1
|
Boso D, Tognon M, Curtarello M, Minuzzo S, Piga I, Brillo V, Lazzarini E, Carlet J, Marra L, Trento C, Rasola A, Masgras I, Caporali L, Del Ben F, Brisotto G, Turetta M, Pastorelli R, Brunelli L, Navaglia F, Esposito G, Grassi A, Indraccolo S. Anti-VEGF therapy selects for clones resistant to glucose starvation in ovarian cancer xenografts. J Exp Clin Cancer Res 2023; 42:196. [PMID: 37550722 PMCID: PMC10405561 DOI: 10.1186/s13046-023-02779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Genetic and metabolic heterogeneity are well-known features of cancer and tumors can be viewed as an evolving mix of subclonal populations, subjected to selection driven by microenvironmental pressures or drug treatment. In previous studies, anti-VEGF therapy was found to elicit rewiring of tumor metabolism, causing marked alterations in glucose, lactate ad ATP levels in tumors. The aim of this study was to evaluate whether differences in the sensitivity to glucose starvation existed at the clonal level in ovarian cancer cells and to investigate the effects induced by anti-VEGF therapy on this phenotype by multi-omics analysis. METHODS Clonal populations, obtained from both ovarian cancer cell lines (IGROV-1 and SKOV3) and tumor xenografts upon glucose deprivation, were defined as glucose deprivation resistant (GDR) or glucose deprivation sensitive (GDS) clones based on their in vitro behaviour. GDR and GDS clones were characterized using a multi-omics approach, including genetic, transcriptomic and metabolic analysis, and tested for their tumorigenic potential and reaction to anti-angiogenic therapy. RESULTS Two clonal populations, GDR and GDS, with strikingly different viability following in vitro glucose starvation, were identified in ovarian cancer cell lines. GDR clones survived and overcame glucose starvation-induced stress by enhancing mitochondrial oxidative phosphorylation (OXPHOS) and both pyruvate and lipids uptake, whereas GDS clones were less able to adapt and died. Treatment of ovarian cancer xenografts with the anti-VEGF drug bevacizumab positively selected for GDR clones that disclosed increased tumorigenic properties in NOD/SCID mice. Remarkably, GDR clones were more sensitive than GDS clones to the mitochondrial respiratory chain complex I inhibitor metformin, thus suggesting a potential therapeutic strategy to target the OXPHOS-metabolic dependency of this subpopulation. CONCLUSION A glucose-deprivation resistant population of ovarian cancer cells showing druggable OXPHOS-dependent metabolic traits is enriched in experimental tumors treated by anti-VEGF therapy.
Collapse
Affiliation(s)
- Daniele Boso
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - Martina Tognon
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Matteo Curtarello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sonia Minuzzo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | - Ilaria Piga
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | | | - Elisabetta Lazzarini
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy
| | - Jessica Carlet
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Ludovica Marra
- Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Chiara Trento
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Neuroscience, National Research Council, Padova, Italy
| | - Leonardo Caporali
- Department of Biomedical and Neuromotor Sciences - DIBINEM, University of Bologna, Bologna, Italy
| | - Fabio Del Ben
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Giulia Brisotto
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Matteo Turetta
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Roberta Pastorelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Brunelli
- Laboratory of Mass Spectrometry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Filippo Navaglia
- Laboratory Medicine, Department of Medicine-DIMED, University Hospital of Padova, Padova, Italy
| | - Giovanni Esposito
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Angela Grassi
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Stefano Indraccolo
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, via Gattamelata 64, 35128, Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, Padova, 35124, Italy.
| |
Collapse
|
2
|
Abstract
In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome (PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
Collapse
Affiliation(s)
- Jonathan Tak-Sum Chow
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|