1
|
Land G, Van Haeringen B, Cooper C, Andelkovic V, O'Rourke T. A Rare Case of Rhabdoid Pancreatic Carcinoma: Prolonged Disease-Free Survival Following Upfront Resection and Adjuvant Chemotherapy. Cureus 2023; 15:e50145. [PMID: 38186431 PMCID: PMC10771581 DOI: 10.7759/cureus.50145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
The rhabdoid subtype of undifferentiated pancreatic carcinoma is rarely reported. The clinical course of this disease is therefore poorly understood, although it is apparently an aggressive malignancy. We herein discuss the case of a 69-year-old man presenting with a rapidly enlarging mass of the pancreatic body and tail who was diagnosed with locally advanced SMARCB1-deficient undifferentiated pancreatic carcinoma with rhabdoid features, treated with radical resection and adjuvant chemotherapy, and has achieved 18-month disease-free survival ongoing at the time of article publication. We identify and contrast our case with 15 similar tumors reported in the English literature, briefly discuss the biology of this tumor, its relationship to malignant rhabdoid tumors of childhood, the role of SMARCB1 and its parent complex switch/sucrose-non-fermentable chromatin remodeling complex (SWI/SNF) in modulating the behavior of pancreatic malignancy, and the potential therapeutic avenues available for SWI/SNF-mutated malignancies.
Collapse
Affiliation(s)
- Gabriel Land
- General Surgery, Princess Alexandra Hospital, Brisbane, AUS
| | | | - Caroline Cooper
- Anatomical Pathology, Princess Alexandra Hospital, Brisbane, AUS
| | | | - Thomas O'Rourke
- Hepatobiliary Surgery, Princess Alexandra Hospital, Brisbane, AUS
| |
Collapse
|
2
|
Wei CH, Wang E, Sadimin E, Rodriguez-Rodriguez L, Agulnik M, Yoon J, LoBello J, Szelinger S, Anderson C. Underreporting of SMARCB1 alteration by clinical sequencing: Integrative patho-genomic analysis captured SMARCB1/INI-1 deficiency in a vulvar yolk sac tumor. Gynecol Oncol Rep 2023; 50:101294. [PMID: 37876879 PMCID: PMC10590733 DOI: 10.1016/j.gore.2023.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/07/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023] Open
Abstract
•SMARCB1/INI1-deficient gynecologic tumors are rare and clinically aggressive. A subset shows primitive yolk sac tumor features.•Due to technical limitation of next generation sequencing (NGS) and interlaboratory variability in sequencing methodologies and analytical pipelines, SMARCB1 deficiency caused by somatic copy number variations (SCNV) may be underreported by NGS.•To improve identification of SMARCB1/INI1-deficient neoplasm, we propose the following strategy: First, careful pathology slide review and detection of rhabdoid cells should raise the possibility of SMARCB1/INI1 deficiency. Second, INI1 IHC is a useful complementary test to exclude clinical suspicion of SMARCB1 deficiency in the context of negative molecular reporting. Third, knowledge of potential underreporting of SMARCB1 mutation would avoid underdiagnosis.
Collapse
Affiliation(s)
- Christina H. Wei
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | - Edward Wang
- Department of Medical Oncology & Therapeutics Research, City of Hope Medical Center, Duarte, CA, USA
| | - Evita Sadimin
- Department of Pathology, City of Hope Medical Center, Duarte, CA, USA
| | | | - Mark Agulnik
- Department of Medical Oncology & Therapeutics Research, City of Hope Medical Center, Duarte, CA, USA
| | - Janet Yoon
- Department of Pediatrics, City of Hope Medical Center, Duarte, CA, USA
| | | | | | - Clarke Anderson
- Department of Pediatrics, City of Hope Medical Center, Duarte, CA, USA
| |
Collapse
|
3
|
Ding H, Huang Y, Shi J, Wang L, Liu S, Zhao B, Liu Y, Yang J, Chen Z. Attenuated expression of SNF5 facilitates progression of bladder cancer via STAT3 activation. Cancer Cell Int 2021; 21:655. [PMID: 34876150 PMCID: PMC8650342 DOI: 10.1186/s12935-021-02363-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SWI/SNF, a well-known ATP-dependent chromatin-remodeling complex, plays an essential role in several biological processes. SNF5, the core subunit of the SWI/SNF remodeling complex, inactivated in 95% of malignant rhabdoid tumors (MRT), highlighting its significance in tumorigenesis. However, the role of SNF5 in bladder cancer (BC) remains unknown. In this study, we aimed to investigate the function and potential clinical applicability of SNF5 in BC. METHODS Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were used to evaluate the clinical significance of SNF5 in BC. We performed Gene Set Enrichment Analysis (GSEA) and functional assays to investigate the role of SNF5 in BC. Genomics of Drug Sensitivity in Cancer (GDSC) and drug-susceptibility tests were performed to identify the potential value of SNF5 in the treatment of BC. RESULTS Low SNF5 expression conferred a poor prognosis and was significantly associated with the N-stage in BC. ROC curves indicated that SNF5 could distinguish BC from the normal tissues. In vitro and in vivo functional assays demonstrated that attenuated SNF5 expression could promote cell proliferation and enhance migration by STAT3 activation. We imputed that low SNF5 expression could confer greater resistance against conventional first-line drugs, including cisplatin and gemcitabine in BC. GDSC and drug-resistance assays suggested that low SNF5 expression renders T24 and 5637 cells high sensitivity to EGFR inhibitor gefitinib, and combination of EZH2 inhibitor GSK126 and cisplatin. CONCLUSIONS To the best of our knowledge, the present study, for the first time, showed that low SNF5 expression could promote cell proliferation and migration by activating STAT3 and confer poor prognosis in BC. Importantly, SNF5 expression may be a promising candidate for identifying BC patients who could benefit from EGFR-targeted chemotherapy or cisplatin in combination with EZH2 inhibitor treatment regimens.
Collapse
Affiliation(s)
- Hua Ding
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liwei Wang
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.,Unit 32357 of People's Liberation Army, Pujiang, 611630, China
| | - Sha Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Baixiong Zhao
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuting Liu
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Zhiwen Chen
- Department of Urology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Kannan S, Lock I, Ozenberger BB, Jones KB. Genetic drivers and cells of origin in sarcomagenesis. J Pathol 2021; 254:474-493. [DOI: 10.1002/path.5617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/01/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Sarmishta Kannan
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Ian Lock
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences Huntsman Cancer Institute, University of Utah School of Medicine Salt Lake City UT USA
| |
Collapse
|
5
|
Cai C. SWI/SNF deficient central nervous system neoplasms. Semin Diagn Pathol 2021; 38:167-174. [PMID: 33762087 DOI: 10.1053/j.semdp.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/13/2022]
Abstract
The SWItch/Sucrose Non-Fermentable (SWI/SNF) complexes are ubiquitous ATP dependent chromatin remodeling complexes that provide epigenetic regulation of gene expressions across the genome. Different combination of SWI/SNF subunits allow tissue specific regulation of critical cellular processes. The identification of SMARCB1 inactivation in pediatric malignant rhabdoid tumors provided the first example that the SWI/SNF complex may act as a tumor suppressor. It is now estimated at least 20% of all human tumors contain mutations in the subunits of the SWI/SNF complex. This review summarizes the central nervous system tumors with alterations in the SWI/SNF complex genes. Atypical teratoid/rabdoid tumor (AT/RT) is a highly aggressive embryonal tumor genetically characterized by bi-allelic inactivation of SMARCB1, and immunohistochemically shows complete absence of nuclear expression of its protein product INI1. A small subset of AT/RT show retained INI1 expression but defects in another SWI/SNF complex gene SMARCA4. Embryonal tumors with medulloblastoma, pineoblastoma, or primitive neuroectodermal morphology but loss of INI1 expression are now classified as AT/RT. Cribriform neuroepithelial tumor (CRINET) is an intra or para-ventricular tumor that has similar SMARCB1 alterations as AT/RT but generally has a benign clinical course. Besides AT/RT and CRINET, compete loss of nuclear INI1 expression has also been reported in poorly differentiated chordoma and intracranial myxoid sarcoma within the central nervous system. Families with non-truncating SMARCB1 mutations are prone to develop schwannomatosis and a range of developmental syndromes. The schwannomas in these patients usually demonstrate a mosaic INI1 staining pattern suggestive of partial residual protein function. Finally, clear cell meningioma is a WHO grade II variant meningioma characterized by bi-allelic inactivation of the SMARCE1 gene and immunohistochemically show loss of its protein product BAF57 expression in tumor cell nuclei.
Collapse
Affiliation(s)
- Chunyu Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
6
|
Identification of Breast Cancer Subtype-Specific Biomarkers by Integrating Copy Number Alterations and Gene Expression Profiles. ACTA ACUST UNITED AC 2021; 57:medicina57030261. [PMID: 33809336 PMCID: PMC7998437 DOI: 10.3390/medicina57030261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
Background and Objectives: Breast cancer is a heterogeneous disease categorized into four subtypes. Previous studies have shown that copy number alterations of several genes are implicated with the development and progression of many cancers. This study evaluates the effects of DNA copy number alterations on gene expression levels in different breast cancer subtypes. Materials and Methods: We performed a computational analysis integrating copy number alterations and gene expression profiles in 1024 breast cancer samples grouped into four molecular subtypes: luminal A, luminal B, HER2, and basal. Results: Our analyses identified several genes correlated in all subtypes such as KIAA1967 and MCPH1. In addition, several subtype-specific genes that showed a significant correlation between copy number and gene expression profiles were detected: SMARCB1, AZIN1, MTDH in luminal A, PPP2R5E, APEX1, GCN5 in luminal B, TNFAIP1, PCYT2, DIABLO in HER2, and FAM175B, SENP5, SCAF1 in basal subtype. Conclusions: This study showed that computational analyses integrating copy number and gene expression can contribute to unveil the molecular mechanisms of cancer and identify new subtype-specific biomarkers.
Collapse
|
7
|
D P, Sadasivan B, Patil Okaly GV, MukundaPai M, Alashetty S, B L K. Cytomorphological and immunohistochemical features of renal and extrarenal rhabdoid tumors. Diagn Cytopathol 2021; 49:711-717. [PMID: 33638610 DOI: 10.1002/dc.24727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Rhabdoid tumors are rare, highly lethal neoplasms characterized by alterations of SMARCB1 gene in chromosome 22, which occurs in infants and children. Fine needle aspiration (FNA) is an effective technique to diagnose this tumor when combined with Immunohistochemistry (IHC) and molecular genetics. In this study, we describe four cases of renal and extra-renal rhabdoid tumor of which three cases were diagnosed on FNA with IHC. MATERIALS AND METHODS The study includes four children with renal and extrarenal rhabdoid tumor retrieved from cytology archives. FNA was done with cell block, IHC, and cytogenetics. The cytomorphology with ancillary studies were reviewed along with histopathology which was available in 3 out of 4 cases. RESULTS All the four cases had similar cytomorphologic features comprising of large cells having vesicular nuclei which can be central or eccentric with prominent nucleoli and abundant pale cytoplasm. Few cells had intracytoplasmic hyaline inclusion. Cell block with IHC confirmed the diagnosis in three cases. One case in which cell block could not be made the diagnosis was confirmed on biopsy with IHC. CONCLUSION Rhabdoid tumors are uncommon but aggressive neoplasms with poor prognosis. Our study highlights that they can be diagnosed accurately on FNA cytomorphology when combined with IHC on cell block.
Collapse
Affiliation(s)
- Priya D
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Baalu Sadasivan
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Geeta V Patil Okaly
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Malathi MukundaPai
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Soumya Alashetty
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Kavitha B L
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
8
|
Frühwald MC, Nemes K, Boztug H, Cornips MCA, Evans DG, Farah R, Glentis S, Jorgensen M, Katsibardi K, Hirsch S, Jahnukainen K, Kventsel I, Kerl K, Kratz CP, Pajtler KW, Kordes U, Ridola V, Stutz E, Bourdeaut F. Current recommendations for clinical surveillance and genetic testing in rhabdoid tumor predisposition: a report from the SIOPE Host Genome Working Group. Fam Cancer 2021; 20:305-316. [PMID: 33532948 PMCID: PMC8484234 DOI: 10.1007/s10689-021-00229-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022]
Abstract
The rhabdoid tumor (RT) predisposition syndromes 1 and 2 (RTPS1 and 2) are rare genetic conditions rendering young children vulnerable to an increased risk of RT, malignant neoplasms affecting the kidney, miscellaneous soft-part tissues, the liver and the central nervous system (Atypical Teratoid Rhabdoid Tumors, ATRT). Both, RTPS1&2 are due to pathogenic variants (PV) in genes encoding constituents of the BAF chromatin remodeling complex, i.e. SMARCB1 (RTPS1) and SMARCA4 (RTPS2). In contrast to other genetic disorders related to PVs in SMARCB1 and SMARCA4 such as Coffin-Siris Syndrome, RTPS1&2 are characterized by a predominance of truncating PVs, terminating transcription thus explaining a specific cancer risk. The penetrance of RTPS1 early in life is high and associated with a poor survival. However, few unaffected carriers may be encountered. Beyond RT, the tumor spectrum may be larger than initially suspected, and cancer surveillance offered to unaffected carriers (siblings or parents) and long-term survivors of RT is still a matter of discussion. RTPS2 exposes female carriers to an ill-defined risk of small cell carcinoma of the ovaries, hypercalcemic type (SCCOHT), which may appear in prepubertal females. RT surveillance protocols for these rare families have not been established. To address unresolved issues in the care of individuals with RTPS and to propose appropriate surveillance guidelines in childhood, the SIOPe Host Genome working group invited pediatric oncologists and geneticists to contribute to an expert meeting. The current manuscript summarizes conclusions of the panel discussion, including consented statements as well as non-evidence-based proposals for validation in the future.
Collapse
Affiliation(s)
- M C Frühwald
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany.
| | - K Nemes
- Paediatric and Adolescent Medicine, Swabian Children's Cancer Center, University Medical Center Augsburg, Stenglinstraße 2, 86156, Augsburg, Germany
| | - H Boztug
- St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - M C A Cornips
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - D G Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, MAHSC, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, University of Manchester, Manchester, UK
| | - R Farah
- Department of Pediatrics, Division of Hematology/Oncology, LAU Medical Center-Rizk Hospital, Ashrafieh, Beirut, Lebanon
| | - S Glentis
- Pediatric Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - M Jorgensen
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, UK
| | - K Katsibardi
- Pediatric Hematology-Oncology Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, "Aghia Sofia" Children's Hospital, Athens, Greece
| | - S Hirsch
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - K Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - I Kventsel
- Department of Pediatric Hematology-Oncology, The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, 52621, Tel-Hashomer, Israel
| | - K Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - C P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - K W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Oncology, Hematology, and Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - U Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - V Ridola
- Department of Pediatric Oncology and Haematology, Mitera Children's Hospital, Athens, Greece
| | - E Stutz
- Department of Oncology, University Children's Hospital, Zurich, Switzerland
| | - F Bourdeaut
- Institut Curie, SIREDO Pediatric Cancer Center, INSERM U830, Laboratory of Translational Research in Pediatric Oncology, Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
9
|
Sesboue C, Le Loarer F. SWI/SNF-deficient thoraco-pulmonary neoplasms. Semin Diagn Pathol 2021; 38:183-194. [PMID: 33451916 DOI: 10.1053/j.semdp.2020.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/03/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022]
Abstract
The SWI/SNF complexes are major regulators of gene expression and their alterations occur in a large array of cancers both of epithelial and mesenchymal lineages. Malignant rhabdoid tumors were the first malignancies linked to deregulation of these complexes with the involvement of SMARCB1 in their development but genetic alterations affect all subunits in other malignancies. In the chest and lung regions, SMARCA4 (BRG1) is the most frequently altered subunit and is involved in the pathogenesis of two subtypes of tumors, including bona fide carcinomas (SMARCA4-deficient non-small cell lung cancers) but also undifferentiated tumors that harbor an undifferentiated phenotype close to those of malignant rhabdoid tumors (SMARCA4-undifferentiated tumors). Although their histogenesis is yet to be fully understood, these tumors are associated with distinct clinical and pathological features even though some overlapping features have been reported in rare cases. SMARCA4 deficiency is easily asserted by immunohistochemistry that show the loss of nuclear expression of the protein in the nuclei of tumor cells. These tumors are commonly associated with high-grade cytological features, rhabdoid cytomorphology, solid architecture and extensive necrosis. The typical immunohistochemical signature of SMARCA4-UT combines co-inactivation of SMARCA2 (BRM) and the overexpression of SOX2 and SALL4. No specific therapeutic strategies have been so far developed for SMARCA4-deficient neoplasms. SMARCB1 subunit is involved in the development of several SMARCB1-deficient sarcomas on top of malignant rhabdoid tumors that may develop in the thorax. Malignant rhabdoid tumors affect mostly children of less than 5y. The differential diagnosis includes epithelioid sarcomas, malignant myoepithelial tumors or myoepithelial carcinomas, extra-skeletal myxoid chondrosarcomas and synovial sarcomas.
Collapse
Affiliation(s)
- Come Sesboue
- University of Bordeaux, Talence, France; Cancer center of Bordeaux, Bordeaux, France
| | - Francois Le Loarer
- University of Bordeaux, Talence, France; Cancer center of Bordeaux, Bordeaux, France; INSERM U1218, Siric Brio, Cancer center of Bordeaux, Bordeaux, France.
| |
Collapse
|
10
|
Abstract
Molecular characterization has led to advances in the understanding of pediatric renal tumors, including the association of pediatric cystic nephromas with DICER1 tumor syndrome, the metanephric family of tumors with somatic BRAF mutations, the characterization of ETV6-NTRK3-negative congenital mesoblastic nephromas, the expanded spectrum of gene fusions in translocation renal cell carcinoma, the relationship of clear cell sarcoma of the kidney with other BCOR-altered tumors, and the pathways affected by SMARCB1 alterations in rhabdoid tumors of the kidney. These advances have implications for diagnosis, classification, and treatment of pediatric renal tumors.
Collapse
|
11
|
Bolzacchini E, Digiacomo N, Marrazzo C, Sahnane N, Maragliano R, Gill A, Albarello L, Sessa F, Furlan D, Capella C. BRAF Mutation in Colorectal Rhabdoid and Poorly Differentiated Medullary Carcinomas. Cancers (Basel) 2019; 11:cancers11091252. [PMID: 31455041 PMCID: PMC6770689 DOI: 10.3390/cancers11091252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Colorectal rhabdoid carcinomas (CRbCs) are very rare and aggressive cancers. The BRAF mutation and CpG island methylator phenotype have been reported to be common features of CRbCs. This study reviews the literature about CRbCs and analyzes the clinicopathological and molecular profiles of seven CRbCs characterized by large discohesive cells with abundant eosinophilic cytoplasm, showing hyaline inclusions and large rounded to bean-shaped nuclei. For comparison, we included four poorly differentiated medullary carcinomas (PDMCs) with focal aspects mimicking rhabdoid features. Overall survival was poor in both subsets, with 78% of patients dying of disease within 2–11 months. The main features of CRbCs were: Loss of/reduced SMARCB1/INI expression, intense vimentin immunostaining, and dense neutrophilic infiltration. The PDMCs were positive for pancytokeratin but negative for vimentin and showed moderate peritumoral/intratumoral CD8+ lymphocytes. All PDMCs showed SMARCB1(INI-1) expression. The coexistence of BRAF and TP53 mutations was observed in 80% of CRbCs and PDMCs. PDMCs always showed microsatellite instability and CpG island methylator phenotype (CIMP), while CRbCs were CIMP negative and exhibited microsatellite instability (MSI) in two out of seven cases. CRbCs are characterized by BRAF and TP53 mutations. Loss/reduced expression of nuclear SMARCB1/INI, intense vimentin immunostaining, dense neutrophilic infiltration, and low frequency of CIMP are useful markers to recognize these rare aggressive tumors.
Collapse
Affiliation(s)
| | - Nunzio Digiacomo
- Unit of Pathology, Dept. of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, 21100 Varese, Italy
| | | | - Nora Sahnane
- Unit of Pathology, Dept. of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, 21100 Varese, Italy
| | - Roberta Maragliano
- Unit of Pathology, Dept. of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, 21100 Varese, Italy
| | - Anthony Gill
- Royal North Shore Hospital St Leonards, Kolling Institute of Medical Research, University of Sydney and Cancer Diagnosis and Pathology Group, Sydney NSW 2006, Australia
| | - Luca Albarello
- Unit of Pathology, Ospedale San Raffaele, 20100 Milan, Italy
| | - Fausto Sessa
- Unit of Pathology, Dept. of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, 21100 Varese, Italy
| | - Daniela Furlan
- Unit of Pathology, Dept. of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, 21100 Varese, Italy
| | - Carlo Capella
- Unit of Pathology, Dept. of Medicine and Surgery and Research Center for the Study of Hereditary and Familial tumors, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
12
|
Filatova A, Rey LK, Lechler MB, Schaper J, Hempel M, Posmyk R, Szczaluba K, Santen GWE, Wieczorek D, Nuber UA. Mutations in SMARCB1 and in other Coffin-Siris syndrome genes lead to various brain midline defects. Nat Commun 2019; 10:2966. [PMID: 31273213 PMCID: PMC6609698 DOI: 10.1038/s41467-019-10849-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Mutations in genes encoding components of BAF (BRG1/BRM-associated factor) chromatin remodeling complexes cause neurodevelopmental disorders and tumors. The mechanisms leading to the development of these two disease entities alone or in combination remain unclear. We generated mice with a heterozygous nervous system-specific partial loss-of-function mutation in a BAF core component gene, Smarcb1. These Smarcb1 mutant mice show various brain midline abnormalities that are also found in individuals with Coffin–Siris syndrome (CSS) caused by SMARCB1, SMARCE1, and ARID1B mutations and in SMARCB1-related intellectual disability (ID) with choroid plexus hyperplasia (CPH). Analyses of the Smarcb1 mutant animals indicate that one prominent midline abnormality, corpus callosum agenesis, is due to midline glia aberrations. Our results establish a novel role of Smarcb1 in the development of the brain midline and have important clinical implications for BAF complex-related ID/neurodevelopmental disorders. Why and how mutations in genes encoding BAF complex components lead to distinct disease entitites remains unresolved. In this study, authors establish the first Smarcb1 mutant mouse model with multiple brain abnormalities recapitulating human Coffin–Siris syndrome and show that one prominent midline abnormality, corpus callosum agenesis, is due to midline glia aberrations.
Collapse
Affiliation(s)
- Alina Filatova
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany
| | - Linda K Rey
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Marion B Lechler
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany
| | - Jörg Schaper
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Renata Posmyk
- Podlaskie Medical Centre "GENETICS" Bialystok and Department of Perinatology and Obstetrics, Medical University of Bialystok, Bialystok, 15-276, Poland
| | - Krzysztof Szczaluba
- Department of Medical Genetics, Medical University Warsaw, Warsaw, 02-106, Poland
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, Netherlands
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Ulrike A Nuber
- Stem Cell and Developmental Biology, Technical University Darmstadt, Darmstadt, 64287, Germany.
| |
Collapse
|
13
|
[Pathological and molecular features of malignancies underlined by BAF complexes inactivation]. Ann Pathol 2019; 39:399-413. [PMID: 31255411 DOI: 10.1016/j.annpat.2019.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
BAF complexes are chromatin remodelling complexes made up of 15 subunits which overview transcription regulation. A subset of their subunits are notoriously linked to cancer, with the examples of SMARCB1, SMARCA4, ARID1A/1B and PBRM1. The complexes act as tumor suppressor genes, commonly mutated in a wide array of malignancies with an overrepresentation of sarcomas and tumors of the central nervous system. The recurrent inactivation of their genes points towards their driving role in the tumorigenesis of SMARCB1 in malignant rhabdoid tumors and SMARCA4 in small cell carcinoma of the ovary, hypercalcemic type. These tumors are morphologically similar composed of solid sheets of cells displaying vesicular nuclei dotted with clear chromatin and conspicuous nucleoli. Genomically, they share simple diploid profiles with no other alterations than in the culprit gene. Other mesenchymal tumors, distinct from malignant rhabdoid tumors are associated with BAF alterations, namely epithelioid sarcomas, SMARCA4-deficient thoracic sarcomas. BAF subunits are mostly inactivated through mutations or deletions but also occur through translocations in medullary carcinoma of the kidney and synovial sarcomas. Apart from tumors displaying recurrent alterations of the complexes, some variants or tumor variants display BAF alterations, including epithelioid malignant peripheral nerve sheet tumors and poorly differentiated chordomas. Lastly, some malignancies display low frequency of BAF alterations, in keeping with their passenger role in tumorigenesis with the example of dedifferentiated carcinomas, especially in colon, lung and uterus. BAF complexes alterations correlate with morphological features recognizable by microscopy, paving the way for their routine diagnosis and potential therapeutic prospects.
Collapse
|
14
|
Orlando KA, Nguyen V, Raab JR, Walhart T, Weissman BE. Remodeling the cancer epigenome: mutations in the SWI/SNF complex offer new therapeutic opportunities. Expert Rev Anticancer Ther 2019; 19:375-391. [PMID: 30986130 DOI: 10.1080/14737140.2019.1605905] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cancer genome sequencing studies have discovered mutations in members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex in nearly 25% of human cancers. The SWI/SNF complex, first discovered in S. cerevisiae, shows strong conservation from yeast to Drosophila to mammals, contains approximately 10-12 subunits and regulates nucleosome positioning through the energy generated by its ATPase subunits. The unexpected finding of frequent mutations in the complex has fueled studies to identify the mechanisms that drive tumor development and the accompanying therapeutic vulnerabilities. Areas covered: In the review, we focus upon the potential roles different SWI/SNF subunit mutations play in human oncogenesis, their common and unique mechanisms of transformation and the potential for translating these mechanisms into targeted therapies for SWI/SNF-mutant tumors. Expert opinion: We currently have limited insights into how mutations in different SWI/SNF subunits drive the development of human tumors. Because the SWI/SNF complex participates in a broad range of normal cellular functions, defining specific oncogenic pathways has proved difficult. In addition, therapeutic options for SWI/SNF-mutant cancers have mainly evolved from high-throughput screens of cell lines with mutations in different subunits. Future studies should follow a more coherent plan to pinpoint common vulnerabilities among these tumors.
Collapse
Affiliation(s)
- Krystal A Orlando
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Vinh Nguyen
- b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA
| | - Jesse R Raab
- c Department of Genetics , University of North Carolina , Chapel Hill , NC , USA
| | - Tara Walhart
- d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| | - Bernard E Weissman
- a Department of Pathology and Laboratory Medicine , University of North Carolina , Chapel Hill , NC , USA.,b Curriculum in Toxicology and Environmental Medicine , University of North Carolina , Chapel Hill , NC , USA.,d Lineberger Comprehensive Cancer Center , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
15
|
Copeland RA. Protein methyltransferase inhibitors as precision cancer therapeutics: a decade of discovery. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0080. [PMID: 29685962 PMCID: PMC5915721 DOI: 10.1098/rstb.2017.0080] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 12/25/2022] Open
Abstract
The protein methyltransferases (PMTs) represent a large class of enzymes that catalyse the methylation of side chain nitrogen atoms of the amino acids lysine or arginine at specific locations along the primary sequence of target proteins. These enzymes play a key role in the spatio-temporal control of gene transcription by performing site-specific methylation of lysine or arginine residues within the histone proteins of chromatin, thus effecting chromatin conformational changes that activate or repress gene transcription. Over the past decade, it has become clear that the dysregulated activity of some PMTs plays an oncogenic role in a number of human cancers. Here we review research of the past decade that has identified specific PMTs as oncogenic drivers of cancers and progress toward the discovery and development of selective, small molecule inhibitors of these enzymes as precision cancer therapeutics. This article is part of a discussion meeting issue ‘Frontiers in epigenetic chemical biology’.
Collapse
|
16
|
Filbin M, Monje M. Developmental origins and emerging therapeutic opportunities for childhood cancer. Nat Med 2019; 25:367-376. [PMID: 30842674 DOI: 10.1038/s41591-019-0383-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
Abstract
Cancer is the leading disease-related cause of death in children in developed countries. Arising in the context of actively growing tissues, childhood cancers are fundamentally diseases of dysregulated development. Childhood cancers exhibit a lower overall mutational burden than adult cancers, and recent sequencing studies have revealed that the genomic events central to childhood oncogenesis include mutations resulting in broad epigenetic changes or translocations that result in fusion oncoproteins. Here, we will review the developmental origins of childhood cancers, epigenetic dysregulation in tissue stem/precursor cells in numerous examples of childhood cancer oncogenesis and emerging therapeutic opportunities aimed at both cell-intrinsic and microenvironmental targets together with new insights into the mechanisms underlying long-term sequelae of childhood cancer therapy.
Collapse
Affiliation(s)
- Mariella Filbin
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorder Center and Harvard Medical School, Boston, MA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
El-Ayadi M, Egervari K, Merkler D, McKee TA, Gumy-Pause F, Stichel D, Capper D, Pietsch T, Ansari M, von Bueren AO. Concurrent IDH1 and SMARCB1 Mutations in Pediatric Medulloblastoma: A Case Report. Front Neurol 2018; 9:398. [PMID: 29971034 PMCID: PMC6018091 DOI: 10.3389/fneur.2018.00398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/15/2018] [Indexed: 01/22/2023] Open
Abstract
Isocitrate Dehydrogenase-1 (IDH1) is a driver gene in several cancers including brain tumors such as low-grade and high-grade gliomas. Mutations of SMARCB1 were described in atypical teratoid rhabdoid tumors and to date have not been associated with the pathogenesis of medulloblastoma. We report concurrent IDH1 and SMARCB1 mutations in a medulloblastoma patient. We searched the catalog of somatic mutations in cancer (COSMIC) database and other mutation databases and -to our knowledge- this is the first reported case of medulloblastoma harboring both mutations together. Our patient is a 13-year-old male presenting with headache and vomiting at diagnosis. MRI revealed left cerebellar expansive lesion with no evidence of metastasis. A histopathological diagnosis of desmoplastic/nodular medulloblastoma was made after complete resection of the tumor. Immunophenotypic characterization and methylation profiling suggested a medulloblastoma with SHH activation. Next generation sequencing of a panel of 400 genes revealed heterozygous somatic IDH1(p.R132C), SMARCB1(p.R201Q), and CDH11(p.L625T) mutations. The patient was treated according to the HIT-SIOP PNET 4 protocol. He is in complete remission more than 2 years after diagnosis. In conclusion, increasing use of high throughput sequencing will certainly increase the frequency with which rare mutations or mutation combinations are identified. The exact frequency of this mutation combination and whether it has any particular therapeutic implications or prognostic relevance requires further investigation.
Collapse
Affiliation(s)
- Moatasem El-Ayadi
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
- CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
- Department of Pediatric Oncology, Children Cancer Hospital of Egypt, Cairo, Egypt
| | - Kristof Egervari
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Thomas A. McKee
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Clinical Pathology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Fabienne Gumy-Pause
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
- CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Damian Stichel
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, Charité — Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Partner Site Berlin, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, Brain Tumor Reference Center, Deutsche Gesellschaft für Neuropathologie und Neuroanatomie, University of Bonn Medical Center, Bonn, Germany
| | - Marc Ansari
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
- CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - André O. von Bueren
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
- CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Holsten T, Bens S, Oyen F, Nemes K, Hasselblatt M, Kordes U, Siebert R, Frühwald MC, Schneppenheim R, Schüller U. Germline variants in SMARCB1 and other members of the BAF chromatin-remodeling complex across human disease entities: a meta-analysis. Eur J Hum Genet 2018; 26:1083-1093. [PMID: 29706634 DOI: 10.1038/s41431-018-0143-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/27/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022] Open
Abstract
Germline variants that affect function are found in seven genes of the BAF chromatin-remodeling complex. They are linked to a broad range of diseases that, according to the gene affected, range from non-syndromic or syndromic neurodevelopmental disorders to low-grade tumors and malignancies. In the current meta-analysis, we evaluate genetic and clinical data from more than 400 families and 577 patients affected by BAF germline alterations. We focus on SMARCB1, including 43 unpublished patients from the EU-RHAB registry and our institution. For this gene, we further demonstrate whole gene as well as exon deletions and truncating variants to be associated with malignancy and early-onset disease. In contrast, non-truncating variants are associated with non-malignant disorders, such as Coffin-Siris syndrome or late-onset tumors like schwannoma or meningioma (p < 0.0001). SMARCB1 germline variants are distributed across the gene with variants in exons 1, 2, 8, and 9 being associated with low-grade entities, and single-nucleotide variants or indels outside of exon 9 that appear in patients with malignancies (p < 0.001). We attribute variants in specific BAF genes to certain disease entities. Finally, single-nucleotide variants and indels are sometimes detected in the healthy relatives of tumor patients, while Coffin-Siris syndrome and Nicolaides-Baraitser syndrome generally seem to appear de novo. Our findings add further information on the genotype-phenotype association of germline variants detected in genes of the BAF complex. Functional studies are urgently needed for a deeper understanding of BAF-related disorders and may take advantage from the comprehensive information gathered in this article.
Collapse
Affiliation(s)
- Till Holsten
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Ulm, Germany
| | - Florian Oyen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karolina Nemes
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University of Ulm & Ulm University Hospital, Ulm, Germany
| | - Michael C Frühwald
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Research Institute Children's Cancer Center Hamburg, Hamburg, Germany.
| |
Collapse
|
19
|
Paganini I, Capone GL, Vitte J, Sestini R, Putignano AL, Giovannini M, Papi L. Double somatic SMARCB1 and NF2 mutations in sporadic spinal schwannoma. J Neurooncol 2017; 137:33-38. [PMID: 29230670 DOI: 10.1007/s11060-017-2711-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/06/2017] [Indexed: 12/18/2022]
Abstract
In sporadic schwannomas, inactivation of both copies of the NF2 tumor suppressor gene on 22q is common. Constitutional mutations of SMARCB1 are responsible of schwannomatosis, an inherited tumor predisposition syndrome, characterized by the development of multiple schwannomas. We analysed the frequency of copy number changes on chromosome 22 and the mutation of NF2 and SMARCB1 in 26 sporadic schwannomas. We found two spinal schwannomas with an identical somatic missense mutation in SMARCB1 exon 9: p.(Arg377His). Both SMARCB1 mutated schwannomas had LOH of 22q and one of them harbored an inactivating mutation of NF2. The p.(Arg377His) change was not found in a series of 28 vestibular schwannomas. Our data indicate that mutations affecting SMARCB1 play a role in the development or progression of a small subset of spinal schwannomas and that biallelic inactivation of SMARCB1 may cooperate with deficiency of NF2 function in schwannoma tumorigenesis according to the "four-hit/three events" mechanism of tumorigenesis that we demonstrated in schwannomatosis-associated schwannomas.
Collapse
Affiliation(s)
- Irene Paganini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, Florence, Italy
| | - Gabriele Lorenzo Capone
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, Florence, Italy
| | - Jeremie Vitte
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Roberta Sestini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, Florence, Italy
| | - Anna Laura Putignano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, Florence, Italy
| | - Marco Giovannini
- Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA and Jonsson Comprehensive Cancer Center (JCCC), University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Laura Papi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, Florence, Italy.
| |
Collapse
|
20
|
Deep intronic hotspot variant explaining rhabdoid tumor predisposition syndrome in two patients with atypical teratoid and rhabdoid tumor. Eur J Hum Genet 2017; 25:1170-1172. [PMID: 28722703 PMCID: PMC5602016 DOI: 10.1038/ejhg.2017.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022] Open
Abstract
About one third of patients with rhabdoid tumors (RT) harbor a heterozygous germline
variant in SMARCB1. Molecular diagnosis therefore keeps a crucial place in
the diagnosis of RT, and genetic counseling should be systematically recommended.
However, immunohistochemistry has progressively replaced molecular tools to assess
the status of SMARCB1 in tumors; the necessity of analyzing SMARCB1
status in the tumor may thus be less considered by neuropathologists and pediatric
neuro-oncologists. In the present manuscript as aforementioned, we report on two
patients with bifocal RT in the first month of life and in whom no germline variant
was initially found in the SMARCB1 coding sequence. Careful analysis of
SMARCB1 status in the tumors revealed that only one of the two
inactivating hits was found in the coding sequence. By sequencing the tumor cells
RNA, we were able to detect an insertion with an abnormal sequence, due to the same
intronic variant of SMARCB1, which led to the exonisation of the first
intron. This cryptic variant was absent in the germline DNA of both patients. Of
note, we previously reported one patient with the same deep intronic variant in the
germline in a soft tissue RT. To our mind, this additional report on two patients
clearly demonstrates that this intronic variant is a new hotspot that should now be
systematically added to the germline screening of SMARCB1. We therefore
recommend searching for and cautiously interpreting germline analysis if
SMARCB1 has not been extensively studied in the tumor.
Collapse
|
21
|
Farber BA, Shukla N, Lim IIP, Murphy JM, La Quaglia MP. Prognostic factors and survival in non-central nervous system rhabdoid tumors. J Pediatr Surg 2017; 52:373-376. [PMID: 27639430 PMCID: PMC5535760 DOI: 10.1016/j.jpedsurg.2016.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Non-central nervous system (non-CNS) rhabdoid tumors tend to present at a young age and have an extremely aggressive course, with dismal overall survival rates. Inactivation of the tumor suppressor gene SMARCB1 has been shown in rhabdoid tumors regardless of anatomic location, suggesting a common genetic basis. We retrospectively analyzed our institutional experience with non-CNS rhabdoid tumors to determine overall survival and prognostic variables. METHODS We reviewed records of pediatric patients (age<22y) with non-CNS rhabdoid tumor at our institution between 1980 and 2014. Variables evaluated for correlation with survival included: age > or <1.5years (median) at diagnosis, M1 status, and radiation therapy. The log-rank test was used to compare Kaplan-Meier probability distributions with P values adjusted for multiple testing using the false discovery rate approach. RESULTS Nineteen consecutive patients (10 female) with histologically verified rhabdoid tumor were identified. Mean age at diagnosis was 3.2years (median 1.5y, range 1.3mo-21.8y). Primary tumors were located in the kidney (n=10), head and neck (n=5), and in the liver, thigh, mediastinum and retroperitoneum (n=1 each). SMARCB1 expression was absent in all 10 patients tested. Eight patients had distant metastases at diagnosis. Median overall survival was 1.2years. Age greater than the median and radiation therapy were associated with better outcome, with a median overall survival of 2.7years (P=0.049 and P=0.003, respectively). CONCLUSION Survival rates for rhabdoid tumor remain poor, but prognosis is better in older children, regardless of primary tumor location. Because of its rarity, clinical trials with present agents are difficult to conduct. Further progress will require a focus on therapies targeted at tumor biology rather than anatomic location for non-CNS rhabdoid tumors.
Collapse
Affiliation(s)
- Benjamin A. Farber
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Neerav Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 12 75 York Avenue, New York, NY 10065
| | - Irene Isabel P. Lim
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Jennifer M. Murphy
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| | - Michael P. La Quaglia
- Pediatric Surgical Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065
| |
Collapse
|
22
|
Kehrer-Sawatzki H, Farschtschi S, Mautner VF, Cooper DN. The molecular pathogenesis of schwannomatosis, a paradigm for the co-involvement of multiple tumour suppressor genes in tumorigenesis. Hum Genet 2016; 136:129-148. [PMID: 27921248 PMCID: PMC5258795 DOI: 10.1007/s00439-016-1753-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/27/2016] [Indexed: 12/20/2022]
Abstract
Schwannomatosis is characterized by the predisposition to develop multiple schwannomas and, less commonly, meningiomas. Despite the clinical overlap with neurofibromatosis type 2 (NF2), schwannomatosis is not caused by germline NF2 gene mutations. Instead, germline mutations of either the SMARCB1 or LZTR1 tumour suppressor genes have been identified in 86% of familial and 40% of sporadic schwannomatosis patients. In contrast to patients with rhabdoid tumours, which are due to complete loss-of-function SMARCB1 mutations, individuals with schwannomatosis harbour predominantly hypomorphic SMARCB1 mutations which give rise to the synthesis of mutant proteins with residual function that do not cause rhabdoid tumours. Although biallelic mutations of SMARCB1 or LZTR1 have been detected in the tumours of patients with schwannomatosis, the classical two-hit model of tumorigenesis is insufficient to account for schwannoma growth, since NF2 is also frequently inactivated in these tumours. Consequently, tumorigenesis in schwannomatosis must involve the mutation of at least two different tumour suppressor genes, an occurrence frequently mediated by loss of heterozygosity of large parts of chromosome 22q harbouring not only SMARCB1 and LZTR1 but also NF2. Thus, schwannomatosis is paradigmatic for a tumour predisposition syndrome caused by the concomitant mutational inactivation of two or more tumour suppressor genes. This review provides an overview of current models of tumorigenesis and mutational patterns underlying schwannomatosis that will ultimately help to explain the complex clinical presentation of this rare disease.
Collapse
Affiliation(s)
| | - Said Farschtschi
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246, Hamburg, Germany
| | - Victor-Felix Mautner
- Department of Neurology, University Hospital Hamburg Eppendorf, 20246, Hamburg, Germany
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
23
|
Porrello A, Piergentili RB. Contextualizing the Genes Altered in Bladder Neoplasms in Pediatric andTeen Patients Allows Identifying Two Main Classes of Biological ProcessesInvolved and New Potential Therapeutic Targets. Curr Genomics 2016; 17:33-61. [PMID: 27013923 PMCID: PMC4780474 DOI: 10.2174/1389202916666151014222603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
Research on bladder neoplasms in pediatric and teen patients (BNPTP) has described 21 genes, which are variously involved in this disease and are mostly responsible for deregulated cell proliferation. However, due to the limited number of publications on this subject, it is still unclear what type of relationships there are among these genes and which are the chances that, while having different molecular functions, they i) act as downstream effector genes of well-known pro- or anti- proliferative stimuli and/or interplay with biochemical pathways having oncological relevance or ii) are specific and, possibly, early biomarkers of these pathologies. A Gene Ontology (GO)-based analysis showed that these 21 genes are involved in biological processes, which can be split into two main classes: cell regulation-based and differentiation/development-based. In order to understand the involvement/overlapping with main cancer-related pathways, we performed a meta-analysis dependent on the 189 oncogenic signatures of the Molecular Signatures Database (OSMSD) curated by the Broad Institute. We generated a binary matrix with 53 gene signatures having at least one hit; this analysis i) suggests that some genes of the original list show inconsistencies and might need to be experimentally re- assessed or evaluated as biomarkers (in particular, ACTA2) and ii) allows hypothesizing that important (proto)oncogenes (E2F3, ERBB2/HER2, CCND1, WNT1, and YAP1) and (putative) tumor suppressors (BRCA1, RBBP8/CTIP, and RB1-RBL2/p130) may participate in the onset of this disease or worsen the observed phenotype, thus expanding the list of possible molecular targets for the treatment of BNPTP.
Collapse
Affiliation(s)
- A. Porrello
- Comprehensive Cancer Center (LCCC), University of North Carolina (UNC)-Chapel Hill, Chapel Hill, 27599 NC, USA
| | - R. b Piergentili
- Institute of Molecular Biology and Pathology at CNR (CNR-IBPM); Department of Biology and Biotechnologies, Sapienza – Università di Roma, Italy
| |
Collapse
|
24
|
Zangari A, Zaini J, Gulìa C. Genetics of Bladder Malignant Tumors in Childhood. Curr Genomics 2016; 17:14-32. [PMID: 27013922 PMCID: PMC4780472 DOI: 10.2174/1389202916666151014221954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 06/30/2015] [Indexed: 12/30/2022] Open
Abstract
Bladder masses are represented by either benign or malignant entities. Malignant bladder tumors are frequent causes of disease and death in western countries. However, in children they are less common. Additionally, different features are found in childhood, in which non epithelial tumors are more common than epithelial ones. Rhabdomyosarcoma is the most common pediatric bladder tumor, but many other types of lesions may be found, such as malignant rhabdoid tumor (MRT), inflammatory myofibroblastic tumor and neuroblastoma. Other rarer tumors described in literature include urothelial carcinoma and other epithelial neoplasms. Rhabdomyosarcoma is associated to a variety of genetic syndromes and many genes are involved in tumor development. PAX3-FKHR and PAX7-FKHR (P-F) fusion state has important implications in the pathogenesis and biology of RMS, and different genes alterations are involved in the pathogenesis of P-F negative and embryonal RMS, which are the subsets of tumors most frequently affecting the bladder. These genes include p53, MEF2, MYOG, Ptch1, Gli1, Gli3, Myf5, MyoD1, NF1, NRAS, KRAS, HRAS, FGFR4, PIK3CA, CTNNB1, FBXW7, IGF1R, PDGFRA, ERBB2/4, MET, BCOR. Malignant rhabdoid tumor (MRT) usually shows SMARCB1/INI1 alterations. Anaplastic lymphoma kinase (ALK) gene translocations are the most frequently associated alterations in inflammatory myofibroblastic tumor (IMT). Few genes alterations in urothelial neoplasms have been reported in the paediatric population, which are mainly related to deletion of p16/lnk4, overexpression of CK20 and overexpression of p53. Here, we reviewed available literature to identify genes associated to bladder malignancies in children and discussed their possible relationships with these tumors.
Collapse
Affiliation(s)
| | - Johan Zaini
- Università degli Studi della Tuscia, dipartimento di scienze biologiche (DEB), Viterbo, Italy
| | - Caterina Gulìa
- Università degli Studi di Roma La Sapienza, Dipartimento di Urologia, Roma, Italy
| |
Collapse
|
25
|
Ng JMY, Martinez D, Marsh ED, Zhang Z, Rappaport E, Santi M, Curran T. Generation of a mouse model of atypical teratoid/rhabdoid tumor of the central nervous system through combined deletion of Snf5 and p53. Cancer Res 2015; 75:4629-39. [PMID: 26363008 DOI: 10.1158/0008-5472.can-15-0874] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 08/11/2015] [Indexed: 12/30/2022]
Abstract
Malignant rhabdoid tumors arise in several anatomic locations and are associated with poor outcomes. In the brain, these tumors are known as atypical teratoid/rhabdoid tumors (AT/RT). While genetically engineered models for malignant rhabdoid tumors exist, none of them recapitulate AT/RT, for which preclinical models remain lacking. In the majority of AT/RT, LOH occurs at the genetic locus SNF5 (Ini1/BAF47/Smarcb1), which functions as a subunit of the SWI/SNF chromatin-remodeling complex and a tumor suppressor in familial and sporadic malignant rhabdoid tumors. Therefore, we generated mice in which Snf5 was ablated specifically in nestin-positive and/or glial fibrillary acid protein (GFAP)-positive progenitor cells of the developing central nervous system (CNS). Snf5 ablation in nestin-positive cells resulted in early lethality that could not be rescued by loss of p53. However, Snf5 ablation in GFAP-positive cells caused a neurodegenerative phenotype exacerbated by p53 loss. Notably, these double mutants exhibited AT/RT development, associated with an earlier failure in granule neuron migration in the cerebellum, reduced neuronal projections in the hippocampus, degeneration of the corpus callosum, and ataxia and seizures. Gene expression analysis confirmed that the tumors that arose in Snf5/p53 mutant mice were distinct from other neural tumors and most closely resembled human AT/RT. Our findings uncover a novel role for Snf5 in oligodendrocyte generation and survival, and they offer evidence of the first genetically engineered mouse model for AT/RT in the CNS.
Collapse
Affiliation(s)
- Jessica M Y Ng
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania.
| | - Daniel Martinez
- Pathology Core Laboratory, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Eric D Marsh
- Department of Neurology and Pediatrics, Division of Child Neurology The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Eric Rappaport
- The NAPCore Facility, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania
| | - Tom Curran
- Department of Pathology and Laboratory Medicine, Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Research Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
26
|
Stockman DL, Curry JL, Torres-Cabala CA, Watson IR, Siroy AE, Bassett RL, Zou L, Patel KP, Luthra R, Davies MA, Wargo JA, Routbort MA, Broaddus RR, Prieto VG, Lazar AJ, Tetzlaff MT. Use of clinical next-generation sequencing to identify melanomas harboringSMARCB1mutations. J Cutan Pathol 2015; 42:308-17. [DOI: 10.1111/cup.12481] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/01/2015] [Indexed: 12/26/2022]
Affiliation(s)
- David L. Stockman
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Jonathan L. Curry
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Carlos A. Torres-Cabala
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Ian R. Watson
- Department of Genomic Medicine; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Alan E. Siroy
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Roland L. Bassett
- Department of Biostatistics; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Lihua Zou
- The Eli and Edythe L. Broad Institute of Massachusetts; Institute of Technology and Harvard University; Cambridge Massachusetts USA
| | - Keyur P. Patel
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Rajyalakshmi Luthra
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Michael A. Davies
- Department of Melanoma Medical Oncology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Jennifer A. Wargo
- Department of Surgery; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Mark A. Routbort
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Russell R. Broaddus
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Victor G. Prieto
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Alexander J. Lazar
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| | - Michael T. Tetzlaff
- Department of Pathology and Laboratory Medicine, Section of Dermatopathology; The University of Texas MD Anderson Cancer Center; Houston TX USA
| |
Collapse
|
27
|
SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res 2015; 25:445-58. [PMID: 25656847 PMCID: PMC4387553 DOI: 10.1038/cr.2015.16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/27/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022] Open
Abstract
Recurrent inactivating mutations in components of SWI/SNF chromatin-remodeling complexes have been identified across cancer types, supporting their roles as tumor suppressors in modulating oncogenic signaling pathways. We report here that SMARCE1 loss induces EGFR expression and confers resistance to MET and ALK inhibitors in non-small cell lung cancers (NSCLCs). We found that SMARCE1 binds to regulatory regions of the EGFR locus and suppresses EGFR transcription in part through regulating expression of Polycomb Repressive Complex component CBX2. Addition of the EGFR inhibitor gefitinib restores the sensitivity of SMARCE1-knockdown cells to MET and ALK inhibitors in NSCLCs. Our findings link SMARCE1 to EGFR oncogenic signaling and suggest targeted treatment options for SMARCE1-deficient tumors.
Collapse
|
28
|
Masliah-Planchon J, Bièche I, Guinebretière JM, Bourdeaut F, Delattre O. SWI/SNF chromatin remodeling and human malignancies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:145-71. [PMID: 25387058 DOI: 10.1146/annurev-pathol-012414-040445] [Citation(s) in RCA: 231] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The SWI/SNF complexes, initially identified in yeast 20 years ago, are a family of multi-subunit complexes that use the energy of adenosine triphosphate (ATP) hydrolysis to remodel nucleosomes. Chromatin remodeling processes mediated by the SWI/SNF complexes are critical to the modulation of gene expression across a variety of cellular processes, including stemness, differentiation, and proliferation. The first evidence of the involvement of these complexes in carcinogenesis was provided by the identification of biallelic, truncating mutations of the SMARCB1 gene in malignant rhabdoid tumors, a highly aggressive childhood cancer. Subsequently, genome-wide sequencing technologies have identified mutations in genes encoding different subunits of the SWI/SNF complexes in a large number of tumors. SWI/SNF mutations, and the subsequent abnormal function of SWI/SNF complexes, are among the most frequent gene alterations in cancer. The mechanisms by which perturbation of the SWI/SNF complexes promote oncogenesis are not fully elucidated; however, alterations of SWI/SNF genes obviously play a major part in cancer development, progression, and/or resistance to therapy.
Collapse
|
29
|
Uwineza A, Gill H, Buckley P, Owens C, Capra M, O'Sullivan C, McDermott M, Brett F, Farrell M, Pears J, O'Sullivan MJ. Rhabdoid tumor: the Irish experience 1986–2013. Cancer Genet 2014; 207:398-402. [DOI: 10.1016/j.cancergen.2014.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/23/2014] [Accepted: 05/31/2014] [Indexed: 12/23/2022]
|
30
|
Hulsebos TJM, Kenter S, Verhagen WIM, Baas F, Flucke U, Wesseling P. Premature termination of SMARCB1 translation may be followed by reinitiation in schwannomatosis-associated schwannomas, but results in absence of SMARCB1 expression in rhabdoid tumors. Acta Neuropathol 2014; 128:439-48. [PMID: 24740647 DOI: 10.1007/s00401-014-1281-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 12/16/2022]
Abstract
In schwannomatosis, germline SMARCB1 mutations predispose to the development of multiple schwannomas, but not vestibular schwannomas. Many of these are missense or splice-site mutations or in-frame deletions, which are presumed to result in the synthesis of altered SMARCB1 proteins. However, also nonsense and frameshift mutations, which are characteristic for rhabdoid tumors and are predicted to result in the absence of SMARCB1 protein via nonsense-mediated mRNA decay, have been reported in schwannomatosis patients. We investigated the consequences of four of the latter mutations, i.e. c.30delC, c.34C>T, c.38delA, and c.46A>T, all in SMARCB1-exon 1. We could demonstrate for the c.30delC and c.34C>T mutations that the respective mRNAs were still present in the schwannomas of the patients. We hypothesized that these were prevented from degradation by translation reinitiation at the AUG codon encoding methionine at position 27 of the SMARCB1 protein. To test this, we expressed the mutations in MON cells, rhabdoid cells without endogenous SMARCB1 protein, and found that all four resulted in synthesis of the N-terminally truncated protein. Mutation of the reinitiation methionine codon into a valine codon prevented synthesis of the truncated protein, thereby confirming its identity. Immunohistochemistry with a SMARCB1 antibody revealed a mosaic staining pattern in schwannomas of the patients with the c.30delC and c.34C>T mutations. Our findings support the concept that, in contrast to the complete absence of SMARCB1 expression in rhabdoid tumors, altered SMARCB1 proteins with modified activity and reduced (mosaic) expression are formed in the schwannomas of schwannomatosis patients with a germline SMARCB1 mutation.
Collapse
Affiliation(s)
- Theo J M Hulsebos
- Department of Genome Analysis, Academic Medical Center, Room K2-216, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands,
| | | | | | | | | | | |
Collapse
|
31
|
Identifying molecular markers for the sensitive detection of residual atypical teratoid rhabdoid tumor cells. Cancer Genet 2014; 207:390-7. [DOI: 10.1016/j.cancergen.2014.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022]
|
32
|
SMARCB1 deletion by a complex three-way chromosomal translocation in an extrarenal malignant rhabdoid tumor. Cancer Genet 2014; 207:437-40. [PMID: 25312828 DOI: 10.1016/j.cancergen.2014.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 11/24/2022]
Abstract
Rhabdoid tumors (RTs) are highly aggressive malignant neoplasms of early childhood that arise in the kidney, brain, and extrarenal sites. The disease is genetically defined by biallelic disruption of the SMARCB1/INI1/SNF5 tumor suppressor gene, a core component of the ATP-dependent chromatin remodeling SWI/SNF complex. The molecular changes leading to SMARCB1 alterations in RTs are heterogeneous, including germline or constitutional inactivating mutations, partial or total gene deletions, copy number neutral loss of heterozygosity, and, less commonly, reciprocal translocations. We report a novel three-way chromosomal rearrangement, which was identified by conventional cytogenetic and sequential fluorescence in situ hybridization studies as the underlying molecular mechanism of the loss of SMARCB1 in an extrarenal RT. This case highlights the heterogeneity of genetic events that may lead to the loss of SMARCB1 and the development of RTs.
Collapse
|
33
|
Pio L, Milanaccio C, Mascelli S, Raso A, Nozza P, Sementa AR, Cama A, Buffa P, Avanzini S, Vannati M, Capra V, Lanino E, Rossi A, Morana G, Magnano GM, Severino M, Garrè ML. Congenital multifocal rhabdoid tumor: a case with peculiar biological behavior and different response to treatment according to location (central nervous system and kidney). Cancer Genet 2014; 207:441-4. [PMID: 25442925 DOI: 10.1016/j.cancergen.2014.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 11/16/2022]
Abstract
Atypical teratoid/rhabdoid tumor (AT/RT) of the central nervous system and malignant rhabdoid tumor of the kidney (MRTK) may present with different responses to chemotherapy and outcomes. We describe the case of an infant with multifocal rhabdoid tumor with different behavior and response to treatment, depending on the anatomic site.
Collapse
Affiliation(s)
- Luca Pio
- Università degli Studi di Genova, Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Smith MJ, Wallace AJ, Bowers NL, Eaton H, Evans DGR. SMARCB1 mutations in schwannomatosis and genotype correlations with rhabdoid tumors. Cancer Genet 2014; 207:373-8. [PMID: 24933152 DOI: 10.1016/j.cancergen.2014.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
Mutations in the SMARCB1 gene are involved in several human tumor-predisposing syndromes. They were established as an underlying cause of the tumor suppressor syndrome schwannomatosis in 2008. There is a much higher rate of mutation detection in familial disease than in sporadic disease. We have performed extensive genetic testing on a cohort of familial and sporadic patients who fulfilled clinical diagnostic criteria for schwannomatosis. In our updated cohort, we identified novel mutations within the SMARCB1 gene as well as several recurrent mutations. Of the schwannomatosis screens reported to date, including those in our updated cohort, SMARCB1 mutations have been found in 45% of familial probands and 9% of sporadic patients. The exon 1 mutation, c.41C>A p.Pro14His (10% in our series), and the 3' untranslated region mutation, c.*82C>T (27%), are the most common changes reported in patients with schwannomatosis to date, indicating the presence of mutation hot spots at both 5' and 3' portions of the gene. Comparison with germline SMARCB1 mutations in patients with rhabdoid tumors showed that the schwannomatosis mutations were significantly more likely to occur at either end of the gene and be nontruncating mutations (P < 0.0001). SMARCB1 mutations are found in a significant proportion of schwannomatosis patients, and an even higher proportion of rhabdoid patients. Whereas SMARCB1 alone seems to account for rhabdoid disease, there is likely to be substantial heterogeneity in schwannomatosis even for familial disease. There is a clear genotype-phenotype correlation, with germline rhabdoid mutations being significantly more likely to be centrally placed, involve multiple exon deletions, and be truncating mutations.
Collapse
Affiliation(s)
- Miriam J Smith
- Department of Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, UK
| | - Andrew J Wallace
- Department of Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, UK
| | - Naomi L Bowers
- Department of Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, UK
| | - Helen Eaton
- Department of Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, UK
| | - D Gareth R Evans
- Department of Genomic Medicine, St Mary's Hospital, Manchester Academic Health Sciences Centre (MAHSC), University of Manchester, Manchester, UK.
| |
Collapse
|
35
|
Abstract
This article will review the neuropathology of meningiomas. From the neurosurgeon's point of view, accurate neuropathological diagnosis will play an increasingly important role in clinical practice. Predicting an individual patient's prognosis will become ever more important with the advent of various new radiotherapeutic/radiosurgical modalities. Defining the optimal treatment for nonbenign meningiomas requires a robust and reproducible diagnosis. This review will therefore not only describe classical radiological and histopathological diagnosis, but will also focus on the emerging field of molecular neuropathology. Implementing these advances in our daily clinical routine holds the promise of improving diagnostic accuracy.
Collapse
Affiliation(s)
- Christian Hartmann
- Institut für Neuropathologie der Charité, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | | | |
Collapse
|
36
|
Pancione M, Remo A, Zanella C, Sabatino L, Di Blasi A, Laudanna C, Astati L, Rocco M, Bifano D, Piacentini P, Pavan L, Purgato A, Greco F, Talamini A, Bonetti A, Ceccarelli M, Vendraminelli R, Manfrin E, Colantuoni V. The chromatin remodelling component SMARCB1/INI1 influences the metastatic behavior of colorectal cancer through a gene signature mapping to chromosome 22. J Transl Med 2013; 11:297. [PMID: 24286138 PMCID: PMC4220786 DOI: 10.1186/1479-5876-11-297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/20/2013] [Indexed: 12/13/2022] Open
Abstract
Background INI1 (Integrase interactor 1), also known as SMARCB1, is the most studied subunit of chromatin remodelling complexes. Its role in colorectal tumorigenesis is not known. Methods We examined SMARCB1/INI1 protein expression in 134 cases of colorectal cancer (CRC) and 60 matched normal mucosa by using tissue microarrays and western blot and categorized the results according to mismatch repair status (MMR), CpG island methylator phenotype, biomarkers of tumor differentiation CDX2, CK20, vimentin and p53. We validated results in two independent data sets and in cultured CRC cell lines. Results Herein, we show that negative SMARCB1/INI1 expression (11% of CRCs) associates with loss of CDX2, poor differentiation, liver metastasis and shorter patients’ survival regardless of the MMR status or tumor stage. Unexpectedly, even CRCs displaying diffuse nuclear INI1 staining (33%) show an adverse prognosis and vimentin over-expression, in comparison with the low expressing group (56%). The negative association of SMARCB1/INI1-lack of expression with a metastatic behavior is enhanced by the TP53 status. By interrogating global gene expression from two independent cohorts of 226 and 146 patients, we confirm the prognostic results and identify a gene signature characterized by SMARCB1/INI1 deregulation. Notably, the top genes of the signature (BCR, COMT, MIF) map on the long arm of chromosome 22 and are closely associated with SMARCB1/INI1. Conclusion Our findings suggest that SMARCB1/INI1-dysregulation and genetic hot-spots on the long arm of chromosome 22 might play an important role in the CRC metastatic behavior and be clinically relevant as novel biomarkers.
Collapse
Affiliation(s)
- Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Via Port'Arsa, 11 82100 Benevento, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schaefer IM, Ströbel P, Cameron S, Beham A, Otto C, Schildhaus HU, Agaimy A. Rhabdoid morphology in gastrointestinal stromal tumours (GISTs) is associated withPDGFRAmutations but does not imply aggressive behaviour. Histopathology 2013; 64:421-30. [DOI: 10.1111/his.12265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Inga-Marie Schaefer
- Department of Pathology; Brigham and Women's Hospital, Harvard Medical School; Boston MA USA
- Institute of Pathology; University Medical Centre Göttingen; Göttingen Germany
| | - Philipp Ströbel
- Institute of Pathology; University Medical Centre Göttingen; Göttingen Germany
| | - Silke Cameron
- Clinic of Gastroenterology and Endocrinology; University Medical Centre Göttingen; Göttingen Germany
| | - Alexander Beham
- Clinic of General, Visceral, and Paediatric Surgery; University Medical Centre Göttingen; Göttingen Germany
| | - Claudia Otto
- Institute of Pathology; University Hospital Freiburg; Freiburg Germany
| | - Hans-Ulrich Schildhaus
- Institute of Pathology; University Medical Centre Göttingen; Göttingen Germany
- Centre of Integrated Oncology Köln-Bonn; Institute of Pathology; University Hospital Cologne; Cologne Germany
| | - Abbas Agaimy
- Institute of Pathology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
38
|
Coffin CM, Davis JL, Borinstein SC. Syndrome-associated soft tissue tumours. Histopathology 2013; 64:68-87. [DOI: 10.1111/his.12280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheryl M Coffin
- Department of Pathology, Microbiology, and Immunology; Vanderbilt University School of Medicine; Nashville TN USA
| | - Jessica L Davis
- Department of Anatomic Pathology; Laboratory Medicine; University of California at San Francisco; San Francisco CA USA
| | - Scott C Borinstein
- Division of Pediatric Hematology/Oncology; Department of Pediatrics; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
39
|
Role of pseudoexons and pseudointrons in human cancer. Int J Cell Biol 2013; 2013:810572. [PMID: 24204383 PMCID: PMC3800588 DOI: 10.1155/2013/810572] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/09/2013] [Indexed: 11/18/2022] Open
Abstract
In all eukaryotic organisms, pre-mRNA splicing and alternative splicing processes play an essential role in regulating the flow of information required to drive complex developmental and metabolic pathways. As a result, eukaryotic cells have developed a very efficient macromolecular machinery, called the spliceosome, to correctly recognize the pre-mRNA sequences that need to be inserted in a mature mRNA (exons) from those that should be removed (introns). In healthy individuals, alternative and constitutive splicing processes function with a high degree of precision and fidelity in order to ensure the correct working of this machinery. In recent years, however, medical research has shown that alterations at the splicing level play an increasingly important role in many human hereditary diseases, neurodegenerative processes, and especially in cancer origin and progression. In this minireview, we will focus on several genes whose association with cancer has been well established in previous studies, such as ATM, BRCA1/A2, and NF1. In particular, our objective will be to provide an overview of the known mechanisms underlying activation/repression of pseudoexons and pseudointrons; the possible utilization of these events as biomarkers of tumor staging/grading; and finally, the treatment options for reversing pathologic splicing events.
Collapse
|
40
|
Spyropoulou A, Piperi C, Adamopoulos C, Papavassiliou AG. Deregulated chromatin remodeling in the pathobiology of brain tumors. Neuromolecular Med 2013; 15:1-24. [PMID: 23114751 DOI: 10.1007/s12017-012-8205-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain tumors encompass a heterogeneous group of malignant tumors with variable histopathology, aggressiveness, clinical outcome and prognosis. Current gene expression profiling studies indicate interplay of genetic and epigenetic alterations in their pathobiology. A central molecular event underlying epigenetics is the alteration of chromatin structure by post-translational modifications of DNA and histones as well as nucleosome repositioning. Dynamic remodeling of the fundamental nucleosomal structure of chromatin or covalent histone marks located in core histones regulate main cellular processes including DNA methylation, replication, DNA-damage repair as well as gene expression. Deregulation of these processes has been linked to tumor suppressor gene silencing, cancer initiation and progression. The reversible nature of deregulated chromatin structure by DNA methylation and histone deacetylation inhibitors, leading to re-expression of tumor suppressor genes, makes chromatin-remodeling pathways as promising therapeutic targets. In fact, a considerable number of these inhibitors are being tested today either alone or in combination with other agents or conventional treatments in the management of brain tumors with considerable success. In this review, we focus on the mechanisms underpinning deregulated chromatin remodeling in brain tumors, discuss their potential clinical implications and highlight the advances toward new therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia Spyropoulou
- Department of Biological Chemistry, Medical School, University of Athens, 75, M. Asias Street, 11527, Athens, Greece
| | | | | | | |
Collapse
|
41
|
Lee RS, Roberts CWM. Rhabdoid tumors: an initial clue to the role of chromatin remodeling in cancer. Brain Pathol 2013; 23:200-5. [PMID: 23432645 DOI: 10.1111/bpa.12021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 12/29/2012] [Indexed: 12/25/2022] Open
Abstract
The discovery of biallelic, inactivating SMARCB1 mutations in rhabdoid tumors (RTs) over a decade ago represented the first recognized link between chromatin remodeling and tumor suppression. SMARCB1 is a core subunit of the SWI/SNF chromatin remodeling complex, and the recent emergence of frequent mutations in genes that encode subunits of this complex across a wide variety of cancers suggests that perturbation of this chromatin remodeling complex constitutes a key driver of cancer formation. Despite the highly aggressive nature of RTs, they are genetically simple cancers that appear to lack chromosomal instability and contain very few mutations. Indeed, the mutation rate in RTs is among the lowest of all cancers sequenced, with loss of SMARCB1 as essentially the sole recurrent event. Given the genetic simplicity of this disease, understanding the chromatin dysregulation caused by SMARCB1 loss may provide more general insight into how epigenetic alterations can contribute to oncogenic transformation and may reveal opportunities for targeted therapy not only of RT but also the variety of other SWI/SNF mutant cancers.
Collapse
Affiliation(s)
- Ryan S Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | |
Collapse
|
42
|
Brennan B, Stiller C, Bourdeaut F. Extracranial rhabdoid tumours: what we have learned so far and future directions. Lancet Oncol 2013; 14:e329-36. [DOI: 10.1016/s1470-2045(13)70088-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
Modena P, Sardi I, Brenca M, Giunti L, Buccoliero AM, Pollo B, Biassoni V, Genitori L, Antonelli M, Maestro R, Giangaspero F, Massimino M. Case report: long-term survival of an infant syndromic patient affected by atypical teratoid-rhabdoid tumor. BMC Cancer 2013; 13:100. [PMID: 23510391 PMCID: PMC3600022 DOI: 10.1186/1471-2407-13-100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/28/2013] [Indexed: 12/15/2022] Open
Abstract
Background Atypical teratoid rhabdoid tumor (ATRT) patients display a dismal median overall survival of less than 1 year. A consistent fraction of cases carries de-novo SMARCB1/INI1 constitutional mutations in the setting of the “rhabdoid tumor predisposition syndrome” and the outcome is worst in infant syndromic ATRT patients. Case presentation We here describe a patient affected by mosaic Klinefelter syndrome and by rhabdoid tumor predisposition syndrome caused by constitutional SMARCB1/INI1 heterozygous mutation c.118C>T (Arg40X). Patient’s ATRT primary tumor occurred at 2 years of age concurrent with metastatic lesions. The patient was rendered without evidence of disease by combined surgery, high-dose poli-chemotherapy and craniospinal irradiation, followed by autologous hematopoietic stem cell transplantation. At the onset of a spinal lesion 5.5 years later, both tumors were pathologically and molecularly evaluated at the national central pathology review board and defined as ATRT in a syndromic patient, with strong evidence of a clonal origin of the two lesions. The patient was then treated according to SIOP guidelines and is now alive without evidence of disease 24 months after the detection of metastatic disease and 90 months after the original diagnosis. Conclusion The report underscores the current utility of multiple comprehensive approaches for the correct diagnosis and clinical management of patients affected by rare and atypical brain neoplasms. Successful local control of disease and achievement of long-term survival is possible in ATRT patients even in the setting of rhabdoid tumor predisposition syndrome, infant age at diagnosis and metastatic spread of disease, thus justifying the efforts for the management of this severe condition.
Collapse
Affiliation(s)
- Piergiorgio Modena
- Unit of Experimental Oncology 1, Centro di Riferimento Oncologico, Aviano, 33081, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Nagasawa DT, Trang A, Choy W, Spasic M, Yew A, Zarinkhou G, Garcia HM, Yang I. Genetic expression profiles of adult and pediatric ependymomas: molecular pathways, prognostic indicators, and therapeutic targets. Clin Neurol Neurosurg 2013; 115:388-99. [PMID: 23374238 DOI: 10.1016/j.clineuro.2012.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 11/06/2012] [Accepted: 12/02/2012] [Indexed: 12/21/2022]
Abstract
Ependymomas are tumors that can present within either the intracranial or spinal regions. While 90% of all pediatric ependymomas are intracranial, spinal cord ependymomas are more commonly found in patients 20-40 years old. Treatment for spinal lesions has achieved local control rates up to 100% following gross total resection, while pediatric intracranial tumors have 40-60% mortality. Given the inability to effectively treat ependymomas with current standard practices, researchers have focused their efforts on evaluating chromosomal alterations, genetic expression profiles, epigenetic events, and molecular pathways. While these studies have provided critical insight into the potential mechanisms underlying ependymoma pathogenesis, understanding of the intricate interplay between the various pathways involved in tumor initiation, development, and progression will require deeper investigation. However, several potential prognostic markers and therapeutic targets have been identified, providing key areas of focus for future research. The utilization of unique genetic expression profiles based upon patient age, tumor location, tumor grade, and subtype has revealed a multitude of findings warranting further study. Inspection of various molecular pathways associated with ependymomas may establish the foundation for developing novel therapies capable of achieving significant clinical improvements with individualized regimens specifically designed for personalized treatment strategies.
Collapse
Affiliation(s)
- Daniel T Nagasawa
- UCLA Department of Neurosurgery, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, United States
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kuwahara Y, Mora-Blanco EL, Banine F, Rogers AB, Fletcher C, Sherman LS, Roberts CWM, Weissman BE. Establishment and characterization of MRT cell lines from genetically engineered mouse models and the influence of genetic background on their development. Int J Cancer 2012. [PMID: 23197309 DOI: 10.1002/ijc.27976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Malignant rhabdoid tumors (MRTs) are rare, aggressive cancers occuring in young children primarily through inactivation of the SNF5(INI1, SMARCB1) tumor suppressor gene. We and others have demonstrated that mice heterozygous for a Snf5 null allele develop MRTs with partial penetrance. We have also shown that Snf5(+/-) mice that lack expression of the pRb family, due to TgT121 transgene expression, develop MRTs with increased penetrance and decreased latency. Here, we report that altering the genetic background has substantial effects upon MRT development in Snf5(+/--) and TgT121 ;Snf5(+/-) mice, with a mixed F1 background resulting in increased latency and the appearance of brain tumors. We also report the establishment of the first mouse MRT cell lines that recapitulate many features of their human counterparts. Our studies provide further insight into the genetic influences on MRT development as well as provide valuable new cell culture and genetically engineered mouse models for the study of CNS-MRT etiology.
Collapse
Affiliation(s)
- Yasumichi Kuwahara
- UNC-Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Safaee M, Oh MC, Bloch O, Sun MZ, Kaur G, Auguste KI, Tihan T, Parsa AT. Choroid plexus papillomas: advances in molecular biology and understanding of tumorigenesis. Neuro Oncol 2012; 15:255-67. [PMID: 23172371 DOI: 10.1093/neuonc/nos289] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Choroid plexus papillomas are rare, benign tumors originating from the choroid plexus. Although generally found within the ventricular system, they can arise ectopically in the brain parenchyma or disseminate throughout the neuraxis. We sought to review recent advances in our understanding of the molecular biology and oncogenic pathways associated with this disease. A comprehensive PubMed literature review was conducted to identify manuscripts discussing the clinical, molecular, and genetic features of choroid plexus papillomas. Articles concerning diagnosis, treatment, and long-term patient outcomes were also reviewed. The introduction of atypical choroid plexus papilloma as a distinct entity has increased the need for accurate histopathologic diagnosis. Advances in immunohistochemical staining have improved our ability to differentiate choroid plexus papillomas from other intracranial tumors or metastatic lesions using combinations of key markers and mitotic indices. Recent findings have implicated Notch3 signaling, the transcription factor TWIST1, platelet-derived growth factor receptor, and the tumor necrosis factor-related apoptosis-inducing ligand pathway in choroid plexus papilloma tumorigenesis. A combination of commonly occurring chromosomal duplications and deletions has also been identified. Surgical resection remains the standard of care, although chemotherapy and radiotherapy may be considered for recurrent or metastatic lesions. While generally considered benign, these tumors possess a complex biology that sheds insight into other choroid plexus tumors, particularly malignant choroid plexus carcinomas. Improving our understanding of the molecular biology, genetics, and oncogenic pathways associated with this tumor will allow for the development of targeted therapies and improved outcomes for patients with this disease.
Collapse
Affiliation(s)
- Michael Safaee
- Department of Neurological Surgery, University of California at San Francisco, 505 Parnassus Ave., San Francisco, CA 94117, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Genetic and epigenetic events generate multiple pathways in colorectal cancer progression. PATHOLOGY RESEARCH INTERNATIONAL 2012; 2012:509348. [PMID: 22888469 PMCID: PMC3409552 DOI: 10.1155/2012/509348] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most common causes of death, despite decades of research. Initially considered as a disease due to genetic mutations, it is now viewed as a complex malignancy because of the involvement of epigenetic abnormalities. A functional equivalence between genetic and epigenetic mechanisms has been suggested in CRC initiation and progression. A hallmark of CRC is its pathogenetic heterogeneity attained through at least three distinct pathways: a traditional (adenoma-carcinoma sequence), an alternative, and more recently the so-called serrated pathway. While the alternative pathway is more heterogeneous and less characterized, the traditional and serrated pathways appear to be more homogeneous and clearly distinct. One unsolved question in colon cancer biology concerns the cells of origin and from which crypt compartment the different pathways originate. Based on molecular and pathological evidences, we propose that the traditional and serrated pathways originate from different crypt compartments explaining their genetic/epigenetic and clinicopathological differences. In this paper, we will discuss the current knowledge of CRC pathogenesis and, specifically, summarize the role of genetic/epigenetic changes in the origin and progression of the multiple CRC pathways. Elucidation of the link between the molecular and clinico-pathological aspects of CRC would improve our understanding of its etiology and impact both prevention and treatment.
Collapse
|
49
|
BEX2 regulates cell cycle through the interaction with INI1/hSNF5. YI CHUAN = HEREDITAS 2012; 34:711-8. [DOI: 10.3724/sp.j.1005.2012.00711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Miller S, Ward JH, Rogers HA, Lowe J, Grundy RG. Loss of INI1 protein expression defines a subgroup of aggressive central nervous system primitive neuroectodermal tumors. Brain Pathol 2012; 23:19-27. [PMID: 22672440 DOI: 10.1111/j.1750-3639.2012.00610.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/21/2012] [Indexed: 01/29/2023] Open
Abstract
Pediatric embryonal brain tumors can be difficult to classify. Atypical teratoid rhabdoid tumors (ATRT) contain rhabdoid cells, while primitive neuroectodermal tumors (PNETs) are composed of "small round blue cells." Loss of INI1 is a common event in ATRT; therefore, we investigated if the loss of INI1 protein expression was also observed in central nervous system (CNS) PNET and pineoblastoma. A histological review of 42 CNS PNETs and six pineoblastomas was performed. INI1 expression was assessed by immunohistochemistry. Sequencing was performed on the mutational hotspots of INI1. INI1-immunonegative tumors were further investigated using fluorescence in situ hybridization. Epithelial membrane antigen (EMA) protein expression was assessed in six CNS PNETs to further define the phenotype. Five CNS PNETs without rhabdoid cell morphology were immuno-negative for both INI1 and EMA. Of these primary CNS PNET patients, three died <11 months postdiagnosis, which was dissimilar to the INI1-immunopositive primary CNS PNETs where 18/24 (75%) patients were alive 1 year postdiagnosis. We have identified a small subgroup of CNS PNETs which lack INI1 protein expression, but have no evidence of rhabdoid cell morphology. INI1 protein loss may occur through mechanisms other than gene deletion. INI1 immunohistochemistry should be performed for all CNS PNET cases.
Collapse
Affiliation(s)
- Suzanne Miller
- Children's Brain Tumour Research Centre, School of Clinical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|