1
|
Datta P, Rhee KD, Staudt RJ, Thompson JM, Hsu Y, Hassan S, Drack AV, Seo S. Delivering large genes using adeno-associated virus and the CRE-lox DNA recombination system. Hum Mol Genet 2024:ddae144. [PMID: 39393808 DOI: 10.1093/hmg/ddae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Adeno-associated virus (AAV) is a safe and efficient gene delivery vehicle for gene therapies. However, its relatively small packaging capacity limits its use as a gene transfer vector. Here, we describe a strategy to deliver large genes that exceed the AAV's packaging capacity using up to four AAV vectors and the CRE-lox DNA recombination system. We devised novel lox sites by combining non-compatible and reaction equilibrium-modifying lox site variants. These lox sites facilitate sequence-specific and near-unidirectional recombination of AAV vector genomes, enabling efficient reconstitution of up to 16 kb of therapeutic genes in a pre-determined configuration. Using this strategy, we have developed AAV gene therapy vectors to deliver IFT140, PCDH15, CEP290, and CDH23 and demonstrate efficient production of full-length proteins in cultured mammalian cells and mouse retinas. Notably, AAV-IFT140 gene therapy vectors ameliorated retinal degeneration and preserved visual functions in an IFT140-associated retinitis pigmentosa mouse model. The CRE-lox approach described here provides a simple, flexible, and effective platform for generating AAV gene therapy vectors beyond AAV's packaging capacity.
Collapse
Affiliation(s)
- Poppy Datta
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Kun-Do Rhee
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Rylee J Staudt
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Jacob M Thompson
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Salma Hassan
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| | - Arlene V Drack
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Department of Pediatrics, The University of Iowa Carver College of Medicine, 200 Hawkins Drive, Iowa City, IA 52242, United States
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
- Institute for Vision Research, The University of Iowa Carver College of Medicine, 375 Newton Road, Iowa City, IA 52242, United States
| |
Collapse
|
2
|
Hsu Y, Bhattarai S, Thompson JM, Mahoney A, Thomas J, Mayer SK, Datta P, Garrison J, Searby CC, Vandenberghe LH, Seo S, Sheffield VC, Drack AV. Subretinal gene therapy delays vision loss in a Bardet-Biedl Syndrome type 10 mouse model. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:164-181. [PMID: 36700052 PMCID: PMC9841241 DOI: 10.1016/j.omtn.2022.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Blindness in Bardet-Biedl syndrome (BBS) is caused by dysfunction and loss of photoreceptor cells in the retina. BBS10, mutations of which account for approximately 21% of all BBS cases, encodes a chaperonin protein indispensable for the assembly of the BBSome, a cargo adaptor important for ciliary trafficking. The loss of BBSome function in the eye causes a reduced light sensitivity of photoreceptor cells, photoreceptor ciliary malformation, dysfunctional ciliary trafficking, and photoreceptor cell death. Cone photoreceptors lacking BBS10 have congenitally low electrical function in electroretinography. In this study, we performed gene augmentation therapy by injecting a viral construct subretinally to deliver the coding sequence of the mouse Bbs10 gene to treat retinal degeneration in a BBS10 mouse model. Long-term efficacy was assessed by measuring the electrical functions of the retina over time, imaging of the treated regions to visualize cell survival, conducting visually guided swim assays to measure functional vision, and performing retinal histology. We show that subretinal gene therapy slowed photoreceptor cell death and preserved retinal function in treated eyes. Notably, cone photoreceptors regained their electrical function after gene augmentation. Measurement of functional vision showed that subretinal gene therapy provided a significant benefit in delaying vision loss.
Collapse
Affiliation(s)
- Ying Hsu
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Jacob M. Thompson
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Angela Mahoney
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Sara K. Mayer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Janelle Garrison
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | | | - Luk H. Vandenberghe
- Massachusetts Eye and Ear, Grousbeck Gene Therapy Center, Harvard Medical School, Boston, MA, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Val C. Sheffield
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Mansouri V. X-Linked Retinitis Pigmentosa Gene Therapy: Preclinical Aspects. Ophthalmol Ther 2022; 12:7-34. [PMID: 36346573 PMCID: PMC9641696 DOI: 10.1007/s40123-022-00602-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
The most common inherited eye disease is retinitis pigmentosa (RP). X-linked RP (XLRP) is one of the most severe types of RP, with a considerable disease burden. Patients with XLRP experience a decrease in their vision and become blind in their 4th decade of life, causing much morbidity after starting a rather normal life. Treatment of XLRP remains challenging, and current treatments are not effective enough in restoring vision. Gene therapy of XLRP, capable of restoring the functional RPGR gene, showed promising results in preclinical studies and clinical trials; however, to date, no approved product has entered the market. The development of a gene therapy product needs through preliminary assessment of the drug in animal models before administration to humans. In this article, we reviewed the genetic pathology of XLRP, along with the preclinical aspects of the XLRP gene therapy, animal models, associated assessments, and future challenges and directions.
Collapse
Affiliation(s)
- Vahid Mansouri
- Gene Therapy Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mayer SK, Thomas J, Helms M, Kothapalli A, Cherascu I, Salesevic A, Stalter E, Wang K, Datta P, Searby C, Seo S, Hsu Y, Bhattarai S, Sheffield VC, Drack AV. Progressive retinal degeneration of rods and cones in a Bardet-Biedl syndrome type 10 mouse model. Dis Model Mech 2022; 15:dmm049473. [PMID: 36125046 PMCID: PMC9536196 DOI: 10.1242/dmm.049473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a multi-organ autosomal-recessive disorder caused by mutations in at least 22 different genes. A constant feature is early-onset retinal degeneration leading to blindness. Among the most common forms is BBS type 10 (BBS10), which is caused by mutations in a gene encoding a chaperonin-like protein. To aid in developing treatments, we phenotyped a Bbs10 knockout (Bbs10-/-) mouse model. Analysis by optical coherence tomography (OCT), electroretinography (ERG) and a visually guided swim assay (VGSA) revealed a progressive degeneration (from P19 to 8 months of age) of the outer nuclear layer that is visible by OCT and histology. Cone ERG was absent from at least P30, at which time rod ERG was reduced to 74.4% of control levels; at 8 months, rod ERG was 2.3% of that of controls. VGSA demonstrated loss of functional vision at 9 months. These phenotypes progressed more rapidly than retinal degeneration in the Bbs1M390R/M390R knock-in mouse. This study defines endpoints for preclinical trials that can be utilized to detect a treatment effect in the Bbs10-/- mouse and extrapolated to human clinical trials.
Collapse
Affiliation(s)
- Sara K. Mayer
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Jacintha Thomas
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Megan Helms
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Aishwarya Kothapalli
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ioana Cherascu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Adisa Salesevic
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Elliot Stalter
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Wang
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Poppy Datta
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Charles Searby
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Ying Hsu
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Sajag Bhattarai
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Val C. Sheffield
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Arlene V. Drack
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Ophthalmology and Visual Sciences, Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
5
|
Cross N, van Steen C, Zegaoui Y, Satherley A, Angelillo L. Current and Future Treatment of Retinitis Pigmentosa. Clin Ophthalmol 2022; 16:2909-2921. [PMID: 36071725 PMCID: PMC9441588 DOI: 10.2147/opth.s370032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
Retinitis Pigmentosa (RP) is a group of inherited retinal dystrophies (IRDs) characterised by progressive vision loss. Patients with RP experience a significant impact on daily activities, social interactions, and employment, reducing their quality of life. Frequent delays in referrals and no standard treatment for most patients also contribute to the high unmet need for RP. This paper aims to describe the evolving therapeutic landscape for RP including the rationale for advanced therapy medicinal products (ATMPs). A review of available data was conducted in three stages: (1) a search of publicly available literature; (2) qualitative research with physicians treating RP patients in France, Germany, Italy, Spain, and the UK; and (3) a review of leading candidates in the RP pipeline. Globally, there are currently over 100 drugs in development for RP; 50% of which are ATMPs. Amongst the 15 cell and gene therapies in late-stage development, 5 leading candidates have been selected to profile based on the development stage, drug target and geography: gene therapies AGN-151597, GS-030 and VMCO-1 and human stem cell therapies jCell and ReN-003. Hereditary retinal diseases are suitable for treatment with cell and gene therapies due to the accessibility of the retina and its immune privilege and compartmentalisation. Therapeutic approaches that aim to rescue photoreceptors (eg gene therapies) require that non-functional target cells are still present, whereas other therapies (eg cell therapies) are not reliant on the presence of viable photoreceptors. Gene therapies may be attractive as their fundamental goal is to restore vision; however, cell therapies will likely have a broader application and do not rely on genetic testing, which can delay treatment. Ensuring effective therapeutic options for RP patients across disease stages requires the continued diversification and advancement of the development pipeline, and sustained efforts to promote early patient identification and timely diagnosis.
Collapse
Affiliation(s)
| | - Cécile van Steen
- Market Access, Health Technology Assessment & Health Economics and Outcome Research, Europe, the Middle East and Africa, Santen GmbH, Munich, Bavaria, Germany
| | - Yasmina Zegaoui
- Market Access, Lightning Health, London, UK
- Correspondence: Yasmina Zegaoui, Market Access, Lightning Health, 8 Devonshire Square, London, EC2M 4PL, UK, Tel +44 7770918748, Email
| | | | - Luigi Angelillo
- Market Access, Health Technology Assessment & Health Economics and Outcome Research, Europe, the Middle East and Africa, Santen GmbH, Munich, Bavaria, Germany
| |
Collapse
|
6
|
Pollara L, Sottile V, Valente EM. Patient-derived cellular models of primary ciliopathies. J Med Genet 2022; 59:517-527. [DOI: 10.1136/jmedgenet-2021-108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Primary ciliopathies are rare inherited disorders caused by structural or functional defects in the primary cilium, a subcellular organelle present on the surface of most cells. Primary ciliopathies show considerable clinical and genetic heterogeneity, with disruption of over 100 genes causing the variable involvement of several organs, including the central nervous system, kidneys, retina, skeleton and liver. Pathogenic variants in one and the same gene may associate with a wide range of ciliopathy phenotypes, supporting the hypothesis that the individual genetic background, with potential additional variants in other ciliary genes, may contribute to a mutational load eventually determining the phenotypic manifestations of each patient. Functional studies in animal models have uncovered some of the pathophysiological mechanisms linking ciliary gene mutations to the observed phenotypes; yet, the lack of reliable human cell models has previously limited preclinical research and the development of new therapeutic strategies for primary ciliopathies. Recent technical advances in the generation of patient-derived two-dimensional (2D) and three-dimensional (3D) cellular models give a new spur to this research, allowing the study of pathomechanisms while maintaining the complexity of the genetic background of each patient, and enabling the development of innovative treatments to target specific pathways. This review provides an overview of available models for primary ciliopathies, from existing in vivo models to more recent patient-derived 2D and 3D in vitro models. We highlight the advantages of each model in understanding the functional basis of primary ciliopathies and facilitating novel regenerative medicine, gene therapy and drug testing strategies for these disorders.
Collapse
|
7
|
Datta P, Cribbs JT, Seo S. Differential requirement of NPHP1 for compartmentalized protein localization during photoreceptor outer segment development and maintenance. PLoS One 2021; 16:e0246358. [PMID: 33961633 PMCID: PMC8104407 DOI: 10.1371/journal.pone.0246358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Nephrocystin (NPHP1) is a ciliary transition zone protein and its ablation causes nephronophthisis (NPHP) with partially penetrant retinal dystrophy. However, the precise requirements of NPHP1 in photoreceptors are not well understood. Here, we characterize retinal degeneration in a mouse model of NPHP1 and show that NPHP1 is required to prevent infiltration of inner segment plasma membrane proteins into the outer segment during the photoreceptor maturation. We demonstrate that Nphp1 gene-trap mutant mice, which were previously described as null, are likely hypomorphs due to the production of a small quantity of functional mRNAs derived from nonsense-associated altered splicing and skipping of two exons including the one harboring the gene-trap. In homozygous mutant animals, inner segment plasma membrane proteins such as syntaxin-3 (STX3), synaptosomal-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2) accumulate in the outer segment when outer segments are actively elongating. This phenotype, however, is spontaneously ameliorated after the outer segment elongation is completed. Consistent with this, some photoreceptor cell loss (~30%) occurs during the photoreceptor maturation period but it stops afterward. We further show that Nphp1 genetically interacts with Cep290, another NPHP gene, and that a reduction of Cep290 gene dose results in retinal degeneration that continues until adulthood in Nphp1 mutant mice. These findings demonstrate that NPHP1 is required for the confinement of inner segment plasma membrane proteins during the outer segment development, but its requirement diminishes as photoreceptors mature. Our study also suggests that additional mutations in other NPHP genes may influence the penetrance of retinopathy in human NPHP1 patients.
Collapse
Affiliation(s)
- Poppy Datta
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Institute for Vision Research, The University of Iowa, Iowa City, IA, United States of America
| | - J. Thomas Cribbs
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Institute for Vision Research, The University of Iowa, Iowa City, IA, United States of America
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
- Institute for Vision Research, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
8
|
Warnecke A, Giesemann A. Embryology, Malformations, and Rare Diseases of the Cochlea. Laryngorhinootologie 2021; 100:S1-S43. [PMID: 34352899 PMCID: PMC8354575 DOI: 10.1055/a-1349-3824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite the low overall prevalence of individual rare diseases, cochlear
dysfunction leading to hearing loss represents a symptom in a large
proportion. The aim of this work was to provide a clear overview of rare
cochlear diseases, taking into account the embryonic development of the
cochlea and the systematic presentation of the different disorders. Although
rapid biotechnological and bioinformatic advances may facilitate the
diagnosis of a rare disease, an interdisciplinary exchange is often required
to raise the suspicion of a rare disease. It is important to recognize that
the phenotype of rare inner ear diseases can vary greatly not only in
non-syndromic but also in syndromic hearing disorders. Finally, it becomes
clear that the phenotype of the individual rare diseases cannot be
determined exclusively by classical genetics even in monogenetic
disorders.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Klinik für Hals-, Nasen- und Ohrenheilkunde, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover.,Deutsche Forschungsgemeinschaft Exzellenzcluster"Hearing4all" - EXC 2177/1 - Project ID 390895286
| | - Anja Giesemann
- Institut für Neuroradiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Straße 1, 30625 Hannover
| |
Collapse
|
9
|
Aleman TS, O'Neil EC, O'Connor K, Jiang YY, Aleman IA, Bennett J, Morgan JIW, Toussaint BW. Bardet-Biedl syndrome-7 ( BBS7) shows treatment potential and a cone-rod dystrophy phenotype that recapitulates the non-human primate model. Ophthalmic Genet 2021; 42:252-265. [PMID: 33729075 DOI: 10.1080/13816810.2021.1888132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: To provide a detailed ophthalmic phenotype of two male patients with Bardet-Biedl Syndrome (BBS) due to mutations in the BBS7 geneMethods: Two brothers ages 26 (Patient 1, P1) and 23 (P2) underwent comprehensive ophthalmic evaluations over three years. Visual function was assessed with full-field electroretinograms (ffERGs), kinetic and chromatic perimetry, multimodal imaging with spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF) with short- (SW) and near-infrared (NIR) excitation lights and adaptive optics scanning light ophthalmoscopy (AOSLO).Results: Both siblings had a history of obesity and postaxial polydactyly; P2 had diagnoses of type 1 Diabetes Mellitus, Addison's disease, high-functioning autism-spectrum disorder and -12D myopia. Visual acuities were better than 20/30. Kinetic fields were moderately constricted. Cone-mediated ffERGs were undetectable, rod ERGs were ~80% of normal mean. Static perimetry showed severe central cone and rod dysfunction. Foveal to parafoveal hypoautofluorescence, most obvious on NIR-FAF, co-localized with outer segment shortening/loss and outer nuclear layer thinning by SD-OCT, and with reduced photoreceptors densities by AOSLO. A structural-functional dissociation was confirmed for cone- and rod-mediated parameters. Worsening of the above abnormalities was documented by SD-OCT and FAF in P2 at 3 years. Gene screening identified compound heterozygous mutations in BBS7 (p.Val266Glu: c.797 T > A of maternal origin; c.1781_1783delCAT, paternal) in both patients.Conclusions: BBS7-associated retinal degeneration may present as a progressive cone-rod dystrophy pattern, reminiscent of both the murine and non-human primate models of the disease. Predominantly central retinal abnormalities in both cone and rod photoreceptors showed a structural-functional dissociation, an ideal scenario for gene augmentation treatments.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin C O'Neil
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keli O'Connor
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu You Jiang
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabella A Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jean Bennett
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica I W Morgan
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian W Toussaint
- Christiana Care Health System, Wilmington, Delaware, USA.,Department of Ophthalmology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Molinari E, Sayer JA. Gene and epigenetic editing in the treatment of primary ciliopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:353-401. [PMID: 34175048 DOI: 10.1016/bs.pmbts.2021.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary ciliopathies are inherited human disorders that arise from mutations in ciliary genes. They represent a spectrum of severe, incurable phenotypes, differentially involving several organs, including the kidney and the eye. The development of gene-based therapies is opening up new avenues for the treatment of ciliopathies. Particularly attractive is the possibility of correcting in situ the causative genetic mutation, or pathological epigenetic changes, through the use of gene editing tools. Due to their versatility and efficacy, CRISPR/Cas-based systems represent the most promising gene editing toolkit for clinical applications. However, delivery and specificity issues have so far held back the translatability of CRISPR/Cas-based therapies into clinical practice, especially where systemic administration is required. The eye, with its characteristics of high accessibility and compartmentalization, represents an ideal target for in situ gene correction. Indeed, studies for the evaluation of a CRISPR/Cas-based therapy for in vivo gene correction to treat a retinal ciliopathy have reached the clinical stage. Further technological advances may be required for the development of in vivo CRISPR-based treatments for the kidney. We discuss here the possibilities and the challenges associated to the implementation of CRISPR/Cas-based therapies for the treatment of primary ciliopathies with renal and retinal phenotypes.
Collapse
Affiliation(s)
- Elisa Molinari
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom; Renal Services, The Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|