1
|
Thu Nguyen T, Van Tran K, Cam Ho T, Xuan Nguyen H, Trong Nguyen T. A systematic analysis with the hierarchical cluster analysis strategy on the complex interaction of TERT and CTNNB1 somatic mutations in Vietnamese hepatocellular carcinoma patients. Gene 2024; 927:148646. [PMID: 38851365 DOI: 10.1016/j.gene.2024.148646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Telomerase reverse transcriptase (TERT) and β-catenin (CTNNB1) mutations may occur following the hepatocellular carcinoma (HCC) pathway signal. We conducted a Hierarchical cluster analysis study on 408 patients diagnosed with HCC by pathological surgery, identifying TERT promoter and CTNNB1 exon 3 mutations by sequencing. The overall preclinical characteristics, cumulative cut-point values, and the factors associated with these somatic mutations were analyzed in uni/multidimensional scaling model. HBV(+) HCV(-) HCC male patients who were older than 62.74 years old and have TERT promoter mutation as well as AFP > 489.78 ng/ml got a higher risk of HCC grade more than two from 27 % to 200 % with p < 0.05 (RR are from 1.27 [1.09-1.47] to 3.06 [2.04-4.61]). This mutation was a good indicator of grade 2 risk (HR = 0.37 [2.72-0.16], β = -1.00, p = 0.019). TERT promoter and CTNNB1 exon 3 mutations independently influenced tumor size and tumor site status in grade 3 and HBV(-) HCV (-) male HCC patients, where the hazard rates, respectively, were 0.28 [0.09-0.89], 0.023 [0.0023-0.23] and 0.06 [0.012-0.32] (β < 0 and p < 0.01). These two mutations inversely impacted each other the tumor sites status, especially in male HCC patients with grade 2 without B, C hepatitis virus (RRCTNNB1 exon 3 mutate - TERT promoter wildtype = 1.12 [1.04-1.20], p < 0.05). Consequently, the mutations in TERT promoter and CTNNB1 exon 3 may synchronize with other factors or independently impact the hepatocarcinogenesis and are important indicators for HCC prognostic in male patients with very high AFP levels or with moderately as well as poorly differentiated in tumor. Our results serve as the basis for further studies to understand the impact of different factors on the outcome of HCC, especially in monitoring and assessing the cancer risk of patients infect HBV and carry mutations.
Collapse
Affiliation(s)
- Thuy Thu Nguyen
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Khanh Van Tran
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Tu Cam Ho
- Center for Gene and Protein Research, Hanoi Medical University, 116177 Hanoi, Viet Nam; Institute of Virology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Hau Xuan Nguyen
- Department of Oncology, Hanoi Medical University, 116177 Hanoi, Viet Nam
| | - Tue Trong Nguyen
- Medical Laboratory Department, Hanoi Medical University, 116177 Hanoi, Viet Nam; Clinical Laboratory Department, Hanoi Medical University Hospital, 116177 Hanoi, Viet Nam.
| |
Collapse
|
2
|
D'Aniello A, Del Bene A, Mottola S, Mazzarella V, Cutolo R, Campagna E, Di Maro S, Messere A. The bright side of chemistry: Exploring synthetic peptide-based anticancer vaccines. J Pept Sci 2024; 30:e3596. [PMID: 38571326 DOI: 10.1002/psc.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The present review focuses on synthetic peptide-based vaccine strategies in the context of anticancer intervention, paying attention to critical aspects such as peptide epitope selection, adjuvant integration, and nuanced classification of synthetic peptide cancer vaccines. Within this discussion, we delve into the diverse array of synthetic peptide-based anticancer vaccines, each derived from tumor-associated antigens (TAAs), including melanoma antigen recognized by T cells 1 (Melan-A or MART-1), mucin 1 (MUC1), human epidermal growth factor receptor 2 (HER-2), tumor protein 53 (p53), human telomerase reverse transcriptase (hTERT), survivin, folate receptor (FR), cancer-testis antigen 1 (NY-ESO-1), and prostate-specific antigen (PSA). We also describe the synthetic peptide-based vaccines developed for cancers triggered by oncovirus, such as human papillomavirus (HPV), and hepatitis C virus (HCV). Additionally, the potential synergy of peptide-based vaccines with common therapeutics in cancer was considered. The last part of our discussion deals with the realm of the peptide-based vaccines delivery, highlighting its role in translating the most promising candidates into effective clinical strategies. Although this discussion does not cover all the ongoing peptide vaccine investigations, it aims at offering valuable insights into the chemical modifications and the structural complexities of anticancer peptide-based vaccines.
Collapse
Affiliation(s)
- Antonia D'Aniello
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandra Del Bene
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Mottola
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Mazzarella
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Roberto Cutolo
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erica Campagna
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Salvatore Di Maro
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| | - Anna Messere
- Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania "Luigi Vanvitelli", Caserta, Italy
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Naples, Italy
| |
Collapse
|
3
|
Sun H, Li X, Long Q, Wang X, Zhu W, Chen E, Zhou W, Yang H, Huang C, Deng W, Chen M. TERC promotes non-small cell lung cancer progression by facilitating the nuclear localization of TERT. iScience 2024; 27:109869. [PMID: 38799568 PMCID: PMC11126826 DOI: 10.1016/j.isci.2024.109869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
The core of telomerase consists of the protein subunit telomerase reverse transcriptase (TERT) and the telomerase RNA component (TERC). So far, the role of TERC in cancer development has remained elusive. Here, we found TERC expression elevated in non-small cell lung cancer (NSCLC) tissues, which was associated with disease progression and poor prognosis in patients. Using NSCLC cell lines and xenograft models, we showed that knockdown of TERC caused cell cycle arrest, and inhibition of cell proliferation and migration. Mechanistically, TERC was exported to the cytoplasm by nuclear RNA export factor 1 (NXF1), where it mediated the interaction of TERT with other telomerase subunits. Depletion of TERC hindered the assembly and subsequent nuclear localization of the telomerase complex, preventing TERT from functioning in telomere maintenance and transcription regulation. Our findings suggest that TERC is a potential biomarker for NSCLC diagnosis and prognosis and can be a target for NSCLC treatment.
Collapse
Affiliation(s)
- Haohui Sun
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Xiaodi Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Qian Long
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiaonan Wang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wancui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Enni Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Wenhao Zhou
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Han Yang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Chuyang Huang
- Department of Urology, Shaoyang Central Hospital, University of South China, Shaoyang, Hunan 422000, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Miao Chen
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| |
Collapse
|
4
|
Rasouli S, Dakic A, Wang QE, Mitchell D, Blakaj DM, Putluri N, Li J, Liu X. Noncanonical functions of telomerase and telomeres in viruses-associated cancer. J Med Virol 2024; 96:e29665. [PMID: 38738582 DOI: 10.1002/jmv.29665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.
Collapse
Affiliation(s)
- Sara Rasouli
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Aleksandra Dakic
- Division of Neuroscience, National Institute of Aging, Bethesda, Maryland, USA
| | - Qi-En Wang
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Dukagjin M Blakaj
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
- Department of Urology, Wexner Medical Center, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Zheng L, Wang Y, Liu Z, Wang Z, Tao C, Wu A, Li H, Xiao T, Li Z, Rong W. Identification of molecular characteristics of hepatocellular carcinoma with microvascular invasion based on deep targeted sequencing. Cancer Med 2024; 13:e7043. [PMID: 38572921 PMCID: PMC10993708 DOI: 10.1002/cam4.7043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND As an indicator of tumor invasiveness, microvascular invasion (MVI) is a crucial risk factor for postoperative relapse, metastasis, and unfavorable prognosis in hepatocellular carcinoma (HCC). Nevertheless, the genetic mechanisms underlying MVI, particularly for Chinese patients, remain mostly uncharted. METHODS We applied deep targeted sequencing on 66 Chinese HCC samples. Focusing on the telomerase reverse transcriptase (TERT) promoter (TERTp) and TP53 co-mutation (TERTp+/TP53+) group, gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of the TERTp+/TP53+ group on tumor progression and metastasis. Additionally, we evaluated the tumor immune microenvironment of the TERTp+/TP53+ group in HCC using multiplex immunofluorescence (mIF) staining. RESULTS Among the 66 HCC samples, the mutated genes that mostly appeared were TERT, TP53, and CTNNB1. Of note, we found 10 cases with TERTp+/TP53+, of which nine were MVI-positive and one was MVI-negative, and there was a co-occurrence of TERTp and TP53 (p < 0.05). Survival analysis demonstrated that patients with the TERTp+/TP53+ group had lower the disease-free survival (DFS) (p = 0.028). GSEA results indicated that telomere organization, telomere maintenance, DNA replication, positive regulation of cell cycle, and negative regulation of immune response were significantly enriched in the TERTp+/TP53+ group (all adjusted p-values (p.adj) < 0.05). mIF revealed that the TERTp+/TP53+ group decreased CD8+ T cells infiltration (p = 0.25) and enhanced PDL1 expression (p = 0.55). CONCLUSIONS TERTp+/TP53+ was significantly enriched in MVI-positive patients, leading to poor prognosis for HCC patients by promoting proliferation of HCC cell and inhibiting infiltration of immune cell surrounding HCC. TERTp+/TP53+ can be utilized as a potential indicator for predicting MVI-positive patients and poor prognosis, laying a preliminary foundation for further exploration of co-mutation in HCC with MVI and clinical treatment.
Collapse
Affiliation(s)
- Linlin Zheng
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaru Wang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhenrong Liu
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhihao Wang
- Department of Hepatobiliary Hernia SurgeryLiaocheng Dongcangfu People's HospitalLiaochengChina
| | - Changcheng Tao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Anke Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Haiyang Li
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weiqi Rong
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Gorria T, Crous C, Pineda E, Hernandez A, Domenech M, Sanz C, Jares P, Muñoz-Mármol AM, Arpí-Llucía O, Melendez B, Gut M, Esteve A, Esteve-Codina A, Parra G, Alameda F, Carrato C, Aldecoa I, Mallo M, de la Iglesia N, Balana C. The C250T Mutation of TERTp Might Grant a Better Prognosis to Glioblastoma by Exerting Less Biological Effect on Telomeres and Chromosomes Than the C228T Mutation. Cancers (Basel) 2024; 16:735. [PMID: 38398126 PMCID: PMC10886885 DOI: 10.3390/cancers16040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.
Collapse
Affiliation(s)
- Teresa Gorria
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Carme Crous
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Ainhoa Hernandez
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Carolina Sanz
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Pedro Jares
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Ana María Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Oriol Arpí-Llucía
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Bárbara Melendez
- Molecular Pathology Research Unit, Hospital Universitario de Toledo, 45007 Toledo, Spain;
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Anna Esteve
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Genis Parra
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Mar Mallo
- Unidad de Microarrays, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Carmen Balana
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| |
Collapse
|
7
|
Lu M, Zhang X, Chu Q, Chen Y, Zhang P. Susceptibility Genes Associated with Multiple Primary Cancers. Cancers (Basel) 2023; 15:5788. [PMID: 38136334 PMCID: PMC10741435 DOI: 10.3390/cancers15245788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
With advancements in treatment and screening techniques, we have been witnessing an era where more cancer survivors harbor multiple primary cancers (MPCs), affecting approximately one in six patients. Identifying MPCs is crucial for tumor staging and subsequent treatment choices. However, the current clinicopathological criteria for clinical application are limited and insufficient, making it challenging to differentiate them from recurrences or metastases. The emergence of next-generation sequencing (NGS) technology has provided a genetic perspective for defining multiple primary cancers. Researchers have found that, when considering multiple tumor pairs, it is crucial not only to examine well-known essential mutations like MLH1/MSH2, EGFR, PTEN, BRCA1/2, CHEK2, and TP53 mutations but also to explore certain pleiotropic loci. Moreover, specific deleterious mutations may serve as regulatory factors in second cancer development following treatment. This review aims to discuss these susceptibility genes and provide an explanation of their functions based on the signaling pathway background. Additionally, the association network between genetic signatures and different tumor pairs will be summarized.
Collapse
Affiliation(s)
| | | | | | | | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.)
| |
Collapse
|
8
|
Chua BH, Zaal Anuar N, Ferry L, Domrane C, Wittek A, Mukundan VT, Jha S, Butter F, Tenen DG, Defossez PA, Kappei D. E4F1 and ZNF148 are transcriptional activators of the -57A > C and wild-type TERT promoter. Genome Res 2023; 33:1893-1905. [PMID: 37918959 PMCID: PMC10760450 DOI: 10.1101/gr.277724.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
Point mutations within the TERT promoter are the most recurrent somatic noncoding mutations identified across different cancer types, including glioblastoma, melanoma, hepatocellular carcinoma, and bladder cancer. They are most abundant at -146C > T and -124C > T, and rarer at -57A > C, with the latter originally described as a familial case, but subsequently shown also to occur somatically. All three mutations create de novo E26-specific (ETS) binding sites and result in activation of the TERT gene, allowing cancer cells to achieve replicative immortality. Here, we used a systematic proteomics screen to identify transcription factors preferentially binding to the -146C > T, -124C > T, and -57A > C mutations. Although we confirmed binding of multiple ETS factors to the mutant -146C > T and -124C > T sequences, we identified E4F1 as a -57A > C-specific binder and ZNF148 as a TERT wild-type (WT) promoter binder that showed reduced interaction with the -124C > T allele. Both proteins are activating transcription factors that bind specifically to the -57A > C and WT (at position 124) TERT promoter sequence in corresponding cell lines, and up-regulate TERT transcription and telomerase activity. Our work describes new regulators of TERT gene expression with possible roles in cancer.
Collapse
Affiliation(s)
- Boon Haow Chua
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
| | - Nurkaiyisah Zaal Anuar
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Cecilia Domrane
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Anna Wittek
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Vineeth T Mukundan
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Falk Butter
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
- Institute of Molecular Virology and Cell Biology (IMVZ), Friedrich Loeffler Institute, 17493 Greifswald, Germany
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, 117599 Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596 Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 117599 Singapore
| |
Collapse
|
9
|
Tornesello ML, Cerasuolo A, Starita N, Amiranda S, Bonelli P, Tuccillo FM, Buonaguro FM, Buonaguro L, Tornesello AL. Reactivation of telomerase reverse transcriptase expression in cancer: the role of TERT promoter mutations. Front Cell Dev Biol 2023; 11:1286683. [PMID: 38033865 PMCID: PMC10684755 DOI: 10.3389/fcell.2023.1286683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Telomerase activity and telomere elongation are essential conditions for the unlimited proliferation of neoplastic cells. Point mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been found to occur at high frequencies in several tumour types and considered a primary cause of telomerase reactivation in cancer cells. These mutations promote TERT gene expression by multiple mechanisms, including the generation of novel binding sites for nuclear transcription factors, displacement of negative regulators from DNA G-quadruplexes, recruitment of epigenetic activators and disruption of long-range interactions between TERT locus and telomeres. Furthermore, TERT promoter mutations cooperate with TPP1 promoter nucleotide changes to lengthen telomeres and with mutated BRAF and FGFR3 oncoproteins to enhance oncogenic signalling in cancer cells. TERT promoter mutations have been recognized as an early marker of tumour development or a major indicator of poor outcome and reduced patients survival in several cancer types. In this review, we summarize recent findings on the role of TERT promoter mutations, telomerase expression and telomeres elongation in cancer development, their clinical significance and therapeutic opportunities.
Collapse
Affiliation(s)
- Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Andrea Cerasuolo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Noemy Starita
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Sara Amiranda
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Luigi Buonaguro
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| | - Anna Lucia Tornesello
- Innovative Immunological Models Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy
| |
Collapse
|
10
|
Romano F, Di Porzio A, Iaccarino N, Riccardi G, Di Lorenzo R, Laneri S, Pagano B, Amato J, Randazzo A. G-quadruplexes in cancer-related gene promoters: from identification to therapeutic targeting. Expert Opin Ther Pat 2023; 33:745-773. [PMID: 37855085 DOI: 10.1080/13543776.2023.2271168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION Guanine-rich DNA sequences can fold into four-stranded noncanonical secondary structures called G-quadruplexes (G4s) which are widely distributed in functional regions of the human genome, such as telomeres and gene promoter regions. Compelling evidence suggests their involvement in key genome functions such as gene expression and genome stability. Notably, the abundance of G4-forming sequences near transcription start sites suggests their potential involvement in regulating oncogenes. AREAS COVERED This review provides an overview of current knowledge on G4s in human oncogene promoters. The most representative G4-binding ligands have also been documented. The objective of this work is to present a comprehensive overview of the most promising targets for the development of novel and highly specific anticancer drugs capable of selectively impacting the expression of individual or a limited number of genes. EXPERT OPINION Modulation of G4 formation by specific ligands has been proposed as a powerful new tool to treat cancer through the control of oncogene expression. Actually, most of G4-binding small molecules seem to simultaneously target a range of gene promoter G4s, potentially influencing several critical driver genes in cancer, thus producing significant therapeutic benefits.
Collapse
Affiliation(s)
- Francesca Romano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | | | | | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Brás JP, Jesus TT, Prazeres H, Lima J, Soares P, Vinagre J. TERTmonitor-qPCR Detection of TERTp Mutations in Glioma. Genes (Basel) 2023; 14:1693. [PMID: 37761833 PMCID: PMC10530400 DOI: 10.3390/genes14091693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Telomerase promoter (TERTp) mutations are frequently observed in various types of tumours and commonly characterised by two specific hotspots located at positions -124 and -146 upstream of the start codon. They enhance TERTp activity, resulting in increased TERT expression. In central nervous system (CNS) tumours, they are integrated as biomarkers, aiding in the diagnosis and with a role in prognosis, where, in some settings, they are associated with aggressive behaviour. In this study, we evaluated the performance of TERTmonitor for TERTp genotyping in a series of 185 gliomas in comparison to the traditional method, Sanger sequencing. Against the gold-standard Sanger method, TERTmonitor performed with a 97.8% accuracy. Inaccuracy was mainly due to the over-detection of variants in negative cases (by Sanger) and the presence of variants that can modify the chemistry of the probe detection. The distribution of the mutations was comparable to other series, with the -124 being the most represented (38.92% for Sanger and TERTmonitor) and more prevalent in the higher-grade tumours, gliosarcoma (50.00%) and glioblastoma (52.6%). The non-matched cases are debatable, as we may be dealing with the reduced sensitivity of Sanger in detecting rare alleles, which strengthens the use of the TERTmonitor. With this study, we present a reliable and rapid potential tool for TERTp genotyping in gliomas.
Collapse
Affiliation(s)
- João Paulo Brás
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Tito Teles Jesus
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Hugo Prazeres
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
| | - Jorge Lima
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
| | - Paula Soares
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| | - João Vinagre
- U-Monitor Lda, 4200-135 Porto, Portugal; (J.P.B.); (H.P.); (P.S.)
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal; (T.T.J.); (J.L.)
- Instituto de Patologia e Imunologia Molecular, Universidade do Porto (Ipatimup), 4200-135 Porto, Portugal
- Faculdade de Medicina, Universidade do Porto (FMUP), 4200-319 Porto, Portugal
| |
Collapse
|
12
|
Delmonico L, Bines J, Nascimento CMD, Fernandes PV, Barbosa IDS, Ribeiro GB, de Paula BHR, Silvestre RT, Ornellas MHF, Alves G, Lage C. Nuclear and Cytoplasmic hTERT, Tumor-Infiltrating Lymphocytes, and Telomere Elongation Leukocytes Are Independent Factors in the Response to Neoadjuvant Treatment in HER2-Enriched Breast Cancer. Curr Oncol 2023; 30:4094-4109. [PMID: 37185424 PMCID: PMC10136514 DOI: 10.3390/curroncol30040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
HER2-enriched tumors are responsible for 20% of breast tumors and have high rates of immune infiltrates in the tumor stroma that respond favorably to neoadjuvant chemotherapy. In the context of tumors, telomeres control cell death and prevent tumor cells from replicating discontinuously, leading to their immortalization. This study aimed to evaluate the presence of tumor-infiltrating lymphocytes, hTERT expression, hTERT promoter mutation, and leukocyte telomere length in HER2-enriched breast tumors. A total of 103 cases were evaluated, 19 with pathologic complete response. The TILs percentage was above ≥10 in 44 cases (43%) and significantly present in patients ≥50 years of age. hTERT staining positivity was mostly nuclear, significantly present in the non-pCR group, and associated with a lower survival rate. Leukocyte telomeres were elongated for HER2-enriched tumors, and in multivariate analysis, shortening was associated with an increased risk of death. Overall, our results show that the nuclear and cytoplasmic presence of hTERT may indicate a worse prognosis and that leukocyte telomere elongation is a protective factor.
Collapse
Affiliation(s)
- Lucas Delmonico
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| | - José Bines
- National Cancer Institute (INCA), Rio de Janeiro 20560-121, Brazil
| | | | | | - Isabel de Souza Barbosa
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Department of General Pathology, Rio de Janeiro State University, Rio de Janeiro 22550-170, Brazil
| | - Gabriel Brito Ribeiro
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Department of General Pathology, Rio de Janeiro State University, Rio de Janeiro 22550-170, Brazil
| | | | - Rafaele Tavares Silvestre
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Department of General Pathology, Rio de Janeiro State University, Rio de Janeiro 22550-170, Brazil
| | - Maria Helena Faria Ornellas
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Department of General Pathology, Rio de Janeiro State University, Rio de Janeiro 22550-170, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Department of General Pathology, Rio de Janeiro State University, Rio de Janeiro 22550-170, Brazil
| | - Claudia Lage
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-170, Brazil
| |
Collapse
|
13
|
Chen X, Hao Z, Pan H, Liu W, Lu L, Zhang M, He X, Yi H, Tang S. Relationship between common telomere length-related genetic variations, telomere length, and risk of antituberculosis drug-induced hepatotoxicity in Chinese Han population: As assessed for causality using the updated Roussel Uclaf Causality Assessment Method. Fundam Clin Pharmacol 2023. [PMID: 36855016 DOI: 10.1111/fcp.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
Antituberculosis drug-induced hepatotoxicity (ATDH) is a significant threat to tuberculosis control, and two recent studies indicated that leukocyte telomere length (LTL) might be a potential biomarker for ATDH. This study aimed to investigate the relationship between common telomere length-related genetic variations, LTL, and risk of ATDH in Eastern Chinese antituberculosis treatment patients. A 1:4 matched case-control study was conducted among 79 ATDH cases assessed for causality using the updated RUCAM and 316 controls. LTL was determined by quantitative real-time PCR, and nine SNPs involved in telomere biology reported by previous GWAS were assessed. Conditional logistic regression model was used to estimate the association between genotypes and risk of ATDH with odds ratios (ORs) and 95% confidence intervals (CIs). The average RUCAM score of cases was 7.1. The average LTL in cases was significantly shorter than that in controls (median = 1.239 vs. 1.481, P = 0.032). Differences in the distribution of LTL were statistically significant among three genotypes of SNP rs2736098 (CC vs. CT vs. TT, median = 1.544 vs. 1.356 vs. 1.337, P = 0.026) and rs2853677 (AA vs. AG vs. GG, median = 1.511 vs. 1.544 vs. 1.159, P = 0.005) in TERT. SNP rs7675998 in NAF1 was statistically associated with the risk of ATDH under the dominant model (adjusted OR = 1.725, 95% CI: 1.021-2.913, P = 0.042). This is the first study to investigate the relationship of LTL, common telomere length-related variations, and risk of ATDH. SNP rs2736098 and rs2853677 in TERT were significantly associated with LTL, and SNP rs7675998 in NAF1 may be associated with ATDH in Chinese population.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhuolu Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongqiu Pan
- Department of Tuberculosis, The Third People's Hospital of Zhenjiang Affiliated to Jiangsu University, Zhenjiang, China
| | - Wenpei Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lihuan Lu
- Department of Tuberculosis, The Second People's Hospital of Changshu, Changshu, China
| | - Meiling Zhang
- Department of Infectious Disease, The Jurong Hospital Affiliated to Jiangsu University, Jurong, China
| | - Xiaomin He
- Department of Infectious Disease, The People's Hospital of Taixing, Taixing, China
| | - Honggang Yi
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shaowen Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Marinaccio J, Micheli E, Udroiu I, Di Nottia M, Carrozzo R, Baranzini N, Grimaldi A, Leone S, Moreno S, Muzzi M, Sgura A. TERT Extra-Telomeric Roles: Antioxidant Activity and Mitochondrial Protection. Int J Mol Sci 2023; 24:ijms24054450. [PMID: 36901881 PMCID: PMC10002448 DOI: 10.3390/ijms24054450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) is the catalytic subunit of telomerase holoenzyme, which adds telomeric DNA repeats on chromosome ends to counteract telomere shortening. In addition, there is evidence of TERT non-canonical functions, among which is an antioxidant role. In order to better investigate this role, we tested the response to X-rays and H2O2 treatment in hTERT-overexpressing human fibroblasts (HF-TERT). We observed in HF-TERT a reduced induction of reactive oxygen species and an increased expression of the proteins involved in the antioxidant defense. Therefore, we also tested a possible role of TERT inside mitochondria. We confirmed TERT mitochondrial localization, which increases after oxidative stress (OS) induced by H2O2 treatment. We next evaluated some mitochondrial markers. The basal mitochondria quantity appeared reduced in HF-TERT compared to normal fibroblasts and an additional reduction was observed after OS; nevertheless, the mitochondrial membrane potential and morphology were better conserved in HF-TERT. Our results suggest a protective function of TERT against OS, also preserving mitochondrial functionality.
Collapse
Affiliation(s)
| | - Emanuela Micheli
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- Correspondence:
| | - Ion Udroiu
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| | - Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children’s Hospital IRCCS, 00146 Rome, Italy
| | - Nicolò Baranzini
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Sandra Moreno
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Maurizio Muzzi
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
- IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Antonella Sgura
- Department of Science, University “ROMA TRE”, 00146 Rome, Italy
| |
Collapse
|
15
|
Shi Q, Zhang XX, Shi XQ, Chen Y, Sun C. Identification of rs2736099 as a novel cis-regulatory variation for TERT and implications for tumorigenesis and cell proliferation. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04372-9. [PMID: 36131156 DOI: 10.1007/s00432-022-04372-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Lung cancer is a malignant tumor with obvious genetic predisposition. Association studies have proposed that rs2853677, a SNP localizing at intron region of TERT (telomerase reverse transcriptase), is significantly associated with TERT expression, telomere length and eventually lung cancer risk. However, functional genomics work indicates that rs2853677 is not with the ability to alter gene expression. All these facts make us hypothesize that some other genetic variation(s) are in linkage disequilibrium (LD) with rs2853677 and influence TERT expression. METHODS LD pattern in rs2853677 nearby region was analyzed based on 1000 genomes data for three representative populations in the world and functional genomics research was performed for this locus. RESULTS Only one SNP, rs2736099, is in strong LD with rs2853677 in East Asian. Dual-luciferase reporter assay verifies that rs2736099 can regulate gene expression and should be the causal SNP for this disease. Through chromosome conformation capture assay, it is disclosed that the enhancer surrounding rs2736099 can interact with TERT promoter. Through chromatin immunoprecipitation, the transcription factor SP1 (Sp1 transcription factor) is recognized for the chromatin segment spanning rs2736099. CONCLUSIONS Our results provide the missing piece between genetic variation at this locus and lung cancer risk, which is also applied to tumorigenesis in other tissues and cell proliferation.
Collapse
Affiliation(s)
- Qiang Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| | - Xin-Xin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, Shaanxi, People's Republic of China.
| |
Collapse
|
16
|
Martínez-Puente DH, Pérez-Trujillo JJ, Zavala-Flores LM, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Plasmid DNA for Therapeutic Applications in Cancer. Pharmaceutics 2022; 14:pharmaceutics14091861. [PMID: 36145609 PMCID: PMC9503848 DOI: 10.3390/pharmaceutics14091861] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recently, the interest in using nucleic acids for therapeutic applications has been increasing. DNA molecules can be manipulated to express a gene of interest for gene therapy applications or vaccine development. Plasmid DNA can be developed to treat different diseases, such as infections and cancer. In most cancers, the immune system is limited or suppressed, allowing cancer cells to grow. DNA vaccination has demonstrated its capacity to stimulate the immune system to fight against cancer cells. Furthermore, plasmids for cancer gene therapy can direct the expression of proteins with different functions, such as enzymes, toxins, and cytotoxic or proapoptotic proteins, to directly kill cancer cells. The progress and promising results reported in animal models in recent years have led to interesting clinical results. These DNA strategies are expected to be approved for cancer treatment in the near future. This review discusses the main strategies, challenges, and future perspectives of using plasmid DNA for cancer treatment.
Collapse
Affiliation(s)
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey 64720, Mexico
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, Av. IPN 2508, Colonia San Pedro Zacatenco, Mexico City 07360, Mexico
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
| | - Roberto Montes de Oca-Luna
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| | - María de Jesús Loera-Arias
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey 64460, Mexico
- Correspondence: (R.M.d.O.-L.); (M.d.J.L.-A.); Tel.: +52-81-8329-4195 (R.M.d.O.-L. & M.d.J.L.-A.)
| |
Collapse
|
17
|
Venuti A, Romero-Medina MC, Melita G, Ceraolo MG, Brancaccio RN, Sirand C, Taverniti V, Steenbergen R, Gheit T, Tommasino M. Lyon IARC Polyomavirus Displays Transforming Activities in Primary Human Cells. J Virol 2022; 96:e0206121. [PMID: 35770990 PMCID: PMC9327700 DOI: 10.1128/jvi.02061-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/13/2022] [Indexed: 01/01/2023] Open
Abstract
Several studies reported the presence of a recently discovered polyomavirus (PyV), Lyon IARC PyV (LIPyV), in human and domestic animal specimens. LIPyV has some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV (MCPyV), respectively. In this study, we demonstrate that LIPyV early proteins immortalize human foreskin keratinocytes. LIPyV LT binds pRb, accordingly cell cycle checkpoints are altered in primary human fibroblasts and keratinocytes expressing LIPyV early genes. Mutation of the pRb binding site in LT strongly affected the ability of LIPyV ER to induced HFK immortalization. LIPyV LT also binds p53 and alters p53 functions activated by cellular stresses. Finally, LIPyV early proteins activate telomerase reverse transcriptase (hTERT) gene expression, via accumulation of the Sp1 transcription factor. Sp1 recruitment to the hTERT promoter is controlled by its phosphorylation, which is mediated by ERK1 and CDK2. Together, these data highlight the transforming properties of LIPyV in in vitro experimental models, supporting its possible oncogenic nature. IMPORTANCE Lyon IARC PyV is a recently discovered polyomavirus that shows some structural similarities to well-established animal and human oncogenic PyVs, such as raccoon PyV and Merkel cell PyV, respectively. Here, we show the capability of LIPyV to efficiently promote cellular transformation of primary human cells, suggesting a possible oncogenic role of this virus in domestic animals and/or humans. Our study identified a novel virus-mediated mechanism of activation of telomerase reverse transcriptase gene expression, via accumulation of the Sp1 transcription factor. In addition, because the persistence of infection is a key event in virus-mediated carcinogenesis, it will be important to determine whether LIPyV can deregulate immune-related pathways, similarly to the well-established oncogenic viruses.
Collapse
Affiliation(s)
- Assunta Venuti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | | | - Giusi Melita
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | - Maria Grazia Ceraolo
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | | | - Cecilia Sirand
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | - Valerio Taverniti
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | - Renske Steenbergen
- VU University Medical Center Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Tarik Gheit
- International Agency for Research on Cancer (IARC), World Health Organization, Lyon Cedex, France
| | | |
Collapse
|
18
|
Tian J, Wang Y, Dong Y, Chang J, Wu Y, Chang S, Che G. Cumulative Evidence for Relationships Between Multiple Variants in the TERT and CLPTM1L Region and Risk of Cancer and Non-Cancer Disease. Front Oncol 2022; 12:946039. [PMID: 35847915 PMCID: PMC9279858 DOI: 10.3389/fonc.2022.946039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Abstract
Background Genetic studies previously reported that variants in TERT-CLPTM1L genes were related to susceptibility of cancer and non-cancer diseases. However, conclusions were not always concordant. Methods We performed meta-analyses to assess correlations between 23 variants within TERT-CLPTM1L region and susceptibility to 12 cancers and 1 non-cancer disease based on data in 109 papers (involving 139,510 cases and 208,530 controls). Two approaches (false-positive report probability test and Venice criteria) were adopted for assessing the cumulative evidence of significant associations. Current study evaluated the potential role of these variants based on data in Encyclopedia of DNA Elements (ENCODE) Project. Results Thirteen variants were statistically associated with susceptibility to 11 cancers and 1 non-cancer disease (p < 0.05). Besides, 12 variants with eight cancers and one non-cancer disease were rated as strong evidence (rs2736098, rs401681, and rs402710 in bladder cancer; rs2736100, rs2853691, and rs401681 in esophageal cancer; rs10069690 in gastric cancer; rs2736100 and rs2853676 in glioma; rs2242652, rs2736098, rs2736100, rs2853677, rs31489, rs401681, rs402710, rs465498, and rs4975616 in lung cancer; rs2736100 in idiopathic pulmonary fibrosis and myeloproliferative neoplasms; and rs401681 in pancreatic and skin cancer). According to data from ENCODE and other public databases, 12 variants with strong evidence might fall within putative functional regions. Conclusions This paper demonstrated that common variants of TERT-CLPTM1L genes were related to susceptibility to bladder, esophageal, gastric, lung, pancreatic, and skin cancer, as well as to glioma, myeloproliferative neoplasms, and idiopathic pulmonary fibrosis, and, besides, the crucial function of the TERT-CLPTM1L region in the genetic predisposition to human diseases is elucidated.
Collapse
Affiliation(s)
- Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yingxian Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junke Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yongming Wu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuai Chang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guowei Che
- Department of Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Guowei Che,
| |
Collapse
|
19
|
Yalınbaş Kaya B, Ülger Y. Evaluation of possible role of the h TERT gene rs2853669 polymorphism in the development of colorectal cancer as a genetic risk factor. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:961-971. [PMID: 35704667 DOI: 10.1080/15257770.2022.2086694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Colorectal cancer (CRC) is the second deadliest malignancy. Human telomerase reverse transcriptase (hTERT) gene has been identified as one of the potential cancer susceptibility genes. We evaluated the relationship between the risk of CRC and CRC's clinicopathological features of the hTERT rs2853669 (A > G/T > C, by the chain direction) polymorphism in Turkish population. The rs2853669 polymorphism was investigated with the LightCycler 96 device in 100 CRC patients and 327 controls. We found that the rs2853669 polymorphism AG/GG genotypes in genetic models reduced the risk of CRC. However, there was no significant relationship between rs2853669 polymorphism and clinicopathological features of CRC in studied population. The results of this study showed that the risk of colorectal cancer is significantly reduced in the individuals having the G (C) allele. Our recommendation is to analyze the hTERT gene expression by studying the hTERT promoter mutations with this polymorphism in colorectal cancer.
Collapse
Affiliation(s)
| | - Yakup Ülger
- Faculty of Medicine, Department of Gastroenterology, Çukurova University, Adana, Turkey
| |
Collapse
|
20
|
Macek P, Wieckiewicz M, Poreba R, Gac P, Bogunia-Kubik K, Dratwa M, Wojakowska A, Mazur G, Martynowicz H. Assessment of Telomerase Reverse Transcriptase Single Nucleotide Polymorphism in Sleep Bruxism. J Clin Med 2022; 11:jcm11030525. [PMID: 35159976 PMCID: PMC8836512 DOI: 10.3390/jcm11030525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Introduction: Sleep bruxism (SB) is a widespread masticatory muscle activity during sleep and affects approximately 13.2% of the general population. Telomerase reverse transcriptase (TERT) plays a role in preventing the shortening of the telomere. This prospective, observational study aimed to investigate the relationship between single nucleotide polymorphism (SNP) of TERT and the severity of SB and to identify the independent risk factors for SB. Methods: A total of 112 patients were diagnosed by performing one-night polysomnography based on the guidelines of the American Academy of Sleep Medicine. TERT SNP was detected by real-time quantitative polymerase chain reaction (qPCR). Results: Statistical analysis showed the lack of relationship between the rs2853669 polymorphism of TERT and severity of SB (p > 0.05). However, the study showed that patients with allele T in the 2736100 polymorphism of TERT had a lower score on the phasic bruxism episode index (BEI). Based on the receiver operating characteristic (ROC) curve, the value of phasic BEI was 0.8 for the differential prediction for the presence of allele T in the locus. The sensitivity and specificity were 0.328 and 0.893, respectively. The regression analysis showed that lack of TERT rs2736100 T allele, male gender, and arterial hypertension are the risk factors for the higher value of phasic BEI. Conclusion: The SNP of the TERT gene affects phasic SB intensity. The absence of TERT rs2736100 T allele, male sex, and arterial hypertension are independent risk factors for phasic SB.
Collapse
Affiliation(s)
- Piotr Macek
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Mieszko Wieckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland
- Correspondence:
| | - Rafal Poreba
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Pawel Gac
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, 50-345 Wroclaw, Poland;
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.B.-K.); (M.D.)
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (K.B.-K.); (M.D.)
| | - Anna Wojakowska
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (P.M.); (R.P.); (A.W.); (G.M.); (H.M.)
| |
Collapse
|
21
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
22
|
Wan S, Liu X, Hua W, Xi M, Zhou Y, Wan Y. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered 2021; 12:1495-1504. [PMID: 33938397 PMCID: PMC8806350 DOI: 10.1080/21655979.2021.1915725] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations have been recognized as a common genetic event in bladder cancer (BC). Many studies have found the high TERT promoter mutations' prevalence in BC recurrence patients which may make the TERT promoter mutations become a potential prognosis prediction of BC. We performed a systematic search in Embase, PubMed, and Web of Science in January 2021. The aspects of evaluation, methods, validation, and results were used to evaluate the included studies' quality. We reviewed two of the most common mutations in types of TC, C288T and C250T and their relationship with prognosis of BC. Eight studies contained 1382 cases were enrolled in our study. The percentage of TERT promoter mutations in these cases was 62.5%. A statistically significant association was detected between TERT promoter mutation and recurrence (HR: 2.03, 95% CI: 1.53-2.68, p < 0.001). However, TERT promoter mutation was not significant associated with overall survival (HR: 1.077, 95% CI: 0.674-1.718, p = 0.757). No significant heterogeneities were observed (I2 = 47.5%, P = 0.064; I2 = 58.7%, p = 0.120, respectively). Bladder cancer patients with TERT promoter mutations take a higher risk of recurrence. TERT promoter mutations may become a potential prediction factor for bladder cancer recurrence.
Collapse
Affiliation(s)
- Song Wan
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Xuan Liu
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Wei Hua
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Ming Xi
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Yulin Zhou
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Yueping Wan
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
23
|
Yim SY, Lee JS. An Overview of the Genomic Characterization of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1077-1088. [PMID: 34522690 PMCID: PMC8434863 DOI: 10.2147/jhc.s270533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/18/2021] [Indexed: 02/03/2023] Open
Abstract
Tumor classifications based on alterations in the genome, epigenome, or proteome have revealed distinct tumor subgroups that are associated with clinical outcomes. Several landmark studies have demonstrated that such classifications can significantly improve patient outcomes by enabling tailoring of therapy to specific alterations in cancer cells. Since cancer cells accumulate numerous alterations in many cancer-related genes, it is a daunting task to find and confirm important cancer-promoting alterations as therapeutic targets or biomarkers that can predict clinical outcomes such as survival and response to treatments. To aid further advances, we provide here an overview of the current understanding of molecular and genomic subtypes of hepatocellular carcinoma (HCC). System-level integration of data from multiple studies and development of new technical platforms for analyzing patient samples hold great promise for the discovery of new targets for treatment and correlated biomarkers, leading to personalized medicine for treatment of HCC patients.
Collapse
Affiliation(s)
- Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
24
|
Yang L, Li N, Wang M, Zhang YH, Yan LD, Zhou W, Yu ZQ, Peng XC, Cai J. Tumorigenic effect of TERT and its potential therapeutic target in NSCLC (Review). Oncol Rep 2021; 46:182. [PMID: 34278503 DOI: 10.3892/or.2021.8133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Non‑small cell lung cancer (NSCLC), which accounts for ~85% of all lung cancer cases, is commonly diagnosed at an advanced stage and has a high patient mortality rate. Despite the increasing availability of treatment strategies, the prognosis of patients with NSCLC remains poor, with a low 5‑year survival rate. This poor prognosis may be associated with the tumor heterogeneity of NSCLC, as well as its acquisition and intrinsic resistance to therapeutic drugs. It has been suggested that combination therapy with telomerase inhibition may be an effective strategy for the treatment of drug‑sensitive and drug‑resistant types of cancer. Telomerase is the key enzyme for cell survival, and ~90% of human cancers maintain telomeres by activating telomerase, which is driven by the upregulation of telomerase reverse transcriptase (TERT). Several mechanisms of telomerase reactivation have been described in a variety of cancer types, including TERT promoter mutation, epigenetic modifications via a TERT promoter, TERT amplification, and TERT rearrangement. The aim of the present study was to comprehensively review telomerase activity and its association with the clinical characteristics and prognosis of NSCLC, as well as analyze the potential mechanism via which TERT activates telomerase and determine its potential clinical application in NSCLC. More importantly, current treatment strategies targeting TERT in NSCLC have been summarized with the aim to promote discovery of novel strategies for the future treatment of NSCLC.
Collapse
Affiliation(s)
- Liu Yang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Na Li
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Meng Wang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Yan-Hua Zhang
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Lu-Da Yan
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Wen Zhou
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Zhi-Qiong Yu
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Jun Cai
- Department of Oncology, First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
25
|
Bhari VK, Kumar D, Kumar S, Mishra R. Shelterin complex gene: Prognosis and therapeutic vulnerability in cancer. Biochem Biophys Rep 2021; 26:100937. [PMID: 33553693 PMCID: PMC7859307 DOI: 10.1016/j.bbrep.2021.100937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Telomere encompasses a (TTAGGG)n tandem repeats, and its dysfunction has emerged as the epicenter of driving carcinogenesis by promoting genetic instability. Indeed, they play an essential role in stabilizing chromosomes and therefore protecting them from end-to-end fusion and DNA degradation. Telomere length homeostasis is regulated by several key players including shelterin complex genes, telomerase, and various other regulators. Targeting these regulatory players can be a good approach to combat cancer as telomere length is increasingly correlated with cancer initiation and progression. In this review, we have aimed to describe the telomere length regulator's role in prognostic significance and important drug targets in breast cancer. Moreover, we also assessed alteration in telomeric function by various telomere length regulators and compares this to the regulatory mechanisms that can be associated with clinical biomarkers in cancer. Using publicly available software we summarized mutational and CpG island prediction analysis of the TERT gene breast cancer patient database. Studies have reported that the TERT gene has prognostic significance in breast cancer progression however mechanistic approaches are not defined yet. Interestingly, we reported using the UCSC Xena web-based tool, we confirmed a positive correlation of shelterin complex genes TERF1 and TERF2 in recurrent free survival, indicating the critical role of these genes in breast cancer prognosis. Moreover, the epigenetic landscape of DNA damage repair genes in different breast cancer subtypes also being analyzed using the UCSC Xena database. Together, these datasets provide a comprehensive resource for shelterin complex gene profiles and define epigenetic landscapes of DNA damage repair genes which reveals the key role of shelterin complex genes in breast cancer with the potential to identify novel and actionable targets for treatment.
Collapse
Affiliation(s)
- Vikas Kumar Bhari
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| | - Durgesh Kumar
- Department of Physiology, Government Medical College, Kannauj, Uttar Pradesh, India
| | - Surendra Kumar
- Department of Neurology, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Rajasthan, India
| |
Collapse
|
26
|
Adachi JI, Shirahata M, Suzuki T, Mishima K, Uchida E, Sasaki A, Nishikawa R. Droplet digital PCR assay for detecting TERT promoter mutations in patients with glioma. Brain Tumor Pathol 2021; 38:201-209. [PMID: 34128111 DOI: 10.1007/s10014-021-00403-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022]
Abstract
Two hot spot mutations (C228T, C250T) in the telomerase reverse transcriptase (TERT) gene are frequently identified in glioblastoma and oligodendroglioma. TERT mutations predicts an aggressive clinical course in isocitrate dehydrogenase (IDH) wild-type astrocytic tumors. Therefore, it is important to accurately detect TERT promoter mutations in glioma. Sanger DNA sequencing is the currently standard method for analyzing TERT mutations. However, PCR amplification in the first step of the sequencing has proven technically difficult because of the high GC content around the TERT mutation. In this report, we described a novel droplet digital PCR (ddPCR) assay to evaluate TERT hot spot mutations in fresh frozen and formalin-fixed paraffin-embedded (FFPE) specimens of glioma and verified the difference in results from the Sanger DNA sequencing results. We obtained the mutant allele fraction for TERT mutations of in a single ddPCR run in all cases, including the micro-dissected FFPE sections. On the contrary, up to twice the DNA sequences were required from fresh frozen tissue to obtain the results, consistent with ddPCR assay. When FFPE specimens were used, more time was required to evaluate TERT mutations through DNA sequencing. DdPCR is an effective and sensitive assay compared to the conventional standard Sanger DNA sequencing.
Collapse
Affiliation(s)
- Jun-Ichi Adachi
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan.
| | - Mitsuaki Shirahata
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Tomonari Suzuki
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Eita Uchida
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Moroyama, Saitama, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, 1397-1, Yamane, Hidaka, Saitama, 350-1298, Japan
| |
Collapse
|
27
|
Penev A, Bazley A, Shen M, Boeke JD, Savage SA, Sfeir A. Alternative splicing is a developmental switch for hTERT expression. Mol Cell 2021; 81:2349-2360.e6. [PMID: 33852895 PMCID: PMC8943697 DOI: 10.1016/j.molcel.2021.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 01/02/2023]
Abstract
Telomere length control is critical for cellular lifespan and tumor suppression. Telomerase is transiently activated in the inner cell mass of the developing blastocyst to reset telomere reserves. Its silencing upon differentiation leads to gradual telomere shortening in somatic cells. Here, we report that transcriptional regulation through cis-regulatory elements only partially accounts for telomerase activation in pluripotent cells. Instead, developmental control of telomerase is primarily driven by an alternative splicing event, centered around hTERT exon 2. Skipping of exon 2 triggers hTERT mRNA decay in differentiated cells, and conversely, its retention promotes telomerase accumulation in pluripotent cells. We identify SON as a regulator of exon 2 alternative splicing and report a patient carrying a SON mutation and suffering from insufficient telomerase and short telomeres. In summary, our study highlights a critical role for hTERT alternative splicing in the developmental regulation of telomerase and implicates defective splicing in telomere biology disorders.
Collapse
Affiliation(s)
- Alex Penev
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA
| | - Andrew Bazley
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Michael Shen
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Agnel Sfeir
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
28
|
Sahin B, Katar S, Şahin SA, Çevik S, Evran S, Baran O, Tanık C, Adılay HU, Yılmaz A. Influence of Human Telomerase Reverse Transcriptase Mutation on the Aggressiveness and Recurrence in Meningiomas. Cureus 2021; 13:e15342. [PMID: 34235021 PMCID: PMC8243023 DOI: 10.7759/cureus.15342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2021] [Indexed: 01/15/2023] Open
Abstract
Background: Over 200 human telomerase reverse transcriptase (hTERT) polymorphism combinations have been implicated in the development of cancer. This study aimed to evaluate hTERT mutations in meningioma tissue and its association with meningioma. Material and Methods: A total of 90 patients who underwent surgery between 2006 and 2015 and were histopathologically diagnosed with meningioma (WHO 2016) were included. Results: Among the 90 participants included herein, 50 (55.5%) and 40 (44.5%) were female and male, respectively, with an average age of 56.2 ± 14 years. Mean Ki-67 values were 10.56% (SD 12.41, range 0-60), while the mean follow-up duration was 39.1 months (SD 26.3). Low- and high-grade patients had a mean Ki-67 score of 4.31% (SD 3.58, range 0-16) and 19.92% (SD 14.91, range 2-60) (p = 0.0001). Our results showed a moderate positive correlation between Ki-67 score and the presence of hTERT mutation (Pearson correlation test, r = 0.5161; p = 0.0001). Patients with an hTERT mutation > 30% had significantly higher risk for reoperation than those with lower levels of mutation (p = 0.016, chi square test). None of the patients requiring reoperation had an hTERT mutation < 10%. Moreover, high-grade patients had a 7.2 times higher risk of reoperation than those with an hTERT mutation > 30%. Conclusion: The presence of hTERT mutation, in addition to high Ki-67, indicated a more aggressive meningioma disease course and potentially increased risk of recurrence.
Collapse
Affiliation(s)
- Balkan Sahin
- Department of Neurosurgery, Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, TUR
| | - Salim Katar
- Department of Neurosurgery, Medical Faculty of Balikesir University, Balıkesir, TUR
| | - Saime A Şahin
- Department of Neurosurgery, Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, TUR
| | - Serdar Çevik
- Department of Neurosurgery, Memorial Sisli Hospital, Istanbul, TUR
| | - Sevket Evran
- Department of Neurosurgery, Haseki Research and Training Hospital, Istanbul, TUR
| | - Oguz Baran
- Department of Neurosurgery, Koç University, Istanbul, TUR
| | - Canan Tanık
- Department of Pathology, Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, TUR
| | - Hüseyin U Adılay
- Department of Neurosurgery, Medical Faculty of Balikesir University, Balıkesir, TUR
| | - Adem Yılmaz
- Department of Neurosurgery, Sisli Hamidiye Etfal Research and Training Hospital, Istanbul, TUR
| |
Collapse
|
29
|
Tay BQ, Wright Q, Ladwa R, Perry C, Leggatt G, Simpson F, Wells JW, Panizza BJ, Frazer IH, Cruz JLG. Evolution of Cancer Vaccines-Challenges, Achievements, and Future Directions. Vaccines (Basel) 2021; 9:vaccines9050535. [PMID: 34065557 PMCID: PMC8160852 DOI: 10.3390/vaccines9050535] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
The development of cancer vaccines has been intensively pursued over the past 50 years with modest success. However, recent advancements in the fields of genetics, molecular biology, biochemistry, and immunology have renewed interest in these immunotherapies and allowed the development of promising cancer vaccine candidates. Numerous clinical trials testing the response evoked by tumour antigens, differing in origin and nature, have shed light on the desirable target characteristics capable of inducing strong tumour-specific non-toxic responses with increased potential to bring clinical benefit to patients. Novel delivery methods, ranging from a patient’s autologous dendritic cells to liposome nanoparticles, have exponentially increased the abundance and exposure of the antigenic payloads. Furthermore, growing knowledge of the mechanisms by which tumours evade the immune response has led to new approaches to reverse these roadblocks and to re-invigorate previously suppressed anti-tumour surveillance. The use of new drugs in combination with antigen-based therapies is highly targeted and may represent the future of cancer vaccines. In this review, we address the main antigens and delivery methods used to develop cancer vaccines, their clinical outcomes, and the new directions that the vaccine immunotherapy field is taking.
Collapse
Affiliation(s)
- Ban Qi Tay
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Quentin Wright
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Rahul Ladwa
- Department of Medical Oncology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia;
- Faculty of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia; (C.P.); (B.J.P.)
| | - Christopher Perry
- Faculty of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia; (C.P.); (B.J.P.)
- Department of Otolaryngology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Graham Leggatt
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Fiona Simpson
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - James W. Wells
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Benedict J. Panizza
- Faculty of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia; (C.P.); (B.J.P.)
- Department of Otolaryngology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - Ian H. Frazer
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
| | - Jazmina L. G. Cruz
- Faculty of Medicine, Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia; (B.Q.T.); (Q.W.); (G.L.); (F.S.); (J.W.W.); (I.H.F.)
- Correspondence: ; Tel.: +61-0478912737
| |
Collapse
|
30
|
Chebly A, Ropio J, Peloponese JM, Poglio S, Prochazkova-Carlotti M, Cherrier F, Ferrer J, Idrissi Y, Segal-Bendirdjian E, Chouery E, Farra C, Pham-Ledard A, Beylot-Barry M, Philippe Merlio J, Tomb R, Chevret E. Exploring hTERT promoter methylation in cutaneous T-cell lymphomas. Mol Oncol 2021; 16:1931-1946. [PMID: 33715271 PMCID: PMC9067155 DOI: 10.1002/1878-0261.12946] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/28/2021] [Accepted: 03/12/2021] [Indexed: 11/11/2022] Open
Abstract
Cutaneous T‐cell lymphomas (CTCLs) are telomerase‐positive tumors expressing hTERT, although neither gene rearrangement/amplification nor promoter hotspot mutations could explain the hTERT re‐expression. As the hTERT promoter is rich in CpG, we investigated the contribution of epigenetic mechanisms in its re‐expression. We analyzed hTERT promoter methylation status in CTCL cells compared with healthy cells. Gene‐specific methylation analyses revealed a common methylation pattern exclusively in tumor cells. This methylation pattern encompassed a hypermethylated distal region from −650 to −150 bp and a hypomethylated proximal region from −150 to +150 bp. Interestingly, the hypermethylated region matches with the recently named TERT hypermethylated oncogenic region (THOR). THOR has been associated with telomerase reactivation in many cancers, but it has so far not been reported in cutaneous lymphomas. Additionally, we assessed the effect of THOR on two histone deacetylase inhibitors (HDACi), romidepsin and vorinostat, both approved for CTCL treatment and a DNA methyltransferase inhibitor (DNMTi) 5‐azacytidine, unapproved for CTCL. Contrary to our expectations, the findings reported herein revealed that THOR methylation is relatively stable under these epigenetic drugs' pressure, whereas these drugs reduced the hTERT gene expression.
Collapse
Affiliation(s)
- Alain Chebly
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Porto University, Institute of Biomedical Sciences of Abel Salazar, Instituto de Investigação e Inovação em Saúde, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465, Porto, Portugal
| | - Jean-Marie Peloponese
- University of Montpellier, CNRS, IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, Montpellier, France
| | - Sandrine Poglio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | | | | | - Jacky Ferrer
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Yamina Idrissi
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| | - Evelyne Segal-Bendirdjian
- INSERM, UMR-S 1124, Team: Cellular Homeostasis Cancer and Therapies, Université de Paris, Paris, France
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Department of Human Genetics, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Chantal Farra
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Hotel Dieu de France Medical Center, Faculty of Medicine, Genetics Department, Beirut, Lebanon
| | - Anne Pham-Ledard
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Dermatology Department, F-33000, Bordeaux, France
| | - Marie Beylot-Barry
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Dermatology Department, F-33000, Bordeaux, France
| | - Jean Philippe Merlio
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France.,Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, F-33600, Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon.,Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Univ. Bordeaux, INSERM, BaRITOn, U1053, F-33000, Bordeaux, France
| |
Collapse
|
31
|
Dogan F, Forsyth NR. Telomerase Regulation: A Role for Epigenetics. Cancers (Basel) 2021; 13:cancers13061213. [PMID: 33802026 PMCID: PMC8000866 DOI: 10.3390/cancers13061213] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Maintenance of telomeres is a fundamental step in human carcinogenesis and is primarily regulated by telomerase and the human telomerase reverse transcriptase gene (TERT). Improved understanding of the transcriptional control of this gene may provide potential therapeutic targets. Epigenetic modifications are a prominent mechanism to control telomerase activity and regulation of the TERT gene. TERT-targeting miRNAs have been widely studied and their function explained through pre-clinical in vivo model-based validation studies. Further, histone deacetylase inhibitors are now in pre and early clinical trials with significant clinical success. Importantly, TERT downregulation through epigenetic modifications including TERT promoter methylation, histone deacetylase inhibitors, and miRNA activity might contribute to clinical study design. This review provides an overview of the epigenetic mechanisms involved in the regulation of TERT expression and telomerase activity. Abstract Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
- School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
32
|
Long C, Xu QB, Ding L, Yang L, Ji W, Gao F, Ji Y. Triptolide inhibits human telomerase reverse transcriptase by downregulating translation factors SP1 and c-Myc in Epstein-Barr virus-positive B lymphocytes. Oncol Lett 2021; 21:280. [PMID: 33732356 PMCID: PMC7905526 DOI: 10.3892/ol.2021.12541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/17/2020] [Indexed: 11/06/2022] Open
Abstract
Epstein-Barr virus (EBV) mainly causes infectious mononucleosis and is associated with several neoplasms, including Burkitt's lymphoma, nasopharyngeal carcinoma and lymphoproliferative disease. Human telomerase reverse transcriptase (hTERT) regulates enzymatic activity of telomerase and is closely associated with tumorigenesis and senescence evasion. Triptolide (TP) is a diterpenoid triepoxide, with a broad-spectrum anticancer and immunosuppressive bioactivity profile. The present study investigated whether TP inhibited hTERT expression and suppressed its activity. The mRNA and protein levels of hTERT were examined by reverse transcription-quantitative PCR and western blotting. The activity of hTERT promoter was determined by dual-luciferase reporter assay. Cell Counting Kit-8 assays were performed to analyze cell proliferation. The present study used EBV-positive B lymphoma cells as a model system, and the results demonstrated that TP significantly decreased hTERT transcription and protein expression. Mechanistically, TP attenuated the hTERT promoter activity by downregulating the expression levels of specificityprotein 1 and c-Myc transcription factors. Consistently, inhibition of hTERT via shRNA transfection efficiently enhanced the suppression of cell proliferation by TP. Furthermore, TP increased virus latent replication and promoted the lytic cycle of EBV in EBV-positive B lymphoma cells, increasing the number of lytic cells and inhibiting the viability of tumor cells. Taken together, the results of the present study revealed a molecular mechanism of the pharmacological inhibition of tumor cell proliferation by TP, encouraging the translation of TP-based therapeutics in EBV-positive B lymphoma treatment.
Collapse
Affiliation(s)
- Cong Long
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Qiu-Bo Xu
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Li Ding
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Liu Yang
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Wei Ji
- Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Feng Gao
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| | - Yong Ji
- Department of General Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, P.R. China
| |
Collapse
|
33
|
Powter B, Jeffreys SA, Sareen H, Cooper A, Brungs D, Po J, Roberts T, Koh ES, Scott KF, Sajinovic M, Vessey JY, de Souza P, Becker TM. Human TERT promoter mutations as a prognostic biomarker in glioma. J Cancer Res Clin Oncol 2021; 147:1007-1017. [PMID: 33547950 PMCID: PMC7954705 DOI: 10.1007/s00432-021-03536-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/27/2022]
Abstract
The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management. In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.
Collapse
Affiliation(s)
- Branka Powter
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.
| | - Sarah A Jeffreys
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Heena Sareen
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Adam Cooper
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Daniel Brungs
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Joseph Po
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
| | - Tara Roberts
- School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| | - Eng-Siew Koh
- Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Kieran F Scott
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Mila Sajinovic
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia
| | - Joey Y Vessey
- Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia
| | - Paul de Souza
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia.,Cancer Therapy Centre, Liverpool Hospital, Elizabeth St and Goulburn St, Liverpool, NSW, 2170, Australia.,School of Medicine, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Therese M Becker
- Centre for Circulating Tumour Cell Diagnostics and Research, Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW, 2170, Australia.,School of Medicine, Western Sydney University, Campbelltown, NSW, 2560, Australia.,Western Clinical School, University of New South Wales South, Goulburn St, Liverpool, NSW, 2170, Australia
| |
Collapse
|
34
|
Song H, Chen X, Jiao Q, Qiu Z, Shen C, Zhang G, Sun Z, Zhang H, Luo QY. HIF-1α-Mediated Telomerase Reverse Transcriptase Activation Inducing Autophagy Through Mammalian Target of Rapamycin Promotes Papillary Thyroid Carcinoma Progression During Hypoxia Stress. Thyroid 2021; 31:233-246. [PMID: 32772829 DOI: 10.1089/thy.2020.0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: It is important to properly understand the molecular mechanisms of aggressive tumors among papillary thyroid carcinomas (PTCs) that are often the most indolent. Hypoxia inducible factor-1α (HIF-1α), induced by hypoxia, plays pivotal roles in the development and metastasis of the many tumors, including PTCs. Upregulation of telomerase reverse transcriptase (TERT) activity is found in highly invasive PTCs. Further, previous studies have reported that autophagy serves as a protective mechanism to facilitate PTC cell survival. We, therefore, hypothesized that there was a link between HIF-1α, TERT, and autophagy in promoting PTC progression. Methods: Immunohistochemistry staining was conducted to evaluate the expressions of HIF-1α, TERT, and autophagy marker, LC3-II, in matched PTC tumors and corresponding nontumor tissues. Two PTC cell lines (TPC-1 and BCPAP) were used in subsequent cytological function studies. Cell viability, proliferation, apoptosis, migration, and invasion were assessed during hypoxia, genetic enhancement and inhibition of TERT, and chemical and genetic inhibition of autophagy. The protein expression levels of the corresponding biomarkers were determined by Western blotting, and autophagy flow was detected. We characterized the molecular mechanism of PTC cell progression. Results: The protein expression levels of HIF-1α, TERT, and LC3-II were upregulated in PTCs and were significantly correlated with high tumor-node-metastasis stage. Further, an in vitro study indicated that HIF-1α induced by hypoxia functioned as a transcriptional activator by binding with sequences potentially located in the TERT promoter and was positively correlated with the malignant behavior of PTC cell lines. Overexpression of TERT inhibited the kinase activity of mammalian target of rapamycin (mTOR), resulting in the activation of autophagy. Functionally, TERT-induced autophagy provided a survival advantage to PTC cells during hypoxia stress. Conclusions: We identified a novel molecular mechanism involving the HIF-1α/TERT axis, which promoted PTC progression by inducing autophagy through mTOR during hypoxia stress. These findings may provide a basis for the new treatment of aggressive PTCs.
Collapse
Affiliation(s)
- Hongjun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyue Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiong Jiao
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chentian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqiang Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenkui Sun
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
35
|
TERT promoter mutation is an objective clinical marker for disease progression in chondrosarcoma. Mod Pathol 2021; 34:2020-2027. [PMID: 34108637 PMCID: PMC8514332 DOI: 10.1038/s41379-021-00848-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022]
Abstract
Chondrosarcomas are the second most common malignant bone tumor. Activating promoter mutations in telomerase reverse transcriptase (TERT) was recently described by us and others as a frequent mutation in high-grade chondrosarcoma. In this study, we investigate the prognostic significance of TERT promoter mutations in 241 chondrosarcomas from 190 patients collected over 24 years (1994-2017). The TERT promoter was sequenced after microdissection of 135 chondrosarcomas from 106 patients in addition to data from our previous cohort. The TERT promoter mutation at -124 C > T was found in 45% of all patients and was significantly associated (p > 0,001) with higher tumor grade, shorter metastasis-free survival, and disease-specific survival. Additionally, TERT promoter-mutated tumors were associated with a more aggressive metastatic pattern. Shorter survival was observed in patients with wild-type primary tumors who developed a mutated metastasis indicative of tumor progression. Primary tumor genetic heterogeneity and altering mutational status between nonsynchronous metastatic lesions suggests that chondrosarcoma is a multiclonal disease progressing through a branching evolution. Conclusion: TERT promoter mutation seems to be a central event in chondrosarcoma progression with association to metastatic disease and disease-related mortality. As an easily analyzed marker, there is future potential to utilize TERT promoter mutation status as a prognostic marker and investigate telomerase-targeted therapy in chondrosarcomas.
Collapse
|
36
|
Sze KM, Ho DW, Chiu Y, Tsui Y, Chan L, Lee JM, Chok KS, Chan AC, Tang C, Tang VW, Lo IL, Yau DT, Cheung T, Ng IO. Hepatitis B Virus-Telomerase Reverse Transcriptase Promoter Integration Harnesses Host ELF4, Resulting in Telomerase Reverse Transcriptase Gene Transcription in Hepatocellular Carcinoma. Hepatology 2021; 73:23-40. [PMID: 32170761 PMCID: PMC7898544 DOI: 10.1002/hep.31231] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/17/2020] [Accepted: 02/27/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Hepatitis B virus (HBV) integrations are common in hepatocellular carcinoma (HCC). In particular, alterations of the telomerase reverse transcriptase (TERT) gene by HBV integrations are frequent; however, the molecular mechanism and functional consequence underlying TERT HBV integration are unclear. APPROACH AND RESULTS We adopted a targeted sequencing strategy to survey HBV integrations in human HBV-associated HCCs (n = 95). HBV integration at the TERT promoter was frequent (35.8%, n = 34/95) in HCC tumors and was associated with increased TERT mRNA expression and more aggressive tumor behavior. To investigate the functional importance of various integrated HBV components, we employed different luciferase reporter constructs and found that HBV enhancer I (EnhI) was the key viral component leading to TERT activation on integration at the TERT promoter. In addition, the orientation of the HBV integration at the TERT promoter further modulated the degree of TERT transcription activation in HCC cell lines and patients' HCCs. Furthermore, we performed array-based small interfering RNA library functional screening to interrogate the potential major transcription factors that physically interacted with HBV and investigated the cis-activation of host TERT gene transcription on viral integration. We identified a molecular mechanism of TERT activation through the E74 like ETS transcription factor 4 (ELF4), which normally could drive HBV gene transcription. ELF4 bound to the chimeric HBV EnhI at the TERT promoter, resulting in telomerase activation. Stable knockdown of ELF4 significantly reduced the TERT expression and sphere-forming ability in HCC cells. CONCLUSIONS Our results reveal a cis-activating mechanism harnessing host ELF4 and HBV integrated at the TERT promoter and uncover how TERT HBV-integrated HCCs may achieve TERT activation in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Karen Man‐Fong Sze
- Department of PathologyThe University of Hong KongHong KongChina,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Daniel Wai‐Hung Ho
- Department of PathologyThe University of Hong KongHong KongChina,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Yung‐Tuen Chiu
- Department of PathologyThe University of Hong KongHong KongChina,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Yu‐Man Tsui
- Department of PathologyThe University of Hong KongHong KongChina,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Lo‐Kong Chan
- Department of PathologyThe University of Hong KongHong KongChina,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Joyce Man‐Fong Lee
- Department of PathologyThe University of Hong KongHong KongChina,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| | - Kenneth Siu‐Ho Chok
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina,Department of SurgeryThe University of Hong KongHong KongChina
| | - Albert Chi‐Yan Chan
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina,Department of SurgeryThe University of Hong KongHong KongChina
| | | | | | | | | | - Tan‐To Cheung
- State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina,Department of SurgeryThe University of Hong KongHong KongChina
| | - Irene Oi‐Lin Ng
- Department of PathologyThe University of Hong KongHong KongChina,State Key Laboratory of Liver ResearchThe University of Hong KongHong KongChina
| |
Collapse
|
37
|
Yuan X, Dai M, Xu D. Telomere-related Markers for Cancer. Curr Top Med Chem 2020; 20:410-432. [PMID: 31903880 PMCID: PMC7475940 DOI: 10.2174/1568026620666200106145340] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/03/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
Abstract
Telomeres are structurally nucleoprotein complexes at termini of linear chromosomes and essential to chromosome stability/integrity. In normal human cells, telomere length erodes progressively with each round of cell divisions, which serves as an important barrier to uncontrolled proliferation and malignant transformation. In sharp contrast, telomere maintenance is a key feature of human malignant cells and required for their infinite proliferation and maintenance of other cancer hallmarks as well. Thus, a telomere-based anti-cancer strategy has long been suggested. However, clinically efficient and specific drugs targeting cancer telomere-maintenance have still been in their infancy thus far. To achieve this goal, it is highly necessary to elucidate how exactly cancer cells maintain functional telomeres. In the last two decades, numerous studies have provided profound mechanistic insights, and the identified mechanisms include the aberrant activation of telomerase or the alternative lengthening of telomere pathway responsible for telomere elongation, dysregulation and mutation of telomere-associated factors, and other telomere homeostasis-related signaling nodes. In the present review, these various strategies employed by malignant cells to regulate their telomere length, structure and function have been summarized, and potential implications of these findings in the rational development of telomere-based cancer therapy and other clinical applications for precision oncology have been discussed.
Collapse
Affiliation(s)
- Xiaotian Yuan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, China
| | - Mingkai Dai
- Central Research Laboratory, Shandong University Second Hospital, Jinan, 250033, China.,Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Shandong University Second Hospital, Jinan, 250033, China
| | - Dawei Xu
- Karolinska Institute Collaborative Laboratory for Cancer and Stem Cell Research, Shandong University Second Hospital, Jinan, 250033, China.,Department of Medicine, Division of Hematology, Center for Molecular Medicine (CMM) and Bioclinicum, Karolinska Institute and Karolinska University Hospital Solna, Solna 171 64, Sweden
| |
Collapse
|
38
|
Takakura M, Takata E, Sasagawa T. A Novel Liquid Biopsy Strategy to Detect Small Amounts of Cancer Cells Using Cancer-Specific Replication Adenoviruses. J Clin Med 2020; 9:jcm9124044. [PMID: 33327605 PMCID: PMC7765046 DOI: 10.3390/jcm9124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
Circulating tumor cells (CTCs) are a promising source of clinical and biological cancer information and can be a material for liquid biopsy. However, detecting and capturing these cells remains a challenge. Various biological factors (e.g., cell surface proteins, cell size, deformability, or dielectrophoresis) have been applied to detect CTCs. Cancer cells dramatically change their characteristics during tumorigenesis and metastasis. Hence, defining a cell as malignant using such a parameter is difficult. Moreover, immortality is an essential characteristic of cancer cells. Telomerase elongates telomeres and plays a critical role in cellular immortality and is specifically activated in cancer cells. Thus, the activation of telomerase can be a good fingerprint for cancer cells. Telomerase cannot be recognized by antibodies in living cells because it is a nuclear enzyme. Therefore, telomerase-specific replication adenovirus, which expresses the green fluorescent protein, has been applied to detect CTCs. This review explores the overview of this novel technology and its application in gynecological cancers.
Collapse
|
39
|
Li S, Huang W, Li Y, Chen B, Li D. A Study of hTERT Promoter Methylation in Circulating Tumour DNAs of Patients with Ovarian Magnificent Tumour. Onco Targets Ther 2020; 13:12317-12323. [PMID: 33293825 PMCID: PMC7719343 DOI: 10.2147/ott.s274743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Objective Human telomerase reverse transcriptase (hTERT), a crucial enzyme for telomere maintenance, has been associated with the development of ovarian cancer (OC). The purpose of this study was to investigate the difference of methylation rates of hTERT promoter in tumour tissues and plasma samples of patients with ovarian magnificent tumour and those with ovarian benign tumour, as well as in plasma samples of healthy women. This study further aimed to establish a possible association between increased methylation rate of hTERT promoter and circulating tumour DNAs (ctDNA) amongst patients with ovarian magnificent tumour. Methods Tumour tissue samples and plasma samples were separately obtained from 17 patients with ovarian magnificent tumour (experiment group, group A) and from 15 patients with ovarian benign tumour (control group, group B). Another 15 plasma samples were acquired from healthy women (control group, group C). Promoter methylation was assessed by methylation-specific PCR (MSP). Statistical analysis was conducted using SPSS 22.0. Results Methylation of hTERT was observed in 76.5% of tumour tissue samples and in 70.6% of plasma samples from patients with ovarian magnificent tumour. It was also observed in 26.7% of tumour tissue samples and 20% of plasma samples from patients with ovarian benign tumour, and in 13.3% of plasma samples from healthy women. Comparing between plasmas and tissues, the respective rates of consistency, sensitivity and specificity were 70.59%, 76.9% and 50% in group A, and 80%, 50% and 90.9% in group B. Hence, the associations of hTERT methylation with ctDNAs (p=0.001) and tumour tissue samples (p=0.012) amongst patients with ovarian magnificent tumour were established. Conclusion An increased methylation of hTERT promoter is related to ctDNAs and tumour tissues of patients with ovarian magnificent tumour.
Collapse
Affiliation(s)
- Songyi Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Wei Huang
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Yinghua Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Beibei Chen
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| | - Dingheng Li
- Department of Gynecology, Hangzhou Women's Hospital, Hangzhou 310008, People's Republic of China
| |
Collapse
|
40
|
Assessment of telomerase as drug target in breast cancer. J Biosci 2020. [DOI: 10.1007/s12038-020-00045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Stier A, Hsu BY, Marciau C, Doligez B, Gustafsson L, Bize P, Ruuskanen S. Born to be young? Prenatal thyroid hormones increase early-life telomere length in wild collared flycatchers. Biol Lett 2020; 16:20200364. [PMID: 33171077 DOI: 10.1098/rsbl.2020.0364] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The underlying mechanisms of the lifelong consequences of prenatal environmental condition on health and ageing remain little understood. Thyroid hormones (THs) are important regulators of embryogenesis, transferred from the mother to the embryo. Since prenatal THs can accelerate early-life development, we hypothesized that this might occur at the expense of resource allocation in somatic maintenance processes, leading to premature ageing. Therefore, we investigated the consequences of prenatal TH supplementation on potential hallmarks of ageing in a free-living avian model in which we previously demonstrated that experimentally elevated prenatal TH exposure accelerates early-life growth. Using cross-sectional sampling, we first report that mitochondrial DNA (mtDNA) copy number and telomere length significantly decrease from early-life to late adulthood, thus suggesting that these two molecular markers could be hallmarks of ageing in our wild bird model. Elevated prenatal THs had no effect on mtDNA copy number but counterintuitively increased telomere length both soon after birth and at the end of the growth period (equivalent to offsetting ca 4 years of post-growth telomere shortening). These findings suggest that prenatal THs might have a role in setting the 'biological' age at birth, but raise questions about the nature of the evolutionary costs of prenatal exposure to high TH levels.
Collapse
Affiliation(s)
- Antoine Stier
- Department of Biology, University of Turku, Turku, Finland.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Bin-Yan Hsu
- Department of Biology, University of Turku, Turku, Finland
| | - Coline Marciau
- Department of Biology, University of Turku, Turku, Finland
| | - Blandine Doligez
- Department of Biometry and Evolutionary Biology, CNRS, Université Lyon 1, Lyon, France
| | - Lars Gustafsson
- Department of Ecology and Genetics/Animal Ecology, University of Uppsala, Uppsala, Sweden
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Suvi Ruuskanen
- Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
42
|
Sajib AM, Sandey M, Morici S, Schuler B, Agarwal P, Smith BF. Analysis of endogenous and exogenous tumor upregulated promoter expression in canine tumors. PLoS One 2020; 15:e0240807. [PMID: 33166332 PMCID: PMC7652315 DOI: 10.1371/journal.pone.0240807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
Gene therapy is a promising treatment option for cancer. However, its utility may be limited due to expression in off-target cells. Cancer-specific promoters such as telomerase reverse transcriptase (TERT), survivin, and chemokine receptor 4 (CXCR4) have enhanced activity in a variety of human and murine cancers, however, little has been published regarding these promoters in dogs. Given the utility of canine cancer models, the activity of these promoters along with adenoviral E2F enhanced E1a promoter (EEE) was evaluated in a variety of canine tumors, both from the endogenous gene and from exogenously administered constructs. Endogenous expression levels were measured for cTERT, cSurvivin, and cCXCR4 and were low for all three, with some non-malignant and some tumor cell lines and tissues expressing the gene. Expression levels from exogenously supplied promoters were measured by both the number of cells expressing the construct and the intensity of expression in individual cells. Exogenously supplied promoters were active in more cells in all tumor lines than in normal cells, with the EEE promoter being most active, followed by cTERT. The intensity of expression varied more with cell type than with specific promoters. Ultimately, no single promoter was identified that would result in reliable expression, regardless of the tumor type. Thus, these findings imply that identification of a pan-cancer promoter may be difficult. In addition, this data raises the concern that endogenous expression analysis may not accurately predict exogenous promoter activity.
Collapse
Affiliation(s)
- Abdul Mohin Sajib
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Maninder Sandey
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Samantha Morici
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Bradley Schuler
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Bruce F. Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| |
Collapse
|
43
|
Rampazzo E, Cecchin E, Del Bianco P, Menin C, Spolverato G, Giunco S, Lonardi S, Malacrida S, De Paoli A, Toffoli G, Pucciarelli S, De Rossi A. Genetic Variants of the TERT Gene, Telomere Length, and Circulating TERT as Prognostic Markers in Rectal Cancer Patients. Cancers (Basel) 2020; 12:cancers12113115. [PMID: 33113831 PMCID: PMC7692334 DOI: 10.3390/cancers12113115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in the TERT gene can affect telomere length and TERT expression and have been associated with risk and/or outcome for several tumors, but very few data are available about their impact on rectal cancer. Eight SNPs (rs2736108, rs2735940, rs2736098, rs2736100, rs35241335, rs11742908, rs2736122 and rs2853690), mapping in regulatory and coding regions of the TERT gene, were studied in 194 rectal cancer patients to evaluate their association with constitutive telomere length, circulating TERT mRNA levels, response to neoadjuvant chemoradiotherapy (CRT) and disease outcome. At diagnosis, the rs2736100CC genotype was associated with longer telomeres measured pre-CRT, while the rs2736100CC, rs2736108TT and rs2735940AA were associated with greater telomere erosion evaluated post-CRT. The rs2736108CC and rs2853690AA/GG genotypes, respectively associated with lower telomere erosion and lower levels of circulating TERT post-CRT, were also independently associated with a better response to therapy [OR 4.6(1.1-19.1) and 3.0(1.3-6.9)]. Overall, post-CRT, low levels (≤ median value) of circulating TERT and its stable/decreasing levels compared to those pre-CRT, were independently associated with a better response to therapy [OR 5.8(1.9-17.8) and 5.3(1.4-19.4), respectively]. Furthermore, post-CRT, patients with long telomeres (>median value) and low levels of circulating TERT had a significantly lower risk of disease progression [HR 0.4(0.1-0.9) and 0.3(0.1-0.8), respectively]. These findings suggest that TERT SNPs could be a useful tool for improving the selection of patients who could benefit from CRT and support the role of telomere length and circulating TERT mRNA levels as useful markers for monitoring the response to therapy and disease outcome in rectal cancer patients.
Collapse
Affiliation(s)
- Enrica Rampazzo
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padova, Italy; (S.G.); (A.D.R.)
- Correspondence: ; Tel.: +39-049-821-5831
| | - Erika Cecchin
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO)-IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy; (E.C.); (G.T.)
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology (IOV)-IRCCS, Via Gattamelata 64, 35128 Padova, Italy;
| | - Chiara Menin
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV)-IRCCS, Via Gattamelata 64, 35128 Padova, Italy;
| | - Gaya Spolverato
- Section of Surgery, Department of Surgery, Oncology and Gastroenterology, Via Giustiniani 1, University of Padova, 35128 Padova, Italy; (G.S.); (S.P.)
| | - Silvia Giunco
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padova, Italy; (S.G.); (A.D.R.)
| | - Sara Lonardi
- Medical Oncology Unit 1, Veneto Institute of Oncology (IOV)-IRCCS, Via Gattamelata 64, 35128 Padova, Italy;
| | - Sandro Malacrida
- Eurac Research, Institute of Mountain Emergency Medicine, Viale Druso Drususallee 1, 39100 Bolzano, Italy;
| | - Antonino De Paoli
- Radiation Oncology, Centro di Riferimento Oncologico (CRO)-IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy;
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO)-IRCCS, Via Franco Gallini 2, 33081 Aviano (PN), Italy; (E.C.); (G.T.)
| | - Salvatore Pucciarelli
- Section of Surgery, Department of Surgery, Oncology and Gastroenterology, Via Giustiniani 1, University of Padova, 35128 Padova, Italy; (G.S.); (S.P.)
| | - Anita De Rossi
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata 64, 35128 Padova, Italy; (S.G.); (A.D.R.)
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology (IOV)-IRCCS, Via Gattamelata 64, 35128 Padova, Italy;
| |
Collapse
|
44
|
Kim HJ, Kim DY. Present and Future of Anti-Glioblastoma Therapies: A Deep Look into Molecular Dependencies/Features. Molecules 2020; 25:molecules25204641. [PMID: 33053763 PMCID: PMC7587213 DOI: 10.3390/molecules25204641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is aggressive malignant tumor residing within the central nervous system. Although the standard treatment options, consisting of surgical resection followed by combined radiochemotherapy, have long been established for patients with GBM, the prognosis is still poor. Despite recent advances in diagnosis, surgical techniques, and therapeutic approaches, the increased patient survival after such interventions is still sub-optimal. The unique characteristics of GBM, including highly infiltrative nature, hard-to-access location (mainly due to the existence of the blood brain barrier), frequent and rapid recurrence, and multiple drug resistance mechanisms, pose challenges to the development of an effective treatment. To overcome current limitations on GBM therapy and devise ideal therapeutic strategies, efforts should focus on an improved molecular understanding of GBM pathogenesis. In this review, we summarize the molecular basis for the development and progression of GBM as well as some emerging therapeutic approaches.
Collapse
Affiliation(s)
- Hyeon Ji Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6880
| |
Collapse
|
45
|
Schrumpfová PP, Fajkus J. Composition and Function of Telomerase-A Polymerase Associated with the Origin of Eukaryotes. Biomolecules 2020; 10:biom10101425. [PMID: 33050064 PMCID: PMC7658794 DOI: 10.3390/biom10101425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
The canonical DNA polymerases involved in the replication of the genome are unable to fully replicate the physical ends of linear chromosomes, called telomeres. Chromosomal termini thus become shortened in each cell cycle. The maintenance of telomeres requires telomerase—a specific RNA-dependent DNA polymerase enzyme complex that carries its own RNA template and adds telomeric repeats to the ends of chromosomes using a reverse transcription mechanism. Both core subunits of telomerase—its catalytic telomerase reverse transcriptase (TERT) subunit and telomerase RNA (TR) component—were identified in quick succession in Tetrahymena more than 30 years ago. Since then, both telomerase subunits have been described in various organisms including yeasts, mammals, birds, reptiles and fish. Despite the fact that telomerase activity in plants was described 25 years ago and the TERT subunit four years later, a genuine plant TR has only recently been identified by our group. In this review, we focus on the structure, composition and function of telomerases. In addition, we discuss the origin and phylogenetic divergence of this unique RNA-dependent DNA polymerase as a witness of early eukaryotic evolution. Specifically, we discuss the latest information regarding the recently discovered TR component in plants, its conservation and its structural features.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- Correspondence:
| | - Jiří Fajkus
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, Czech Republic;
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
46
|
Losi L, Botticelli L, Garagnani L, Fabbiani L, Panini R, Gallo G, Sabbatini R, Maiorana A, Benhattar J. TERT promoter methylation and protein expression as predictive biomarkers for recurrence risk in patients with serous borderline ovarian tumours. Pathology 2020; 53:187-192. [PMID: 33032810 DOI: 10.1016/j.pathol.2020.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Epithelial ovarian neoplasms can be divided into three distinct clinicopathological groups: benign, malignant and borderline tumours. Borderline tumours are less aggressive than epithelial carcinomas, with an indolent clinical course and delayed recurrence. However, a subset of these cases can progress to malignancy and relapse, and death from recurrent disease can occasionally occur. Telomerase activation is a critical element in cellular immortalisation and cancer. The enzyme telomerase comprises a catalytic subunit (TERT) expressed in various types of cancers and regulated by promoter methylation mainly in epithelial tumours. The aim of this study was to investigate the promoter methylation status and the expression of TERT in 50 serous borderline tumours (SBTs) and their correlation with clinicopathological features and outcome. TERT methylation was analysed by bisulfite pyrosequencing and TERT expression by immunohistochemistry. Methylation of TERT promoter was only observed in four SBTs. A good correlation with immunostochemistry was found: nuclear positivity for TERT expression was observed in the methylated cases, whereas no expression was detected in unmethylated tumours. One of these patients had a recurrence after 7 years and another patient died from the disease. SBTs with hypomethylated tumours and absence of TERT expression showed a good clinical behaviour. Our study highlights the low presence of TERT methylation in SBTs, confirming that these tumours have a different biology than serous carcinomas. Furthermore, the concordance between TERT promoter methylation and TERT expression and their association with clinical outcomes leads to consider TERT alteration as a potential predictive biomarker for recurrence risk identifying patients who should undergo a careful and prolonged follow-up.
Collapse
Affiliation(s)
- Lorena Losi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy.
| | - Laura Botticelli
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Lorella Garagnani
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Fabbiani
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossana Panini
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Graziana Gallo
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Sabbatini
- Division of Medical Oncology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Antonino Maiorana
- Unit of Pathology, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy; Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jean Benhattar
- Aurigen, Centre de Génétique et Pathologie, Lausanne, Switzerland
| |
Collapse
|
47
|
Song YS, Park YJ. Mechanisms of TERT Reactivation and Its Interaction with BRAFV600E. Endocrinol Metab (Seoul) 2020; 35:515-525. [PMID: 32981294 PMCID: PMC7520576 DOI: 10.3803/enm.2020.304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
The telomerase reverse transcriptase (TERT) gene, which is repressed in most differentiated human cells, can be reactivated by somatic TERT alterations and epigenetic modulations. Moreover, the recruitment, accessibility, and binding of transcription factors also affect the regulation of TERT expression. Reactivated TERT contributes to the development and progression of cancer through telomere lengthening-dependent and independent ways. In particular, because of recent advances in high-throughput sequencing technologies, studies on genomic alterations in various cancers that cause increased TERT transcriptional activity have been actively conducted. TERT reactivation has been reported to be associated with poor prognosis in several cancers, and TERT promoter mutations are among the most potent prognostic markers in thyroid cancer. In particular, when a TERT promoter mutation coexists with the BRAFV600E mutation, these mutations exert synergistic effects on a poor prognosis. Efforts have been made to uncover the mechanisms of these synergistic interactions. In this review, we discuss the role of TERT reactivation in tumorigenesis, the mechanisms of TERT reactivation across all human cancers and in thyroid cancer, and the mechanisms of interactions between BRAFV600E and TERT promoter mutations.
Collapse
Affiliation(s)
- Young Shin Song
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
48
|
Comprehensive Assessment of TERT mRNA Expression across a Large Cohort of Benign and Malignant Thyroid Tumours. Cancers (Basel) 2020; 12:cancers12071846. [PMID: 32659948 PMCID: PMC7408963 DOI: 10.3390/cancers12071846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
The presence of TERT promoter (TERTp) mutations in thyroid cancer have been associated with worse prognosis features, whereas the extent and meaning of the expression and activation of TERT in thyroid tumours is still largely unknown. We analysed frozen samples from a series of benign and malignant thyroid tumours, displaying non-aggressive features and low mutational burden in order to evaluate the presence of TERTp mutations and TERT mRNA expression in these settings. In this series, TERTp mutations were found in 2%, only in malignant cases, in larger cancers, and from older patients. TERT mRNA expression was detected in both benign and malignant tumours, with increased frequencies in the malignant tumours with aggressive histotypes, larger tumours, and from older patients. In benign tumours, TERT mRNA expression was found in 17% of the follicular thyroid adenoma (FTA) with increased levels of expression in smaller tumours and associated with the presence of thyroiditis. TERTp mutations and TERT mRNA expression are correlated with worse prognosis features in malignant thyroid tumours, whereas TERT mRNA expression in the benign tumours is associated with the presence of thyroiditis.
Collapse
|
49
|
Kwon JH, Yi JW. Correlation between telomerase reverse transcriptase messenger RNA expression and survival of patients with papillary thyroid carcinoma. Surgery 2020; 169:43-49. [PMID: 32641280 DOI: 10.1016/j.surg.2020.04.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Telomerase reverse transcriptase promoter mutations were recently found to be associated with poorer prognosis in patients with papillary thyroid carcinoma. Correlation between telomerase reverse transcriptase messenger RNA expression and survival of patients with papillary thyroid carcinoma has not been determined. METHODS Clinical information, somatic mutations, and RNA sequencing of 492 papillary thyroid carcinoma patients were obtained from The Cancer Genome Atlas. Correlations between messenger RNA expression and clinicopathologic variables were evaluated. Recursive partitioning regression trees were used to find cutoffs predicting survival. Differentially expressed gene analysis was performed by Edge-R, and Database for Annotation, Visualization and Integrated Discovery 6.7 was used to pathway analysis. RESULTS Telomerase reverse transcriptase messenger RNA expression was positively correlated with stages II and IV and high MACIS Prognostic Score for Papillary Thyroid Carcinoma. Using a telomerase reverse transcriptase messenger RNA level of 2.854 as a cutoff, patients with higher telomerase reverse transcriptase messenger RNA expression showed poorer overall survival (hazard ratio = 20.7). The higher telomerase reverse transcriptase messenger RNA group showed upregulation of 2,255 genes, with enrichment of carcinogenic pathways. CONCLUSION Higher telomerase reverse transcriptase messenger RNA expression was associated with poorer survival in patients with papillary thyroid carcinoma and was a better predictor for death than telomerase reverse transcriptase promoter mutations. Measuring telomerase reverse transcriptase messenger RNA expression in thyroid cancer tissue may allow early identification of papillary thyroid carcinoma patients with worse overall survival.
Collapse
Affiliation(s)
- Jae Hyun Kwon
- Department of Surgery, Inha University Hospital & College of Medicine, Incheon, Korea
| | - Jin Wook Yi
- Department of Surgery, Inha University Hospital & College of Medicine, Incheon, Korea.
| |
Collapse
|
50
|
Monsen RC, DeLeeuw L, Dean WL, Gray RD, Sabo T, Chakravarthy S, Chaires JB, Trent JO. The hTERT core promoter forms three parallel G-quadruplexes. Nucleic Acids Res 2020; 48:5720-5734. [PMID: 32083666 PMCID: PMC7261196 DOI: 10.1093/nar/gkaa107] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The structure of the 68 nt sequence with G-quadruplex forming potential within the hTERT promoter is disputed. One model features a structure with three stacked parallel G-quadruplex units, while another features an unusual duplex hairpin structure adjoined to two stacked parallel and antiparallel quadruplexes. We report here the results of an integrated structural biology study designed to distinguish between these possibilities. As part of our study, we designed a sequence with an optimized hairpin structure and show that its biophysical and biochemical properties are inconsistent with the structure formed by the hTERT wild-type sequence. By using circular dichroism, thermal denaturation, nuclear magnetic resonance spectroscopy, analytical ultracentrifugation, small-angle X-ray scattering, molecular dynamics simulations and a DNase I cleavage assay we found that the wild type hTERT core promoter folds into a stacked, three-parallel G-quadruplex structure. The hairpin structure is inconsistent with all of our experimental data obtained with the wild-type sequence. All-atom models for both structures were constructed using molecular dynamics simulations. These models accurately predicted the experimental hydrodynamic properties measured for each structure. We found with certainty that the wild-type hTERT promoter sequence does not form a hairpin structure in solution, but rather folds into a compact stacked three-G-quadruplex conformation.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Lynn DeLeeuw
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - T Michael Sabo
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jonathan B Chaires
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - John O Trent
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|