1
|
Xu K, Ou G. Cilia regeneration requires an RNA splicing factor from the ciliary base. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:29. [PMID: 36180752 PMCID: PMC9525525 DOI: 10.1186/s13619-022-00130-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022]
Abstract
Cilia are microtubule-based organelles projected from most eukaryotic cell surfaces performing cell motility and signaling. Several previously recognized non-ciliary proteins play crucial roles in cilium formation and function. Here, we provide additional evidence that the Caenorhabditis elegans RNA splicing factor PRP-8/PRPF8 regulates ciliogenesis and regeneration from the ciliary base. Live imaging of GFP knock-in animals reveals that the endogenous PRP-8 localizes in the nuclei and the ciliary base. A weak loss-of-function allele of prp-8 affects ciliary structure but with little impact on RNA splicing. Conditional degradation of PRP-8 within ciliated sensory neurons showed its direct and specific roles in cilium formation. Notably, the penetrance of ciliary defects correlates with the reduction of PRP-8 at the ciliary base but not nuclei, and sensory neurons regenerated cilia accompanying PRP-8 recovery from the ciliary base rather than the nuclei. We suggest that PRP-8 at the ciliary base contributes to cilium formation and regeneration.
Collapse
Affiliation(s)
- Kaiming Xu
- grid.12527.330000 0001 0662 3178Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| | - Guangshuo Ou
- grid.12527.330000 0001 0662 3178Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, China
| |
Collapse
|
2
|
Maxwell DW, O'Keefe RT, Roy S, Hentges KE. The role of splicing factors in retinitis pigmentosa: links to cilia. Biochem Soc Trans 2021; 49:1221-1231. [PMID: 34060618 DOI: 10.1042/bst20200798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023]
Abstract
Cilia are critical to numerous biological functions, both in development and everyday homeostatic processes. Diseases arising from genetic mutations that cause cilia dysfunction are termed ciliopathies. Several ubiquitously expressed splicing factors have been implicated in the condition Retinitis Pigmentosa (RP), a group of diseases characterised by the progressive degeneration of the retina. In many types of RP the disease affects the modified primary cilium of the photoreceptor cells and thus, these types of RP are considered ciliopathies. Here, we discuss sequence variants found within a number of these splicing factors, the resulting phenotypes, and the mechanisms underpinning disease pathology. Additionally, we discuss recent evidence investigating why RP patients with mutations in globally expressed splicing factors present with retina-specific phenotypes.
Collapse
Affiliation(s)
- Dale W Maxwell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Raymond T O'Keefe
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Department of Pediatrics, National University of Singapore, 1E Kent Ridge Road, Singapore 119228, Singapore
| | - Kathryn E Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, U.K
| |
Collapse
|
3
|
|
4
|
Is the lifetime of light-stimulated cGMP phosphodiesterase regulated by recoverin through its regulation of rhodopsin phosphorylation? Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00039522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
|
6
|
|
7
|
|
8
|
|
9
|
|
10
|
|
11
|
Testa F, Ziviello C, Rinaldi M, Rossi S, Di Iorio V, Interlandi E, Ciccodicola A, Banfi S, Simonelli F. Clinical phenotype of an Italian family with a new mutation in the PRPF8 gene. Eur J Ophthalmol 2007; 16:779-81. [PMID: 17061239 DOI: 10.1177/112067210601600524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To report the clinical and functional characteristics of an autosomal dominant retinitis pigmentosa (ADRP) family with a novel point mutation (P2301S) in the PRPF8 gene. METHODS PRPF8 gene analysis and complete ophthalmologic examination in an ADRP family. RESULTS Clinical examination revealed the typical RP phenotype in all family members. Electroretinography showed preserved ERG photopic responses. Genetic analysis showed that the P2301S missense mutation segregated with the disease in all subjects. CONCLUSIONS Unlike previously reported families, the PRPF8 gene mutation in our family is associated with a mild phenotype in which cone function is partially preserved.
Collapse
Affiliation(s)
- F Testa
- Department of Ophthalmology, Second University of Napoli, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Senin II, Bosch L, Ramon E, Zernii EY, Manyosa J, Philippov PP, Garriga P. Ca2+/recoverin dependent regulation of phosphorylation of the rhodopsin mutant R135L associated with retinitis pigmentosa. Biochem Biophys Res Commun 2006; 349:345-52. [PMID: 16934219 DOI: 10.1016/j.bbrc.2006.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Accepted: 08/11/2006] [Indexed: 11/19/2022]
Abstract
No single molecular mechanism accounts for the effect of mutations in rhodopsin associated with retinitis pigmentosa. Here we report on the specific effect of a Ca2+/recoverin upon phosphorylation of the autosomal dominant retinitis pigmentosa R135L rhodopsin mutant. This mutant shows specific features like impaired G-protein signaling but enhanced phosphorylation in the shut-off process. We now report that R135L hyperphosphorylation by rhodopsin kinase is less efficiently inhibited by Ca2+/recoverin than wild-type rhodopsin. This suggests an involvement of Ca2+/recoverin into the molecular pathogenic effect of the mutation in retinitis pigmentosa which is the cause of rod photoreceptor cell degeneration. This new proposed role of Ca2+/recoverin may be one of the specific features of the proposed new Type III class or rhodopsin mutations associated with retinitis pigmentosa.
Collapse
Affiliation(s)
- Ivan I Senin
- Department of Cell Signalling, A. N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Russia
| | | | | | | | | | | | | |
Collapse
|
13
|
Weleber RG, Gregory-Evans K. Retinitis Pigmentosa and Allied Disorders. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
14
|
Pacione LR, Szego MJ, Ikeda S, Nishina PM, McInnes RR. PROGRESSTOWARDUNDERSTANDING THEGENETIC ANDBIOCHEMICALMECHANISMS OFINHERITEDPHOTORECEPTORDEGENERATIONS. Annu Rev Neurosci 2003; 26:657-700. [PMID: 14527271 DOI: 10.1146/annurev.neuro.26.041002.131416] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
More than 80 genes associated with human photoreceptor degenerations have been identified. Attention must now turn toward defining the mechanisms that lead to photoreceptor death, which occurs years to decades after the birth of the cells. Consequently, this review focuses on topics that offer insights into such mechanisms, including the one-hit or constant risk model of photoreceptor death; topological patterns of photoreceptor degeneration; mutations in ubiquitously expressed splicing factor genes associated only with photoreceptor degeneration; disorders of the retinal pigment epithelium; modifier genes; and global gene expression analysis of the retina, which will greatly increase our understanding of the downstream events that occur in response to a mutation.
Collapse
Affiliation(s)
- Laura R Pacione
- Programs in Genetics and Developmental Biology, The Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| | | | | | | | | |
Collapse
|
15
|
Zhao X, He M, Wan D, Ye Y, He Y, Han L, Guo M, Huang Y, Qin W, Wang MW, Chong W, Chen J, Zhang L, Yang N, Xu B, Wu M, Zuo L, Gu J. The minimum LOH region defined on chromosome 17p13.3 in human hepatocellular carcinoma with gene content analysis. Cancer Lett 2003; 190:221-32. [PMID: 12565177 DOI: 10.1016/s0304-3835(02)00622-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common human cancers in Asia. Previous studies have shown that in addition to aberrations of the p53 gene on chromosome 17p13.1, other gene(s) on chromosome 17p13.3 may also play a role in HCC. To detect the status of loss of heterozygosity (LOH) in HCC and to determine the minimum region of LOH on 17p13.3, we analyzed 22 paired HCC and non-cancerous liver samples with 14 polymorphic markers plus TP53 (p53 gene) as a comparison. The data revealed a high level of LOH (>68%) in a minimum region between D17S1866 and D17S1574, spanning over a 1.5 Mb region. Genomic library screening using markers in the region has resulted in the isolation of a cluster of BAC/PAC clones. We created a physical map in this region. Using large-scale genome sequencing, gene annotation, cDNA screening, and exon trapping, we identified 17 known genes and 13 novel genes in the minimum region. The function of these genes was analyzed and the possibility of several putative tumor suppressor genes was discussed.
Collapse
Affiliation(s)
- Xintai Zhao
- National Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, 2200 Xie Tu Road, 200032, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
van Lith-Verhoeven JJC, van der Velde-Visser SD, Sohocki MM, Deutman AF, Brink HMA, Cremers FPM, Hoyng CB. Clinical characterization, linkage analysis, and PRPC8 mutation analysis of a family with autosomal dominant retinitis pigmentosa type 13 (RP13). Ophthalmic Genet 2002; 23:1-12. [PMID: 11910553 DOI: 10.1076/opge.23.1.1.2206] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A Dutch family with autosomal dominant retinitis pigmentosa (adRP) displayed a phenotype characterized by an early age of onset, a diffuse loss of rod and cone sensitivity, and constricted visual fields (type I). One male showed a mild progression of the disease. Linkage analysis showed cosegregation of the genetic defect with markers from chromosome 17p13.1-p13.3, a region overlapping the RP13 locus. The critical interval of the RP locus as defined in this family was flanked by D17S926 and D17S786, with a maximal lod score of 4.2 (theta = 0.00) for marker D17S1529. Soon after the mapping of the underlying defect to the 17p13 region, a missense mutation (6970G>A; R2310K) was identified in exon 42 of the splicing factor gene PRPC8 in one patient of this family. Diagnostic restriction enzyme digestion of exon 42 amplified from genomic DNA of all family members revealed that the R2310K mutation segregated fully with the disease. The type I phenotype observed in this family is similar to that described for three other RP13 families with mutations in PRPC8.
Collapse
|
17
|
|
18
|
Wang Q, Chen Q, Zhao K, Wang L, Wang L, Traboulsi EI. Update on the molecular genetics of retinitis pigmentosa. Ophthalmic Genet 2001; 22:133-54. [PMID: 11559856 DOI: 10.1076/opge.22.3.133.2224] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of retinal dystrophies characterized by photoreceptor cell degeneration. RP causes night blindness, a gradual loss of peripheral visual fields, and eventual loss of central vision. Advances in molecular genetics have provided new insights into the genes responsible and the pathogenic mechanisms of RP. The genetics of RP is complex, and the disease can be inherited in autosomal dominant, recessive, X-linked, or digenic modes. Twenty-six causative genes have been identified or cloned for RP, and an additional fourteen genes have been mapped, but not yet identified. Eight autosomal dominant forms are due to mutations in RHO on chromosome 3q21-24, RDS on 6p21.1-cen, RP1 on 8p11-21, RGR on 10q23, ROM1 on 11q13, NRL on 14q11.1-11.2, CRX on 19q13.3, and PRKCG on 19q13.4. Autosomal recessive genes include RPE65 on chromosome 1p31, ABCA4 on 1p21-13, CRB1 on 1q31-32.1, USH2A on 1q41, MERTK on 2q14.1, SAG on 2q37.1, RHO on 3q21-24, PDE6B on 4p16.3, CNGA1 on 4p14-q13, PDE6A on 5q31.2-34, TULP1 on 6p21.3, RGR on 10q, NR2E3 on 15q23, and RLBP1 on 15q26. For X-linked RP, two genes, RP2 and RP3 (RPGR), have been cloned. Moreover, heterozygous mutations in ROM1 on 11q13, in combination with heterozygous mutations in RDS on 6p21.1-cen, cause digenic RP (the two-locus mechanism). These exciting molecular discoveries have defined the genetic pathways underlying the pathogenesis of retinitis pigmentosa, and have raised the hope of genetic testing for RP and the development of new avenues for therapy.
Collapse
Affiliation(s)
- Q Wang
- Center for Molecular Genetics, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Sohoki MM, Browne SJ, Sullivan LS, Blackshaw S, Cepko CL, Payne AM, Bhattacharya SS, Khaliq S, Mehdi SQ, Birch DG, Harrison WR, Elder FF, Heckenlively JR, Daiger SP. Mutations in a new photoreceptor-pineal gene on 17p cause leber congenital amaurosis. Nat gen 2000;24:79-83. Am J Ophthalmol 2000; 129:834-5. [PMID: 10927016 PMCID: PMC2796558 DOI: 10.1016/s0002-9394(00)00517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leber congenital amaurosis (LCA, MIM 204000) accounts for at least 5% of all inherited retinal disease1 and is the most severe inherited retinopathy with the earliest age of onset2. Individuals affected with LCA are diagnosed at birth or in the first few months of life with severely impaired vision or blindness, nystagmus and an abnormal or flat electroretinogram (ERG). Mutations in GUCY2D (ref. 3), RPE65 (ref. 4) and CRX (ref. 5) are known to cause LCA, but one study identified disease-causing GUCY2D mutations in only 8 of 15 families whose LCA locus maps to 17p13.1 (ref. 3), suggesting another LCA locus might be located on 17p13.1. Confirming this prediction, the LCA in one Pakistani family mapped to 17p13.1, between D17S849 and D17S960—a region that excludes GUCY2D. The LCA in this family has been designated LCA4 (ref. 6). We describe here a new photoreceptor/pineal-expressed gene, AIPL1 (encoding arylhydrocarbon interacting protein-like 1), that maps within the LCA4 candidate region and whose protein contains three tetratricopeptide (TPR) motifs, consistent with nuclear transport or chaperone activity. A homozygous nonsense mutation at codon 278 is present in all affected members of the original LCA4 family. AIPL1 mutations may cause approximately 20% of recessive LCA, as disease-causing mutations were identified in 3 of 14 LCA families not tested previously for linkage.
Collapse
|
20
|
Sohocki MM, Perrault I, Leroy BP, Payne AM, Dharmaraj S, Bhattacharya SS, Kaplan J, Maumenee IH, Koenekoop R, Meire FM, Birch DG, Heckenlively JR, Daiger SP. Prevalence of AIPL1 mutations in inherited retinal degenerative disease. Mol Genet Metab 2000; 70:142-50. [PMID: 10873396 DOI: 10.1006/mgme.2000.3001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy and the most frequent cause of inherited blindness in children. LCA is usually inherited in an autosomal recessive fashion, although rare dominant cases have been reported. One form of LCA, LCA4, maps to chromosome 17p13 and is genetically distinct from other forms of LCA. We recently identified the gene associated with LCA4, AIPL1 (aryl-hydrocarbon interacting protein-like 1) and identified three mutations that were the cause of blindness in five families with LCA. In this study, AIPL1 was screened for mutations in 512 unrelated probands with a range of retinal degenerative diseases to determine if AIPL1 mutations cause other forms of inherited retinal degeneration and to determine the relative contribution of AIPL1 mutations to inherited retinal disorders in populations worldwide. We identified 11 LCA families whose retinal disorder is caused by homozygous or compound heterozygous AIPL1 mutations. We also identified affected individuals in two apparently dominant families, diagnosed with juvenile retinitis pigmentosa or dominant cone-rod dystrophy, respectively, who are heterozygous for a 12-bp AIPL1 deletion. Our results suggest that AIPL1 mutations cause approximately 7% of LCA worldwide and may cause dominant retinopathy.
Collapse
Affiliation(s)
- M M Sohocki
- Human Genetics Center, School of Public Health, Houston, Texas, 77225-0334, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sohocki MM, Bowne SJ, Sullivan LS, Blackshaw S, Cepko CL, Payne AM, Bhattacharya SS, Khaliq S, Qasim Mehdi S, Birch DG, Harrison WR, Elder FF, Heckenlively JR, Daiger SP. Mutations in a new photoreceptor-pineal gene on 17p cause Leber congenital amaurosis. Nat Genet 2000; 24:79-83. [PMID: 10615133 PMCID: PMC2581448 DOI: 10.1038/71732] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leber congenital amaurosis (LCA, MIM 204000) accounts for at least 5% of all inherited retinal disease and is the most severe inherited retinopathy with the earliest age of onset. Individuals affected with LCA are diagnosed at birth or in the first few months of life with severely impaired vision or blindness, nystagmus and an abnormal or flat electroretinogram (ERG). Mutations in GUCY2D (ref. 3), RPE65 (ref. 4) and CRX (ref. 5) are known to cause LCA, but one study identified disease-causing GUCY2D mutations in only 8 of 15 families whose LCA locus maps to 17p13.1 (ref. 3), suggesting another LCA locus might be located on 17p13.1. Confirming this prediction, the LCA in one Pakistani family mapped to 17p13.1, between D17S849 and D17S960-a region that excludes GUCY2D. The LCA in this family has been designated LCA4 (ref. 6). We describe here a new photoreceptor/pineal-expressed gene, AIPL1 (encoding aryl-hydrocarbon interacting protein-like 1), that maps within the LCA4 candidate region and whose protein contains three tetratricopeptide (TPR) motifs, consistent with nuclear transport or chaperone activity. A homozygous nonsense mutation at codon 278 is present in all affected members of the original LCA4 family. AIPL1 mutations may cause approximately 20% of recessive LCA, as disease-causing mutations were identified in 3 of 14 LCA families not tested previously for linkage.
Collapse
Affiliation(s)
- M M Sohocki
- Human Genetics Center, School of Public Health, The University of Texas-Houston Health Science Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gilbert F. Disease genes and chromosomes: disease maps of the human genome. Chromosome 17. GENETIC TESTING 1999; 2:357-81. [PMID: 10464617 DOI: 10.1089/gte.1998.2.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Higashide T, Inana G. Characterization of the gene for HRG4 (UNC119), a novel photoreceptor synaptic protein homologous to unc-119. Genomics 1999; 57:446-50. [PMID: 10329014 DOI: 10.1006/geno.1999.5791] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HRG4 (HGMW-approved symbol UNC119) is a novel human photoreceptor-enriched gene coding for a 240-amino-acid protein. Initially, HRG4 was shown to be 57% homologous to a newly discovered Caenorhabditis elegans gene, mutated in a coordination mutant and involved in chemosensation. Recently, HRG4 has been localized to the photoreceptor synapses in the outer plexiform layer of the retina. The HRG4 gene was cloned and characterized to facilitate its analysis as a potential pathogenic gene. The gene consisted of five coding exons, spread over approximately 8 kb of genomic DNA. The transcriptional start site was 14 bp upstream of the cDNA, 68 bp upstream of the putative translational initiation codon. Five GC boxes were identified in a 100-bp upstream region, along with a photoreceptor conserved element 1-like sequence at -603. Another photoreceptor gene-associated sequence, Ret-1, was present in intron 1, 71 bp downstream of the exon 1/intron 1 border. A CpG island encompassing exon 1 and sequences just before and after it was present. The gene was fine mapped to 17q11.2, facilitating its future consideration as a candidate for retinal diseases mapped to the same region.
Collapse
Affiliation(s)
- T Higashide
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
24
|
van Soest S, Westerveld A, de Jong PT, Bleeker-Wagemakers EM, Bergen AA. Retinitis pigmentosa: defined from a molecular point of view. Surv Ophthalmol 1999; 43:321-34. [PMID: 10025514 DOI: 10.1016/s0039-6257(98)00046-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinitis pigmentosa (RP) denotes a group of hereditary retinal dystrophies, characterized by the early onset of night blindness followed by a progressive loss of the visual field. The primary defect underlying RP affects the function of the rod photoreceptor cell, and, subsequently, mostly unknown molecular and cellular mechanisms trigger the apoptotic degeneration of these photoreceptor cells. Retinitis pigmentosa is very heterogeneous, both phenotypically and genetically. In this review we propose a tentative classification of RP based on the functional systems affected by the mutated proteins. This classification connects the variety of phenotypes to the mutations and segregation patterns observed in RP. Current progress in the identification of the molecular defects underlying RP reveals that at least three distinct functional mechanisms may be affected: 1) the daily renewal and shedding of the photoreceptor outer segments, 2) the visual transduction cascade, and 3) the retinol (vitamin A) metabolism. The first group includes the rhodopsin and peripherin/RDS genes, and mutations in these genes often result in a dominant phenotype. The second group is predominantly associated with a recessive phenotype that results, as we argue, from continuous inactivation of the transduction pathway. Disturbances in the retinal metabolism seem to be associated with equal rod and cone involvement and the presence of deposits in the retinal pigment epithelium.
Collapse
Affiliation(s)
- S van Soest
- Department of Ophthalmogenetics, The Netherlands Ophthalmic Research Institute, Amsterdam
| | | | | | | | | |
Collapse
|
25
|
Abstract
Retinal dystrophies are a heterogeneous group of diseases in which the retina degenerates, leading to either partial or complete blindness. The severe and clearly hereditary forms, retinitis pigmentosa (RP) and various macular degenerations, affect approximately 1 in 3000 people, but many more suffer from aging macular dystrophy in later life. Patients with RP present with narrowing visual fields and night blindness, while those with diseases of the macula lose central vision first. Even before the advent of molecular genetics it was evident that these were heterogeneous disorders, with wide variation in severity, mode of inheritance and phenotype. However, with the widespread application of linkage analysis and mutation detection techniques, a complex underlying pathology has now been revealed. In total, 66 distinct non-overlapping genes or gene loci have been implicated in the various forms of retinal dystrophy, with more being reported regularly in the literature. Within the category of non-syndromic RP alone there are at least 22 genes (and probably many more) involved, with further allelic heterogeneity arising from different mutations in the same gene. This complexity presents a problem for those involved in counselling patients, and also compounds the search for therapies. Nevertheless, several lines of research raise the hope of generic treatments applicable to all such patients, while the greater understanding of normal visual function that arises from genetic studies may open up new avenues for therapy.
Collapse
Affiliation(s)
- C F Inglehearn
- Molecular Medicine Unit, St James's University Hospital, Leeds, UK.
| |
Collapse
|
26
|
Hughes AE, Lotery AJ, Silvestri G. Fine localisation of the gene for central areolar choroidal dystrophy on chromosome 17p. J Med Genet 1998; 35:770-2. [PMID: 9733038 PMCID: PMC1051432 DOI: 10.1136/jmg.35.9.770] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Central areolar choroidal dystrophy (CACD) is a retinal disease which causes progressive profound loss of vision in patients during middle age. The disease is inherited as an autosomal dominant trait and shows genetic heterogeneity. Mutations in the peripherin-RDS gene on chromosome 6 have been reported in affected members of families transmitting the disease. A new locus at chromosome 17p13 was identified recently by a genome wide linkage search in members of a large Northern Irish family. We now report the refinement of the critical region for this gene to an interval of approximately 5 cM flanked by polymorphic markers D17S1810 and CHLC GATA7B03.
Collapse
Affiliation(s)
- A E Hughes
- Division of Molecular Medicine, The Queen's University of Belfast, UK
| | | | | |
Collapse
|
27
|
Malchiodi-Albedi F, Feher J, Caiazza S, Formisano G, Perilli R, Falchi M, Petrucci TC, Scorcia G, Tombran-Tink J. PEDF (pigment epithelium-derived factor) promotes increase and maturation of pigment granules in pigment epithelial cells in neonatal albino rat retinal cultures. Int J Dev Neurosci 1998; 16:423-32. [PMID: 9829178 DOI: 10.1016/s0736-5748(98)00014-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pigment Epithelium-Derived Factor (PEDF), purified from human retinal pigment epithelial (RPE) cell culture medium, is a neurotrophic factor which potentiates the differentiation of human Y-79 retinoblastoma cells and increases the survival of cerebellar granule cells. To investigate the effects of PEDF on non-transformed retinal cells, we used primary cultures of neonatal albino rat retinas, where the three principal cell types of the retinal layers (neuronal, glial and epithelial) were all present and focussed our attention on RPE cells, which are of special relevance for retinal pathophysiology. PEDF had a dramatic effect on these cells. They showed a modified phenotype, with larger dimensions, higher cytoplasmic spreading, presence of phagocytic vacuoles, development of wide intercellular contacts, and increase and maturation of pigment granules. These results suggest that PEDF may have a role in regulating RPE cell differentiation.
Collapse
Affiliation(s)
- F Malchiodi-Albedi
- Department of Ultrastructure, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
MacDonald IM, Haney PM, Musarella MA. Summary of ocular genetic disorders and inherited systemic conditions with eye findings. Ophthalmic Genet 1998; 19:1-17. [PMID: 9587925 DOI: 10.1076/opge.19.1.1.2181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Of the close to 10,000 known inherited disorders that affect humankind, a disproportionately high number affect the eye. The total number of genes responsible for the normal structure, function, and differentiation of the eye is unknown, but the list of these genes is rapidly and constantly growing. The objective of this paper is to provide a current list of mapped and/or cloned human eye genes that are responsible for inherited diseases of the eye. The ophthalmologist should be aware of recent advances in molecular technology which have resulted in significant progress towards the identification of these genes. The implications of this new knowledge will be discussed herein.
Collapse
Affiliation(s)
- I M MacDonald
- Department of Ophthalmology, University of Alberta, Canada
| | | | | |
Collapse
|
29
|
Goliath R, Bardien S, September A, Martin R, Ramesar R, Greenberg J. Rhodopsin mutation G109R in a family with autosomal dominant retinitis pigmentosa. Hum Mutat 1998; Suppl 1:S40-1. [PMID: 9452035 DOI: 10.1002/humu.1380110114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- R Goliath
- Department of Human Genetics, University of Cape Town Medical School Observatory, South Africa
| | | | | | | | | | | |
Collapse
|
30
|
Inglehearn CF, Tarttelin EE, Plant C, Peacock RE, al-Maghtheh M, Vithana E, Bird AC, Bhattacharya SS. A linkage survey of 20 dominant retinitis pigmentosa families: frequencies of the nine known loci and evidence for further heterogeneity. J Med Genet 1998; 35:1-5. [PMID: 9475085 PMCID: PMC1051177 DOI: 10.1136/jmg.35.1.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autosomal dominant retinitis pigmentosa (ADRP) is caused by mutations in two known genes, rhodopsin and peripherin/Rds, and seven loci identified only by linkage analysis. Rhodopsin and peripherin/Rds have been estimated to account for 20-31% and less than 5% of ADRP, respectively. No estimate of frequency has previously been possible for the remaining loci, since these can only be implicated when families are large enough for linkage analysis. We have carried out such analyses on 20 unrelated pedigrees with 11 or more meioses. Frequency estimates based on such a small sample provide only broad approximations, while the above estimations are based on mutation detection in much larger clinic based patient series. However, when markers are informative, linkage analysis cannot fail to detect disease causation at a locus, whereas mutation detection techniques might miss some mutations. Also diagnosing dominant RP from a family history taken in a genetic clinic may not be reliable. It is therefore interesting that 10 (50%) of the families tested have rhodopsin-RP, suggesting that, in large clearly dominant RP pedigrees, rhodopsin may account for a higher proportion of disease than had previously been suspected. Four (20%) map to chromosome 19q, implying that this is the second most common ADRP locus. One maps to chromosome 7p, one to 17p, and one to 17q, while none maps to 1cen, peripherin/Rds, 8q, or 7q. Three give exclusion of all of these loci, showing that while the majority of dominant RP maps to the known loci, a small proportion derives from loci yet to be identified.
Collapse
Affiliation(s)
- C F Inglehearn
- Department of Molecular Genetics, Institute of Ophthalmology, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
McGee TL, Devoto M, Ott J, Berson EL, Dryja TP. Evidence that the penetrance of mutations at the RP11 locus causing dominant retinitis pigmentosa is influenced by a gene linked to the homologous RP11 allele. Am J Hum Genet 1997; 61:1059-66. [PMID: 9345108 PMCID: PMC1716046 DOI: 10.1086/301614] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A subset of families with autosomal dominant retinitis pigmentosa (RP) display reduced penetrance with some asymptomatic gene carriers showing no retinal abnormalities by ophthalmic examination or by electroretinography. Here we describe a study of three families with reduced-penetrance RP. In all three families the disease gene appears to be linked to chromosome 19q13.4, the region containing the RP11 locus, as defined by previously reported linkage studies based on five other reduced-penetrance families. Meiotic recombinants in one of the newly identified RP11 families and in two of the previously reported families serve to restrict the disease locus to a 6-cM region bounded by markers D19S572 and D19S926. We also compared the disease status of RP11 carriers with the segregation of microsatellite alleles within 19q13.4 from the noncarrier parents in the newly reported and the previously reported families. The results support the hypothesis that wild-type alleles at the RP11 locus or at a closely linked locus inherited from the noncarrier parents are a major factor influencing the penetrance of pathogenic alleles at this locus.
Collapse
Affiliation(s)
- T L McGee
- Ocular Molecular Genetics Institute, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | | | | | | | | |
Collapse
|
32
|
Stathakis DG, Hoover KB, You Z, Bryant PJ. Human postsynaptic density-95 (PSD95): location of the gene (DLG4) and possible function in nonneural as well as in neural tissues. Genomics 1997; 44:71-82. [PMID: 9286702 DOI: 10.1006/geno.1997.4848] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have determined the cDNA sequence, expression pattern, and chromosomal location of the human gene DLG4, encoding the postsynaptic density-95 (PSD95) protein. hPSD95 is a 723-amino-acid protein that is 99% identical to its rodent counterparts. This is the fourth human protein identified as showing significant similarity to the Drosophila tumor suppressor Dlg. These proteins constitute the DLG subfamily of the membrane-associated guanylate kinase protein family. The expression of DLG4 in neural tissue is consistent with the pattern observed for its rat homolog. However, DLG4 is also expressed in a wide range of nonneural tissues, suggesting that the protein may have additional roles in humans. Using radiation-hybrid mapping panels, we mapped the DLG4 locus to 17p13.1, a region associated with several diseases, the phenotypes of which are consistent with loss of PSD95 function.
Collapse
Affiliation(s)
- D G Stathakis
- Developmental Biology Center, University of California at Irvine 92697-2275, USA.
| | | | | | | |
Collapse
|
33
|
Mohamed Z, Bell C, Hammer HM, Converse CA, Esakowitz L, Haites NE. Linkage of a medium sized Scottish autosomal dominant retinitis pigmentosa family to chromosome 7q. J Med Genet 1996; 33:714-5. [PMID: 8863169 PMCID: PMC1050711 DOI: 10.1136/jmg.33.8.714] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Retinitis pigmentosa is a group of hereditary retinopathies which is both clinically and genetically heterogeneous. Autosomal dominant (ADRP), autosomal recessive (ARRP), and X linked recessive (XLRP), as well as digenic forms of inheritance have been reported. ADRP has been linked to 3q, 6p, 7p, 7q, 8cen, 17p, 17q, and 19q. Three unrelated ADRP families have been reported to show linkage to 7q. We tested a Scottish ADRP family with microsatellite markers mapping within the 7q31-q35 region, and found three markers (D7S487, D7S514, D7S530) showing statistically significant evidence of linkage. A maximum two point lod score of 3.311 at 0% recombination was obtained for D7S514.
Collapse
Affiliation(s)
- Z Mohamed
- Department of Molecular and Cell Biology, University of Aberdeen, Medical School, Foresterhill, UK
| | | | | | | | | | | |
Collapse
|
34
|
Tarttelin EE, Plant C, Weissenbach J, Bird AC, Bhattacharya SS, Inglehearn CF. A new family linked to the RP13 locus for autosomal dominant retinitis pigmentosa on distal 17p. J Med Genet 1996; 33:518-20. [PMID: 8782056 PMCID: PMC1050642 DOI: 10.1136/jmg.33.6.518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A form of autosomal dominant retinitis pigmentosa (ADRP) mapping to chromosome 17p has been reported in a single large South African family. We now report a new family with severe early onset ADRP which maps to 17p. Linkage and haplotype analysis in this family places the ADRP locus in the 5 cM interval between markers AFMc024za5 and D17S1845, confirming the data obtained in the South African family. The discovery of a second 17p linked family may imply that this is one of the more common loci for dominant RP. In addition, the confirmation of an RP diagnosis at this locus is of interest since loci for a dominant cone dystrophy and Leber's congenital amaurosis (LCA1) have recently been linked to the same markers. While the cone dystrophy locus may be allelic with RP, our data and that of Goliath et al show that distinct genes are responsible for dominant RP and Leber's congenital amaurosis on chromosome 17p.
Collapse
Affiliation(s)
- E E Tarttelin
- Department of Molecular Genetics, Institute of Ophthalmology, London, UK
| | | | | | | | | | | |
Collapse
|
35
|
Souied E, Soubrane G, Benlian P, Coscas GJ, Gerber S, Munnich A, Kaplan J. Retinitis punctata albescens associated with the Arg135Trp mutation in the rhodopsin gene. Am J Ophthalmol 1996; 121:19-25. [PMID: 8554077 DOI: 10.1016/s0002-9394(14)70530-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE To screen for mutations in the rhodopsin, peripherin/RDS, and ROM1 genes in a family affected with retinitis punctata albescens. Because clinical heterogeneity was observed in this family, with some members affected with retinitis punctata albescens and one member affected with features typical of retinitis pigmentosa, we analyzed the apolipoprotein E gene to elucidate this unusual intrafamilial heterogeneity. METHODS The coding sequences of these genes were analyzed with a combination of single-strand conformation polymorphism and direct sequence analysis. Haplotypes of the apolipoprotein E gene were analyzed by polymerase chain reaction and enzymatic digestion. RESULTS The Arg135Trp mutation in the rhodopsin gene was observed in all affected members of this family, but no mutation was detected in the peripherin/RDS or ROM1 genes. The e4 allele of the apolipoprotein E gene apparently cosegregated with the albescens phenotype in this family. CONCLUSIONS The albescent phenotype in retinal dystrophy appears to not be caused exclusively by a peripherin/RDS gene mutation, and we suggest that the apolipoprotein E gene may play a role in the albescent phenotype.
Collapse
Affiliation(s)
- E Souied
- Genetics Laboratory INSERM U-393, Hôpital des Enfants-Malades, Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Small KW, Syrquin M, Mullen L, Gehrs K. Mapping of autosomal dominant cone degeneration to chromosome 17p. Am J Ophthalmol 1996; 121:13-8. [PMID: 8554076 DOI: 10.1016/s0002-9394(14)70529-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE We studied a single, large family with autosomal dominant cone degeneration in order to map the disease-causing gene. METHODS Seventy-three individuals in this family were examined, and 34 were found to be affected. Blood samples from 34 affected and unaffected family members were obtained for DNA analysis and linkage mapping. Fifty-three genetic markers were analyzed in this family by using short tandem repeat markers. These markers were primarily in candidate genomic regions. RESULTS Marker D17S796 generated a significantly positive LOD score of 4.21 (theta = .04; 10,000:1 odds in favor of linkage). Marker D17S513 gave a significant LOD score of 3.1 (theta = .096; 1,000:1 odds in favor of linkage). Other markers in the region generated suggestive findings, such as D17S786, with a LOD score of 2.7, and D17S945, with a LOD score of 2.41. CONCLUSIONS Our results indicate that a genetic defect that causes autosomal dominant cone degeneration is located on chromosome 17p in the region of recoverin. Recoverin, a retinal expressed gene, is an appealing candidate for this disease.
Collapse
Affiliation(s)
- K W Small
- Macula Center, Jules Stein Eye Institute, UCLA School of Medicine 90095, USA
| | | | | | | |
Collapse
|
37
|
Xu S, Nakazawa M, Tamai M, Gal A. Autosomal dominant retinitis pigmentosa locus on chromosome 19q in a Japanese family. J Med Genet 1995; 32:915-6. [PMID: 8592343 PMCID: PMC1051751 DOI: 10.1136/jmg.32.11.915] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A large four generation Japanese family was studied, in which autosomal dominant retinitis pigmentosa (ADRP) of very variable expression was segregating. Positive lod scores with maxima between 1.557-5.118 at theta = 0.00, strongly suggestive of linkage, were obtained for KLK, D19S180, D19S418, and D19S254 on chromosome 19q. Recently, an ADRP locus has been mapped to the same region in a British family, in which, again, several members subjectively had no clinical evidence of the disease although they had both an affected parent and an affected child.
Collapse
Affiliation(s)
- S Xu
- Institut fur Humangenetik, Universitäts-Krankenhaus Eppendorf, Hamburg, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
AbstractRecoverin is a Ca2+-binding protein found primarily in vertebrate photoreceptors. The proposed physiological function of recoverin is based on the finding that recoverin inhibits light-stimulated phosphorylation of rhodopsin. Recoverin interacts with rod outer segment membranes in a Ca2+-dependent manner. This interaction requires N-terminal acylation of recoverin. Four types of fatty acids have been detected on the N-terminus of recoverin, but the functional significance of this heterogeneous acylation is not yet clear.
Collapse
|
39
|
Future directions for rhodopsin structure and function studies. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNMR (nuclear magnetic resonance) may be useful for determining the structure of retinal and its environment in rhodopsin, but not for determining the complete protein structure. Aggregation and low yield of fragments of rhodopsin may make them difficult to study by NMR. A long-term multidisciplinary attack on rhodopsin structure is required.
Collapse
|
40
|
More answers about cGMP-gated channels pose more questions. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractOur understanding of the molecular properties and cellular role of cGMP-gated channels in outer segments of vertebrate photo-receptors has come from over a decade of studies which have continuously altered and refined ideas about these channels. Further examination of this current view may lead to future surprises and further refine the understanding of cGMP-gated channels.
Collapse
|
41
|
Cyclic nucleotides as regulators of light-adaptation in photoreceptors. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCyclic nucleotides can regulate the sensitivity of retinal rods to light through phosducin. The phosphorylation state of phosducin determines the amount of G available for activation by Rho*. Phosducin phosphorylation is regulated by cyclic nucleotides through their activation of cAMP-dependent protein kinase. The regulation of phosphodiesterase activity by the noncatalytic cGMP binding sites as well as Ca2+/calmodulin dependent regulation of cGMP binding to the cation channel are also discussed.
Collapse
|
42
|
Long term potentiation and CaM-sensitive adenylyl cyclase: Long-term prospects. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe type I CaM-sensitive adenylyl cyclase is in a position to integrate signals from multiple inputs, consistent with the requirements for mediating long term potentiation (LTP). Biochemical and genetic evidence supports the idea that this enzyme plays an important role inc LTP. However, more work is needed before we will be certain of the role that CaM-sensitive adenylyl cyclases play in LTP.
Collapse
|
43
|
Modulation of the cGMP-gated channel by calcium. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractCalcium acting through calmodulin has been shown to regulate the affinity of cyclic nucleotide-gated channels expressed in cell lines. But is calmodulin the Ca-sensor that normally regulates these channels?
Collapse
|
44
|
How many light adaptation mechanisms are there? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe generally positive response to our target article indicates that most of the commentators accept our contention that light adaptation consists of multiple and possibly redundant mechanisms. The commentaries fall into three general categories. The first deals with putative mechanisms that we chose not to emphasize. The second is a more extended discussion of the role of calcium in adaptation. Finally, additional aspects of cGMP involvement in adaptation are considered. We discuss each of these points in turn.
Collapse
|
45
|
Gene therapy, regulatory mechanisms, and protein function in vision. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractHereditary retinal degeneration due to mutations in visual genes may be amenable to therapeutic interventions that modulate, either positively or negatively, the amount of protein product. Some of the proteins involved in phototransduction are rapidly moved by a lightdependent mechanism between the inner segment and the outer segment in rod photoreceptor cells, and this phenomenon is important in phototransduction.
Collapse
|
46
|
A novel protein family of neuronal modulators. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractA number of proteins homologous to recoverin have been identified in the brains of the several vertebrate species. The brainderived members originally contain four EF-hand domains, but NH2- terminal domain is aberrant. Many of these proteins inhibited light-induced rhodopsin phosphorylation at high [Ca2+], suggesting that the brain-derived members may act as a Ca2+-sensitive modulator of receptor phosphorylation, as recoverin does.
Collapse
|
47
|
The structure of rhodopsin and mechanisms of visual adaptation. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractRapidly advancing studies on rhodopsin have focused on new strategies for crystallization of this integral membrane protein for x-ray analysis and on alternative methods for structural determination from nuclear magnetic resonance data. Functional studies of the interactions between the apoprotein and its chromophore have clarified the role of the chromophore in deactivation of opsin and in photoactivation of the pigment.
Collapse
|
48
|
Crucial steps in photoreceptor adaptation: Regulation of phosphodiesterase and guanylate cyclase activities and Ca 2+-buffering. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThis commentary discusses the balance of phosphodiesterase and guanylate cyclase activities in vertebrate photoreceptors at moderate light intensities. The rate of cGMP hydrolysis and synthesis seem to equal each other. Ca2+ as regulator of both enzyme activities is also effectively buffered in photoreceptor cells by cytoplasmic buffer components.
Collapse
|
49
|
The atomic structure of visual rhodopsin: How and when? Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractStrong arguments are presented by Hargrave suggesting that the crystallization of visual rhodopsin for high resolution analysis by X-ray crystallography or electron microscopy is feasible. However, the effort needed to achieve this goal will most likely exceed the resources of a single laboratory and a concerted approach to the research is necessary.
Collapse
|
50
|
Molecular insights gained from covalently tethering cGMP to the ligand-binding sites of retinal rod cGMP-gated channels. Behav Brain Sci 1995. [DOI: 10.1017/s0140525x00039261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractA photoaffinity analog of cGMP has been used to biochemically identify a new ligand-binding subunit of the retinal rod cGMP-activated ion channel, as well as amino acids in contact with cGMP in the original subunit. Covalent tethering of this probe to channels in excised menbrane patches has revealed a functional heteogeneity in the ligand-binding sites that may arise from the two biochemically identified subunits.
Collapse
|