1
|
Schuster J, Lu X, Dang Y, Klar J, Wenz A, Dahl N, Chen X. Epigenetic insights into GABAergic development in Dravet Syndrome iPSC and therapeutic implications. eLife 2024; 12:RP92599. [PMID: 39190448 PMCID: PMC11349296 DOI: 10.7554/elife.92599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024] Open
Abstract
Dravet syndrome (DS) is a devastating early-onset refractory epilepsy syndrome caused by variants in the SCN1A gene. A disturbed GABAergic interneuron function is implicated in the progression to DS but the underlying developmental and pathophysiological mechanisms remain elusive, in particularly at the chromatin level. Induced pluripotent stem cells (iPSCs) derived from DS cases and healthy donors were used to model disease-associated epigenetic abnormalities of GABAergic development. Chromatin accessibility was assessed at multiple time points (Day 0, Day 19, Day 35, and Day 65) of GABAergic differentiation. Additionally, the effects of the commonly used anti-seizure drug valproic acid (VPA) on chromatin accessibility were elucidated in GABAergic cells. The distinct dynamics in the chromatin profile of DS iPSC predicted accelerated early GABAergic development, evident at D19, and diverged further from the pattern in control iPSC with continued differentiation, indicating a disrupted GABAergic maturation. Exposure to VPA at D65 reshaped the chromatin landscape at a variable extent in different iPSC-lines and rescued the observed dysfunctional development of some DS iPSC-GABA. The comprehensive investigation on the chromatin landscape of GABAergic differentiation in DS-patient iPSC offers valuable insights into the epigenetic dysregulations associated with interneuronal dysfunction in DS. Moreover, the detailed analysis of the chromatin changes induced by VPA in iPSC-GABA holds the potential to improve the development of personalized and targeted anti-epileptic therapies.
Collapse
Affiliation(s)
- Jens Schuster
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Xi Lu
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Yonglong Dang
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Amelie Wenz
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life LaboratoryUppsalaSweden
| |
Collapse
|
2
|
Charles S, Jackson-Holmes E, Sun G, Zhou Y, Siciliano B, Niu W, Han H, Nikitina A, Kemp ML, Wen Z, Lu H. Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604365. [PMID: 39091761 PMCID: PMC11291105 DOI: 10.1101/2024.07.19.604365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Human brain organoids produce anatomically relevant cellular structures and recapitulate key aspects of in vivo brain function, which holds great potential to model neurological diseases and screen therapeutics. However, the long growth time of 3D systems complicates the culturing of brain organoids and results in heterogeneity across samples hampering their applications. We developed an integrated platform to enable robust and long-term culturing of 3D brain organoids. We designed a mesofluidic bioreactor device based on a reaction-diffusion scaling theory, which achieves robust media exchange for sufficient nutrient delivery in long-term culture. We integrated this device with longitudinal tracking and machine learning-based classification tools to enable non-invasive quality control of live organoids. This integrated platform allows for sample pre-selection for downstream molecular analysis. Transcriptome analyses of organoids revealed that our mesofluidic bioreactor promoted organoid development while reducing cell death. Our platform thus offers a generalizable tool to establish reproducible culture standards for 3D cellular systems for a variety of applications beyond brain organoids.
Collapse
Affiliation(s)
- Seleipiri Charles
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Emily Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Ying Zhou
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Benjamin Siciliano
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, 615 Michael Street, Atlanta, GA, 30322, U.S.A
| | - Weibo Niu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Haejun Han
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Arina Nikitina
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Melissa L Kemp
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| |
Collapse
|
3
|
Chapman G, Determan J, Jetter H, Kaushik K, Prakasam R, Kroll KL. Defining cis-regulatory elements and transcription factors that control human cortical interneuron development. iScience 2024; 27:109967. [PMID: 38827400 PMCID: PMC11140214 DOI: 10.1016/j.isci.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Although human cortical interneurons (cINs) are a minority population in the cerebral cortex, disruption of interneuron development is a frequent contributor to neurodevelopmental disorders. Here, we utilized a model for deriving cINs from human embryonic stem cells to profile chromatin state changes and generate an atlas of cis-regulatory elements (CREs) controlling human cIN development. We used these data to define candidate transcription factors (TFs) that may bind these CREs to regulate interneuron progenitor specification. Among these were RFX3 and RFX4, risk genes for autism spectrum disorder (ASD) with uncharacterized roles in human neuronal development. Using RFX3 and RFX4 knockdown models, we demonstrated new requirements for both genes in interneuron progenitor specification, with RFX3 deficiency causing precocious neuronal differentiation while RFX4 deficiency instead resulted in cessation of progenitor cell proliferation. Together, this work both defined central features of cis-regulatory control and identified new TF requirements for human interneuron development.
Collapse
Affiliation(s)
- Gareth Chapman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julianna Determan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haley Jetter
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Komal Kaushik
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Chaudhari LR, Kawale AA, Desai SS, Kashte SB, Joshi MG. Pathophysiology of Spinal Cord Injury and Tissue Engineering Approach for Its Neuronal Regeneration: Current Status and Future Prospects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:51-81. [PMID: 36038807 DOI: 10.1007/5584_2022_731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
A spinal cord injury (SCI) is a very debilitating condition causing loss of sensory and motor function as well as multiple organ failures. Current therapeutic options like surgery and pharmacotherapy show positive results but are incapable of providing a complete cure for chronic SCI symptoms. Tissue engineering, including neuroprotective or growth factors, stem cells, and biomaterial scaffolds, grabs attention because of their potential for regeneration and ability to bridge the gap in the injured spinal cord (SC). Preclinical studies with tissue engineering showed functional recovery and neurorestorative effects. Few clinical trials show the safety and efficacy of the tissue engineering approach. However, more studies should be carried out for potential treatment modalities. In this review, we summarize the pathophysiology of SCI and its current treatment modalities, including surgical, pharmacological, and tissue engineering approaches following SCI in preclinical and clinical phases.
Collapse
Affiliation(s)
- Leena R Chaudhari
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Akshay A Kawale
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Sangeeta S Desai
- Department of Obstetrics and Gynecology, Dr. D Y Patil Medical College, Hospital and Research Institute, Kolhapur, Maharashtra, India
| | - Shivaji B Kashte
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India
| | - Meghnad G Joshi
- Department of Stem Cells and Regenerative Medicine, D. Y. Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, India.
- Stem Plus Biotech, SMK Commercial Complex, Sangli, Maharashtra, India.
| |
Collapse
|
5
|
Human In Vitro Models of Epilepsy Using Embryonic and Induced Pluripotent Stem Cells. Cells 2022; 11:cells11243957. [PMID: 36552721 PMCID: PMC9776452 DOI: 10.3390/cells11243957] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022] Open
Abstract
The challenges in making animal models of complex human epilepsy phenotypes with varied aetiology highlights the need to develop alternative disease models that can address the limitations of animal models by effectively recapitulating human pathophysiology. The advances in stem cell technology provide an opportunity to use human iPSCs to make disease-in-a-dish models. The focus of this review is to report the current information and progress in the generation of epileptic patient-specific iPSCs lines, isogenic control cell lines, and neuronal models. These in vitro models can be used to study the underlying pathological mechanisms of epilepsies, anti-seizure medication resistance, and can also be used for drug testing and drug screening with their isogenic control cell lines.
Collapse
|