are kinetically more prone to deamination.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Salk Hall, Pittsburgh, PA, 15261, United States
| | - Da Yang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Salk Hall, Pittsburgh, PA, 15261, United States
| | - Barry Gold
- Department of Pharmaceutical Sciences, University of Pittsburgh, Salk Hall, Pittsburgh, PA, 15261, United States.
| |
Collapse
|
27
|
Hinoi T. Cancer Genomic Profiling in Colorectal Cancer: Current Challenges in Subtyping Colorectal Cancers Based on Somatic and Germline Variants. J Anus Rectum Colon 2021; 5:213-228. [PMID: 34395933 PMCID: PMC8321592 DOI: 10.23922/jarc.2021-009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease caused by the accumulation of multistep genetic alterations under the influence of genomic instability. Different backgrounds of genomic instability, such as chromosomal instability, microsatellite instability, hypermutated-single nucleotide variants, and genome stable-induced transformation in the colonic epithelium, can result in adenomas, adenocarcinomas, and metastatic tumors. Characterization of molecular subtypes and establishment of treatment policies based on each subtype will lead to better treatment outcomes and an improved selection of molecularly targeted agents. In Japan, cancer precision medicine has been introduced in the National Health Insurance program through the addition of the cancer genomic profiling (CGP) examination. It has also become possible to access a large amount of genomic information, including information on pathogenic somatic and germline variants, incomparable to conventional diagnostic tests. This information enables us to apply research data to clinical decision-making, benefiting patients and their healthy family members. In this article, we discuss the important molecules and signaling pathways presumed to be the driver genes of CRC progression and the signal transduction system in which they are involved. Molecular subtypes of CRC based on CGP examinations and gene expression profiles have been established in The Cancer Genome Atlas Network with the advent of next-generation sequencing technology. We will also discuss the recommended management of secondary/germline findings, pathogenic germline variants, and presumed germline pathogenic variants obtained from CGP examination and review the current challenges to better understand these data in a new era of cancer genomic medicine.
Collapse
Affiliation(s)
- Takao Hinoi
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
28
|
Yoshizaki K, Hirata A, Nishii N, Kawabe M, Goto M, Mori T, Sakai H. Familial adenomatous polyposis in dogs: hereditary gastrointestinal polyposis in Jack Russell Terriers with germline APC mutations. Carcinogenesis 2021; 42:70-79. [PMID: 32445578 DOI: 10.1093/carcin/bgaa045] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/04/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Many hereditary disorders in dogs have equivalents in humans and thus attract attention as natural animal models. Breed predisposition to certain diseases often provides promising clues to explore novel hereditary disorders in dogs. Recently, cases of gastrointestinal (GI) polyps in Jack Russell Terriers (JRTs) have increased in Japan. In 21 affected JRTs, polyps were found in either or both the stomach and colorectum, with a predilection for the gastric antrum and rectum. Multiple polyps were found in 13 of 21 examined dogs, including 5 dogs with both gastric and colorectal polyps. Some dogs were found to have GI polyps at an early age, with the youngest case being 2.3 years old. Histopathologically, 43 of 46 GI polyps (93.5%) were diagnosed as adenomas or adenocarcinomas. Immunohistochemical analysis revealed cytoplasmic and nuclear accumulation of β-catenin in the tumor cells. As in the case of human patients with familial adenomatous polyposis, all examined JRTs with GI polyps (n = 21) harbored the identical heterozygous germline APC mutations, represented by a 2-bp substitution (c.[462A>T; 463A>T]). The latter substitution was a non-sense mutation (p.K155X) resulting in a truncated APC protein, thus suggesting a strong association with this cancer-prone disorder. Somatic mutation and loss of the wild-type APC allele were detected in the GI tumors of JRTs, suggesting that biallelic APC inactivation was involved in tumor development. This study demonstrated that despite differences in the disease conditions between human and dog diseases, germline APC mutation confers a predisposition to GI neoplastic polyps in both dogs and humans.
Collapse
Affiliation(s)
- Kyoko Yoshizaki
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Akihiro Hirata
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan.,Division of Animal Experiment, Life Science Research Center, Gifu University, Yanagido, Gifu, Japan
| | - Naohito Nishii
- Laboratory of Veterinary Internal Medicine, Gifu University, Yanagido, Gifu, Japan
| | - Mifumi Kawabe
- Laboratory of Veterinary Clinical Radiology, Gifu University, Yanagido, Gifu, Japan
| | - Minami Goto
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Takashi Mori
- Laboratory of Veterinary Clinical Oncology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Yanagido, Gifu, Japan
| | - Hiroki Sakai
- Laboratory of Veterinary Pathology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Yanagido, Gifu, Japan
| |
Collapse
|
29
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
30
|
PRDX2 promotes the proliferation of colorectal cancer cells by increasing the ubiquitinated degradation of p53. Cell Death Dis 2021; 12:605. [PMID: 34117220 PMCID: PMC8196203 DOI: 10.1038/s41419-021-03888-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is the most common gastrointestinal cancer and causes severe damage to human health. PRDX2 is a member of the peroxiredoxin family reported to have a high level of expression in colorectal cancer. However, the mechanisms by which PRDX2 promotes the proliferation of colorectal cancer are still unclear. Here, the results indicated that PRDX2 expression was upregulated in colorectal cancer and closely correlated with poor prognosis. Functionally, PRDX2 promoted the proliferation of colorectal cancer cells. Mechanistically, PRDX2 could bind RPL4, reducing the interaction between RPL4 and MDM2. These findings demonstrate that the oncogenic property of PRDX2 may be attributed to its regulation of the RPL4-MDM2-p53 pathway, leading to p53 ubiquitinated degradation.
Collapse
|
31
|
Connor T, McPhillips M, Hipwell M, Ziolkowski A, Oldmeadow C, Clapham M, Pockney PG, Lis E, Banasiewicz T, Pławski A, Scott RJ. CD36 polymorphisms and the age of disease onset in patients with pathogenic variants within the mutation cluster region of APC. Hered Cancer Clin Pract 2021; 19:25. [PMID: 33926505 PMCID: PMC8086281 DOI: 10.1186/s13053-021-00183-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Background Familial adenomatous polyposis (FAP) is an autosomal dominant condition that predisposes patients to colorectal cancer. FAP is the result of a loss of APC function due to germline pathogenic variants disrupting gene expression. Genotype-phenotype correlations are described for FAP. For example attenuated forms of the disease are associated with pathogenic variants at the 5’ and 3’ ends of APC whilst severe forms of the disease appear to be linked to variants occurring in the mutation cluster region (MCR) of the gene. Variants occurring in the MCR are phenotypically associated with hundreds to thousands of adenomas carpeting the colon and rectum and patients harbouring changes in this region have a high propensity to develop colorectal cancer. Not all patients who carry pathogenic variants in this region have severe disease which may be a result of environmental factors. Alternatively, phenotypic variation observed in these patients could be due to modifier genes that either promote or inhibit disease expression. Mouse models of FAP have provided several plausible candidate modifier genes, but very few of these have survived scrutiny. One such genetic modifier that appears to be associated with disease expression is CD36. We previously reported a weak association between a polymorphism in CD36 and a later age of disease onset on a relatively small FAP patient cohort. Methods In the current study, we enlarged the FAP cohort. 395 patients all carrying pathogenic variants in APC were tested against three CD36 Single Nucleotide Polymorphisms (SNP)s (rs1049673, rs1761667 rs1984112), to determine if any of them were associated with differences in the age of disease expression. Results Overall, there appeared to be a statistically significant difference in the age of disease onset between carriers of the variant rs1984112 and wildtype. Furthermore, test equality of survivor functions for each SNP and mutation group suggested an interaction in the Log Rank, Wilcoxon, and Tarone-Ware methods for rs1049673, rs1761667, and rs1984112, thereby supporting the notion that CD36 modifies disease expression. Conclusions This study supports and strengthens our previous findings concerning CD36 and an association with disease onset in FAP, AFAP and FAP-MCR affected individuals. Knowledge about the role CD36 in adenoma development may provide greater insight into the development of colorectal cancer.
Collapse
Affiliation(s)
- T Connor
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan Campus, NSW, 2308, Newcastle, Australia
| | - M McPhillips
- Division of Molecular Medicine, NSW Health Pathology North, 2305, New Lambton, NSW, Australia
| | - M Hipwell
- Division of Molecular Medicine, NSW Health Pathology North, 2305, New Lambton, NSW, Australia
| | - A Ziolkowski
- Division of Molecular Medicine, NSW Health Pathology North, 2305, New Lambton, NSW, Australia
| | - C Oldmeadow
- Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW, Australia
| | - M Clapham
- Centre for Clinical Epidemiology and Biostatistics, University of Newcastle, Newcastle, NSW, Australia
| | - P G Pockney
- Department of Surgery, John Hunter Hospital, Newcastle, Australia
| | - E Lis
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - T Banasiewicz
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - A Pławski
- Department of General, Endocrinological Surgery and Gastroenterological Oncology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - R J Scott
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, Callaghan Campus, NSW, 2308, Newcastle, Australia. .,Division of Molecular Medicine, NSW Health Pathology North, 2305, New Lambton, NSW, Australia. .,Hunter Medical Research Institute, John Hunter Hospital, 2305, New Lambton, NSW, Australia.
| |
Collapse
|
32
|
Yang X, Zhong J, Zhang Q, Feng L, Zheng Z, Zhang J, Lu S. Advances and Insights of APC-Asef Inhibitors for Metastatic Colorectal Cancer Therapy. Front Mol Biosci 2021; 8:662579. [PMID: 33968990 PMCID: PMC8100458 DOI: 10.3389/fmolb.2021.662579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
In Colorectal cancer (CRC), adenomatous polyposis coli (APC) directly interacts with the Rho guanine nucleotide exchange factor 4 (Asef) and releases its GEF activity. Activated Asef promotes the aberrant migration and invasion of CRC cell through a CDC42-mediated pathway. Knockdown of either APC or Asef significantly decreases the migration of CRC cells. Therefore, disrupting the APC-Asef interaction is a promising strategy for the treatment of invasive CRC. With the growth of structural information, APC-Asef inhibitors have been designed, providing hope for CRC therapy. Here, we will review the APC-Asef interaction in cancer biology, the structural complex of APC-Asef, two generations of peptide inhibitors of APC-Asef, and small molecule inhibitors of APC-Asef, focusing on research articles over the past 30 years. We posit that these advances in the discovery of APC-Asef inhibitors establish the protein-protein interaction (PPI) as targetable and provide a framework for other PPI programs.
Collapse
Affiliation(s)
- Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiufen Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Feng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zheng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Consumption of Select Dietary Emulsifiers Exacerbates the Development of Spontaneous Intestinal Adenoma. Int J Mol Sci 2021; 22:ijms22052602. [PMID: 33807577 PMCID: PMC7961571 DOI: 10.3390/ijms22052602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is a well-characterized critical driver of gastrointestinal cancers. Previous findings have shown that intestinal low-grade inflammation can be promoted by the consumption of select dietary emulsifiers, ubiquitous component of processed foods which alter the composition and function of the gut microbiota. Using a model of colitis-associated cancer, we previously reported that consumption of the dietary emulsifiers carboxymethylcellulose or polysorbate-80 exacerbated colonic tumor development. Here, we investigate the impact of dietary emulsifiers consumption on cancer initiation and progression in a genetical model of intestinal adenomas. In APCmin mice, we observed that dietary emulsifiers consumption enhanced small-intestine tumor development in a way that appeared to be independent of chronic intestinal inflammation but rather associated with emulsifiers' impact on the proliferative status of the intestinal epithelium as well as on intestinal microbiota composition in both male and female mice. Overall, our findings further support the hypothesis that emulsifier consumption may be a new modifiable risk factor for colorectal cancer (CRC) and that alterations in host-microbiota interactions can favor gastrointestinal carcinogenesis in individuals with a genetical predisposition to such disorders.
Collapse
|
34
|
Iftekhar A, Berger H, Bouznad N, Heuberger J, Boccellato F, Dobrindt U, Hermeking H, Sigal M, Meyer TF. Genomic aberrations after short-term exposure to colibactin-producing E. coli transform primary colon epithelial cells. Nat Commun 2021; 12:1003. [PMID: 33579932 PMCID: PMC7881031 DOI: 10.1038/s41467-021-21162-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Genotoxic colibactin-producing pks+ Escherichia coli induce DNA double-strand breaks, mutations, and promote tumor development in mouse models of colorectal cancer (CRC). Colibactin's distinct mutational signature is reflected in human CRC, suggesting a causal link. Here, we investigate its transformation potential using organoids from primary murine colon epithelial cells. Organoids recovered from short-term infection with pks+ E. coli show characteristics of CRC cells, e.g., enhanced proliferation, Wnt-independence, and impaired differentiation. Sequence analysis of Wnt-independent organoids reveals an enhanced mutational burden, including chromosomal aberrations typical of genomic instability. Although we do not find classic Wnt-signaling mutations, we identify several mutations in genes related to p53-signaling, including miR-34a. Knockout of Trp53 or miR-34 in organoids results in Wnt-independence, corroborating a functional interplay between the p53 and Wnt pathways. We propose larger chromosomal alterations and aneuploidy as the basis of transformation in these organoids, consistent with the early appearance of chromosomal instability in CRC.
Collapse
Affiliation(s)
- Amina Iftekhar
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany.,Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany
| | - Nassim Bouznad
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilians University, München, Germany
| | - Julian Heuberger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany
| | - Francesco Boccellato
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.,Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig Maximilians University, München, Germany.,German Cancer Consortium (DKTK), Partner Site München, München, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Sigal
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany. .,Department of Internal Medicine, Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany. .,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany. .,Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel and University Hospital Schleswig Holstein - Campus Kiel, Kiel, Germany.
| |
Collapse
|
35
|
A unique case of two somatic APC mutations in an early onset cribriform-morular variant of papillary thyroid carcinoma and overview of the literature. Fam Cancer 2021; 19:15-21. [PMID: 31598872 PMCID: PMC7026211 DOI: 10.1007/s10689-019-00146-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a case of a 22-year-old female patient who was diagnosed with a cribriform-morular variant of papillary thyroid carcinoma (CMV-PTC). While at early ages this thyroid cancer variant is highly suggestive for familial adenomatous polyposis (FAP), there was no family history of FAP. In the tumor biallelic, inactivating APC variants were identified. The patient tested negative for germline variants based on analysis of genomic DNA from peripheral blood leukocytes. Somatic mosaicism was excluded by subsequent deep sequencing of leukocyte and normal thyroid DNA using next generation sequencing (NGS). This report presents a rare sporadic case of CMV-PTC, and to the best of our knowledge the first featuring two somatic APC mutations underlying the disease, with an overview of CMV-PTC cases with detected APC and CTNNB1 pathogenic variants from the literature.
Collapse
|
36
|
Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznoy Y, Rosin-Arbesfeld R. Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Adv Drug Deliv Rev 2021; 169:118-136. [PMID: 33346022 DOI: 10.1016/j.addr.2020.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
The canonical Wnt pathway is one of the key cellular signaling cascades that regulates, via the transcriptional co-activator β-catenin, numerous embryogenic developmental processes, as well as tissue homeostasis. It is therefore not surprising that misregulation of the Wnt/β-catenin pathway has been implicated in carcinogenesis. Aberrant Wnt signaling has been reported in a variety of malignancies, and its role in both hereditary and sporadic colorectal cancer (CRC), has been the subject of intensive study. Interestingly, the vast majority of colorectal tumors harbor mutations in the tumor suppressor gene adenomatous polyposis coli (APC). The Wnt pathway is complex, and despite decades of research, the mechanisms that underlie its functions are not completely known. Thus, although the Wnt cascade is an attractive target for therapeutic intervention against CRC, one of the malignancies with the highest morbidity and mortality rates, achieving efficacy and safety is yet extremely challenging. Here, we review the current knowledge of the Wnt different epistatic signaling components and the mechanism/s by which the signal is transduced in both health and disease, focusing on CRC. We address some of the important questions in the field and describe various therapeutic strategies designed to combat unregulated Wnt signaling, the development of targeted therapy approaches and the emerging challenges that are associated with these advanced methods.
Collapse
|
37
|
Bugter JM, Fenderico N, Maurice MM. Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 2021; 21:5-21. [PMID: 33097916 DOI: 10.1038/s41568-020-00307-z] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2020] [Indexed: 12/21/2022]
Abstract
Mutation-induced activation of WNT-β-catenin signalling is a frequent driver event in human cancer. Sustained WNT-β-catenin pathway activation endows cancer cells with sustained self-renewing growth properties and is associated with therapy resistance. In healthy adult stem cells, WNT pathway activity is carefully controlled by core pathway tumour suppressors as well as negative feedback regulators. Gene inactivation experiments in mouse models unequivocally demonstrated the relevance of WNT tumour suppressor loss-of-function mutations for cancer growth. However, in human cancer, a far more complex picture has emerged in which missense or truncating mutations mediate stable expression of mutant proteins, with distinct functional and phenotypic ramifications. Herein, we review recent advances and challenges in our understanding of how different mutational subsets of WNT tumour suppressor genes link to distinct cancer types, clinical outcomes and treatment strategies.
Collapse
Affiliation(s)
- Jeroen M Bugter
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nicola Fenderico
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Madelon M Maurice
- Oncode Institute and Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
38
|
Aitchison A, Hakkaart C, Day RC, Morrin HR, Frizelle FA, Keenan JI. APC Mutations Are Not Confined to Hotspot Regions in Early-Onset Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12123829. [PMID: 33352971 PMCID: PMC7766084 DOI: 10.3390/cancers12123829] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Mutation of the APC gene is a common early event in colorectal cancer, however lower rates have been reported in younger cohorts of colorectal cancer patients. In sporadic cancer, mutations are typically clustered around a mutation cluster region, a narrowly defined hotspot within the APC gene. In this study we used a sequencing strategy aimed at identifying mutations more widely throughout the APC gene in patients aged 50 years or under. We found high rates of APC mutation in our young cohort that were similar to rates seen in older patients but the mutations we found were spread throughout the gene in a pattern more similar to that seen in inherited rather than sporadic mutations. Our study has implications both for the sequencing of the APC gene in early-onset colorectal cancer and for the etiology of this disease. Abstract While overall colorectal cancer (CRC) cases have been declining worldwide there has been an increase in the incidence of the disease among patients under 50 years of age. Mutation of the APC gene is a common early event in CRC but is reported at lower rates in early-onset colorectal cancer (EOCRC) than in older patients. Here we investigate the APC mutation status of a cohort of EOCRC patients in New Zealand using a novel sequencing approach targeting regions of the gene encompassing the vast majority of known APC mutations. Using this strategy we find a higher rate (72%) of APC mutation than previously reported in EOCRC with mutations being spread throughout the gene rather than clustered in hotspots as seen with sporadic mutations in older patients. The rate of mutations falling within hotspots was similar to those previously seen in EOCRC and as such our study has implications for sequencing strategies for EOCRC patients. Overall there were low rates of both loss of heterozygosity and microsatellite instability whereas a relatively high rate (40%) of APC promoter methylation was found, possibly reflecting increasing exposure of young people to pro-oncogenic lifestyle factors.
Collapse
Affiliation(s)
- Alan Aitchison
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand; (F.A.F.); (J.I.K.)
- Correspondence:
| | - Christopher Hakkaart
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch 8011, New Zealand;
| | - Robert C. Day
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand;
| | - Helen R. Morrin
- Cancer Society Tissue Bank, University of Otago Christchurch, Christchurch 8011, New Zealand;
| | - Frank A. Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand; (F.A.F.); (J.I.K.)
| | - Jacqueline I. Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand; (F.A.F.); (J.I.K.)
| |
Collapse
|
39
|
Juanes MA. Cytoskeletal Control and Wnt Signaling-APC's Dual Contributions in Stem Cell Division and Colorectal Cancer. Cancers (Basel) 2020; 12:E3811. [PMID: 33348689 PMCID: PMC7766042 DOI: 10.3390/cancers12123811] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Intestinal epithelium architecture is sustained by stem cell division. In principle, stem cells can divide symmetrically to generate two identical copies of themselves or asymmetrically to sustain tissue renewal in a balanced manner. The choice between the two helps preserve stem cell and progeny pools and is crucial for tissue homeostasis. Control of spindle orientation is a prime contributor to the specification of symmetric versus asymmetric cell division. Competition for space within the niche may be another factor limiting the stem cell pool. An integrative view of the multiple links between intracellular and extracellular signals and molecular determinants at play remains a challenge. One outstanding question is the precise molecular roles of the tumour suppressor Adenomatous polyposis coli (APC) for sustaining gut homeostasis through its respective functions as a cytoskeletal hub and a down regulator in Wnt signalling. Here, we review our current understanding of APC inherent activities and partners in order to explore novel avenues by which APC may act as a gatekeeper in colorectal cancer and as a therapeutic target.
Collapse
Affiliation(s)
- M. Angeles Juanes
- School of Health and Life Science, Teesside University, Middlesbrough TS1 3BX, UK;
- National Horizons Centre, Teesside University, 38 John Dixon Lane, Darlington DL1 1HG, UK
| |
Collapse
|
40
|
Lefol C, Sohier E, Baudet C, Naïbo P, Ruano E, Grand-Masson C, Viari A, Wang Q. Acquired somatic MMR deficiency is a major cause of MSI tumor in patients suspected for "Lynch-like syndrome" including young patients. Eur J Hum Genet 2020; 29:482-488. [PMID: 33279946 DOI: 10.1038/s41431-020-00778-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Patients with tumors displaying high microsatellite instability (MSI-H) but no germline MMR inactivation are suspected for Lynch-like syndrome (LLS). To explore the involvement of acquired somatic MMR alteration as a cause, we screened 113 patient tumor samples for MMR gene variations and loss of heterozygosity. Somatic MMR alterations were found in 85.8% of patients including "double hits" in 63.7% of patients, mainly diagnosed with colon and endometrial cancers. Interestingly, 37.5% of them were under the age of 50, and seven patients were under 30. Somatic alterations were mainly attributed to the MLH1, MSH2 genes, likely reflecting the functional importance of these key MMR genes. Pathogenic variants co-existed in other cancer genes in particular the APC gene displaying a characteristic MMR deficiency-related "mutational signature", indicating that it may be inactivated owing to MMR deficiency. We speculated that APC inactivation could trigger an accelerated malignant transformation underlying early-onset cancers. Our findings provide further insight into the mechanisms underlying LLS, somatic MMR inactivation being a major cause for early-onset LLS through pathways differing from those involved in late-onset sporadic cases.
Collapse
Affiliation(s)
- Cedrick Lefol
- Centre Léon Bérard, Laboratory of constitutional genetics for frequent cancer HCL-CLB, 69008, Lyon, France
| | - Emilie Sohier
- Centre Léon Bérard, Gilles-Thomas bioinformatics platform, 69008, Lyon, France
| | - Christian Baudet
- Centre Léon Bérard, Gilles-Thomas bioinformatics platform, 69008, Lyon, France
| | - Pierre Naïbo
- Centre Léon Bérard, Laboratory of constitutional genetics for frequent cancer HCL-CLB, 69008, Lyon, France
| | - Eric Ruano
- Centre Léon Bérard, Laboratory of constitutional genetics for frequent cancer HCL-CLB, 69008, Lyon, France
| | - Chloé Grand-Masson
- Centre Léon Bérard, Laboratory of constitutional genetics for frequent cancer HCL-CLB, 69008, Lyon, France
| | - Alain Viari
- Centre Léon Bérard, Gilles-Thomas bioinformatics platform, 69008, Lyon, France
| | - Qing Wang
- Centre Léon Bérard, Laboratory of constitutional genetics for frequent cancer HCL-CLB, 69008, Lyon, France.
| |
Collapse
|
41
|
Bala P, Singh AK, Kavadipula P, Kotapalli V, Sabarinathan R, Bashyam MD. Exome sequencing identifies ARID2 as a novel tumor suppressor in early-onset sporadic rectal cancer. Oncogene 2020; 40:863-874. [PMID: 33262464 DOI: 10.1038/s41388-020-01537-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
Early-onset sporadic rectal cancer (EOSRC) is a unique and predominant colorectal cancer (CRC) subtype in India. In order to understand the tumorigenic process in EOSRC, we performed whole-exome sequencing of 47 microsatellite stable EOSRC samples. Signature 1 was the predominant mutational signature in EOSRC, as previously shown in other CRC exome studies. More importantly, we identified TP53, KRAS, APC, PIK3R1, SMAD4 and ZNF880 as significantly mutated (q < 0.1) and ARID1A and ARID2 as near-significantly mutated (restricted hypothesis testing; q < 0.1) candidate drivers. Unlike the other candidates, the tumorigenic potential of ARID2, encoding a component of the SWI/SNF chromatin remodeling complex, is largely unexplored in CRC. shRNA-mediated ARID2 knockdown performed in different CRC cell lines resulted in significant alterations in transcript levels of cancer-related target genes. More importantly, ARID2 knockdown promoted several tumorigenic features including cell viability, proliferation, ability to override contact inhibition of growth, and migration besides significantly increasing tumor formation ability in nude mice. The observed gain in tumorigenic features was rescued upon ectopic expression of wild type but not mutant ARID2. Analyses of the TCGA pan-cancer dataset revealed several modes of ARID2 inactivation and of the CRC dataset revealed poorer survival in patients with ARID2 alterations. We therefore propose ARID2 as a novel tumor suppressor in CRC.
Collapse
Affiliation(s)
- Pratyusha Bala
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Anurag Kumar Singh
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Padmavathi Kavadipula
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Viswakalyan Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India
| | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, 500039, India.
| |
Collapse
|
42
|
Kleeman SO, Leedham SJ. Not All Wnt Activation Is Equal: Ligand-Dependent versus Ligand-Independent Wnt Activation in Colorectal Cancer. Cancers (Basel) 2020; 12:E3355. [PMID: 33202731 PMCID: PMC7697568 DOI: 10.3390/cancers12113355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Wnt signaling is ubiquitously activated in colorectal tumors and driver mutations are identified in genes such as APC, CTNNB1, RNF43 and R-spondin (RSPO2/3). Adenomatous polyposis coli (APC) and CTNNB1 mutations lead to downstream constitutive activation (ligand-independent), while RNF43 and RSPO mutations require exogenous Wnt ligand to activate signaling (ligand-dependent). Here, we present evidence that these mutations are not equivalent and that ligand-dependent and ligand-independent tumors differ in terms of underlying Wnt biology, molecular pathogenesis, morphology and prognosis. These non-overlapping characteristics can be harnessed to develop biomarkers and targeted treatments for ligand-dependent tumors, including porcupine inhibitors, anti-RSPO3 antibodies and asparaginase. There is emerging evidence that these therapies may synergize with immunotherapy in ligand-dependent tumors. In summary, we propose that ligand-dependent tumors are an underappreciated separate disease entity in colorectal cancer.
Collapse
Affiliation(s)
- Sam O. Kleeman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Simon J. Leedham
- Intestinal Stem Cell Biology Lab, Wellcome Trust Centre Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
43
|
Murakami T, Sakamoto N, Fukushima H, Shibuya T, Yao T, Nagahara A. Usefulness of the Japan narrow-band imaging expert team classification system for the diagnosis of sessile serrated lesion with dysplasia/carcinoma. Surg Endosc 2020; 35:4528-4538. [PMID: 32909209 DOI: 10.1007/s00464-020-07967-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/27/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sessile serrated lesion (SSL) is a colorectal polyp that has malignant potential. However, the dysplastic components within an SSL can be difficult to diagnose with conventional endoscopy, because most SSLs with dysplasia/carcinoma have subtle mucosal features. Many studies have indicated that narrow-band imaging (NBI) observations of colorectal polyps are very useful, accurate predictors of histology. We aimed to verify the usefulness of the Japan NBI Expert Team (JNET) classification system for the diagnosis of SSLs with dysplasia/carcinoma. METHODS We examined 709 endoscopically or surgically resected lesions that were pathologically diagnosed as SSL, including 647 with no dysplasia, 37 with low-grade dysplasia, 15 with high-grade dysplasia, and 10 with submucosal invasive carcinoma. We retrospectively evaluated their clinicopathologic characteristics and conventional endoscopic and magnifying NBI endoscopic findings using the JNET system. RESULTS Cases in all groups were more frequently located in the proximal colon. Submucosal invasive carcinomas were significantly larger than no dysplasia and low-grade dysplasia lesions. Almost all studied lesions (96.3%) were covered with a mucus cap. Five hundred and eighty (81.8%) lesions exhibited dark spots inside the crypts, which are NBI findings' characteristic of SSL. As for the JNET classification of magnifying NBI endoscopic findings, all 709 lesions showed Type 1. Six hundred and eighteen (95.5%) SSLs with no dysplasia lesions exhibited Type 1 only, whereas 52 (83.9%) SSLs with dysplasia/carcinoma had a combination of Type 1 and Type 2A, 2B, or 3, corresponding to SSL and dysplasia/carcinoma, respectively. The JNET classification had high sensitivity (83.9%), specificity (95.5%), and overall diagnostic accuracy (94.5%) for diagnosing SSLs with dysplasia/carcinoma. CONCLUSIONS Use of magnifying NBI endoscopy with the JNET classification might be useful for diagnosing SSLs with dysplasia/carcinoma. This increased awareness may also improve the recognition of SSLs with dysplasia/carcinoma.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Naoto Sakamoto
- Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hirofumi Fukushima
- Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
44
|
Casein Kinase 1α as a Regulator of Wnt-Driven Cancer. Int J Mol Sci 2020; 21:ijms21165940. [PMID: 32824859 PMCID: PMC7460588 DOI: 10.3390/ijms21165940] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Wnt signaling regulates numerous cellular processes during embryonic development and adult tissue homeostasis. Underscoring this physiological importance, deregulation of the Wnt signaling pathway is associated with many disease states, including cancer. Here, we review pivotal regulatory events in the Wnt signaling pathway that drive cancer growth. We then discuss the roles of the established negative Wnt regulator, casein kinase 1α (CK1α), in Wnt signaling. Although the study of CK1α has been ongoing for several decades, the bulk of such research has focused on how it phosphorylates and regulates its various substrates. We focus here on what is known about the mechanisms controlling CK1α, including its putative regulatory proteins and alternative splicing variants. Finally, we describe the discovery and validation of a family of pharmacological CK1α activators capable of inhibiting Wnt pathway activity. One of the important advantages of CK1α activators, relative to other classes of Wnt inhibitors, is their reduced on-target toxicity, overcoming one of the major impediments to developing a clinically relevant Wnt inhibitor. Therefore, we also discuss mechanisms that regulate CK1α steady-state homeostasis, which may contribute to the deregulation of Wnt pathway activity in cancer and underlie the enhanced therapeutic index of CK1α activators.
Collapse
|
45
|
Reyes M, Flores T, Betancur D, Peña-Oyarzún D, Torres VA. Wnt/β-Catenin Signaling in Oral Carcinogenesis. Int J Mol Sci 2020; 21:ijms21134682. [PMID: 32630122 PMCID: PMC7369957 DOI: 10.3390/ijms21134682] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/23/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Oral carcinogenesis is a complex and multifactorial process that involves cumulative genetic and molecular alterations, leading to uncontrolled cell proliferation, impaired DNA repair and defective cell death. At the early stages, the onset of potentially malignant lesions in the oral mucosa, or oral dysplasia, is associated with higher rates of malignant progression towards carcinoma in situ and invasive carcinoma. Efforts have been made to get insights about signaling pathways that are deregulated in oral dysplasia, as these could be translated into novel markers and might represent promising therapeutic targets. In this context, recent evidence underscored the relevance of the Wnt/β-catenin signaling pathway in oral dysplasia, as this pathway is progressively "switched on" through the different grades of dysplasia (mild, moderate and severe dysplasia), with the consequent nuclear translocation of β-catenin and expression of target genes associated with the maintenance of representative traits of oral dysplasia, namely cell proliferation and viability. Intriguingly, recent studies provide an unanticipated connection between active β-catenin signaling and deregulated endosome trafficking in oral dysplasia, highlighting the relevance of endocytic components in oral carcinogenesis. This review summarizes evidence about the role of the Wnt/β-catenin signaling pathway and the underlying mechanisms that account for its aberrant activation in oral carcinogenesis.
Collapse
Affiliation(s)
- Montserrat Reyes
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile; (T.F.); (D.B.)
- Correspondence: (M.R.); (V.A.T.)
| | - Tania Flores
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile; (T.F.); (D.B.)
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile;
- Research Centre in Dental Science (CICO), Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile
| | - Diego Betancur
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile; (T.F.); (D.B.)
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile;
| | - Daniel Peña-Oyarzún
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380453, Chile
| | - Vicente A. Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380453, Chile;
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago 8380453, Chile
- Correspondence: (M.R.); (V.A.T.)
| |
Collapse
|
46
|
Pattison AM, Barton JR, Entezari AA, Zalewski A, Rappaport JA, Snook AE, Waldman SA. Silencing the intestinal GUCY2C tumor suppressor axis requires APC loss of heterozygosity. Cancer Biol Ther 2020; 21:799-805. [PMID: 32594830 PMCID: PMC7515455 DOI: 10.1080/15384047.2020.1779005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most sporadic colorectal cancer reflects acquired mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, while germline heterozygosity for mutant APC produces the autosomal dominant disorder Familial Adenomatous Polyposis (FAP) with a predisposition to colorectal cancer. In these syndromes, loss of heterozygosity (LOH) silences the remaining normal allele of APC, through an unknown mechanism, as the initiating step in transformation. Guanylyl cyclase C receptor (GUCY2C) and its hormones, uroguanylin and guanylin, have emerged as a key signaling axis opposing mutations driving intestinal tumorigenesis. Indeed, uroguanylin and guanylin are among the most commonly repressed genes in colorectal cancer. Here, we explored the role of APC heterozygosity in mechanisms repressing hormone expression which could contribute to LOH. In genetic mouse models of APC loss, uroguanylin and guanylin expression were quantified following monoallelic or biallelic deletion of the Apc gene. Induced biallelic loss of APC repressed uroguanylin and guanylin expression. However, monoallelic APC loss in Apcmin/+ mice did not alter hormone expression. Similarly, in FAP patients, normal colonic mucosa (monoallelic APC loss) expressed guanylin while adenomas and an invasive carcinoma (biallelic APC loss) were devoid of hormone expression. Thus, uroguanylin and guanylin expression by normal intestinal epithelial cells persists in the context of APC heterozygosity and is lost only after tumor initiation by APC LOH. These observations reveal a role for loss of the hormones silencing the GUCY2C axis in tumor progression following biallelic APC loss, but not in mechanisms creating the genetic vulnerability in epithelial cells underlying APC LOH initiating tumorigenesis.
Collapse
Affiliation(s)
- Amanda M Pattison
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Joshua R Barton
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Ariana A Entezari
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Alicja Zalewski
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Jeff A Rappaport
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College at Thomas Jefferson University , Philadelphia, PA, USA
| |
Collapse
|
47
|
Aghabozorgi AS, Ebrahimi R, Bahiraee A, Tehrani SS, Nabizadeh F, Setayesh L, Jafarzadeh-Esfehani R, Ferns GA, Avan A, Rashidi Z. The genetic factors associated with Wnt signaling pathway in colorectal cancer. Life Sci 2020; 256:118006. [PMID: 32593708 DOI: 10.1016/j.lfs.2020.118006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/11/2022]
Abstract
Colorectal cancer (CRC) is a common cancer with poor prognosis and high mortality. There is growing information about the factors involved in the pathogenesis of CRC. However, the knowledge of the predisposing factors is limited. The development of CRC is strongly associated with the Wingless/Integrated (Wnt) signaling pathway. This pathway comprises several major target proteins, including LRP5/6, GSK3β, adenomatous polyposis coli (APC), axis inhibition protein (Axin), and β-catenin. Genetic variations in these components of the Wnt signaling pathway may lead to the activation of β-catenin, potentially increasing the proliferation of colorectal cells. Because of the potentially important role of the Wnt signaling pathway in CRC, we aimed to review the involvement of different mutations in the main downstream proteins of this pathway, including LRP5/6, APC, GSK3β, Axin, and β-catenin. Determination of the genetic risk factors involved in the progression of CRC may lead to novel approaches for the early diagnosis of CRC and the identification of potential therapeutic targets in the treatment of CRC.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Medical Genetics Research Center, Basic Medical Sciences Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhane Ebrahimi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabizadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Rashidi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
48
|
Theodoropoulos PC, Wang W, Budhipramono A, Thompson BM, Madhusudhan N, Mitsche MA, McDonald JG, De Brabander JK, Nijhawan D. A Medicinal Chemistry-Driven Approach Identified the Sterol Isomerase EBP as the Molecular Target of TASIN Colorectal Cancer Toxins. J Am Chem Soc 2020; 142:6128-6138. [PMID: 32163279 DOI: 10.1021/jacs.9b13407] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
TASIN (Truncated APC-Selective Inhibitors) compounds are selectively toxic to colorectal cancer cells with APC mutations, although their mechanism of action remains unknown. Here, we found that TASINs inhibit three enzymes in the postsqualene cholesterol biosynthetic pathway including EBP, DHCR7, and DHCR24. Even though all three of these enzymes are required for cholesterol biosynthesis, only inhibition of the most upstream enzyme, EBP, led to cancer cell death via depletion of downstream sterols, an observation that was confirmed by genetic silencing of EBP. Pharmacologic inhibition or genetic silencing of either DHCR7 or DHCR24 had no impact on cell viability. By using photoaffinity probes to generate a relationship between chemical structure and probe competition, we identified compounds that selectively inhibit either EBP or DHCR7. These studies identify EBP, but not downstream enzymes in the cholesterol biosynthetic pathway, as a target in APC mutant colorectal cancer and also have implications for the clinical development of highly selective EBP inhibitors.
Collapse
|
49
|
Aceto GM, Catalano T, Curia MC. Molecular Aspects of Colorectal Adenomas: The Interplay among Microenvironment, Oxidative Stress, and Predisposition. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1726309. [PMID: 32258104 PMCID: PMC7102468 DOI: 10.1155/2020/1726309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
The development of colorectal cancer (CRC) is a multistep process initiated by a benign polyp that has the potential to evolve into in situ carcinoma through the interactions between environmental and genetic factors. CRC incidence rates are constantly increased for young adult patients presenting an advanced tumor stage. The majority of CRCs arise from colonic adenomas originating from aberrant cell proliferation of colon epithelium. Endoscopic polypectomy represents a tool for early detection and removal of polyps, although the occurrence of cancers after negative colonoscopy shows a significant incidence. It has long been recognized that the aberrant regulation of Wingless/It (Wnt)/β-Catenin signaling in the pathogenesis of colorectal cancer is supported by its critical role in the differentiation of stem cells in intestinal crypts and in the maintenance of intestinal homeostasis. For this review, we will focus on the development of adenomatous polyps through the interplay between renewal signaling in the colon epithelium and reactive oxygen species (ROS) production. The current knowledge of molecular pathology allows us to deepen the relationships between oxidative stress and other risk factors as lifestyle, microbiota, and predisposition. We underline that the chronic inflammation and ROS production in the colon epithelium can impair the Wnt/β-catenin and/or base excision repair (BER) pathways and predispose to polyp development. In fact, the coexistence of oxidative DNA damage and errors in DNA polymerase can foster C>T transitions in various types of cancer and adenomas, leading to a hypermutated phenotype of tumor cells. Moreover, the function of Adenomatous Polyposis Coli (APC) protein in regulating DNA repair is very important as therapeutic implication making DNA damaging chemotherapeutic agents more effective in CRC cells that tend to accumulate mutations. Additional studies will determine whether approaches based on Wnt inhibition would provide long-term therapeutic value in CRC, but it is clear that APC disruption plays a central role in driving and maintaining tumorigenesis.
Collapse
Affiliation(s)
- Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Teresa Catalano
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
50
|
Tran TQ, Hanse EA, Habowski AN, Li H, Ishak Gabra MB, Yang Y, Lowman XH, Ooi AM, Liao SY, Edwards RA, Waterman ML, Kong M. α-Ketoglutarate attenuates Wnt signaling and drives differentiation in colorectal cancer. NATURE CANCER 2020; 1:345-358. [PMID: 32832918 PMCID: PMC7442208 DOI: 10.1038/s43018-020-0035-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Genetic-driven deregulation of the Wnt pathway is crucial but not sufficient for colorectal cancer (CRC) tumourigenesis. Here, we show that environmental glutamine restriction further augments Wnt signaling in APC mutant intestinal organoids to promote stemness and leads to adenocarcinoma formation in vivo via decreasing intracellular alpha-ketoglutarate (aKG) levels. aKG supplementation is sufficient to rescue low-glutamine induced stemness and Wnt hyperactivation. Mechanistically, we found that aKG promotes hypomethylation of DNA and histone H3K4me3, leading to an upregulation of differentiation-associated genes and downregulation of Wnt target genes, respectively. Using CRC patient-derived organoids and several in vivo CRC tumour models, we show that aKG supplementation suppresses Wnt signaling and promotes cellular differentiation, thereby significantly restricting tumour growth and extending survival. Together, our results reveal how metabolic microenvironment impacts Wnt signaling and identify aKG as a potent antineoplastic metabolite for potential differentiation therapy for CRC patients.
Collapse
Affiliation(s)
- Thai Q Tran
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Eric A Hanse
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Amber N Habowski
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Haiqing Li
- Division of Informatics, Department of Computational and Quantitative Medicine, Center of Informatics, Beckman Research Institute of City of Hope Cancer Center, Duarte, CA, USA
| | - Mari B Ishak Gabra
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Xazmin H Lowman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Amelia M Ooi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Shu Y Liao
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|