1
|
Banks E, Francis V, Lin SJ, Kharfallah F, Fonov V, Lévesque M, Han C, Kulasekaran G, Tuznik M, Bayati A, Al-Khater R, Alkuraya FS, Argyriou L, Babaei M, Bahlo M, Bakhshoodeh B, Barr E, Bartik L, Bassiony M, Bertrand M, Braun D, Buchert R, Budetta M, Cadieux-Dion M, Calame DG, Cope H, Cushing D, Efthymiou S, Elmaksoud MA, El Said HG, Froukh T, Gill HK, Gleeson JG, Gogoll L, Goh ESY, Gowda VK, Haack TB, Hashem MO, Hauser S, Hoffman TL, Hogue JS, Hosokawa A, Houlden H, Huang K, Huynh S, Karimiani EG, Kaulfuß S, Korenke GC, Kritzer A, Lee H, Lupski JR, Marco EJ, McWalter K, Minassian A, Minassian BA, Murphy D, Neira-Fresneda J, Northrup H, Nyaga DM, Oehl-Jaschkowitz B, Osmond M, Person R, Pehlivan D, Petree C, Sadleir LG, Saunders C, Schoels L, Shashi V, Spillmann RC, Srinivasan VM, Torbati PN, Tos T, Zaki MS, Zhou D, Zweier C, Trempe JF, Durcan TM, Gan-Or Z, Avoli M, Alves C, Varshney GK, Maroofian R, Rudko DA, McPherson PS. Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. Nat Commun 2024; 15:7239. [PMID: 39174524 PMCID: PMC11341845 DOI: 10.1038/s41467-024-51310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) feature altered brain development, developmental delay and seizures, with seizures exacerbating developmental delay. Here we identify a cohort with biallelic variants in DENND5A, encoding a membrane trafficking protein, and develop animal models with phenotypes like the human syndrome. We demonstrate that DENND5A interacts with Pals1/MUPP1, components of the Crumbs apical polarity complex required for symmetrical division of neural progenitor cells. Human induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division with an inherent propensity to differentiate into neurons. These phenotypes result from misalignment of the mitotic spindle in apical neural progenitors. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state, ultimately shortening the period of neurogenesis. This study provides a mechanism for DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.
Collapse
Affiliation(s)
- Emily Banks
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Fares Kharfallah
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Vladimir Fonov
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Maxime Lévesque
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Marius Tuznik
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Armin Bayati
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | | | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Loukas Argyriou
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Melanie Bahlo
- Walter and Eliza Hall Institute for Medical Research, Parkville, VIC, Australia
| | | | - Eileen Barr
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Lauren Bartik
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | | | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mauro Budetta
- Paediatric and Child Neurology Unit, Cava de' Tirreni AOU S. Giovanni di Dio e Ruggiero d'Aragona Hospital, Salerno, Italy
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
| | - Daniel G Calame
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Donna Cushing
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Marwa Abd Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Harinder K Gill
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC, Canada
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Laura Gogoll
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elaine S-Y Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON, Canada
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Stefan Hauser
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, 72076, Germany
| | - Trevor L Hoffman
- Department of Regional Genetics, Southern California Kaiser Permanente Medical Group, Anaheim, CA, USA
| | | | - Akimoto Hosokawa
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Stephanie Huynh
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC, Canada
| | - Ehsan G Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center, Göttingen, Germany
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, Oldenburg, Germany
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Hane Lee
- 3billion Inc, Seoul, South Korea
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Arakel Minassian
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Berge A Minassian
- Department of Pediatrics and Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David Murphy
- Department of Clinical and Movement Neurosciences, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | | | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada
| | | | - Davut Pehlivan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, New Zealand
| | - Carol Saunders
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO, USA
- Center for Pediatric Genomic Medicine Children's Mercy, Kansas City, MO, USA
| | - Ludger Schoels
- German Center of Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, 72076, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Rebecca C Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | | | - Paria N Torbati
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Tulay Tos
- Department of Medical Genetics, University of Health Sciences, Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Ankara, Turkey
| | - Maha S Zaki
- Human Genetics and Genome Research Institute, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Dihong Zhou
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
| | - Cesar Alves
- Division of Neuroradiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London (UCL) Queen Square Institute of Neurology, London, UK
| | - David A Rudko
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada
- McConnell Brain Imaging Centre, the Neuro, Montréal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, the Neuro, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Sterling NA, Cho SH, Kim S. Entosis implicates a new role for P53 in microcephaly pathogenesis, beyond apoptosis. Bioessays 2024; 46:e2300245. [PMID: 38778437 DOI: 10.1002/bies.202300245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Entosis, a form of cell cannibalism, is a newly discovered pathogenic mechanism leading to the development of small brains, termed microcephaly, in which P53 activation was found to play a major role. Microcephaly with entosis, found in Pals1 mutant mice, displays P53 activation that promotes entosis and apoptotic cell death. This previously unappreciated pathogenic mechanism represents a novel cellular dynamic in dividing cortical progenitors which is responsible for cell loss. To date, various recent models of microcephaly have bolstered the importance of P53 activation in cell death leading to microcephaly. P53 activation caused by mitotic delay or DNA damage manifests apoptotic cell death which can be suppressed by P53 removal in these animal models. Such genetic studies attest P53 activation as quality control meant to eliminate genomically unfit cells with minimal involvement in the actual function of microcephaly associated genes. In this review, we summarize the known role of P53 activation in a variety of microcephaly models and introduce a novel mechanism wherein entotic cell cannibalism in neural progenitors is triggered by P53 activation.
Collapse
Affiliation(s)
- Noelle A Sterling
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
- Biomedical Sciences Graduate Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| | - Seo-Hee Cho
- Center for Translational Medicine, Department of Medicine, Sydney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Zanotta N, Panzeri E, Minghetti S, Citterio A, Giorda R, Marelli S, Bassi MT, Zucca C. A case of a childhood onset developmental encephalopathy with a novel de novo truncating variant in the Membrane Protein Palmitoylated 5 (MPP5) gene. Seizure 2024; 116:151-155. [PMID: 36710240 DOI: 10.1016/j.seizure.2023.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Membrane Protein Palmitoylated 5 (MPP5) is a highly conserved apical complex protein, essential for cell polarity. Defects in neuronal cell polarity are associated with neurologic disorders. Only three patients with heterozygous MPP5 de novo variants have been reported so far, with global developmental delay, behavioral changes and in only one case epileptic seizures. OBJECTIVE To describe a new patient with a novel truncating de novo mutation in MPP5 and to characterize in detail the epileptic phenotype and electroencephalographic features of the encephalopathy. METHODS We identified a novel truncating de novo mutation in MPP5 in a 44 year old patient by exome sequencing (p.Ser498Phefs*15). We retrospectively analyzed his clinical and instrumental data along a thirty-year follow up. RESULT Our patient presents with generalized tonic-clonic seizures, myoclonic and clonic seizures, non-epileptic myoclonus, tremor, severe intellectual disability, mild face dysmorphic traits, and psychosis. DISCUSSION AND CONCLUSION We present a case of a childhood onset developmental encephalopathy with a likely-pathogenic variant in the MPP5 gene.. This represents the first complete description of the epileptic syndrome associated with the MPP5 gene.
Collapse
Affiliation(s)
- Nicoletta Zanotta
- Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea Via don Luigi Monza, 20, Bosisio Parini, Lecco 23842, Italy.
| | - Elena Panzeri
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea Via don Luigi Monza, 20, Bosisio Parini, Lecco 23842, Italy
| | - Sara Minghetti
- Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea Via don Luigi Monza, 20, Bosisio Parini, Lecco 23842, Italy
| | - Andrea Citterio
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea Via don Luigi Monza, 20, Bosisio Parini, Lecco 23842, Italy
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea Via don Luigi Monza, 20, Bosisio Parini, Lecco 23842, Italy
| | - Susan Marelli
- Medical Genetic Service, Scientific Institute, IRCCS E. Medea Via don Luigi Monza, 20, Bosisio Parini, Lecco 23842, Italy
| | - Maria Teresa Bassi
- Molecular Biology Laboratory, Scientific Institute, IRCCS E. Medea Via don Luigi Monza, 20, Bosisio Parini, Lecco 23842, Italy
| | - Claudio Zucca
- Clinical Neurophysiology Unit, Scientific Institute, IRCCS E. Medea Via don Luigi Monza, 20, Bosisio Parini, Lecco 23842, Italy
| |
Collapse
|
4
|
Banks E, Francis V, Lin SJ, Kharfallah F, Fonov V, Levesque M, Han C, Kulasekaran G, Tuznik M, Bayati A, Al-Khater R, Alkuraya FS, Argyriou L, Babaei M, Bahlo M, Bakhshoodeh B, Barr E, Bartik L, Bassiony M, Bertrand M, Braun D, Buchert R, Budetta M, Cadieux-Dion M, Calame D, Cope H, Cushing D, Efthymiou S, Elmaksoud MA, El Said HG, Froukh T, Gill HK, Gleeson JG, Gogoll L, Goh ESY, Gowda VK, Haack TB, Hashem MO, Hauser S, Hoffman TL, Hogue JS, Hosokawa A, Houlden H, Huang K, Huynh S, Karimiani EG, Kaulfuß S, Korenke GC, Kritzer A, Lee H, Lupski JR, Marco EJ, McWalter K, Minassian A, Minassian BA, Murphy D, Neira-Fresneda J, Northrup H, Nyaga D, Oehl-Jaschkowitz B, Osmond M, Person R, Pehlivan D, Petree C, Sadleir LG, Saunders C, Schoels L, Shashi V, Spillman RC, Srinivasan VM, Torbati PN, Tos T, Zaki MS, Zhou D, Zweier C, Trempe JF, Durcan TM, Gan-Or Z, Avoli M, Alves C, Varshney GK, Maroofian R, Rudko DA, McPherson PS. Loss of symmetric cell division of apical neural progenitors drives DENND5A-related developmental and epileptic encephalopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2022.08.23.22278845. [PMID: 38352438 PMCID: PMC10863025 DOI: 10.1101/2022.08.23.22278845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Developmental and epileptic encephalopathies (DEEs) are a heterogenous group of epilepsies in which altered brain development leads to developmental delay and seizures, with the epileptic activity further negatively impacting neurodevelopment. Identifying the underlying cause of DEEs is essential for progress toward precision therapies. Here we describe a group of individuals with biallelic variants in DENND5A and determine that variant type is correlated with disease severity. We demonstrate that DENND5A interacts with MUPP1 and PALS1, components of the Crumbs apical polarity complex, which is required for both neural progenitor cell identity and the ability of these stem cells to divide symmetrically. Induced pluripotent stem cells lacking DENND5A fail to undergo symmetric cell division during neural induction and have an inherent propensity to differentiate into neurons, and transgenic DENND5A mice, with phenotypes like the human syndrome, have an increased number of neurons in the adult subventricular zone. Disruption of symmetric cell division following loss of DENND5A results from misalignment of the mitotic spindle in apical neural progenitors. A subset of DENND5A is localized to centrosomes, which define the spindle poles during mitosis. Cells lacking DENND5A orient away from the proliferative apical domain surrounding the ventricles, biasing daughter cells towards a more fate-committed state and ultimately shortening the period of neurogenesis. This study provides a mechanism behind DENND5A-related DEE that may be generalizable to other developmental conditions and provides variant-specific clinical information for physicians and families.
Collapse
Affiliation(s)
- Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Vincent Francis
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Fares Kharfallah
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Vladimir Fonov
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Maxime Levesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Chanshuai Han
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Gopinath Kulasekaran
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Marius Tuznik
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Reem Al-Khater
- Johns Hopkins Aramco Healthcare, Dhahran 34465, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Loukas Argyriou
- Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - Meisam Babaei
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Melanie Bahlo
- Walter and Eliza Hall Institute for Medical Research, Parkville Victoria 3052, Australia
| | | | - Eileen Barr
- Emory University, Department of Human Genetics, Atlanta, GA 30322, USA
| | - Lauren Bartik
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | | | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Mauro Budetta
- Paediatric and Child Neurology Unit, Cava de' Tirreni AOU S. Giovanni di Dio e Ruggiero d'Aragona Hospital, Salerno, Italy
| | - Maxime Cadieux-Dion
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Daniel Calame
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Donna Cushing
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON L5B 1B8, Canada
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marwa A Elmaksoud
- Neurology Unit, Department of Pediatrics, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Huda G El Said
- Department of Family Health, High Institute of Public Health, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman 19392, Jordan
| | - Harinder K Gill
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC V6H 3N1, Canada
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Laura Gogoll
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elaine S-Y Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, ON L5B 1B8, Canada
| | - Vykuntaraju K Gowda
- Department of Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, India
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia
| | - Stefan Hauser
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen 72076, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Trevor L Hoffman
- Southern California Kaiser Permanente Medical Group, Department of Regional Genetics, Anaheim, CA 92806, USA
| | | | - Akimoto Hosokawa
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Stephanie Huynh
- Provincial Medical Genetics Program at BC Women's Health Centre, Vancouver, BC V6H 3N1, Canada
| | - Ehsan G Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, Oldenburg 26133, Germany
| | - Amy Kritzer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hane Lee
- 3billion, Inc, Seoul, South Korea
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Arakel Minassian
- Centre for Applied Genomics, Genetics, and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Berge A Minassian
- UT Southwestern Medical Center, Departments of Pediatrics and Neurology, Dallas, TX 75390, USA
| | - David Murphy
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children's Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Denis Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | | | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | | | - Davut Pehlivan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Carol Saunders
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, Children's Mercy Hospital, Kansas City, MO 64108, USA
- Center for Pediatric Genomic Medicine Children's Mercy - Kansas City, Missouri, USA
| | - Ludger Schoels
- Center for Neurology and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen 72076, Germany
- German Center of Neurodegenerative Diseases (DZNE), Tübingen 72076, Germany
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Rebecca C Spillman
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Paria N Torbati
- Department of Medical Genetics, Next Generation Genetic Polyclinic, Mashhad, Iran
| | - Tulay Tos
- University of Health Sciences, Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Maha S Zaki
- Human Genetics and Genome Research Division, Clinical Genetics Department, National Research Centre, Cairo, Egypt
| | - Dihong Zhou
- University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA
- Department of Pediatrics, Division of Clinical Genetics, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3A 2B4, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Cesar Alves
- Division of Neuroradiology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Guarav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London (UCL) Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - David A Rudko
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
| |
Collapse
|
5
|
An entosis-like process induces mitotic disruption in Pals1 microcephaly pathogenesis. Nat Commun 2023; 14:82. [PMID: 36604424 PMCID: PMC9816111 DOI: 10.1038/s41467-022-35719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023] Open
Abstract
Entosis is cell cannibalism utilized by tumor cells to engulf live neighboring cells for pro- or anti-tumorigenic purposes. It is unknown whether this extraordinary cellular event can be pathogenic in other diseases such as microcephaly, a condition characterized by a smaller than normal brain at birth. We find that mice mutant for the human microcephaly-causing gene Pals1, which exhibit diminished cortices due to massive cell death, also exhibit nuclei enveloped by plasma membranes inside of dividing cells. These cell-in-cell (CIC) structures represent a dynamic process accompanied by lengthened mitosis and cytokinesis abnormalities. As shown in tumor cells, ROCK inhibition completely abrogates CIC structures and restores the normal length of mitosis. Moreover, genetic elimination of Trp53 produces a remarkable rescue of cortical size along with substantial reductions of CIC structures and cell death. These results provide a novel pathogenic mechanism by which microcephaly is produced through entotic cell cannibalism.
Collapse
|
6
|
Li R, Chen W, Lu C, Li X, Chen X, Huang G, Wen Z, Li H, Tao L, Hu Y, Zhao Z, Chen Z, Ni L, Lai Y. A four-microRNA panel in serum may serve as potential biomarker for renal cell carcinoma diagnosis. Front Oncol 2022; 12:1076303. [PMID: 36727070 PMCID: PMC9885090 DOI: 10.3389/fonc.2022.1076303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one out of the most universal malignant tumors globally, and its incidence is increasing annually. MicroRNA (miRNA) in serum could be considered as a non-invasive detecting biomarker for RCC diagnosis. METHOD A total of 224 participants (112 RCC patients (RCCs) and 112 normal controls (NCs)) were enrolled in the three-phrase study. Reverse transcription quantitative PCR (RT-qPCR) was applied to reveal the miRNA expression levels in RCCs and NCs. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were utilized to predict the diagnostic ability of serum miRNAs for RCC. Bioinformatic analysis and survival analysis were also included in our study. RESULTS Compared to NCs, the expression degree of miR-155-5p, miR-224-5p in serum was significantly upregulated in RCC patients, and miR-1-3p, miR-124-3p, miR-129-5p, and miR-200b-3p were downregulated. A four-miRNA panel was construed, and the AUC of the panel was 0.903 (95% CI: 0.847-0.944; p < 0.001; sensitivity = 75.61%, specificity = 93.67%). Results from GEPIA database indicated that CHL1, MPP5, and SORT1 could be seen as promising target genes of the four-miRNA panel. Survival analysis of candidate miRNAs manifested that miR-155-5p was associated with the survival rate of RCC significantly. CONCLUSIONS The four-miRNA panel in serum has a great potential to be non-invasive biomarkers for RCC sift to check.
Collapse
Affiliation(s)
- Rongkang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Wenkang Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Chong Lu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Xinji Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xuan Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Guocheng Huang
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenyu Wen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Hang Li
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Lingzhi Tao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Yimin Hu
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Zhengping Zhao
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Zebo Chen
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
| | - Liangchao Ni
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
- *Correspondence: Yongqing Lai, ; Liangchao Ni,
| | - Yongqing Lai
- Department of Urology, Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
- *Correspondence: Yongqing Lai, ; Liangchao Ni,
| |
Collapse
|
7
|
Özaslan A, Kayhan G, İşeri E, Ergün MA, Güney E, Perçin FE. Identification of copy number variants in children and adolescents with autism spectrum disorder: a study from Turkey. Mol Biol Rep 2021; 48:7371-7378. [PMID: 34637094 DOI: 10.1007/s11033-021-06745-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Copy number variants (CNVs) play a key role in the etiology of autism spectrum disorder (ASD). Therefore, recent guidelines recommend chromosomal microarrays (CMAs) as first-tier genetic tests. This study's first aim was to determine the clinical usefulness of CMAs in children diagnosed with ASD in a Turkish population. The second aim was to describe the CNVs and clinical phenotypes of children with ASD. METHODS AND RESULTS This was a single-center retrospective cross-sectional study. Data were obtained from the medical records of children with ASD followed at Gazi University Hospital, (Ankara, Turkey). The sample consisted of 47 ASD cases (mean age: 60.34 ± 25.60 months; 82.9% boys). The diagnostic yield of the CMAs was 8.5%. Four pathogenic CNVs were identified: 9p24.3p24.2 deletion, 15q11-q13 duplication, 16p11.2 deletion, and 22q13.3 deletion. Also, four variants were found at 2q36.3, 10p11.21, 15q11.2, and Xp11.22, which were classified as variants of uncertain significance (VUS). CONCLUSIONS The TRAP12 and PARD3 genes in CNVs classified as VUS may be worth investigating for autism. The initial identification of both clinical and biological markers can facilitate monitoring, early intervention, or prevention and advance our understanding of the neurobiology underlying ASD.
Collapse
Affiliation(s)
- Ahmet Özaslan
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Emniyet Mahallesi, Bandırma Caddesi No. 6/1, Yenimahalle, Ankara, Turkey.
| | - Gülsüm Kayhan
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Elvan İşeri
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Emniyet Mahallesi, Bandırma Caddesi No. 6/1, Yenimahalle, Ankara, Turkey
| | - Mehmet Ali Ergün
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| | - Esra Güney
- Child and Adolescent Psychiatry Department, Gazi University Medical Faculty, Emniyet Mahallesi, Bandırma Caddesi No. 6/1, Yenimahalle, Ankara, Turkey
| | - Ferda Emriye Perçin
- Medical Genetics Department, Gazi University Medical Faculty, Ankara, Turkey
| |
Collapse
|
8
|
Santos HP, Bhattacharya A, Joseph RM, Smeester L, Kuban KCK, Marsit CJ, O'Shea TM, Fry RC. Evidence for the placenta-brain axis: multi-omic kernel aggregation predicts intellectual and social impairment in children born extremely preterm. Mol Autism 2020; 11:97. [PMID: 33308293 PMCID: PMC7730750 DOI: 10.1186/s13229-020-00402-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Children born extremely preterm are at heightened risk for intellectual and social impairment, including Autism Spectrum Disorder (ASD). There is increasing evidence for a key role of the placenta in prenatal developmental programming, suggesting that the placenta may, in part, contribute to origins of neurodevelopmental outcomes. METHODS We examined associations between placental transcriptomic and epigenomic profiles and assessed their ability to predict intellectual and social impairment at age 10 years in 379 children from the Extremely Low Gestational Age Newborn (ELGAN) cohort. Assessment of intellectual ability (IQ) and social function was completed with the Differential Ability Scales-II and Social Responsiveness Scale (SRS), respectively. Examining IQ and SRS allows for studying ASD risk beyond the diagnostic criteria, as IQ and SRS are continuous measures strongly correlated with ASD. Genome-wide mRNA, CpG methylation and miRNA were assayeds with the Illumina Hiseq 2500, HTG EdgeSeq miRNA Whole Transcriptome Assay, and Illumina EPIC/850 K array, respectively. We conducted genome-wide differential analyses of placental mRNA, miRNA, and CpG methylation data. These molecular features were then integrated for a predictive analysis of IQ and SRS outcomes using kernel aggregation regression. We lastly examined associations between ASD and the multi-omic-predicted component of IQ and SRS. RESULTS Genes with important roles in neurodevelopment and placental tissue organization were associated with intellectual and social impairment. Kernel aggregations of placental multi-omics strongly predicted intellectual and social function, explaining approximately 8% and 12% of variance in SRS and IQ scores via cross-validation, respectively. Predicted in-sample SRS and IQ showed significant positive and negative associations with ASD case-control status. LIMITATIONS The ELGAN cohort comprises children born pre-term, and generalization may be affected by unmeasured confounders associated with low gestational age. We conducted external validation of predictive models, though the sample size (N = 49) and the scope of the available out-sample placental dataset are limited. Further validation of the models is merited. CONCLUSIONS Aggregating information from biomarkers within and among molecular data types improves prediction of complex traits like social and intellectual ability in children born extremely preterm, suggesting that traits within the placenta-brain axis may be omnigenic.
Collapse
Affiliation(s)
- Hudson P Santos
- Biobehavioral Laboratory, School of Nursing, University of North Carolina, 544 Carrington Hall, Campus Box 7460, Chapel Hill, NC, 27599-7460, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA
| | - Robert M Joseph
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Lisa Smeester
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Karl C K Kuban
- Department of Pediatrics, Division of Pediatric Neurology, Boston University Medical Center, Boston, MA, USA
| | - Carmen J Marsit
- Department of Environmental Health, Emory University, Atlanta, GA, 30322, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|