1
|
Nguyen TH, Limpens M, Bouhmidi S, Paprzycki L, Legrand A, Declèves AE, Heher P, Belayew A, Banerji CRS, Zammit PS, Tassin A. The DUX4-HIF1α Axis in Murine and Human Muscle Cells: A Link More Complex Than Expected. Int J Mol Sci 2024; 25:3327. [PMID: 38542301 PMCID: PMC10969790 DOI: 10.3390/ijms25063327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent inherited muscle disorders and is linked to the inappropriate expression of the DUX4 transcription factor in skeletal muscles. The deregulated molecular network causing FSHD muscle dysfunction and pathology is not well understood. It has been shown that the hypoxia response factor HIF1α is critically disturbed in FSHD and has a major role in DUX4-induced cell death. In this study, we further explored the relationship between DUX4 and HIF1α. We found that the DUX4 and HIF1α link differed according to the stage of myogenic differentiation and was conserved between human and mouse muscle. Furthermore, we found that HIF1α knockdown in a mouse model of DUX4 local expression exacerbated DUX4-mediated muscle fibrosis. Our data indicate that the suggested role of HIF1α in DUX4 toxicity is complex and that targeting HIF1α might be challenging in the context of FSHD therapeutic approaches.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Maelle Limpens
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Sihame Bouhmidi
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Lise Paprzycki
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Philipp Heher
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| | - Christopher R. S. Banerji
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, London NW1 2DB, UK
| | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
2
|
Zheng D, Wondergem A, Kloet S, Willemsen I, Balog J, Tapscott SJ, Mahfouz A, van den Heuvel A, van der Maarel SM. snRNA-seq analysis in multinucleated myogenic FSHD cells identifies heterogeneous FSHD transcriptome signatures associated with embryonic-like program activation and oxidative stress-induced apoptosis. Hum Mol Genet 2024; 33:284-298. [PMID: 37934801 PMCID: PMC10800016 DOI: 10.1093/hmg/ddad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
The sporadic nature of DUX4 expression in FSHD muscle challenges comparative transcriptome analyses between FSHD and control samples. A variety of DUX4 and FSHD-associated transcriptional changes have been identified, but bulk RNA-seq strategies prohibit comprehensive analysis of their spatiotemporal relation, interdependence and role in the disease process. In this study, we used single-nucleus RNA-sequencing of nuclei isolated from patient- and control-derived multinucleated primary myotubes to investigate the cellular heterogeneity in FSHD. Taking advantage of the increased resolution in snRNA-sequencing of fully differentiated myotubes, two distinct populations of DUX4-affected nuclei could be defined by their transcriptional profiles. Our data provides insights into the differences between these two populations and suggests heterogeneity in two well-known FSHD-associated transcriptional aberrations: increased oxidative stress and inhibition of myogenic differentiation. Additionally, we provide evidence that DUX4-affected nuclei share transcriptome features with early embryonic cells beyond the well-described cleavage stage, progressing into the 8-cell and blastocyst stages. Altogether, our data suggests that the FSHD transcriptional profile is defined by a mixture of individual and sometimes mutually exclusive DUX4-induced responses and cellular state-dependent downstream effects.
Collapse
Affiliation(s)
- Dongxu Zheng
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Annelot Wondergem
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Susan Kloet
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Iris Willemsen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, USA
| | - Ahmed Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Van Mourik Broekmanweg 2628 XE, Delft, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
3
|
Engquist EN, Greco A, Joosten LAB, van Engelen BGM, Zammit PS, Banerji CRS. FSHD muscle shows perturbation in fibroadipogenic progenitor cells, mitochondrial function and alternative splicing independently of inflammation. Hum Mol Genet 2024; 33:182-197. [PMID: 37856562 PMCID: PMC10772042 DOI: 10.1093/hmg/ddad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy. FSHD is highly heterogeneous, with patients following a variety of clinical trajectories, complicating clinical trials. Skeletal muscle in FSHD undergoes fibrosis and fatty replacement that can be accelerated by inflammation, adding to heterogeneity. Well controlled molecular studies are thus essential to both categorize FSHD patients into distinct subtypes and understand pathomechanisms. Here, we further analyzed RNA-sequencing data from 24 FSHD patients, each of whom donated a biopsy from both a non-inflamed (TIRM-) and inflamed (TIRM+) muscle, and 15 FSHD patients who donated peripheral blood mononucleated cells (PBMCs), alongside non-affected control individuals. Differential gene expression analysis identified suppression of mitochondrial biogenesis and up-regulation of fibroadipogenic progenitor (FAP) gene expression in FSHD muscle, which was particularly marked on inflamed samples. PBMCs demonstrated suppression of antigen presentation in FSHD. Gene expression deconvolution revealed FAP expansion as a consistent feature of FSHD muscle, via meta-analysis of 7 independent transcriptomic datasets. Clustering of muscle biopsies separated patients in an unbiased manner into clinically mild and severe subtypes, independently of known disease modifiers (age, sex, D4Z4 repeat length). Lastly, the first genome-wide analysis of alternative splicing in FSHD muscle revealed perturbation of autophagy, BMP2 and HMGB1 signalling. Overall, our findings reveal molecular subtypes of FSHD with clinical relevance and identify novel pathomechanisms for this highly heterogeneous condition.
Collapse
Affiliation(s)
- Elise N Engquist
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Geert Grooteplein Zuid 10, Nijmegen 6525 GA, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012, Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, 6525 GA, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
| | - Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, United Kingdom
- The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, United Kingdom
| |
Collapse
|
4
|
Banerji CRS, Greco A, Joosten LAB, van Engelen BGM, Zammit PS. The FSHD muscle-blood biomarker: a circulating transcriptomic biomarker for clinical severity in facioscapulohumeral muscular dystrophy. Brain Commun 2023; 5:fcad221. [PMID: 37731904 PMCID: PMC10507741 DOI: 10.1093/braincomms/fcad221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable skeletal myopathy. Clinical trials for FSHD are hindered by heterogeneous biomarkers poorly associated with clinical severity, requiring invasive muscle biopsy. Macroscopically, FSHD presents with slow fatty replacement of muscle, rapidly accelerated by inflammation. Mis-expression of the transcription factor DUX4 is currently accepted to underlie pathogenesis, and mechanisms including PAX7 target gene repression have been proposed. Here, we performed RNA-sequencing on MRI-guided inflamed and isogenic non-inflamed muscle biopsies from the same clinically characterized FSHD patients (n = 24), alongside isogenic peripheral blood mononucleated cells from a subset of patients (n = 13) and unaffected controls (n = 11). Multivariate models were employed to evaluate the clinical associations of five published FSHD transcriptomic biomarkers. We demonstrated that PAX7 target gene repression can discriminate control, inflamed and non-inflamed FSHD muscle independently of age and sex (P < 0.013), while the discriminatory power of DUX4 target genes was limited to distinguishing FSHD muscle from control. Importantly, the level of PAX7 target gene repression in non-inflamed muscle associated with clinical assessments of FSHD severity (P = 0.04). DUX4 target gene biomarkers in FSHD muscle showed associations with lower limb fat fraction and D4Z4 array length but not clinical assessment. Lastly, PAX7 target gene repression in FSHD muscle correlated with the level in isogenic peripheral blood mononucleated cells (P = 0.002). A refined PAX7 target gene biomarker comprising 143/601 PAX7 target genes computed in peripheral blood (the FSHD muscle-blood biomarker) associated with clinical severity in FSHD patients (P < 0.036). Our new circulating biomarker validates as a classifier of clinical severity in an independent data set of 54 FSHD patient and 29 matched control blood samples, with improved power in older patients (P = 0.03). In summary, we present the minimally invasive FSHD muscle-blood biomarker of FSHD clinical severity valid in patient muscle and blood, of potential use in routine disease monitoring and clinical trials.
Collapse
Affiliation(s)
- Christopher R S Banerji
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
- The Alan Turing Institute, The British Library, London NW1 2DB, UK
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS) and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen 6525, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| |
Collapse
|
5
|
Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol 2023; 19:91-108. [PMID: 36627512 DOI: 10.1038/s41582-022-00762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/11/2023]
Abstract
Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.
Collapse
Affiliation(s)
- Mara S Tihaya
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessica C de Greef
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeffrey M Statland
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
6
|
Ganassi M, Figeac N, Reynaud M, Ortuste Quiroga HP, Zammit PS. Antagonism Between DUX4 and DUX4c Highlights a Pathomechanism Operating Through β-Catenin in Facioscapulohumeral Muscular Dystrophy. Front Cell Dev Biol 2022; 10:802573. [PMID: 36158201 PMCID: PMC9490378 DOI: 10.3389/fcell.2022.802573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant expression of the transcription factor DUX4 from D4Z4 macrosatellite repeats on chromosome 4q35, and its transcriptome, associate with pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). Forced DUX4 expression halts skeletal muscle cell proliferation and induces cell death. DUX4 binds DNA via two homeodomains that are identical in sequence to those of DUX4c (DUX4L9): a closely related transcriptional regulator encoded by a single, inverted, mutated D4Z4 unit located centromeric to the D4Z4 macrosatellite array on chromosome 4. However, the function and contribution of DUX4c to FSHD pathogenesis are unclear. To explore interplay between DUX4, DUX4c, and the DUX4-induced phenotype, we investigated whether DUX4c interferes with DUX4 function in human myogenesis. Constitutive expression of DUX4c rescued the DUX4-induced inhibition of proliferation and reduced cell death in human myoblasts. Functionally, DUX4 promotes nuclear translocation of β-CATENIN and increases canonical WNT signalling. Concomitant constitutive expression of DUX4c prevents β-CATENIN nuclear accumulation and the downstream transcriptional program. DUX4 reduces endogenous DUX4c levels, whereas constitutive expression of DUX4c robustly suppresses expression of DUX4 target genes, suggesting molecular antagonism. In line, DUX4 expression in FSHD myoblasts correlates with reduced DUX4c levels. Addressing the mechanism, we identified a subset of genes involved in the WNT/β-CATENIN pathway that are differentially regulated between DUX4 and DUX4c, whose expression pattern can separate muscle biopsies from severely affected FSHD patients from healthy. Finally, blockade of WNT/β-CATENIN signalling rescues viability of FSHD myoblasts. Together, our study highlights an antagonistic interplay whereby DUX4 alters cell viability via β-CATENIN signalling and DUX4c counteracts aspects of DUX4-mediated toxicity in human muscle cells, potentially acting as a gene modifier for FSHD severity. Importantly, direct DUX4 regulation of the WNT/β-CATENIN pathway informs future therapeutic interventions to ameliorate FSHD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Peter S. Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Caputo V, Megalizzi D, Fabrizio C, Termine A, Colantoni L, Caltagirone C, Giardina E, Cascella R, Strafella C. Update on the Molecular Aspects and Methods Underlying the Complex Architecture of FSHD. Cells 2022; 11:cells11172687. [PMID: 36078093 PMCID: PMC9454908 DOI: 10.3390/cells11172687] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the knowledge of the main mechanisms involved in facioscapulohumeral muscular dystrophy (FSHD), the high heterogeneity and variable penetrance of the disease complicate the diagnosis, characterization and genotype–phenotype correlation of patients and families, raising the need for further research and data. Thus, the present review provides an update of the main molecular aspects underlying the complex architecture of FSHD, including the genetic factors (related to D4Z4 repeated units and FSHD-associated genes), epigenetic elements (D4Z4 methylation status, non-coding RNAs and high-order chromatin interactions) and gene expression profiles (FSHD transcriptome signatures both at bulk tissue and single-cell level). In addition, the review will also describe the methods currently available for investigating the above-mentioned features and how the resulting data may be combined with artificial-intelligence-based pipelines, with the purpose of developing a multifunctional tool tailored to enhancing the knowledge of disease pathophysiology and progression and fostering the research for novel treatment strategies, as well as clinically useful biomarkers. In conclusion, the present review highlights how FSHD should be regarded as a disease characterized by a molecular spectrum of genetic and epigenetic factors, whose alteration plays a differential role in DUX4 repression and, subsequently, contributes to determining the FSHD phenotype.
Collapse
Affiliation(s)
- Valerio Caputo
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Carlo Fabrizio
- Data Science Unit, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Andrea Termine
- Data Science Unit, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavorial Neurology, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-0651501550
| | - Raffaella Cascella
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory-UILDM, Santa Lucia Foundation IRCCS, 00179 Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
8
|
van den Heuvel A, Lassche S, Mul K, Greco A, San León Granado D, Heerschap A, Küsters B, Tapscott SJ, Voermans NC, van Engelen BGM, van der Maarel SM. Facioscapulohumeral dystrophy transcriptome signatures correlate with different stages of disease and are marked by different MRI biomarkers. Sci Rep 2022; 12:1426. [PMID: 35082321 PMCID: PMC8791933 DOI: 10.1038/s41598-022-04817-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
With several therapeutic strategies for facioscapulohumeral muscular dystrophy (FSHD) entering clinical testing, outcome measures are becoming increasingly important. Considering the spatiotemporal nature of FSHD disease activity, clinical trials would benefit from non-invasive imaging-based biomarkers that can predict FSHD-associated transcriptome changes. This study investigated two FSHD-associated transcriptome signatures (DUX4 and PAX7 signatures) in FSHD skeletal muscle biopsies, and tested their correlation with a variety of disease-associated factors, including Ricci clinical severity score, disease duration, D4Z4 repeat size, muscle pathology scorings and functional outcome measures. It establishes that DUX4 and PAX7 signatures both show a sporadic expression pattern in FSHD-affected biopsies, possibly marking different stages of disease. This study analyzed two imaging-based biomarkers-Turbo Inversion Recovery Magnitude (TIRM) hyperintensity and fat fraction-and provides insights into their predictive power as non-invasive biomarkers for FSHD signature detection in clinical trials. Further insights in the heterogeneity of-and correlation between-imaging biomarkers and molecular biomarkers, as provided in this study, will provide important guidance to clinical trial design in FSHD. Finally, this study investigated the role of infiltrating non-muscle cell types in FSHD signature expression and detected potential distinct roles for two fibro-adipogenic progenitor subtypes in FSHD.
Collapse
Affiliation(s)
- Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, Postal zone S-04-P, 2333 ZA, Leiden, The Netherlands
| | - Saskia Lassche
- Department of Neurology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Karlien Mul
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David San León Granado
- Department of Systems Biology, National Center of Biotechnology (CNB-CSIC), Madrid, Spain
| | - Arend Heerschap
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, Postal zone S-04-P, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
9
|
Mocciaro E, Runfola V, Ghezzi P, Pannese M, Gabellini D. DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 2021; 10:3322. [PMID: 34943834 PMCID: PMC8699294 DOI: 10.3390/cells10123322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (E.M.); (V.R.); (P.G.); (M.P.)
| |
Collapse
|
10
|
Gros M, Nunes AM, Daoudlarian D, Pini J, Martinuzzi E, Barbosa S, Ramirez M, Puma A, Villa L, Cavalli M, Grecu N, Garcia J, Siciliano G, Solé G, Juntas-Morales R, Jones PL, Jones T, Glaichenhaus N, Sacconi S. Identification of Serum Interleukin 6 Levels as a Disease Severity Biomarker in Facioscapulohumeral Muscular Dystrophy. J Neuromuscul Dis 2021; 9:83-93. [PMID: 34459413 PMCID: PMC8842759 DOI: 10.3233/jnd-210711] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common myopathies in adults, displaying a progressive, frequently asymmetric involvement of a typical muscles' pattern. FSHD is associated with epigenetic derepression of the polymorphic D4Z4 repeat on chromosome 4q, leading to DUX4 retrogene toxic expression in skeletal muscles. Identifying biomarkers that correlate with disease severity would facilitate clinical management and assess potential FSHD therapeutics' efficacy. OBJECTIVES This study purpose was to analyze serum cytokines to identify potential biomarkers in a large cohort of adult patients with FSHD. METHODS We retrospectively measured the levels of 20 pro-inflammatory and regulatory cytokines in sera from 100 genetically confirmed adult FSHD1 patients. Associations between cytokine concentrations and various clinical scores were investigated. We then measured serum and muscle interleukin 6 (IL-6) levels in a validated FSHD-like mouse model, ranging in severity and DUX4 expression. RESULTS IL-6 was identified as the only cytokine with a concentration correlating with several clinical severity and functional scores, including Clinical Severity Score, Manual Muscle Testing sum score, Brooke and Vignos scores. Further, FSHD patients displayed overall IL-6 levels more than twice high as control, and patients with milder phenotypes exhibited lower IL-6 serum concentration than those with severe muscular weakness. Lastly, an FSHD-like mouse model analysis confirmed that IL-6 levels positively correlate with disease severity and DUX4 expression. CONCLUSIONS Serum IL-6, therefore, shows promise as a serum biomarker of FSHD severity in a large cohort of FSHD1 adult patients.
Collapse
Affiliation(s)
- Marilyn Gros
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Andreia M Nunes
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Douglas Daoudlarian
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Jonathan Pini
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Emanuela Martinuzzi
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Susana Barbosa
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Monique Ramirez
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Angela Puma
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Luisa Villa
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Michele Cavalli
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Nicolae Grecu
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France
| | - Jérémy Garcia
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Département de rééducation, Pôle Neurosciences Rhumatologie, 30 Voie Romaine, Nice, France
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Guilhem Solé
- Centre Hospitalier Universitaire de Bordeaux, Service de Neurologie, Place Amélie Raba-Léon, Bordeaux, France
| | - Raul Juntas-Morales
- Centre Hospitalier Universitaire de Montpellier, Hôpital Gui de Chauliac, 80 Avenue Augustin Fliche, Montpellier, France
| | - Peter L Jones
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Takako Jones
- University of Nevada, Reno School of Medicine, Department of Pharmacology, 1664 N Virginia St, Reno, NV, USA
| | - Nicolas Glaichenhaus
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 Route des Lucioles, Valbonne, France
| | - Sabrina Sacconi
- Université Côte d'Azur, Centre Hospitalier Universitaire de Nice, Système Nerveux Périphérique & Muscle, Hôpital Pasteur 2, 30 voie Romaine CS, Nice, France.,Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institute for Research on Cancer and Aging of Nice, 28 Avenue de Valombrose, Nice, France.,Fédération Hospitalo-Universitaire Oncoage, CHU Nice, Université Côte d'Azur (UCA), Nice, France
| |
Collapse
|
11
|
Voermans NC, Vriens-Munoz Bravo M, Padberg GW, Laforêt P. 1st FSHD European Trial Network workshop:Working towards trial readiness across Europe. Neuromuscul Disord 2021; 31:907-918. [PMID: 34404575 DOI: 10.1016/j.nmd.2021.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/15/2021] [Indexed: 01/29/2023]
Affiliation(s)
- N C Voermans
- FSHD Europe, Radboud University Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, the Netherlands.
| | - M Vriens-Munoz Bravo
- FSHD Europe, Radboud University Medical Centre, P.O. Box 9101, Nijmegen 6500 HB, the Netherlands
| | - G W Padberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - P Laforêt
- Nord-Est-Ile de France Neuromuscular Reference Center, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris Myology Institute, Neuromuscular Pathology Reference Center, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Sorbonne Universités UPMC Univ Paris 06, Paris, France
| | | |
Collapse
|
12
|
Banerji CRS, Zammit PS. Pathomechanisms and biomarkers in facioscapulohumeral muscular dystrophy: roles of DUX4 and PAX7. EMBO Mol Med 2021; 13:e13695. [PMID: 34151531 PMCID: PMC8350899 DOI: 10.15252/emmm.202013695] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/27/2021] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by progressive skeletal muscle weakness and wasting. FSHD is linked to epigenetic derepression of the subtelomeric D4Z4 macrosatellite at chromosome 4q35. Epigenetic derepression permits the distal-most D4Z4 unit to transcribe DUX4, with transcripts stabilised by splicing to a poly(A) signal on permissive 4qA haplotypes. The pioneer transcription factor DUX4 activates target genes that are proposed to drive FSHD pathology. While this toxic gain-of-function model is a satisfying "bottom-up" genotype-to-phenotype link, DUX4 is rarely detectable in muscle and DUX4 target gene expression is inconsistent in patients. A reliable biomarker for FSHD is suppression of a target gene score of PAX7, a master regulator of myogenesis. However, it is unclear how this "top-down" finding links to genomic changes that characterise FSHD and to DUX4. Here, we explore the roles and interactions of DUX4 and PAX7 in FSHD pathology and how the relationship between these two transcription factors deepens understanding via the immune system and muscle regeneration. Considering how FSHD pathomechanisms are represented by "DUX4opathy" models has implications for developing therapies and current clinical trials.
Collapse
Affiliation(s)
| | - Peter S Zammit
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| |
Collapse
|
13
|
Nunes AM, Ramirez M, Jones TI, Jones PL. Identification of candidate miRNA biomarkers for facioscapulohumeral muscular dystrophy using DUX4-based mouse models. Dis Model Mech 2021; 14:dmm049016. [PMID: 34338285 PMCID: PMC8405850 DOI: 10.1242/dmm.049016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by misexpression of DUX4 in skeletal myocytes. As DUX4 is the key therapeutic target in FSHD, surrogate biomarkers of DUX4 expression in skeletal muscle are critically needed for clinical trials. Although no natural animal models of FSHD exist, transgenic mice with inducible DUX4 expression in skeletal muscles rapidly develop myopathic phenotypes consistent with FSHD. Here, we established a new, more-accurate FSHD-like mouse model based on chronic DUX4 expression in a small fraction of skeletal myonuclei that develops pathology mimicking key aspects of FSHD across its lifespan. Utilizing this new aged mouse model and DUX4-inducible mouse models, we characterized the DUX4-related microRNA signatures in skeletal muscles, which represent potential biomarkers for FSHD. We found increased expression of miR-31-5p and miR-206 in muscles expressing different levels of DUX4 and displaying varying degrees of pathology. Importantly, miR-206 expression is significantly increased in serum samples from FSHD patients compared with healthy controls. Our data support miR-31-5p and miR-206 as new potential regulators of muscle pathology and miR-206 as a potential circulating biomarker for FSHD. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | - Takako I. Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Peter L. Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
14
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
15
|
Evaluation of blood gene expression levels in facioscapulohumeral muscular dystrophy patients. Sci Rep 2020; 10:17547. [PMID: 33067535 PMCID: PMC7567883 DOI: 10.1038/s41598-020-74687-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the expression of DUX4 in skeletal muscles. A number of therapeutic approaches are being developed to antagonize the events preceding and following DUX4 expression that leads to muscular dystrophy. Currently, the possibility to evaluate treatment response in clinical trials is hampered by the lack of objective molecular biomarkers connecting the disease cause to clinical performance. In this study we employed RNA-seq to examine gene expression in PAXgene tubes obtained from two independent cohorts of FSHD patients. Analysis of gene expression profiles did not lead to the identification of genes or pathways differentially expressed in FSHD patients, or associated with disease severity. In particular, we did not find evidence that the DUX4 and PAX7 signatures were differentially expressed. On the other hand, we were able to improve patient classification by including single genes or groups of genes in classification models. The best classifier was ROPN1L, a gene known to be expressed in testis, coincidentally the typical location of DUX4 expression. These improvements in patient classification hold the potential to enrich the FSHD clinical trial toolbox.
Collapse
|
16
|
Banerji CRS, Henderson D, Tawil RN, Zammit PS. Skeletal muscle regeneration in facioscapulohumeral muscular dystrophy is correlated with pathological severity. Hum Mol Genet 2020; 29:2746-2760. [PMID: 32744322 PMCID: PMC7530526 DOI: 10.1093/hmg/ddaa164] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal-dominant myopathy characterized by slowly progressive skeletal muscle weakness and wasting. While a regenerative response is often provoked in many muscular dystrophies, little is known about whether a regenerative response is regularly elicited in FSHD muscle, prompting this study. For comparison, we also examined the similarly slowly progressing myotonic dystrophy type 2 (DM2). To first investigate regeneration at the transcriptomic level, we used the 200 human gene Hallmark Myogenesis list. This myogenesis biomarker was elevated in FSHD and control healthy myotubes compared to their myoblast counterparts, so is higher in myogenic differentiation. The myogenesis biomarker was also elevated in muscle biopsies from most independent FSHD, DM2 or Duchenne muscular dystrophy (DMD) studies compared to control biopsies, and on meta-analysis for each condition. In addition, the myogenesis biomarker was a robust binary discriminator of FSHD, DM2 and DMD from controls. We also analysed muscle regeneration at the protein level by immunolabelling muscle biopsies for developmental myosin heavy chain. Such immunolabelling revealed one or more regenerating myofibres in 76% of FSHD muscle biopsies from quadriceps and 91% from tibialis anterior. The mean proportion of regenerating myofibres per quadriceps biopsy was 0.48%, significantly less than 1.72% in the tibialis anterior. All DM2 muscle biopsies contained regenerating myofibres, with a mean of 1.24% per biopsy. Muscle regeneration in FSHD was correlated with the pathological hallmarks of fibre size variation, central nucleation, fibrosis and necrosis/regeneration/inflammation. In summary, the regenerative response in FSHD muscle biopsies correlates with the severity of pathology.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers/metabolism
- Female
- Humans
- Male
- Middle Aged
- Muscle Development/genetics
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Myoblasts/metabolism
- Myosin Heavy Chains/genetics
- Myotonic Dystrophy/genetics
- Myotonic Dystrophy/metabolism
- Myotonic Dystrophy/pathology
- Regeneration/genetics
- Severity of Illness Index
- Transcriptome/genetics
Collapse
Affiliation(s)
| | - Don Henderson
- Neuromuscular Pathology Laboratory, Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Rabi N Tawil
- Neuromuscular Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 1UL, UK
| |
Collapse
|