1
|
A Novel Non-Allelic Homologous Recombination Event in a Parent with an 11;22 Reciprocal Translocation Leading to 22q11.2 Deletion Syndrome. Genes (Basel) 2022; 13:genes13091668. [PMID: 36140835 PMCID: PMC9498844 DOI: 10.3390/genes13091668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
The most prevalent microdeletion in the human population occurs at 22q11.2, a region rich in chromosome-specific low copy repeats (LCR22s). The structure of this region has eluded characterization due to a combination of size, regional complexity, and haplotype diversity. To further complicate matters, it is not well represented in the human reference genome. Most individuals with 22q11.2 deletion syndrome (22q11.2DS) carry a de novo, hemizygous deletion approximately 3 Mbp in size occurring by non-allelic homologous recombination (NAHR) mediated by the LCR22s. The ability to fully delineate an individual’s 22q11.2 regional structure will likely be important for studies designed to assess an unaffected individual’s risk for generating rearrangements in germ cells, potentially leading to offspring with 22q11.2DS. Towards understanding these risk factors, optical mapping has been previously employed to successfully elucidate the structure and variation of LCR22s across 30 families affected by 22q11.2DS. The father in one of these families carries a t(11;22)(q23;q11) translocation. Surprisingly, it was determined that he is the parent-of-deletion-origin. NAHR, which occurred between his der(22) and intact chromosome 22, led to a 22q11.2 deletion in his affected child. The unaffected sibling of the proband with 22q11.2DS inherited the father’s normal chromosome 22, which did not aberrantly recombine. This unexpected observation definitively shows that haplotypes that engage in NAHR can also be inherited intact. This study is the first to identify all structures involving a rearranged chromosome 22 that also participates in NAHR leading to a 22q11.2 deletion.
Collapse
|
2
|
Hayakawa K, Kawase K, Fujimoto M, Nakamura Y, Saitoh S. Utility of breakpoint-specific nested polymerase chain reaction for the diagnosis of Emanuel syndrome. Pediatr Int 2021; 63:1534-1536. [PMID: 34449117 DOI: 10.1111/ped.14644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Kozue Hayakawa
- Department of Pediatrics, Daido Hospital, Nagoya, Aichi, Japan.,Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Koya Kawase
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Masanori Fujimoto
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Yuji Nakamura
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| |
Collapse
|
3
|
Smith RB, Solem EP, Metz EC, Wheeler FC, Phillips JA, Yenamandra A. Clinical diagnosis of neurofibromatosis type I in multiple family members due to cosegregation of a unique balanced translocation with disruption of the NF1 locus: Testing considerations for accurate diagnosis. Am J Med Genet A 2021; 185:1222-1227. [PMID: 33415784 DOI: 10.1002/ajmg.a.62071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/13/2020] [Accepted: 12/19/2020] [Indexed: 11/12/2022]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant disorder that causes a predisposition to develop tumors along the peripheral nervous system. The NF1 gene, located at 17q11.2, has the highest mutation rate among known human genes and about half of NF1 patients have de novo pathogenic variants. We present a case of clinical NF1 diagnoses in multiple family members with phenotypes ranging from mild to severe. Chromosome analysis of the 3-year-old female proband with NF1 resulted in an abnormal karyotype that was inherited from her mother: 46,XX,t(4;17)(q21.3;q11.2) mat. However, no NF1 genetic variants were identified by either NGS analysis of NF1 DNA coding regions, deletion-duplication studies, or by cytogenomic microarray copy number analysis. Follow-up chromosome studies of the proband's two male siblings demonstrated cosegregation of the same balanced translocation and a clinical diagnosis of NF1. Based on the cosegregation of the translocation with the NF1 clinical presentation in this family, we hypothesized that the NF1 gene may have been disrupted by this unique rearrangement. Subsequent fluorescence in situ hybridization (FISH) analysis of the metaphase cells of an affected sibling revealed a disruption of the NF1 gene confirming the underlying basis of the clinical NF1 presentation in this family. The utilization of traditional cytogenetic as well as evolving molecular methods was not only pivotal in the diagnosis of NF1 and management for this family, but is also pertinent to other patients with a family history of NF1.
Collapse
Affiliation(s)
- Rebecca B Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Genetics Associates Inc., Nashville, Tennessee, USA
| | - Emily P Solem
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Emma C Metz
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Ferrin C Wheeler
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John A Phillips
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ashwini Yenamandra
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Correll-Tash S, Lilley B, Salmons Iv H, Mlynarski E, Franconi CP, McNamara M, Woodbury C, Easley CA, Emanuel BS. Double strand breaks (DSBs) as indicators of genomic instability in PATRR-mediated translocations. Hum Mol Genet 2020; 29:3872-3881. [PMID: 33258468 DOI: 10.1093/hmg/ddaa251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability contributes to a variety of potentially damaging conditions, including DNA-based rearrangements. Breakage in the form of double strand breaks (DSBs) increases the likelihood of DNA damage, mutations and translocations. Certain human DNA regions are known to be involved in recurrent translocations, such as the palindrome-mediated rearrangements that have been identified at the breakpoints of several recurrent constitutional translocations: t(11;22)(q23;q11), t(17;22)(q11;q11) and t(8;22) (q24;q11). These breakpoints occur at the center of palindromic AT-rich repeats (PATRRs), which suggests that the structure of the DNA may play a contributory role, potentially through the formation of secondary cruciform structures. The current study analyzed the DSB propensity of these PATRR regions in both lymphoblastoid (mitotic) and spermatogenic cells (meiotic). Initial results found an increased association of sister chromatid exchanges (SCEs) at PATRR regions in experiments that used SCEs to assay DSBs, combining SCE staining with fluorescence in situ hybridization (FISH). Additional experiments used chromatin immunoprecipitation (ChIP) with antibodies for either markers of DSBs or proteins involved in DSB repair along with quantitative polymerase chain reaction to quantify the frequency of DSBs occurring at PATRR regions. The results indicate an increased rate of DSBs at PATRR regions. Additional ChIP experiments with the cruciform binding 2D3 antibody indicate an increased rate of cruciform structures at PATRR regions in both mitotic and meiotic samples. Overall, these experiments demonstrate an elevated rate of DSBs at PATRR regions, an indication that the structure of PATRR containing DNA may lead to increased breakage in multiple cellular environments.
Collapse
Affiliation(s)
- Sarah Correll-Tash
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brenna Lilley
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Harold Salmons Iv
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisabeth Mlynarski
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Colleen P Franconi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Meghan McNamara
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carson Woodbury
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charles A Easley
- Department of Environmental Health Sciences, College of Public Health at the University of Georgia, Athens, GA, 30602, USA
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Inheritance of imbalances in recurrent chromosomal translocation t(11;22): clarification by PGT-SR and sperm-FISH analysis. Reprod Biomed Online 2019; 39:40-48. [PMID: 31097322 DOI: 10.1016/j.rbmo.2019.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 10/27/2022]
Abstract
RESEARCH QUESTION To analyse why unbalanced viable offspring are derived mainly from the 3:1 segregation mode in t(11;22)(q23;q11.2) reciprocal translocation. DESIGN Retrospective analysis of 24 pre-implantation genetic testing for chromosomal structural re-arrangements (PGT-SR) cycles was performed on seven male and five female carriers of t(11;22) translocation. Sperm analysis was performed on each male carrier. These patients were directed to the study centre after several years of miscarriages and/or abortions, primary infertility for male carriers or birth of an affected child. RESULTS Twenty-four PGT-SR cycles were performed to exclude imbalances in both male and female carriers. The unbalanced embryos derived from the adjacent-1 segregation mode were the most represented in both male and female carriers (68.4% and 50%, respectively). These results were positively related with meiotic segregation analysis of reciprocal translocation in spermatozoa. A thorough analysis of the unbalanced embryo karyotypes determined that the expected viable +der22 karyotype resulting from 3:1 malsegregation was less represented at 5.3%. CONCLUSIONS These findings highlight the divergence that may exist between meiotic segregation and post-zygotic selection. Post-zygotic selection would be responsible for the elimination of unbalanced embryos derived from the adjacent-1 segregation mode. The combined action of several factors occurs at the beginning of post-zygotic selection. Genetic counselling must consider the risk of a birth related to the adjacent-1 segregation mode, irrespective of the sex of the translocation carrier. These results will allow deeper understanding of the PGT results of t(11;22) carriers, which often include a high number of aneuploid embryos.
Collapse
|
6
|
Correll-Tash S, Conlin L, Mininger BA, Lilley B, Mennuti MT, Emanuel BS. The Recurrent t(11;22)(q23;q11.2) Can Occur as a Post-Zygotic Event. Cytogenet Genome Res 2018; 156:185-190. [PMID: 30566958 DOI: 10.1159/000494648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 11/19/2022] Open
Abstract
The AT-rich repeat on chromosome 22q11.2 is known to be involved in the recurrent constitutional t(11;22)(q23;q11.2). Segregation of this translocation has been reported in several hundred families, but a de novo translocation event has been identified in only 8 cases, and everytime the translocation originated in paternal germ-line chromosomes. Further, de novo t(11;22) rearrangements have been detected in the sperm of healthy males, leading to the hypothesis that it occurs somewhere along the meiosis-spermatogenesis pathway. This report describes a woman whose constitutional karyotype revealed mosaicism for the recurrent t(11;22) and the subsequent testing performed to determine the origin of the translocation event. Karyotype analysis, translocation-specific PCR, human identity testing, and a SNP genotyping array were performed to detect mosaicism and/or chimerism. As a result, the SNP genotyping array revealed no evidence for mosaicism in genomic DNA beyond mosaicism for the balanced t(11;22). Human identity testing and the SNP genotyping array ruled out chimerism. PCR of the translocation breakpoint followed by sequencing confirmed that the translocation had occurred at the typical t(11;22) breakpoints. In conclusion, these results indicate that the translocation occurred post-fertilization, providing the first evidence of a de novo t(11;22)(q23;q11.2) occurring in a maternal mitotic environment.
Collapse
|
7
|
Saffren BD, Capasso JE, Zanolli M, Levin AV. Ocular manifestations of Emanuel syndrome. Am J Med Genet A 2018; 176:1964-1967. [PMID: 30178914 DOI: 10.1002/ajmg.a.40361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/24/2018] [Accepted: 05/21/2018] [Indexed: 11/07/2022]
Abstract
Emanuel syndrome is caused by a supernumerary der(22)t(11;22) and typically manifests with intellectual disability and craniofacial dysmorphism. Ocular abnormalities have infrequently been described. We report a 36-year-old man with severe intellectual disability, aphasia, and facial dysmorphism, with high myopia and juvenile open angle glaucoma (JOAG). Microarray analysis results included 47,XY,+der(22)t(11;22)(q23;q11.2), and a 269 kb deletion of 7q31.33(125,898,014-126,166,829). Two candidate genes were identified as possible etiologies for the ocular pathologies in our patient: a MFRP duplication on chromosome 11, which may play a role in high myopia and dysregulation of emmetropization, and a GRM8 deletion on chromosome 7, which may cause glutamate-induced excitotoxicity and therefore have a role in the development of JOAG, unrelated to the Emanuel syndrome genotype. We provide the first detailed description these ocular abnormalities in a patient with Emmanuel syndrome.
Collapse
Affiliation(s)
- Brooke D Saffren
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania
| | | | | | - Alex V Levin
- Wills Eye Hospital, Philadelphia, Pennsylvania.,Sydney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Luukkonen TM, Mehrjouy MM, Pöyhönen M, Anttonen A, Lahermo P, Ellonen P, Paulin L, Tommerup N, Palotie A, Varilo T. Breakpoint mapping and haplotype analysis of translocation t(1;12)(q43;q21.1) in two apparently independent families with vascular phenotypes. Mol Genet Genomic Med 2018; 6:56-68. [PMID: 29168350 PMCID: PMC5823676 DOI: 10.1002/mgg3.346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The risk of serious congenital anomaly for de novo balanced translocations is estimated to be at least 6%. We identified two apparently independent families with a balanced t(1;12)(q43;q21.1) as an outcome of a "Systematic Survey of Balanced Chromosomal Rearrangements in Finns." In the first family, carriers (n = 6) manifest with learning problems in childhood, and later with unexplained neurological symptoms (chronic headache, balance problems, tremor, fatigue) and cerebral infarctions in their 50s. In the second family, two carriers suffer from tetralogy of Fallot, one from transient ischemic attack and one from migraine. The translocation cosegregates with these vascular phenotypes and neurological symptoms. METHODS AND RESULTS We narrowed down the breakpoint regions using mate pair sequencing. We observed conserved haplotypes around the breakpoints, pointing out that this translocation has arisen only once. The chromosome 1 breakpoint truncates a CHRM3 processed transcript, and is flanked by the 5' end of CHRM3 and the 3' end of RYR2. TRHDE, KCNC2, and ATXN7L3B flank the chromosome 12 breakpoint. CONCLUSIONS This study demonstrates a balanced t(1;12)(q43;q21.1) with conserved haplotypes on the derived chromosomes. The translocation seems to result in vascular phenotype, with or without neurological symptoms, in at least two families. We suggest that the translocation influences the positional expression of CHRM3, RYR2, TRHDE, KCNC2, and/or ATXN7L3B.
Collapse
Affiliation(s)
- Tiia Maria Luukkonen
- Institute for molecular medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- Department of HealthNational Institute for Health and WelfareHelsinkiFinland
| | - Mana M. Mehrjouy
- Wilhelm Johannsen Centre for Functional Genome ResearchDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Minna Pöyhönen
- Clinical GeneticsHelsinki University HospitalUniversity of HelsinkiHelsinkiFinland
- Department of Medical GeneticsUniversity of HelsinkiHelsinkiFinland
| | | | - Päivi Lahermo
- Institute for molecular medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Pekka Ellonen
- Institute for molecular medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
| | - Lars Paulin
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Niels Tommerup
- Wilhelm Johannsen Centre for Functional Genome ResearchDepartment of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Aarno Palotie
- Institute for molecular medicine Finland FIMMUniversity of HelsinkiHelsinkiFinland
- Broad Institute of Harvard and MITCambridgeMAUSA
| | - Teppo Varilo
- Department of HealthNational Institute for Health and WelfareHelsinkiFinland
- Department of Medical GeneticsUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
9
|
Stankiewicz P. One pedigree we all may have come from - did Adam and Eve have the chromosome 2 fusion? Mol Cytogenet 2016; 9:72. [PMID: 27708712 PMCID: PMC5037601 DOI: 10.1186/s13039-016-0283-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/16/2016] [Indexed: 11/18/2022] Open
Abstract
Background In contrast to Great Apes, who have 48 chromosomes, modern humans and likely Neandertals and Denisovans have and had, respectively, 46 chromosomes. The reduction in chromosome number was caused by the head-to-head fusion of two ancestral chromosomes to form human chromosome 2 (HSA2) and may have contributed to the reproductive barrier with Great Apes. Results Next generation sequencing and molecular clock analyses estimated that this fusion arose prior to our last common ancestor with Neandertal and Denisovan hominins ~ 0.74 - 4.5 million years ago. Hypotheses I propose that, unlike recurrent Robertsonian translocations in humans, the HSA2 fusion was a single nonrecurrent event that spread through a small polygamous clan population bottleneck. Its heterozygous to homozygous conversion, fixation, and accumulation in the succeeding populations was likely facilitated by an evolutionary advantage through the genomic loss rather than deregulation of expression of the gene(s) flanking the HSA2 fusion site at 2q13. Conclusions The origin of HSA2 might have been a critical evolutionary event influencing higher cognitive functions in various early subspecies of hominins. Next generation sequencing of Homo heidelbergensis and Homo erectus genomes and complete reconstruction of DNA sequence of the orthologous subtelomeric chromosomes in Great Apes should enable more precise timing of HSA2 formation and better understanding of its evolutionary consequences.
Collapse
Affiliation(s)
- Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Rm ABBR-R809, Houston, TX 77030 USA
| |
Collapse
|
10
|
Inagaki H, Kato T, Tsutsumi M, Ouchi Y, Ohye T, Kurahashi H. Palindrome-Mediated Translocations in Humans: A New Mechanistic Model for Gross Chromosomal Rearrangements. Front Genet 2016; 7:125. [PMID: 27462347 PMCID: PMC4940405 DOI: 10.3389/fgene.2016.00125] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 06/28/2016] [Indexed: 11/13/2022] Open
Abstract
Palindromic DNA sequences, which can form secondary structures, are widely distributed in the human genome. Although the nature of the secondary structure-single-stranded "hairpin" or double-stranded "cruciform"-has been extensively investigated in vitro, the existence of such unusual non-B DNA in vivo remains controversial. Here, we review palindrome-mediated gross chromosomal rearrangements possibly induced by non-B DNA in humans. Recent advances in next-generation sequencing have not yet overcome the difficulty of palindromic sequence analysis. However, a dozen palindromic AT-rich repeat (PATRR) sequences have been identified at the breakpoints of recurrent or non-recurrent chromosomal translocations in humans. The breakages always occur at the center of the palindrome. Analyses of polymorphisms within the palindromes indicate that the symmetry and length of the palindrome affect the frequency of the de novo occurrence of these palindrome-mediated translocations, suggesting the involvement of non-B DNA. Indeed, experiments using a plasmid-based model system showed that the formation of non-B DNA is likely the key to palindrome-mediated genomic rearrangements. Some evidence implies a new mechanism that cruciform DNAs may come close together first in nucleus and illegitimately joined. Analysis of PATRR-mediated translocations in humans will provide further understanding of gross chromosomal rearrangements in many organisms.
Collapse
Affiliation(s)
- Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan; Genome and Transcriptome Analysis Center, Fujita Health UniversityToyoake, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Makiko Tsutsumi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Yuya Ouchi
- Genome and Transcriptome Analysis Center, Fujita Health University Toyoake, Japan
| | - Tamae Ohye
- Department of Molecular Laboratory Medicine, Faculty of Medical Technology, School of Health Science, Fujita Health University Toyoake, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health UniversityToyoake, Japan; Genome and Transcriptome Analysis Center, Fujita Health UniversityToyoake, Japan
| |
Collapse
|
11
|
Abstract
During meiosis, numerous DNA double-strand breaks (DSBs) are formed as part of the normal developmental program. This seemingly destructive behavior is necessary for successful meiosis, since repair of the DSBs through homologous recombination (HR) helps to produce physical links between the homologous chromosomes essential for correct chromosome segregation later in meiosis. However, DSB formation at such a massive scale also introduces opportunities to generate gross chromosomal rearrangements. In this review, we explore ways in which meiotic DSBs can result in such genomic alterations.
Collapse
|
12
|
Choi J, Lee H, Lee CG. Partial trisomy of 11q23.3-q25 inherited from a maternal low-level mosaic unbalanced translocation. Am J Med Genet A 2015; 167A:1859-64. [PMID: 25944464 DOI: 10.1002/ajmg.a.36980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/29/2014] [Indexed: 11/08/2022]
Abstract
Partial trisomy of 11q is characterized by pre/postnatal growth retardation, microcephaly, dysmorphic craniofacial features, cognitive disability, abnormal muscle tone, inguinal hernia, and possible congenital heart defects. Here, we describe a 17-year-old male with a 17.77 Mb-sized [arr 11q23.3-q25 (116,667,559 -134,434,130) ×3] partial trisomy resulting from the unbalanced translocation between chromosomes 11 and 22. The terminal translocation was detected using oligonucleotide array comparative genomic hybridization (CGH) with fluorescence in situ hybridization (FISH) confirmation. The partial trisomy was inherited from his mother who had the low-level (22.7%) mosaic unbalanced translocation and a normal phenotype. The patient showed most of the common features of partial trisomy 11q syndrome, with additional findings, including mesenteric fibromatosis.
Collapse
Affiliation(s)
- Jungyoon Choi
- Department of Pediatrics, Eulji General Hospital, College of Medicine, Eulji University, Seoul, Korea
| | - Hojung Lee
- Department of Pathology, Eulji General Hospital, College of Medicine, Eulji University, Seoul, Korea
| | - Cha Gon Lee
- Department of Pediatrics, Eulji General Hospital, College of Medicine, Eulji University, Seoul, Korea
| |
Collapse
|
13
|
Thys RG, Lehman CE, Pierce LCT, Wang YH. DNA secondary structure at chromosomal fragile sites in human disease. Curr Genomics 2015; 16:60-70. [PMID: 25937814 PMCID: PMC4412965 DOI: 10.2174/1389202916666150114223205] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 11/22/2022] Open
Abstract
DNA has the ability to form a variety of secondary structures that can interfere with normal cellular processes, and many of these structures have been associated with neurological diseases and cancer. Secondary structure-forming sequences are often found at chromosomal fragile sites, which are hotspots for sister chromatid exchange, chromosomal translocations, and deletions. Structures formed at fragile sites can lead to instability by disrupting normal cellular processes such as DNA replication and transcription. The instability caused by disruption of replication and transcription can lead to DNA breakage, resulting in gene rearrangements and deletions that cause disease. In this review, we discuss the role of DNA secondary structure at fragile sites in human disease.
Collapse
Affiliation(s)
- Ryan G Thys
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Christine E Lehman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
14
|
Chan YW, West SC. Spatial control of the GEN1 Holliday junction resolvase ensures genome stability. Nat Commun 2014; 5:4844. [PMID: 25209024 PMCID: PMC4172962 DOI: 10.1038/ncomms5844] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Holliday junction (HJ) resolvases are necessary for the processing of persistent recombination intermediates before cell division. Their actions, however, need to be restricted to the late stages of the cell cycle to avoid the inappropriate cleavage of replication intermediates. Control of the yeast HJ resolvase, Yen1, involves phosphorylation changes that modulate its catalytic activity and nuclear import. Here, we show that GEN1, the human ortholog of Yen1, is regulated by a different mechanism that is independent of phosphorylation. GEN1 is controlled exclusively by nuclear exclusion, driven by a nuclear export signal (NES) that restricts GEN1 actions to mitosis when the nuclear membrane breaks down. Construction of a nuclear-localized version of GEN1 revealed that its premature actions partially suppress phenotypes associated with loss of BLM and MUS81, but cause elevated crossover formation. The spatial control of GEN1 therefore contributes to genome stability, by avoiding competition with non-crossover promoting repair pathways.
Collapse
Affiliation(s)
- Ying Wai Chan
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| | - Stephen C. West
- London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Herts EN6 3LD, UK
| |
Collapse
|
15
|
Mishra D, Kato T, Inagaki H, Kosho T, Wakui K, Kido Y, Sakazume S, Taniguchi-Ikeda M, Morisada N, Iijima K, Fukushima Y, Emanuel BS, Kurahashi H. Breakpoint analysis of the recurrent constitutional t(8;22)(q24.13;q11.21) translocation. Mol Cytogenet 2014; 7:55. [PMID: 25478009 PMCID: PMC4255720 DOI: 10.1186/s13039-014-0055-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/25/2014] [Indexed: 11/23/2022] Open
Abstract
Backgrounds The t(8;22)(q24.13;q11.2) has been identified as one of several recurrent
constitutional translocations mediated by palindromic AT-rich repeats (PATRRs).
Although the breakage on 22q11 utilizes the same PATRR as that of the more
prevalent constitutional t(11;22)(q23;q11.2), the breakpoint region on 8q24 has
not been elucidated in detail since the analysis of palindromic sequence is
technically challenging. Results In this study, the entire 8q24 breakpoint region has been resolved by next
generation sequencing. Eight polymorphic alleles were identified and compared with
the junction sequences of previous and two recently identified t(8;22) cases . All
of the breakpoints were found to be within the PATRRs on chromosomes 8 and 22
(PATRR8 and PATRR22), but the locations were different among cases at the level of
nucleotide resolution. The translocations were always found to arise on symmetric
PATRR8 alleles with breakpoints at the center of symmetry. The translocation
junction is often accompanied by symmetric deletions at the center of both PATRRs.
Rejoining occurs with minimal homology between the translocation partners.
Remarkably, comparison of der (8) to der(22) sequences shows identical breakpoint
junctions between them, which likely represent products of two independent events
on the basis of a classical model. Conclusions Our data suggest the hypothesis that interactions between the two PATRRs prior to
the translocation event might trigger illegitimate recombination resulting in the
recurrent palindrome-mediated translocation.
Collapse
Affiliation(s)
- Divya Mishra
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Takema Kato
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Keiko Wakui
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Yasuhiro Kido
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Koshigaya 343-8555, Saitama, Japan
| | - Satoru Sakazume
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Koshigaya 343-8555, Saitama, Japan
| | - Mariko Taniguchi-Ikeda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | - Naoya Morisada
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Hyogo, Japan
| | - Yoshimitsu Fukushima
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto 390-8621, Nagano, Japan
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia 19104, PA, USA.,Department of Pediatrics, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia 19104, PA, USA
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
16
|
Ohye T, Inagaki H, Kato T, Tsutsumi M, Kurahashi H. Prevalence of Emanuel syndrome: theoretical frequency and surveillance result. Pediatr Int 2014; 56:462-6. [PMID: 24980921 DOI: 10.1111/ped.12437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/03/2014] [Accepted: 05/12/2014] [Indexed: 02/03/2023]
Abstract
Constitutional t(11;22)(q23;q11) is the most frequent recurrent non-Robertsonian translocation in humans. Balanced carriers of t(11;22) usually manifest no clinical symptoms, and are often identified after the birth of offspring with an unbalanced form of this translocation, known as Emanuel syndrome. To determine the prevalence of the disorder, we sent surveillance questionnaires to 735 core hospitals in Japan. The observed number of Emanuel syndrome cases was 36 and that of t(11;22) balanced translocation carriers, 40. On the basis of the de novo t(11;22) translocation frequency in sperm from healthy men, we calculated the frequency of the translocations in the general population. Accordingly, the prevalence of Emanuel syndrome was estimated at 1 in 110,000. Based on this calculation, the estimated number of Emanuel syndrome cases in Japan is 1063 and of t(11;22) balanced translocation carriers, 16,604, which are much higher than the numbers calculated from the questionnaire responses. It is possible that this discordance is partly attributable to a lack of disease identification. Further efforts should be made to increase the awareness of Emanuel syndrome to ensure a better quality of life for affected patients and their families.
Collapse
Affiliation(s)
- Tamae Ohye
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan
| | | | | | | | | |
Collapse
|
17
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
18
|
Kato T, Franconi CP, Sheridan MB, Hacker AM, Inagakai H, Glover TW, Arlt MF, Drabkin HA, Gemmill RM, Kurahashi H, Emanuel BS. Analysis of the t(3;8) of hereditary renal cell carcinoma: a palindrome-mediated translocation. Cancer Genet 2014; 207:133-40. [PMID: 24813807 DOI: 10.1016/j.cancergen.2014.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/07/2014] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
It has emerged that palindrome-mediated genomic instability generates DNA-based rearrangements. The presence of palindromic AT-rich repeats (PATRRs) at the translocation breakpoints suggested a palindrome-mediated mechanism in the generation of several recurrent constitutional rearrangements: the t(11;22), t(17;22), and t(8;22). To date, all reported PATRR-mediated translocations include the PATRR on chromosome 22 (PATRR22) as a translocation partner. Here, the constitutional rearrangement, t(3;8)(p14.2;q24.1), segregating with renal cell carcinoma in two families, is examined. The chromosome 8 breakpoint lies in PATRR8 in the first intron of the RNF139 (TRC8) gene, whereas the chromosome 3 breakpoint is located in an AT-rich palindromic sequence in intron 3 of the FHIT gene (PATRR3). Thus, the t(3;8) is the first PATRR-mediated, recurrent, constitutional translocation that does not involve PATRR22. Furthermore, we detect de novo translocations similar to the t(11;22) and t(8;22), involving PATRR3 in normal sperm. The breakpoint on chromosome 3 is in proximity to FRA3B, the most common fragile site in the human genome and a site of frequent deletions in tumor cells. However, the lack of involvement of PATRR3 sequence in numerous FRA3B-related deletions suggests that there are several different DNA sequence-based etiologies responsible for chromosome 3p14.2 genomic rearrangements.
Collapse
Affiliation(s)
- Takema Kato
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colleen P Franconi
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly B Sheridan
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - April M Hacker
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hidehito Inagakai
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Thomas W Glover
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Martin F Arlt
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Jiang H, Wang L, Cui Y, Xu Z, Guo T, Cheng D, Xu P, Yu W, Shi Q. Meiotic Chromosome Behavior in a Human Male t(8;15) Carrier. J Genet Genomics 2014; 41:177-85. [DOI: 10.1016/j.jgg.2014.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 12/22/2022]
|
20
|
Byrne M, Wray J, Reinert B, Wu Y, Nickoloff J, Lee SH, Hromas R, Williamson E. Mechanisms of oncogenic chromosomal translocations. Ann N Y Acad Sci 2014; 1310:89-97. [PMID: 24528169 DOI: 10.1111/nyas.12370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromosome translocations are caused by inappropriate religation of two DNA double-strand breaks (DSBs) in heterologous chromosomes. These DSBs can be generated by endogenous or exogenous sources. Endogenous sources of DSBs leading to translocations include inappropriate recombination activating gene (RAG) or activation-induced deaminase (AID) activity during immune receptor maturation. Endogenous DSBs can also occur at noncanonical DNA structures or at collapsed replication forks. Exogenous sources of DSBs leading to translocations include ionizing radiation (IR) and cancer chemotherapy. Spatial proximity of the heterologous chromosomes is also important for translocations. While three distinct pathways for DNA DSB repair exist, mounting evidence supports alternative nonhomologous end joining (aNHEJ) as the predominant pathway through which the majority of translocations occur. Initiated by poly (ADP-ribose) polymerase 1 (PARP1), aNHEJ is utilized less frequently in DNA DSB repair than other forms of DSB repair. We recently found that PARP1 is essential for chromosomal translocations to occur and that small molecule PARP1 inhibitors, already in clinical use, can inhibit translocations generated by IR or topoisomerase II inhibition. These data confirm the central role of PARP1 in aNHEJ-mediated chromosomal translocations and raise the possibility of using clinically available PARP1 inhibitors in patients who are at high risk for secondary oncogenic chromosomal translocations.
Collapse
Affiliation(s)
- Michael Byrne
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Boyer AS, Grgurevic S, Cazaux C, Hoffmann JS. The Human Specialized DNA Polymerases and Non-B DNA: Vital Relationships to Preserve Genome Integrity. J Mol Biol 2013; 425:4767-81. [DOI: 10.1016/j.jmb.2013.09.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/26/2022]
|
22
|
G-quadruplex structures formed at the HOX11 breakpoint region contribute to its fragility during t(10;14) translocation in T-cell leukemia. Mol Cell Biol 2013; 33:4266-81. [PMID: 24001773 DOI: 10.1128/mcb.00540-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The t(10;14) translocation involving the HOX11 gene is found in several T-cell leukemia patients. Previous efforts to determine the causes of HOX11 fragility were not successful. The role of non-B DNA structures is increasingly becoming an important cause of genomic instability. In the present study, bioinformatics analysis revealed two G-quadruplex-forming motifs at the HOX11 breakpoint cluster. Gel shift assays showed formation of both intra- and intermolecular G-quadruplexes, the latter being more predominant. The structure formation was dependent on four stretches of guanines, as revealed by mutagenesis. Circular dichroism analysis identified parallel conformations for both quadruplexes. The non-B DNA structure could block polymerization during replication on a plasmid, resulting in consistent K(+)-dependent pause sites, which were abolished upon mutation of G-motifs, thereby demonstrating the role of the stretches of guanines even on double-stranded DNA. Extrachromosomal assays showed that the G-quadruplex motifs could block transcription, leading to reduced expression of green fluorescent protein (GFP) within cells. More importantly, sodium bisulfite modification assay showed the single-stranded character at regions I and II of HOX11 in the genome. Thus, our findings suggest the occurrence of G-quadruplex structures at the HOX11 breakpoint region, which could explain its fragility during the t(10;14) translocation.
Collapse
|
23
|
Zhabinskaya D, Benham CJ. Competitive superhelical transitions involving cruciform extrusion. Nucleic Acids Res 2013; 41:9610-21. [PMID: 23969416 PMCID: PMC3834812 DOI: 10.1093/nar/gkt733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A DNA molecule under negative superhelical stress becomes susceptible to transitions to alternate structures. The accessible alternate conformations depend on base sequence and compete for occupancy. We have developed a method to calculate equilibrium distributions among the states available to such systems, as well as their average thermodynamic properties. Here we extend this approach to include superhelical cruciform extrusion at both perfect and imperfect inverted repeat (IR) sequences. We find that short IRs do not extrude cruciforms, even in the absence of competition. But as the length of an IR increases, its extrusion can come to dominate both strand separation and B-Z transitions. Although many IRs are present in human genomic DNA, we find that extrusion-susceptible ones occur infrequently. Moreover, their avoidance of transcription start sites in eukaryotes suggests that cruciform formation is rarely involved in mechanisms of gene regulation. We examine a set of clinically important chromosomal translocation breakpoints that occur at long IRs, whose rearrangement has been proposed to be driven by cruciform extrusion. Our results show that the susceptibilities of these IRs to cruciform formation correspond closely with their observed translocation frequencies.
Collapse
Affiliation(s)
- Dina Zhabinskaya
- UC Davis Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | | |
Collapse
|
24
|
Inagaki H, Ohye T, Kogo H, Tsutsumi M, Kato T, Tong M, Emanuel BS, Kurahashi H. Two sequential cleavage reactions on cruciform DNA structures cause palindrome-mediated chromosomal translocations. Nat Commun 2013; 4:1592. [PMID: 23481400 DOI: 10.1038/ncomms2595] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/11/2013] [Indexed: 11/09/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs), such as translocations, deletions or inversions, are often generated by illegitimate repair between two DNA breakages at regions with nucleotide sequences that might potentially adopt a non-B DNA conformation. We previously established a plasmid-based model system that recapitulates palindrome-mediated recurrent chromosomal translocations in humans, and demonstrated that cruciform DNA conformation is required for the translocation-like rearrangements. Here we show that two sequential reactions that cleave the cruciform structures give rise to the translocation: GEN1-mediated resolution that cleaves diagonally at the four-way junction of the cruciform and Artemis-mediated opening of the subsequently formed hairpin ends. Indeed, translocation products in human sperm reveal the remnants of this two-step mechanism. These two intrinsic pathways that normally fulfil vital functions independently, Holliday-junction resolution in homologous recombination and coding joint formation in rearrangement of antigen-receptor genes, act upon the unusual DNA conformation in concert and lead to a subset of recurrent GCRs in humans.
Collapse
Affiliation(s)
- Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tan X, Anzick SL, Khan SG, Ueda T, Stone G, Digiovanna JJ, Tamura D, Wattendorf D, Busch D, Brewer CC, Zalewski C, Butman JA, Griffith AJ, Meltzer PS, Kraemer KH. Chimeric negative regulation of p14ARF and TBX1 by a t(9;22) translocation associated with melanoma, deafness, and DNA repair deficiency. Hum Mutat 2013; 34:1250-9. [PMID: 23661601 DOI: 10.1002/humu.22354] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022]
Abstract
Melanoma is the most deadly form of skin cancer and DiGeorge syndrome (DGS) is the most frequent interstitial deletion syndrome. We characterized a novel balanced t(9;22)(p21;q11.2) translocation in a patient with melanoma, DNA repair deficiency, and features of DGS including deafness and malformed inner ears. Using chromosome sorting, we located the 9p21 breakpoint in CDKN2A intron 1. This resulted in underexpression of the tumor suppressor p14 alternate reading frame (p14ARF); the reduced DNA repair was corrected by transfection with p14ARF. Ultraviolet radiation-type p14ARF mutations in his melanoma implicated p14ARF in its pathogenesis. The 22q11.2 breakpoint was located in a palindromic AT-rich repeat (PATRR22). We identified a new gene, FAM230A, that contains PATRR22 within an intron. The 22q11.2 breakpoint was located 800 kb centromeric to TBX1, which is required for inner ear development. TBX1 expression was greatly reduced. The translocation resulted in a chimeric transcript encoding portions of p14ARF and FAM230A. Inhibition of chimeric p14ARF-FAM230A expression increased p14ARF and TBX1 expression and improved DNA repair. Expression of the chimera in normal cells produced dominant negative inhibition of p14ARF. Similar chimeric mRNAs may mediate haploinsufficiency in DGS or dominant negative inhibition of other genes such as those involved in melanoma.
Collapse
Affiliation(s)
- Xiaohui Tan
- DNA Repair Section, Dermatology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-4258, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
27
|
Kato T, Kurahashi H, Emanuel BS. Chromosomal translocations and palindromic AT-rich repeats. Curr Opin Genet Dev 2012; 22:221-8. [PMID: 22402448 DOI: 10.1016/j.gde.2012.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Repetitive DNA sequences constitute 30% of the human genome, and are often sites of genomic rearrangement. Recently, it has been found that several constitutional translocations, especially those that involve chromosome 22, take place utilizing palindromic sequences on 22q11 and on the partner chromosome. Analysis of translocation junction fragments shows that the breakpoints of such palindrome-mediated translocations are localized at the center of palindromic AT-rich repeats (PATRRs). The presence of PATRRs at the breakpoints indicates a palindrome-mediated mechanism involved in the generation of these constitutional translocations. Identification of these PATRR-mediated translocations suggests a universal pathway for gross chromosomal rearrangement in the human genome. De novo occurrences of PATRR-mediated translocations can be detected by PCR in normal sperm samples but not somatic cells. Polymorphisms of various PATRRs influence their propensity for adopting a secondary structure, which in turn affects de novo translocation frequency. We propose that the PATRRs form an unstable secondary structure, which leads to double-strand breaks at the center of the PATRR. The double-strand breaks appear to be followed by a non-homologous end-joining repair pathway, ultimately leading to the translocations. This review considers recent findings concerning the mechanism of meiosis-specific, PATRR-mediated translocations.
Collapse
Affiliation(s)
- Takema Kato
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
28
|
Hermetz KE, Surti U, Cody JD, Rudd MK. A recurrent translocation is mediated by homologous recombination between HERV-H elements. Mol Cytogenet 2012; 5:6. [PMID: 22260357 PMCID: PMC3292815 DOI: 10.1186/1755-8166-5-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/19/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chromosome rearrangements are caused by many mutational mechanisms; of these, recurrent rearrangements can be particularly informative for teasing apart DNA sequence-specific factors. Some recurrent translocations are mediated by homologous recombination between large blocks of segmental duplications on different chromosomes. Here we describe a recurrent unbalanced translocation casued by recombination between shorter homologous regions on chromosomes 4 and 18 in two unrelated children with intellectual disability. RESULTS Array CGH resolved the breakpoints of the 6.97-Megabase (Mb) loss of 18q and the 7.30-Mb gain of 4q. Sequencing across the translocation breakpoints revealed that both translocations occurred between 92%-identical human endogenous retrovirus (HERV) elements in the same orientation on chromosomes 4 and 18. In addition, we find sequence variation in the chromosome 4 HERV that makes one allele more like the chromosome 18 HERV. CONCLUSIONS Homologous recombination between HERVs on the same chromosome is known to cause chromosome deletions, but this is the first report of interchromosomal HERV-HERV recombination leading to a translocation. It is possible that normal sequence variation in substrates of non-allelic homologous recombination (NAHR) affects the alignment of recombining segments and influences the propensity to chromosome rearrangement.
Collapse
Affiliation(s)
- Karen E Hermetz
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | |
Collapse
|
29
|
DNA secondary structure is influenced by genetic variation and alters susceptibility to de novo translocation. Mol Cytogenet 2011; 4:18. [PMID: 21899780 PMCID: PMC3197554 DOI: 10.1186/1755-8166-4-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/08/2011] [Indexed: 12/15/2022] Open
Abstract
Background Cumulative evidence suggests that DNA secondary structures impact DNA replication, transcription and genomic rearrangements. One of the best studied examples is the recurrent constitutional t(11;22) in humans that is mediated by potentially cruciform-forming sequences at the breakpoints, palindromic AT-rich repeats (PATRRs). We previously demonstrated that polymorphisms of PATRR sequences affect the frequency of de novo t(11;22)s in sperm samples from normal healthy males. These studies were designed to determine whether PATRR polymorphisms affect DNA secondary structure, thus leading to variation in translocation frequency. Methods We studied the potential for DNA cruciform formation for several PATRR11 polymorphic alleles using mobility shift analysis in gel electrophoresis as well as by direct visualization of the DNA by atomic force microscopy. The structural data for various alleles were compared with the frequency of de novo t(11;22)s the allele produced. Results The data indicate that the propensity for DNA cruciform structure of each polymorphic allele correlates with the frequency of de novo t(11;22)s produced (r = 0.77, P = 0.01). Conclusions Although indirect, our results strongly suggest that the PATRR adopts unstable cruciform structures during spermatogenesis that act as translocation hotspots in humans.
Collapse
|
30
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
31
|
Park SJ, Jung EH, Ryu RS, Kang HW, Ko JM, Kim HJ, Cheon CK, Hwang SH, Kang HY. Clinical implementation of whole-genome array CGH as a first-tier test in 5080 pre and postnatal cases. Mol Cytogenet 2011; 4:12. [PMID: 21549014 PMCID: PMC3114015 DOI: 10.1186/1755-8166-4-12] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023] Open
Abstract
Background Array comparative genomic hybridization (CGH) is currently the most powerful method for detecting chromosomal alterations in pre and postnatal clinical cases. In this study, we developed a BAC based array CGH analysis platform for detecting whole genome DNA copy number changes including specific micro deletion and duplication chromosomal disorders. Additionally, we report our experience with the clinical implementation of our array CGH analysis platform. Array CGH was performed on 5080 pre and postnatal clinical samples from patients referred with a variety of clinical phenotypes. Results A total of 4073 prenatal cases (4033 amniotic fluid and 40 chorionic villi specimens) and 1007 postnatal cases (407 peripheral blood and 600 cord blood) were studied with complete concordance between array CGH, karyotype and fluorescence in situ hybridization results. Among 75 positive prenatal cases with DNA copy number variations, 60 had an aneuploidy, seven had a deletion, and eight had a duplication. Among 39 positive postnatal cases samples, five had an aneuploidy, 23 had a deletion, and 11 had a duplication. Conclusions This study demonstrates the utility of using our newly developed whole-genome array CGH as first-tier test in 5080 pre and postnatal cases. Array CGH has increased the ability to detect segmental deletion and duplication in patients with variable clinical features and is becoming a more powerful tool in pre and postnatal diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Jung-Min Ko
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Hyon J Kim
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Korea
| | - Chong Kun Cheon
- Department of Pediatrics, School of Medicine, Pusan National University Children's Hospital, Yangsan, Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Center for Diagnostic Oncology, National Cancer Center, Gyeonggi-do, Korea
| | | |
Collapse
|
32
|
Drew LJ, Crabtree GW, Markx S, Stark KL, Chaverneff F, Xu B, Mukai J, Fenelon K, Hsu PK, Gogos JA, Karayiorgou M. The 22q11.2 microdeletion: fifteen years of insights into the genetic and neural complexity of psychiatric disorders. Int J Dev Neurosci 2011; 29:259-81. [PMID: 20920576 PMCID: PMC3074020 DOI: 10.1016/j.ijdevneu.2010.09.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 12/22/2022] Open
Abstract
Over the last fifteen years it has become established that 22q11.2 deletion syndrome (22q11DS) is a true genetic risk factor for schizophrenia. Carriers of deletions in chromosome 22q11.2 develop schizophrenia at rate of 25-30% and such deletions account for as many as 1-2% of cases of sporadic schizophrenia in the general population. Access to a relatively homogeneous population of individuals that suffer from schizophrenia as the result of a shared etiological factor and the potential to generate etiologically valid mouse models provides an immense opportunity to better understand the pathobiology of this disease. In this review we survey the clinical literature associated with the 22q11.2 microdeletions with a focus on neuroanatomical changes. Then, we highlight results from work modeling this structural mutation in animals. The key biological pathways disrupted by the mutation are discussed and how these changes impact the structure and function of neural circuits is described.
Collapse
Affiliation(s)
- Liam J. Drew
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Sander Markx
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
| | - Kimberly L. Stark
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
| | - Florence Chaverneff
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Bin Xu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Karine Fenelon
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | - Pei-Ken Hsu
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
- Integrated Program in Cellular, Molecular, and Biophysical Studies, Columbia University, New York, New York 10032, USA
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Maria Karayiorgou
- Department of Psychiatry, Columbia University, New York, New York 10032, USA
- New York State Psychiatric Institute, New York, New York 10032, USA
| |
Collapse
|
33
|
Kurahashi H, Inagaki H, Ohye T, Kogo H, Tsutsumi M, Kato T, Tong M, Emanuel BS. The constitutional t(11;22): implications for a novel mechanism responsible for gross chromosomal rearrangements. Clin Genet 2011; 78:299-309. [PMID: 20507342 DOI: 10.1111/j.1399-0004.2010.01445.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The constitutional t(11;22)(q23;q11) is the most common recurrent non-Robertsonian translocation in humans. The breakpoint sequences of both chromosomes are characterized by several hundred base pairs of palindromic AT-rich repeats (PATRRs). Similar PATRRs have also been identified at the breakpoints of other nonrecurrent translocations, suggesting that PATRR-mediated chromosomal translocation represents one of the universal pathways for gross chromosomal rearrangement in the human genome. We propose that PATRRs have the potential to form cruciform structures through intrastrand-base pairing in single-stranded DNA, creating a source of genomic instability and leading to translocations. Indeed, de novo examples of the t(11;22) are detected at a high frequency in sperm from normal healthy males. This review synthesizes recent data illustrating a novel paradigm for an apparent spermatogenesis-specific translocation mechanism. This observation has important implications pertaining to the predominantly paternal origin of de novo gross chromosomal rearrangements in humans.
Collapse
Affiliation(s)
- H Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ou Z, Stankiewicz P, Xia Z, Breman AM, Dawson B, Wiszniewska J, Szafranski P, Cooper ML, Rao M, Shao L, South ST, Coleman K, Fernhoff PM, Deray MJ, Rosengren S, Roeder ER, Enciso VB, Chinault AC, Patel A, Kang SHL, Shaw CA, Lupski JR, Cheung SW. Observation and prediction of recurrent human translocations mediated by NAHR between nonhomologous chromosomes. Genome Res 2011; 21:33-46. [PMID: 21205869 PMCID: PMC3012924 DOI: 10.1101/gr.111609.110] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 10/06/2010] [Indexed: 11/24/2022]
Abstract
Four unrelated families with the same unbalanced translocation der(4)t(4;11)(p16.2;p15.4) were analyzed. Both of the breakpoint regions in 4p16.2 and 11p15.4 were narrowed to large ∼359-kb and ∼215-kb low-copy repeat (LCR) clusters, respectively, by aCGH and SNP array analyses. DNA sequencing enabled mapping the breakpoints of one translocation to 24 bp within interchromosomal paralogous LCRs of ∼130 kb in length and 94.7% DNA sequence identity located in olfactory receptor gene clusters, indicating nonallelic homologous recombination (NAHR) as the mechanism for translocation formation. To investigate the potential involvement of interchromosomal LCRs in recurrent chromosomal translocation formation, we performed computational genome-wide analyses and identified 1143 interchromosomal LCR substrate pairs, >5 kb in size and sharing >94% sequence identity that can potentially mediate chromosomal translocations. Additional evidence for interchromosomal NAHR mediated translocation formation was provided by sequencing the breakpoints of another recurrent translocation, der(8)t(8;12)(p23.1;p13.31). The NAHR sites were mapped within 55 bp in ∼7.8-kb paralogous subunits of 95.3% sequence identity located in the ∼579-kb (chr 8) and ∼287-kb (chr 12) LCR clusters. We demonstrate that NAHR mediates recurrent constitutional translocations t(4;11) and t(8;12) and potentially many other interchromosomal translocations throughout the human genome. Furthermore, we provide a computationally determined genome-wide "recurrent translocation map."
Collapse
Affiliation(s)
- Zhishuo Ou
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhilian Xia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amy M. Breman
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Brian Dawson
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Joanna Wiszniewska
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - M. Lance Cooper
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mitchell Rao
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lina Shao
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sarah T. South
- Departments of Pediatrics and Pathology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Karlene Coleman
- Children's Healthcare of Atlanta, Atlanta, Georgia 30033, USA
| | | | - Marcel J. Deray
- Department of Neurology, Miami Children's Hospital, Miami, Florida 33155, USA
| | | | | | | | - A. Craig Chinault
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ankita Patel
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Sung-Hae L. Kang
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A. Shaw
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - James R. Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Sau W. Cheung
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
35
|
Sheridan MB, Kato T, Haldeman-Englert C, Jalali GR, Milunsky JM, Zou Y, Klaes R, Gimelli G, Gimelli S, Gemmill RM, Drabkin HA, Hacker AM, Brown J, Tomkins D, Shaikh TH, Kurahashi H, Zackai EH, Emanuel BS. A palindrome-mediated recurrent translocation with 3:1 meiotic nondisjunction: the t(8;22)(q24.13;q11.21). Am J Hum Genet 2010; 87:209-18. [PMID: 20673865 DOI: 10.1016/j.ajhg.2010.07.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/07/2010] [Accepted: 07/11/2010] [Indexed: 01/18/2023] Open
Abstract
Palindrome-mediated genomic instability has been associated with chromosomal translocations, including the recurrent t(11;22)(q23;q11). We report a syndrome characterized by extremity anomalies, mild dysmorphia, and intellectual impairment caused by 3:1 meiotic segregation of a previously unrecognized recurrent palindrome-mediated rearrangement, the t(8;22)(q24.13;q11.21). There are at least ten prior reports of this translocation, and nearly identical PATRR8 and PATRR22 breakpoints were validated in several of these published cases. PCR analysis of sperm DNA from healthy males indicates that the t(8;22) arises de novo during gametogenesis in some, but not all, individuals. Furthermore, demonstration that de novo PATRR8-to-PATRR11 translocations occur in sperm suggests that palindrome-mediated translocation is a universal mechanism producing chromosomal rearrangements.
Collapse
Affiliation(s)
- Molly B Sheridan
- The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tong M, Kato T, Yamada K, Inagaki H, Kogo H, Ohye T, Tsutsumi M, Wang J, Emanuel BS, Kurahashi H. Polymorphisms of the 22q11.2 breakpoint region influence the frequency of de novo constitutional t(11;22)s in sperm. Hum Mol Genet 2010; 19:2630-7. [PMID: 20392709 DOI: 10.1093/hmg/ddq150] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The constitutional t(11;22) is the most frequent recurrent non-Robertsonian translocation in humans, the breakpoints of which are located within palindromic AT-rich repeats on 11q23 and 22q11 (PATRR11 and PATRR22). Genetic variation of the PATRR11 was found to affect de novo t(11;22) translocation frequency in sperm derived from normal healthy males, suggesting the hypothesis that polymorphisms of the PATRR22 might also influence the translocation frequency. Although the complicated structure of the PATRR22 locus prevented determining the genotype of the PATRR22 in each individual, genotyping of flanking markers as well as identification of rare variants allowed us to demonstrate an association between the PATRR22 allele type and the translocation frequency. We found that size and symmetry of the PATRR22 affect the de novo translocation frequency, which is lower for the shorter or more asymmetric versions. These data lend support to our hypothesis that the PATRRs form secondary structures in the nucleus that induce genomic instability leading to the recurrent translocation.
Collapse
Affiliation(s)
- Maoqing Tong
- Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The constitutional t(11;22)(q23;q11) is a well-known recurrent non-Robertsonian translocation in humans. Although translocations generally occur in a random fashion, the break points of t(11;22)s are concentrated within several hundred base pairs on 11q23 and 22q11. These regions are characterized by palindromic AT-rich repeats (PATRRs), which appear to be responsible for the genomic instability. Translocation-specific PCR detects de novo t(11;22)s in sperm from healthy males at a frequency of 1/10(4)-10(5), but never in lymphoblasts, fibroblasts or other human somatic cell lines. This suggests that the generation of t(11;22) rearrangement is linked to gametogenesis, although female germ cells have not been tested. Here, we have studied eight cases of de novo t(11;22) to determine the parental origin of the translocation using the polymorphisms on the relevant PATRRs. All of the eight translocations were found to be of paternal origin. This result implicates a possible novel mechanism of sperm-specific generation of palindrome-mediated chromosomal translocations.
Collapse
|
38
|
Weier HUG, Greulich-Bode KM, Wu J, Duell T. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping. ACTA ACUST UNITED AC 2009; 2:15-23. [PMID: 20502619 DOI: 10.2174/1875693x00902010015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human genome; however, appear to have a higher propensity than others to rearrange in any host system. Thus, techniques to detect and accurately characterize such rearrangements need to be developed. We developed a technique termed 'Quantitative DNA Fiber Mapping (QDFM)' that allows accurate tagging of sequence elements of interest with near kilobase accuracy and optimized it for delineation of rearrangements in recombinant DNA clones. This paper demonstrates the power of this microscopic approach by investigating YAC rearrangements. In our examples, high-resolution physical maps for regions within the immunoglobulin lambda variant gene cluster were constructed for three different YAC clones carrying deletions of 95 kb and more. Rearrangements within YACs could be demonstrated unambiguously by pairwise mapping of cosmids along YAC DNA molecules. When coverage by YAC clones was not available, distances between cosmid clones were estimated by hybridization of cosmids onto DNA fibers prepared from human genomic DNA. In addition, the QDFM technology provides essential information about clone stability facilitating closure of the maps of the human genome as well as those of model organisms.
Collapse
Affiliation(s)
- Heinz-Ulrich G Weier
- Life Sciences Division, University of California, E.O. Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
39
|
Carter MT, St Pierre SA, Zackai EH, Emanuel BS, Boycott KM. Phenotypic delineation of Emanuel syndrome (supernumerary derivative 22 syndrome): Clinical features of 63 individuals. Am J Med Genet A 2009; 149A:1712-21. [PMID: 19606488 PMCID: PMC2733334 DOI: 10.1002/ajmg.a.32957] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Emanuel syndrome is characterized by multiple congenital anomalies and developmental disability. It is caused by the presence of a supernumerary derivative chromosome that contains material from chromosomes 11 and 22. The origin of this imbalance is 3:1 malsegregation of a parental balanced translocation between chromosomes 11 and 22, which is the most common recurrent reciprocal translocation in humans. Little has been published on the clinical features of this syndrome since the 1980s and information on natural history is limited. We designed a questionnaire to collect information from families recruited through an international online support group, Chromosome 22 Central. Data gathered include information on congenital anomalies, medical and surgical history, developmental and behavioral issues, and current abilities. We received information on 63 individuals with Emanuel syndrome, ranging in age from newborn to adulthood. As previously recognized, congenital anomalies were common, the most frequent being ear pits (76%), micrognathia (60%), heart malformations (57%), and cleft palate (54%). Our data suggest that vision and hearing impairment, seizures, failure to thrive and recurrent infections, particularly otitis media, are common in this syndrome. Psychomotor development is uniformly delayed, however the majority of individuals (over 70%) eventually learn to walk with support. Language development and ability for self-care are also very impaired. This study provides new information on the clinical spectrum and natural history of Emanuel syndrome for families and physicians caring for these individuals.
Collapse
Affiliation(s)
- Melissa T Carter
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Canada.
| | | | | | | | | |
Collapse
|
40
|
Gimelli S, Beri S, Drabkin HA, Gambini C, Gregorio A, Fiorio P, Zuffardi O, Gemmill RM, Giorda R, Gimelli G. The tumor suppressor gene TRC8/RNF139 is disrupted by a constitutional balanced translocation t(8;22)(q24.13;q11.21) in a young girl with dysgerminoma. Mol Cancer 2009; 8:52. [PMID: 19642973 PMCID: PMC2727492 DOI: 10.1186/1476-4598-8-52] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/30/2009] [Indexed: 12/22/2022] Open
Abstract
Background RNF139/TRC8 is a potential tumor suppressor gene with similarity to PTCH, a tumor suppressor implicated in basal cell carcinomas and glioblastomas. TRC8 has the potential to act in a novel regulatory relationship linking the cholesterol/lipid biosynthetic pathway with cellular growth control and has been identified in families with hereditary renal (RCC) and thyroid cancers. Haploinsufficiency of TRC8 may facilitate development of clear cell-RCC in association with VHL mutations, and may increase risk for other tumor types. We report a paternally inherited balanced translocation t(8;22) in a proposita with dysgerminoma. Methods The translocation was characterized by FISH and the breakpoints cloned, sequenced, and compared. DNA isolated from normal and tumor cells was checked for abnormalities by array-CGH. Expression of genes TRC8 and TSN was tested both on dysgerminoma and in the proposita and her father. Results The breakpoints of the translocation are located within the LCR-B low copy repeat on chromosome 22q11.21, containing the palindromic AT-rich repeat (PATRR) involved in recurrent and non-recurrent translocations, and in an AT-rich sequence inside intron 1 of the TRC8 tumor-suppressor gene at 8q24.13. TRC8 was strongly underexpressed in the dysgerminoma. Translin is underexpressed in the dysgerminoma compared to normal ovary. TRC8 is a target of Translin (TSN), a posttranscriptional regulator of genes transcribed by the transcription factor CREM-tau in postmeiotic male germ cells. Conclusion A role for TRC8 in dysgerminoma may relate to its interaction with Translin. We propose a model in which one copy of TRC8 is disrupted by a palindrome-mediated translocation followed by complete loss of expression through suppression, possibly mediated by miRNA.
Collapse
Affiliation(s)
- Stefania Gimelli
- Biologia Generale e Genetica Medica, Università di Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kurahashi H, Inagaki H, Kato T, Hosoba E, Kogo H, Ohye T, Tsutsumi M, Bolor H, Tong M, Emanuel BS. Impaired DNA replication prompts deletions within palindromic sequences, but does not induce translocations in human cells. Hum Mol Genet 2009; 18:3397-406. [PMID: 19520744 DOI: 10.1093/hmg/ddp279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Palindromic regions are unstable and susceptible to deletion in prokaryotes and eukaryotes possibly due to stalled or slow replication. In the human genome, they also appear to become partially or completely deleted, while two palindromic AT-rich repeats (PATRR) contribute to known recurrent constitutional translocations. To explore the mechanism that causes the development of palindrome instabilities in humans, we compared the incidence of de novo translocations and deletions at PATRRs in human cells. Using a highly sensitive PCR assay that can detect single molecules, de novo deletions were detected neither in human somatic cells nor in sperm. However, deletions were detected at low frequency in cultured cell lines. Inhibition of DNA replication by administration of siRNA against the DNA polymerase alpha 1 (POLA1) gene or introduction of POLA inhibitors increased the frequency. This is in contrast to PATRR-mediated translocations that were never detected in similar conditions but were observed frequently in human sperm samples. Further deletions were found to take place during both leading- and lagging-strand synthesis. Our data suggest that stalled or slow replication induces deletions within PATRRs, but that other mechanisms might contribute to PATRR-mediated recurrent translocations in humans.
Collapse
Affiliation(s)
- Hiroki Kurahashi
- Division of Molecular Genetics, Fujita Health University, Toyoake, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang G, Zhao J, Vasquez KM. Methods to determine DNA structural alterations and genetic instability. Methods 2009; 48:54-62. [PMID: 19245837 PMCID: PMC2693251 DOI: 10.1016/j.ymeth.2009.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/15/2009] [Indexed: 11/16/2022] Open
Abstract
Chromosomal DNA is a dynamic structure that can adopt a variety of non-canonical (i.e., non-B) conformations. In this regard, at least 10 different forms of non-B DNA conformations have been identified; many of them have been found to be mutagenic, and associated with human disease development. Despite the importance of non-B DNA structures in genetic instability and DNA metabolic processes, mechanisms by which instability occurs remain largely undefined. The purpose of this review is to summarize current methodologies that are used to address questions in the field of non-B DNA structure-induced genetic instability. Advantages and disadvantages of each method will be discussed. A focused effort to further elucidate the mechanisms of non-B DNA-induced genetic instability will lead to a better understanding of how these structure-forming sequences contribute to the development of human disease.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Junhua Zhao
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
43
|
Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 2009; 54:253-60. [PMID: 19373258 DOI: 10.1038/jhg.2009.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The completion of the human genome project has enabled researchers to characterize the breakpoints for various chromosomal structural abnormalities including deletions, duplications or translocations. This in turn has shed new light on the molecular mechanisms underlying the onset of gross chromosomal rearrangements. On the other hand, advances in genetic manipulation technologies for various model organisms has increased our knowledge of meiotic chromosome segregation, errors which, contribute to chromosomal aneuploidy. This review focuses on the current understanding of germ line chromosomal abnormalities and provides an overview of the mechanisms involved. We refer to our own recent data and those of others to illustrate some of the new paradigms that have arisen in this field. We also discuss some perspectives on the sexual dimorphism of some of the pathways that leads to these chromosomal abnormalities.
Collapse
|
44
|
Wang G, Vasquez KM. Models for chromosomal replication-independent non-B DNA structure-induced genetic instability. Mol Carcinog 2009; 48:286-98. [PMID: 19123200 PMCID: PMC2766916 DOI: 10.1002/mc.20508] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Regions of genomic DNA containing repetitive nucleotide sequences can adopt a number of different structures in addition to the canonical B-DNA form: many of these non-B DNA structures are causative factors in genetic instability and human disease. Although chromosomal DNA replication through such repetitive sequences has been considered a major cause of non-B form DNA structure-induced genetic instability, it is also observed in non-proliferative tissues. In this review, we discuss putative mechanisms responsible for the mutagenesis induced by non-B DNA structures in the absence of chromosomal DNA replication.
Collapse
Affiliation(s)
- Guliang Wang
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| | - Karen M. Vasquez
- Department of Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, 1808 Park Road 1-C, Smithville, TX 78957
| |
Collapse
|
45
|
Inagaki H, Ohye T, Kogo H, Kato T, Bolor H, Taniguchi M, Shaikh TH, Emanuel BS, Kurahashi H. Chromosomal instability mediated by non-B DNA: cruciform conformation and not DNA sequence is responsible for recurrent translocation in humans. Genome Res 2008; 19:191-8. [PMID: 18997000 DOI: 10.1101/gr.079244.108] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chromosomal aberrations have been thought to be random events. However, recent findings introduce a new paradigm in which certain DNA segments have the potential to adopt unusual conformations that lead to genomic instability and nonrandom chromosomal rearrangement. One of the best-studied examples is the palindromic AT-rich repeat (PATRR), which induces recurrent constitutional translocations in humans. Here, we established a plasmid-based model that promotes frequent intermolecular rearrangements between two PATRRs in HEK293 cells. In this model system, the proportion of PATRR plasmid that extrudes a cruciform structure correlates to the levels of rearrangement. Our data suggest that PATRR-mediated translocations are attributable to unusual DNA conformations that confer a common pathway for chromosomal rearrangements in humans.
Collapse
Affiliation(s)
- Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Emanuel BS. Molecular mechanisms and diagnosis of chromosome 22q11.2 rearrangements. ACTA ACUST UNITED AC 2008; 14:11-8. [PMID: 18636632 DOI: 10.1002/ddrr.3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster around the chromosome-specific segmental duplications of proximal 22q11, which are involved in the etiology of these disorders. While the deletions are the result of nonallelic homologous recombination (NAHR) between low copy repeats or segmental duplications within 22q11, the t(11;22) is the result of rearrangement between palindromic AT-rich repeats on 11q and 22q. Here we describe the mechanisms responsible for these recurrent rearrangements, discuss the recurrent deletion endpoints that are the result of NAHR between chromosome 22q specific low copy repeats as well as present current diagnostic approaches to deletion detection.
Collapse
Affiliation(s)
- Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA.
| |
Collapse
|
47
|
|
48
|
Chromosomal translocations in cancer. Biochim Biophys Acta Rev Cancer 2008; 1786:139-52. [PMID: 18718509 DOI: 10.1016/j.bbcan.2008.07.005] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 07/15/2008] [Accepted: 07/19/2008] [Indexed: 11/22/2022]
Abstract
Genetic alterations in DNA can lead to cancer when it is present in proto-oncogenes, tumor suppressor genes, DNA repair genes etc. Examples of such alterations include deletions, inversions and chromosomal translocations. Among these rearrangements chromosomal translocations are considered as the primary cause for many cancers including lymphoma, leukemia and some solid tumors. Chromosomal translocations in certain cases can result either in the fusion of genes or in bringing genes close to enhancer or promoter elements, hence leading to their altered expression. Moreover, chromosomal translocations are used as diagnostic markers for cancer and its therapeutics. In the first part of this review, we summarize the well-studied chromosomal translocations in cancer. Although the mechanism of formation of most of these translocations is still unclear, in the second part we discuss the recent advances in this area of research.
Collapse
|
49
|
Emanuel BS, Saitta SC. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat Rev Genet 2007; 8:869-83. [PMID: 17943194 DOI: 10.1038/nrg2136] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Submicroscopic chromosomal rearrangements that lead to copy-number changes have been shown to underlie distinctive and recognizable clinical phenotypes. The sensitivity to detect copy-number variation has escalated with the advent of array comparative genomic hybridization (CGH), including BAC and oligonucleotide-based platforms. Coupled with improved assemblies and annotation of genome sequence data, these technologies are facilitating the identification of new syndromes that are associated with submicroscopic genomic changes. Their characterization reveals the role of genome architecture in the aetiology of many clinical disorders. We review a group of genomic disorders that are mediated by segmental duplications, emphasizing the impact that high-throughput detection methods and the availability of the human genome sequence have had on their dissection and diagnosis.
Collapse
Affiliation(s)
- Beverly S Emanuel
- Division of Human Genetics, The Children's Hospital of Philadelphia, Abramson Research Center, Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Philadelphia 19104-4318, USA.
| | | |
Collapse
|
50
|
Abstract
Many clinical phenotypes occur sporadically despite genetics contributing partly or entirely to their cause. To what extent are de novo mutations the cause of sporadic traits? Locus-specific mutation rates for genomic rearrangements appear to be two to four orders of magnitude greater than nucleotide-specific rates for base substitutions. Widespread implementation of high-resolution genome analyses to detect de novo copy-number variation may identify the cause of traits previously intractable to conventional genetic analyses.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, 604B; and Texas Children's Hospital; Houston, Texas 77030, USA.
| |
Collapse
|