1
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the Neural Regulation and Brain Pathology. Neurosci Biobehav Rev 2025:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Department of Pharmacology, Lloyd Institute of Management and Technology (Pharm.), Greater Noida, Uttar Pradesh, India
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Ibrahim A, Jackson D. Autism, Electrical Status Epilepticus in Sleep, and a Likely Pathogenic SEMA6B Variant. Pediatrics 2025; 155:e2024068364. [PMID: 39573814 DOI: 10.1542/peds.2024-068364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 01/02/2025] Open
Abstract
This case report describes a boy aged 8 years with autism spectrum disorder who was diagnosed with electrical status epilepticus in sleep (ESES) and found to have a likely pathogenic variant in the SEMA6B gene. The patient presented with developmental regression and cognitive decline. An electroencephalogram demonstrated continuous spike-and-wave discharges during sleep, a hallmark of ESES. Genetic testing identified a De Novo likely pathogenic variant in SEMA6B, a gene implicated in neurodevelopmental disorders and epilepsy. Although the association between SEMA6B mutations and ESES is not well established, this case suggests that the genetic variant may have contributed to the patient's clinical presentation. This is the first reported instance of ESES being linked to a SEMA6B gene variant, highlighting the importance of genetic testing in similar cases. The findings could have significant implications for the understanding and management of ESES in autistic patients with behavioral difficulties. They also underscore the need for further research into the role of SEMA6B in epilepsy and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- East Carolina University, Greenville, North Carolina
| | | |
Collapse
|
3
|
Altıntaş M, Yıldırım M, Bektaş Ö, Teber S. Progressive Myoclonus Epilepsy and Beyond: A Systematic Review of SEMA6B-related Disorders. Neuropediatrics 2024. [PMID: 39419291 DOI: 10.1055/a-2442-5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Progressive myoclonus epilepsy (PME) is a rare, clinically and genetically heterogeneous epilepsy syndrome, and pathogenic variants in the semaphorin 6B (SEMA6B) gene have recently been reported to be among the causes of PME. Cases with pathogenic variants in the SEMA6B gene are extremely rare, only a limited number of cases have been reported in the literature. In this systematic review, we aimed to present a summary of a PME case in which a heterozygous nonsense variant of c.2086C > T p.(Gln696*) in the SEMA6B gene was detected in the etiology and other cases with SEMA6B pathogenic variant in the literature. Except for our case, 35 cases from 12 studies were included. The main clinical findings in these patients were cognitive problems, seizures, gait and speech disturbances, and cognitive and/or motor regression, and they had a wide spectrum of severity. Response to antiseizure medications was also highly variable, almost half of the patients had pharmacoresistant seizures. Patients were divided into four different phenotypic groups according to their clinical presentations: PME (18/36), developmental and epileptic encephalopathy (13/36), neurodevelopmental disorder (4/36), and epilepsy (1/36), respectively. In conclusion, although SEMA6B has been associated with PME, it may actually cause a much broader phenotypic spectrum. Due to their extreme rarity, our knowledge of SEMA6B-related disorders is limited. As with all other rare diseases, each new SEMA6B-related disorder case could contribute to a better understanding of the disease. A better understanding of the disease may allow the development of specific treatment options in the future.
Collapse
Affiliation(s)
- Mert Altıntaş
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Miraç Yıldırım
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ömer Bektaş
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serap Teber
- Department of Pediatric Neurology, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
4
|
Kozhanova TV, Zhilina SS, Meshcheryakova TI, Sushko LM, Osipova KV, Mazur AM, Fomenko SS, Krapivkin AI, Zavadenko NN. SEMA6B-related progressive myoclonus epilepsy in a patient with Klinefelter syndrome. EPILEPSY AND PAROXYSMAL CONDITIONS 2024; 16:45-53. [DOI: 10.17749/2077-8333/epi.par.con.2024.175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
In most cases, variants of nucleotide sequence in the SEMA6B gene account for developing the phenotype of progressive myoclonus epilepsy and, to a lesser extent, developmental encephalopathy with or without epilepsy. Loss-of-function variants in nucleotide sequence localized mainly in exon 17 of the SEMA6B gene contribute to production of aberrant proteins with “toxic” functions. A clinical case of status epilepsy in a patient with a variant in the SEMA6B gene (c.2506delС; p.His836ThrfsTer136; NM_032108.4) is described in the article that expands our knowledge regarding the SEMA6B gene variants resulting in progressive myoclonus epilepsy.
Collapse
Affiliation(s)
- T. V. Kozhanova
- Voyno-Yasenetsky Scientific and Practical Center of Spicialized Medical Care for Children; Pirogov Russian National Research Medical University
| | - S. S. Zhilina
- Voyno-Yasenetsky Scientific and Practical Center of Spicialized Medical Care for Children; Pirogov Russian National Research Medical University
| | - T. I. Meshcheryakova
- Voyno-Yasenetsky Scientific and Practical Center of Spicialized Medical Care for Children; Pirogov Russian National Research Medical University
| | - L. M. Sushko
- Voyno-Yasenetsky Scientific and Practical Center of Spicialized Medical Care for Children
| | - K. V. Osipova
- Voyno-Yasenetsky Scientific and Practical Center of Spicialized Medical Care for Children
| | | | | | - A. I. Krapivkin
- Voyno-Yasenetsky Scientific and Practical Center of Spicialized Medical Care for Children
| | | |
Collapse
|
5
|
Mitchell KJ. Variability in Neural Circuit Formation. Cold Spring Harb Perspect Biol 2024; 16:a041504. [PMID: 38253418 PMCID: PMC10910361 DOI: 10.1101/cshperspect.a041504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The study of neural development is usually concerned with the question of how nervous systems get put together. Variation in these processes is usually of interest as a means of revealing these normative mechanisms. However, variation itself can be an object of study and is of interest from multiple angles. First, the nature of variation in both the processes and the outcomes of neural development is relevant to our understanding of how these processes and outcomes are encoded in the genome. Second, variation in the wiring of the brain in humans may underlie variation in all kinds of psychological and behavioral traits, as well as neurodevelopmental disorders. And third, genetic variation that affects circuit development provides the raw material for evolutionary change. Here, I examine these different aspects of variation in circuit development and consider what they may tell us about these larger questions.
Collapse
Affiliation(s)
- Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
6
|
Wagner W, Ochman B, Wagner W. Semaphorin 6 Family-An Important Yet Overlooked Group of Signaling Proteins Involved in Cancerogenesis. Cancers (Basel) 2023; 15:5536. [PMID: 38067240 PMCID: PMC10705753 DOI: 10.3390/cancers15235536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2025] Open
Abstract
According to recent evidence, some groups of semaphorins (SEMAs) have been associated with cancer progression. These proteins are able to modulate the cellular signaling of particular receptor tyrosine kinases (RTKs) via the stimulation of SEMA-specific coreceptors, namely plexins (plexin-A, -B, -C, -D) and neuropilins (Np1, Np2), which share common domains with RTKs, leading to the coactivation of the latter receptors. MET, ERBB2, VEGFR2, PFGFR, and EGFR, among others, represent acknowledged targets of semaphorins that are often associated with tumor progression or poor prognosis. In particular, higher expression of SEMA6 family proteins in cancer cells and stromal cells of the cancer niche is often associated with enhanced tumor angiogenesis, metastasis, and resistance to anticancer therapy. Notably, high SEMA6 expression in malignant tumor cells such as melanoma, pleural mesothelioma, gastric cancer, lung adenocarcinoma, and glioblastoma may serve as a prognostic biomarker of tumor progression. To date, very few studies have focused on the mechanisms of transmembrane SEMA6-driven tumor progression and its underlying interplay with RTKs within the tumor microenvironment. This review presents the growing evidence in the literature on the complex and shaping role of SEMA6 family proteins in cancer responsiveness to environmental stimuli.
Collapse
Affiliation(s)
- Wiktor Wagner
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland; (W.W.); (B.O.)
| | - Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland; (W.W.); (B.O.)
| | - Waldemar Wagner
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Łódź, Poland
- Department of Hormone Biochemistry, Medical University of Łódź, 90-752 Łódź, Poland
| |
Collapse
|
7
|
Castellotti B, Canafoglia L, Freri E, Tappatà M, Messina G, Magri S, DiFrancesco JC, Fanella M, Di Bonaventura C, Morano A, Granata T, Gellera C, Franceschetti S, Michelucci R. Progressive myoclonus epilepsies due to SEMA6B mutations. New variants and appraisal of published phenotypes. Epilepsia Open 2023; 8:645-650. [PMID: 36719163 PMCID: PMC10235579 DOI: 10.1002/epi4.12697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
Variants of SEMA6B have been identified in an increasing number of patients, often presenting with progressive myoclonus epilepsy (PME), and to lesser extent developmental encephalopathy, with or without epilepsy. The exon 17 is mainly involved, with truncating mutations causing the production of aberrant proteins with toxic gain of function. Herein, we describe three adjunctive patients carrying de novo truncating SEMA6B variants in this exon (c.1976delC and c.2086C > T novel; c.1978delC previously reported). These subjects presented with PME preceded by developmental delay, motor and cognitive impairment, worsening myoclonus, and epilepsy with polymorphic features, including focal to bilateral seizures in two, and non-convulsive status epilepticus in one. The evidence of developmental delay in these cases suggests their inclusion in the "PME plus developmental delay" nosological group. This work further expands our knowledge of SEMA6B variants causing PMEs. However, the data to date available confirms that phenotypic features do not correlate with the type or location of variants, aspects that need to be further clarified by future studies.
Collapse
Affiliation(s)
- Barbara Castellotti
- Department of Diagnostic and Technology, Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Department of Diagnostic and TechnologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Elena Freri
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Maria Tappatà
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center, Unit of NeurologyBellaria HospitalBolognaItaly
| | - Giuliana Messina
- Department of Diagnostic and Technology, Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
| | - Stefania Magri
- Department of Diagnostic and Technology, Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
| | - Jacopo C. DiFrancesco
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Neurology, Fondazione IRCCS San Gerardo dei TintoriUniversity of Milano‐BicoccaMonzaItaly
| | - Martina Fanella
- Department of NeurologyFabrizio Spaziani HospitalFrosinoneItaly
| | - Carlo Di Bonaventura
- Department of Human NeurosciencesPoliclinico Umberto I, Sapienza University of RomeRomeItaly
| | - Alessandra Morano
- Department of Human NeurosciencesPoliclinico Umberto I, Sapienza University of RomeRomeItaly
| | - Tiziana Granata
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Cinzia Gellera
- Department of Diagnostic and Technology, Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanoItaly
| | | | - Roberto Michelucci
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center, Unit of NeurologyBellaria HospitalBolognaItaly
| |
Collapse
|
8
|
Garau J, Charras A, Varesio C, Orcesi S, Dragoni F, Galli J, Fazzi E, Gagliardi S, Pansarasa O, Cereda C, Hedrich CM. Altered DNA methylation and gene expression predict disease severity in patients with Aicardi-Goutières syndrome. Clin Immunol 2023; 249:109299. [PMID: 36963449 DOI: 10.1016/j.clim.2023.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Aicardi-Goutières Syndrome (AGS) is a rare neuro-inflammatory disease characterized by increased expression of interferon-stimulated genes (ISGs). Disease-causing mutations are present in genes associated with innate antiviral responses. Disease presentation and severity vary, even between patients with identical mutations from the same family. This study investigated DNA methylation signatures in PBMCs to understand phenotypic heterogeneity in AGS patients with mutations in RNASEH2B. AGS patients presented hypomethylation of ISGs and differential methylation patterns (DMPs) in genes involved in "neutrophil and platelet activation". Patients with "mild" phenotypes exhibited DMPs in genes involved in "DNA damage and repair", whereas patients with "severe" phenotypes had DMPs in "cell fate commitment" and "organ development" associated genes. DMPs in two ISGs (IFI44L, RSAD2) associated with increased gene expression in patients with "severe" when compared to "mild" phenotypes. In conclusion, altered DNA methylation and ISG expression as biomarkers and potential future treatment targets in AGS.
Collapse
Affiliation(s)
- Jessica Garau
- Neurogenetics Research Centre, IRCCS Mondino Foundation, Pavia, Italy
| | - Amandine Charras
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Costanza Varesio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy; Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Jessica Galli
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy; Unit of Child Neurology and Psychiatry, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Model and Neuroepigenetics, IRCCS Mondino Foundation, Pavia, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Christian M Hedrich
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.
| |
Collapse
|