1
|
McCulloch MK, Mehryab F, Rashnonejad A. Navigating the Landscape of CMT1B: Understanding Genetic Pathways, Disease Models, and Potential Therapeutic Approaches. Int J Mol Sci 2024; 25:9227. [PMID: 39273178 PMCID: PMC11395143 DOI: 10.3390/ijms25179227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Charcot-Marie-Tooth type 1B (CMT1B) is a peripheral neuropathy caused by mutations in the gene encoding myelin protein zero (MPZ), a key component of the myelin sheath in Schwann cells. Mutations in the MPZ gene can lead to protein misfolding, unfolded protein response (UPR), endoplasmic reticulum (ER) stress, or protein mistrafficking. Despite significant progress in understanding the disease mechanisms, there is currently no effective treatment for CMT1B, with therapeutic strategies primarily focused on supportive care. Gene therapy represents a promising therapeutic approach for treating CMT1B. To develop a treatment and better design preclinical studies, an in-depth understanding of the pathophysiological mechanisms and animal models is essential. In this review, we present a comprehensive overview of the disease mechanisms, preclinical models, and recent advancements in therapeutic research for CMT1B, while also addressing the existing challenges in the field. This review aims to deepen the understanding of CMT1B and to encourage further research towards the development of effective treatments for CMT1B patients.
Collapse
Affiliation(s)
- Mary Kate McCulloch
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Fatemeh Mehryab
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Ptak CP, Peterson TA, Hopkins JB, Ahern CA, Shy ME, Piper RC. Homomeric interactions of the MPZ Ig domain and their relation to Charcot-Marie-Tooth disease. Brain 2023; 146:5110-5123. [PMID: 37542466 PMCID: PMC10690024 DOI: 10.1093/brain/awad258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/07/2023] Open
Abstract
Mutations in MPZ (myelin protein zero) can cause demyelinating early-onset Charcot-Marie-Tooth type 1B disease or later onset type 2I/J disease characterized by axonal degeneration, reflecting the diverse roles of MPZ in Schwann cells. MPZ holds apposing membranes of the myelin sheath together, with the adhesion role fulfilled by its extracellular immunoglobulin-like domain (IgMPZ), which oligomerizes. Models for how the IgMPZ might form oligomeric assemblies has been extrapolated from a protein crystal structure in which individual rat IgMPZ subunits are packed together under artificial conditions, forming three weak interfaces. One interface organizes the IgMPZ into tetramers, a second 'dimer' interface links tetramers together across the intraperiod line, and a third hydrophobic interface that mediates binding to lipid bilayers or the same hydrophobic surface on another IgMPZ domain. Presently, there are no data confirming whether the proposed IgMPZ interfaces actually mediate oligomerization in solution, whether they are required for the adhesion activity of MPZ, whether they are important for myelination, or whether their loss results in disease. We performed nuclear magnetic resonance spectroscopy and small angle X-ray scattering analysis of wild-type IgMPZ as well as mutant forms with amino acid substitutions designed to interrupt its presumptive oligomerization interfaces. Here, we confirm the interface that mediates IgMPZ tetramerization, but find that dimerization is mediated by a distinct interface that has yet to be identified. We next correlated different types of Charcot-Marie-Tooth disease symptoms to subregions within IgMPZ tetramers. Variants causing axonal late-onset disease (CMT2I/J) map to surface residues of IgMPZ proximal to the transmembrane domain. Variants causing early-onset demyelinating disease (CMT1B) segregate into two groups: one is described by variants that disrupt the stability of the Ig-fold itself and are largely located within the core of the IgMPZ domain; whereas another describes a region on the surface of IgMPZ tetramers, accessible to protein interactions. Computational docking studies predict that this latter disease-relevant subregion may potentially mediate dimerization of IgMPZ tetramers.
Collapse
Affiliation(s)
- Christopher P Ptak
- Biomolecular Nuclear Magnetic Resonance Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tabitha A Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Jesse B Hopkins
- BioCAT, Department of Physics, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Michael E Shy
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Robert C Piper
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Shackleford G, Marziali LN, Sasaki Y, Claessens A, Ferri C, Weinstock NI, Rossor AM, Silvestri NJ, Wilson ER, Hurley E, Kidd GJ, Manohar S, Ding D, Salvi RJ, Feltri ML, D’Antonio M, Wrabetz L. A new mouse model of Charcot-Marie-Tooth 2J neuropathy replicates human axonopathy and suggest alteration in axo-glia communication. PLoS Genet 2022; 18:e1010477. [PMID: 36350884 PMCID: PMC9707796 DOI: 10.1371/journal.pgen.1010477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/29/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Myelin is essential for rapid nerve impulse propagation and axon protection. Accordingly, defects in myelination or myelin maintenance lead to secondary axonal damage and subsequent degeneration. Studies utilizing genetic (CNPase-, MAG-, and PLP-null mice) and naturally occurring neuropathy models suggest that myelinating glia also support axons independently from myelin. Myelin protein zero (MPZ or P0), which is expressed only by Schwann cells, is critical for myelin formation and maintenance in the peripheral nervous system. Many mutations in MPZ are associated with demyelinating neuropathies (Charcot-Marie-Tooth disease type 1B [CMT1B]). Surprisingly, the substitution of threonine by methionine at position 124 of P0 (P0T124M) causes axonal neuropathy (CMT2J) with little to no myelin damage. This disease provides an excellent paradigm to understand how myelinating glia support axons independently from myelin. To study this, we generated targeted knock-in MpzT124M mutant mice, a genetically authentic model of T124M-CMT2J neuropathy. Similar to patients, these mice develop axonopathy between 2 and 12 months of age, characterized by impaired motor performance, normal nerve conduction velocities but reduced compound motor action potential amplitudes, and axonal damage with only minor compact myelin modifications. Mechanistically, we detected metabolic changes that could lead to axonal degeneration, and prominent alterations in non-compact myelin domains such as paranodes, Schmidt-Lanterman incisures, and gap junctions, implicated in Schwann cell-axon communication and axonal metabolic support. Finally, we document perturbed mitochondrial size and distribution along MpzT124M axons suggesting altered axonal transport. Our data suggest that Schwann cells in P0T124M mutant mice cannot provide axons with sufficient trophic support, leading to reduced ATP biosynthesis and axonopathy. In conclusion, the MpzT124M mouse model faithfully reproduces the human neuropathy and represents a unique tool for identifying the molecular basis for glial support of axons.
Collapse
Affiliation(s)
- Ghjuvan’Ghjacumu Shackleford
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Leandro N. Marziali
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Yo Sasaki
- Needleman Center for Neurometabolism and Axonal Therapeutics and Department of Genetics, Washington University School of Medicine in Saint Louis, St. Louis, Missouri, United States of America
| | - Anke Claessens
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Cinzia Ferri
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Nadav I. Weinstock
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Alexander M. Rossor
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Nicholas J. Silvestri
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Emma R. Wilson
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Edward Hurley
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Grahame J. Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Richard J. Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - M. Laura Feltri
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| | - Maurizio D’Antonio
- Biology of Myelin Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Lawrence Wrabetz
- Department of Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, Institute for Myelin and Glia Exploration, Department Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, United States of America
| |
Collapse
|