1
|
Li Q, Lin J, Luo S, Schmitz‐Abe K, Agrawal R, Meng M, Moghadaszadeh B, Beggs AH, Liu X, Perrella MA, Agrawal PB. Integrated multi-omics approach reveals the role of striated muscle preferentially expressed protein kinase in skeletal muscle including its relationship with myospryn complex. J Cachexia Sarcopenia Muscle 2024; 15:1003-1015. [PMID: 38725372 PMCID: PMC11154751 DOI: 10.1002/jcsm.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Autosomal-recessive mutations in SPEG (striated muscle preferentially expressed protein kinase) have been linked to centronuclear myopathy with or without dilated cardiomyopathy (CNM5). Loss of SPEG is associated with defective triad formation, abnormal excitation-contraction coupling, calcium mishandling and disruption of the focal adhesion complex in skeletal muscles. To elucidate the underlying molecular pathways, we have utilized multi-omics tools and analysis to obtain a comprehensive view of the complex biological processes and molecular functions. METHODS Skeletal muscles from 2-month-old SPEG-deficient (Speg-CKO) and wild-type (WT) mice were used for RNA sequencing (n = 4 per genotype) to profile transcriptomics and mass spectrometry (n = 4 for WT; n = 3 for Speg-CKO mice) to profile proteomics and phosphoproteomics. In addition, interactomics was performed using the SPEG antibody on pooled muscle lysates (quadriceps, gastrocnemius and triceps) from WT and Speg-CKO mice. Based on the multi-omics results, we performed quantitative real-time PCR, co-immunoprecipitation and immunoblot to verify the findings. RESULTS We identified that SPEG interacts with myospryn complex proteins CMYA5, FSD2 and RyR1, which are critical for triad formation, and that SPEG deficiency results in myospryn complex abnormalities (protein levels decreased to 22 ± 3% for CMYA5 [P < 0.05] and 18 ± 3% for FSD2 [P < 0.01]). Furthermore, SPEG phosphorylates RyR1 at S2902 (phosphorylation level decreased to 55 ± 15% at S2902 in Speg-CKO mice; P < 0.05), and its loss affects JPH2 phosphorylation at multiple sites (increased phosphorylation at T161 [1.90 ± 0.24-fold], S162 [1.61 ± 0.37-fold] and S165 [1.66 ± 0.13-fold]; decreased phosphorylation at S228 and S231 [39 ± 6%], S234 [50 ± 12%], S593 [48 ± 3%] and S613 [66 ± 10%]; P < 0.05 for S162 and P < 0.01 for other sites). On analysing the transcriptome, the most dysregulated pathways affected by SPEG deficiency included extracellular matrix-receptor interaction (P < 1e-15) and peroxisome proliferator-activated receptor signalling (P < 9e-14). CONCLUSIONS We have elucidated the critical role of SPEG in the triad as it works closely with myospryn complex proteins (CMYA5, FSD2 and RyR1), it regulates phosphorylation levels of various residues in JPH2 and S2902 in RyR1, and its deficiency is associated with dysregulation of several pathways. The study identifies unique SPEG-interacting proteins and their phosphorylation functions and emphasizes the importance of using a multi-omics approach to comprehensively evaluate the molecular function of proteins involved in various genetic disorders.
Collapse
Affiliation(s)
- Qifei Li
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Jasmine Lin
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shiyu Luo
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Klaus Schmitz‐Abe
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rohan Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Melissa Meng
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Behzad Moghadaszadeh
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Alan H. Beggs
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Mark A. Perrella
- Division of Pulmonary and Critical Care MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Department of Pediatric Newborn MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Pankaj B. Agrawal
- Division of Neonatology, Department of PediatricsUniversity of Miami Miller School of Medicine and Holtz Children's Hospital, Jackson Health SystemMiamiFLUSA
- Division of Genetics and GenomicsBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
- The Manton Center for Orphan Disease ResearchBoston Children's Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
2
|
Lee CS, Jung SY, Yee RSZ, Agha NH, Hong J, Chang T, Babcock LW, Fleischman JD, Clayton B, Hanna AD, Ward CS, Lanza D, Hurley AE, Zhang P, Wehrens XHT, Lagor WR, Rodney GG, Hamilton SL. Speg interactions that regulate the stability of excitation-contraction coupling protein complexes in triads and dyads. Commun Biol 2023; 6:942. [PMID: 37709832 PMCID: PMC10502019 DOI: 10.1038/s42003-023-05330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegβ deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegβ but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg β (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegβ immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegβ binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegβ display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.
Collapse
Affiliation(s)
- Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Nadia H Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jin Hong
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Lyle W Babcock
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jorie D Fleischman
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Benjamin Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Amy D Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ayrea E Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Pumin Zhang
- The First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xander H T Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Susan L Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA.
| |
Collapse
|
3
|
Piesanen J, Kunnas T, Nikkari ST. The gene variant for desmin rs1058261 may protect against combined cancer and cardiovascular death, the Tampere adult population cardiovascular risk study. Medicine (Baltimore) 2022; 101:e31005. [PMID: 36221331 PMCID: PMC9542836 DOI: 10.1097/md.0000000000031005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Desmin-containing intermediate filaments are a part of muscle cytoskeleton. We have previously reported that the wild-type cytosine/cytosine genotype of a common Desmin synonymous single nucleotide polymorphism (C > T) (rs1058261) associated with cardiovascular diseases in a cohort of subjects from the Tampere adult population cardiovascular risk study. We now examined whether rs1058261 also associates with early death by following the cohort of 801 subjects from the age of 50 up to the age of 65. Outcomes for death were collected from the National Statistics Centre. Linkage disequilibrium analysis and gene expression correlations for rs1058261 were done in silico. With follow-up, subjects with wild-type cytosine/cytosine genotype had higher incidence of cancer deaths (odds ratio [OR] 5.27, confidence interval [CI] 1.160-23.946, P = .031), combined deaths from cardiovascular diseases or cancers (OR 3.92, CI 1.453-10.596, P = .007), and "hard" acute cardiovascular disease events (early myocardial infarction and/or death) (OR 3.90, CI 1.287-11.855, P = .016) compared to subjects with the T-allele. The in silico results of linkage disequilibrium and gene expression analyses showed negative gene expression sizes associated with rs1058261, which theoretically decreases desmin expression. Our findings suggest that variation rs1058261 in Desmin may serve as a surrogate marker for other variations involved in decrease of deaths from combined cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Jaakko Piesanen
- Department of Medical Biochemistry, Faculty of Medicine and Health Technology Tampere University and Fimlab laboratories, Tampere, Finland
| | - Tarja Kunnas
- Department of Medical Biochemistry, Faculty of Medicine and Health Technology Tampere University and Fimlab laboratories, Tampere, Finland
| | - Seppo T Nikkari
- Department of Medical Biochemistry, Faculty of Medicine and Health Technology Tampere University and Fimlab laboratories, Tampere, Finland
- * Correspondence: Seppo Nikkari, Faculty of Medicine and Health Technology Tampere University, FI-33014 Tampere University, Finland (e-mail: )
| |
Collapse
|
4
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
5
|
Li Q, Lin J, Widrick JJ, Luo S, Li G, Zhang Y, Laporte J, Perrella MA, Liu X, Agrawal PB. Dynamin-2 reduction rescues the skeletal myopathy of SPEG-deficient mouse model. JCI Insight 2022; 7:157336. [PMID: 35763354 PMCID: PMC9462472 DOI: 10.1172/jci.insight.157336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/20/2022] [Indexed: 11/29/2022] Open
Abstract
Striated preferentially expressed protein kinase (SPEG), a myosin light chain kinase, is mutated in centronuclear myopathy (CNM) and/or dilated cardiomyopathy. No precise therapies are available for this disorder, and gene replacement therapy is not a feasible option due to the large size of SPEG. We evaluated the potential of dynamin-2 (DNM2) reduction as a potential therapeutic strategy because it has been shown to revert muscle phenotypes in mouse models of CNM caused by MTM1, DNM2, and BIN1 mutations. We determined that SPEG-β interacted with DNM2, and SPEG deficiency caused an increase in DNM2 levels. The DNM2 reduction strategy in Speg-KO mice was associated with an increase in life span, body weight, and motor performance. Additionally, it normalized the distribution of triadic proteins, triad ultrastructure, and triad number and restored phosphatidylinositol-3-phosphate levels in SPEG-deficient skeletal muscles. Although DNM2 reduction rescued the myopathy phenotype, it did not improve cardiac dysfunction, indicating a differential tissue-specific function. Combining DNM2 reduction with other strategies may be needed to target both the cardiac and skeletal defects associated with SPEG deficiency. DNM2 reduction should be explored as a therapeutic strategy against other genetic myopathies (and dystrophies) associated with a high level of DNM2.
Collapse
Affiliation(s)
- Qifei Li
- Boston Children's Hospital, Boston, United States of America
| | - Jasmine Lin
- Boston Children's Hospital, Boston, United States of America
| | - Jeffrey J Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States of America
| | - Shiyu Luo
- Division of Newborn Medicine, Boston Children's Hospital, Boston, United States of America
| | - Gu Li
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, United States of America
| | | | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Pankaj B Agrawal
- Division of Newborn Medicine, Boston Children's Hospital, Boston, United States of America
| |
Collapse
|
6
|
Espinosa KG, Geissah S, Groom L, Volpatti J, Scott IC, Dirksen RT, Zhao M, Dowling JJ. Characterization of a novel zebrafish model of SPEG-related centronuclear myopathy. Dis Model Mech 2022; 15:275324. [PMID: 35293586 PMCID: PMC9118044 DOI: 10.1242/dmm.049437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/08/2022] [Indexed: 01/03/2023] Open
Abstract
Centronuclear myopathy (CNM) is a congenital neuromuscular disorder caused by pathogenic variation in genes associated with membrane trafficking and excitation–contraction coupling (ECC). Bi-allelic autosomal-recessive mutations in striated muscle enriched protein kinase (SPEG) account for a subset of CNM patients. Previous research has been limited by the perinatal lethality of constitutive Speg knockout mice. Thus, the precise biological role of SPEG in developing skeletal muscle remains unknown. To address this issue, we generated zebrafish spega, spegb and spega;spegb (speg-DKO) mutant lines. We demonstrated that speg-DKO zebrafish faithfully recapitulate multiple phenotypes associated with CNM, including disruption of the ECC machinery, dysregulation of calcium homeostasis during ECC and impairment of muscle performance. Taking advantage of zebrafish models of multiple CNM genetic subtypes, we compared novel and known disease markers in speg-DKO with mtm1-KO and DNM2-S619L transgenic zebrafish. We observed Desmin accumulation common to all CNM subtypes, and Dnm2 upregulation in muscle of both speg-DKO and mtm1-KO zebrafish. In all, we establish a new model of SPEG-related CNM, and identify abnormalities in this model suitable for defining disease pathomechanisms and evaluating potential therapies. This article has an associated First Person interview with the joint first authors of the paper. Summary: We created a novel zebrafish Speg mutant model of centronuclear myopathy that recapitulates key features of the human disorder and provides insight into pathomechanisms of the disease.
Collapse
Affiliation(s)
- Karla G Espinosa
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Salma Geissah
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Centre, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Jonathan Volpatti
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Ian C Scott
- Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada.,Program for Development and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Centre, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Mo Zhao
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Medical Science Building, Room 4386, 1 King's College Cir, Toronto, ON M5S 1A8, Canada.,Department of Pediatrics, University of Toronto, Room 1436D, 555 University Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
7
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|