1
|
Zhang X, Ge J, Wang Y, Chen M, Guo X, Zhu S, Wang H, Wang Q. Integrative Omics Reveals the Metabolic Patterns During Oocyte Growth. Mol Cell Proteomics 2024; 23:100862. [PMID: 39414232 DOI: 10.1016/j.mcpro.2024.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024] Open
Abstract
Well-controlled metabolism is associated with high-quality oocytes and optimal development of a healthy embryo. However, the metabolic framework that controls mammalian oocyte growth remains unknown. In the present study, we comprehensively depict the temporal metabolic dynamics of mouse oocytes during in vivo growth through the integrated analysis of metabolomics and proteomics. Many novel metabolic features are discovered during this process. Of note, glycolysis is enhanced, and oxidative phosphorylation capacity is reduced in the growing oocytes, presenting a Warburg-like metabolic program. For nucleotide biosynthesis, the salvage pathway is markedly activated during oocyte growth, whereas the de novo pathway is evidently suppressed. Fatty acid synthesis and channeling into phosphoinositides are specifically elevated in oocytes accompanying primordial follicle activation; nevertheless, fatty acid oxidation is reduced in these oocytes simultaneously. Our data establish the metabolic landscape during in vivo oocyte growth and serve as a broad resource for probing mammalian oocyte metabolism.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yue Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Minjian Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
| | - Hui Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Harvey AJ, Willson BE, Surrey ES, Gardner DK. Ovarian stimulation protocols: impact on oocyte and endometrial quality and function. Fertil Steril 2024:S0015-0282(24)01973-3. [PMID: 39197516 DOI: 10.1016/j.fertnstert.2024.08.340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Ovarian stimulation (OS) truly is an art. There exists a myriad of protocols used to achieve the same goal: stimulating the ovaries to produce more than one mature oocyte to improve the chance of a live birth. However, considerable debate remains as to whether OS impacts oocyte and endometrial quality to affect in vitro fertilization outcomes. Although "more is better" has long been considered the best approach for oocyte retrieval, this review challenges that notion by examining the influence of stimulation on oocyte quality. Likewise, improved outcomes after frozen blastocyst transfer suggest that OS perturbs endometrial preparation and/or receptivity, although correlating changes with implantation success remains a challenge. Therefore, the focus of this review is to summarize our current understanding of perturbations in human oocyte quality and endometrial function induced by exogenous hormone administration. We highlight the need for further research to identify more appropriate markers of oocyte developmental competence as well as those that define the roles of the endometrium in the success of assisted reproductive technology.
Collapse
Affiliation(s)
- Alexandra J Harvey
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Bryn E Willson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars Sinai, Los Angeles, California
| | - Eric S Surrey
- Colorado Center for Reproductive Medicine, Lone Tree, Colorado
| | - David K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
3
|
Ren P, Tong X, Li J, Jiang H, Liu S, Li X, Lai M, Yang W, Rong Y, Zhang Y, Jin J, Ma Y, Pan W, Fan HY, Zhang S, Zhang YL. CRL4 DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to prevent DNA hypermethylation and ensure normal transcription in growing oocytes. Cell Mol Life Sci 2024; 81:165. [PMID: 38578457 PMCID: PMC10997554 DOI: 10.1007/s00018-024-05185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.
Collapse
Affiliation(s)
- Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Junjian Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huifang Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Siya Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiang Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yan Rong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Heng-Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Gilchrist RB, Ho TM, De Vos M, Sanchez F, Romero S, Ledger WL, Anckaert E, Vuong LN, Smitz J. A fresh start for IVM: capacitating the oocyte for development using pre-IVM. Hum Reprod Update 2024; 30:3-25. [PMID: 37639630 DOI: 10.1093/humupd/dmad023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/08/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND While oocyte IVM is practiced sporadically it has not achieved widespread clinical practice globally. However, recently there have been some seminal advances in our understanding of basic aspects of oocyte biology and ovulation from animal studies that have led to novel approaches to IVM. A significant recent advance in IVM technology is the use of biphasic IVM approaches. These involve the collection of immature oocytes from small antral follicles from minimally stimulated patients/animals (without hCG-priming) and an ∼24 h pre-culture of oocytes in an advanced culture system ('pre-IVM') prior to IVM, followed by routine IVF procedures. If safe and efficacious, this novel procedure may stand to make a significant impact on human ART practices. OBJECTIVE AND RATIONALE The objectives of this review are to examine the major scientific advances in ovarian biology with a unique focus on the development of pre-IVM methodologies, to provide an insight into biphasic IVM procedures, and to report on outcomes from animal and clinical human data, including safety data. The potential future impact of biphasic IVM on ART practice is discussed. SEARCH METHODS Peer review original and review articles were selected from PubMed and Web of Science searches for this narrative review. Searches were performed using the following keywords: oocyte IVM, pre-IVM, biphasic IVM, CAPA-IVM, hCG-triggered/primed IVM, natural cycle IVF/M, ex-vivo IVM, OTO-IVM, oocyte maturation, meiotic competence, oocyte developmental competence, oocyte capacitation, follicle size, cumulus cell (CC), granulosa cell, COC, gap-junction communication, trans-zonal process, cAMP and IVM, cGMP and IVM, CNP and IVM, EGF-like peptide and IVM, minimal stimulation ART, PCOS. OUTCOMES Minimizing gonadotrophin use means IVM oocytes will be collected from small antral (pre-dominant) follicles containing oocytes that are still developing. Standard IVM yields suboptimal clinical outcomes using such oocytes, whereas pre-IVM aims to continue the oocyte's development ex vivo, prior to IVM. Pre-IVM achieves this by eliciting profound cellular changes in the oocyte's CCs, which continue to meet the oocyte's developmental needs during the pre-IVM phase. The literature contains 25 years of animal research on various pre-IVM and biphasic IVM procedures, which serves as a large knowledge base for new approaches to human IVM. A pre-IVM procedure based on c-type natriuretic peptide (named 'capacitation-IVM' (CAPA-IVM)) has undergone pre-clinical human safety and efficacy trials and its adoption into clinical practice resulted in healthy live birth rates not different from conventional IVF. WIDER IMPLICATIONS Over many decades, improvements in clinical IVM have been gradual and incremental but there has likely been a turning of the tide in the past few years, with landmark discoveries in animal oocyte biology finally making their way into clinical practice leading to improved outcomes for patients. Demonstration of favorable clinical results with CAPA-IVM, as the first clinically tested biphasic IVM system, has led to renewed interest in IVM as an alternative, low-intervention, low-cost, safe, patient-friendly ART approach, and especially for patients with PCOS. The same new approach is being used as part of fertility preservation in patients with cancer and holds promise for social oocyte freezing.
Collapse
Affiliation(s)
- Robert B Gilchrist
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
| | - Tuong M Ho
- IVFMD, My Duc Hospital, Ho Chi Minh City, Vietnam
| | - Michel De Vos
- Brussels IVF, UZ Brussel, Brussels, Belgium
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Flor Sanchez
- Centro de Estudios e Investigaciones en Biología y Medicina Reproductiva, Lima, Peru
| | - Sergio Romero
- Laboratory of Reproductive Biology and Fertility Preservation, Cayetano Heredia University (UPCH), Lima, Peru
- Centro de Fertilidad y Reproducción Asistida, Lima, Peru
| | - William L Ledger
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales Sydney, NSW, Australia
- City Fertility, Global CHA IVF Partners, Sydney, NSW, Australia
| | - Ellen Anckaert
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lan N Vuong
- Department of Obstetrics and Gynaecology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Johan Smitz
- Follicle Biology Laboratory, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Liao J, Szabó PE. Role of transcription in imprint establishment in the male and female germ lines. Epigenomics 2024; 16:127-136. [PMID: 38126127 PMCID: PMC10825728 DOI: 10.2217/epi-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The authors highlight an area of research that focuses on the establishment of genomic imprints: how the female and male germlines set up opposite instructions for imprinted genes in the maternally and paternally inherited chromosomes. Mouse genetics studies have solidified the role of transcription across the germline differentially methylated regions in the establishment of maternal genomic imprinting. One work now reveals that such transcription is also important in paternal imprinting establishment. This allows the authors to propose a unifying mechanism, in the form of transcription across germline differentially methylated regions, that specifies DNA methylation imprint establishment. Differences in the timing, genomic location and nature of such transcription events in the male versus female germlines in turn explain the difference between paternal and maternal imprints.
Collapse
Affiliation(s)
- Ji Liao
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Piroska E Szabó
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
6
|
Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev 2023; 36:133-148. [PMID: 38064189 DOI: 10.1071/rd23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.
Collapse
Affiliation(s)
- Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
7
|
Shacfe G, Turko R, Syed HH, Masoud I, Tahmaz Y, Samhan LM, Alkattan K, Shafqat A, Yaqinuddin A. A DNA Methylation Perspective on Infertility. Genes (Basel) 2023; 14:2132. [PMID: 38136954 PMCID: PMC10743303 DOI: 10.3390/genes14122132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Infertility affects a significant number of couples worldwide and its incidence is increasing. While assisted reproductive technologies (ART) have revolutionized the treatment landscape of infertility, a significant number of couples present with an idiopathic cause for their infertility, hindering effective management. Profiling the genome and transcriptome of infertile men and women has revealed abnormal gene expression. Epigenetic modifications, which comprise dynamic processes that can transduce environmental signals into gene expression changes, may explain these findings. Indeed, aberrant DNA methylation has been widely characterized as a cause of abnormal sperm and oocyte gene expression with potentially deleterious consequences on fertilization and pregnancy outcomes. This review aims to provide a concise overview of male and female infertility through the lens of DNA methylation alterations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (G.S.); (R.T.); (H.H.S.); (I.M.); (Y.T.); (L.M.S.); (K.A.); (A.Y.)
| | | |
Collapse
|
8
|
Halim Harrath A, Dahmash W, Alrezaki A, Mansour L, Alwasel S. Using autophagy, apoptosis, cytoskeleton, and epigenetics markers to investigate the origin of infertility in ex-fissiparous freshwater planarian individuals (nomen nudum species) with hyperplasic ovaries. J Invertebr Pathol 2023:107935. [PMID: 37209811 DOI: 10.1016/j.jip.2023.107935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/22/2023]
Abstract
The origin of the sterility observed in ex-fissiparous freshwater planarians with hyperplasic ovaries has yet to be explained. To improve our understanding of this enigmatic phenomenon, immunofluorescence staining and confocal microscopy examination were used the assess autophagy, apoptosis, cytoskeleton, and epigenetics markers in the hyperplasic ovaries of ex-fissiparous individuals and the normal ovaries of sexual individuals. Immunofluorescence positivity for the autophagic marker microtubule-associated protein1 light chain 3 (LC3) was significantly lower in the hyperplasic ovary than in the normal ovary. Compared with the normal ovary, the hyperplasic ovary exhibited significantly higher immunofluorescence positivity for the apoptotic marker caspase 3, suggesting that autophagy and apoptosis are closely associated in this pathogenicity. Furthermore, the level of global DNA (cytosine-5)-methyltransferase 3A (DNMT3) protein expression was significantly higher in the normal ovary than in the hyperplasic ovary, suggesting that DNA methylation is involved in the infertility phenomenon. The cytoskeleton marker actin also exhibited relatively higher immunofluorescence intensity in the normal ovary than in the hyperplasic ovary, consistent with previous findings on the role of cytoskeleton architecture in oocyte maturation. These results help improve our understanding of the causes of infertility in ex-fissiparous planarians with hyperplasic ovaries and provide new insights that will facilitate future studies on this mysterious pathogenicity.
Collapse
Affiliation(s)
- Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia.
| | - Waleed Dahmash
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Abdelkarem Alrezaki
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Lamjed Mansour
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Wiegel RE, Rubini E, Rousian M, Schoenmakers S, Laven JSE, Willemsen SP, Baart EB, Steegers-Theunissen RPM. Human oocyte area is associated with preimplantation embryo usage and early embryo development: the Rotterdam Periconception Cohort. J Assist Reprod Genet 2023:10.1007/s10815-023-02803-1. [PMID: 37129725 DOI: 10.1007/s10815-023-02803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023] Open
Abstract
PURPOSE To investigate the association between oocyte area and fertilization rate, embryo usage, and preimplantation embryo development in order to establish if oocyte area can be a marker for optimal early embryo development. METHODS From 2017 to 2020, 378 couples with an indication for IVF (n = 124) or ICSI (n = 254) were included preconceptionally in the Rotterdam Periconception Cohort. Resulting oocytes (n = 2810) were fertilized and submitted to time-lapse embryo culture. Oocyte area was measured at the moment of fertilization (t0), pronuclear appearance (tPNa), and fading (tPNf). Fertilization rate, embryo usage and quality, and embryo morphokinetics from 2-cell stage to expanded blastocyst stage (t2-tEB) were used as outcome measures in association with oocyte area. Oocytes were termed "used" if they were fertilized and embryo development resulted in transfer or cryopreservation, and otherwise termed "discarded". Analyses were adjusted for relevant confounders. RESULTS Oocyte area decreased from t0 to tPNf after IVF and ICSI, and oocytes with larger area shrank faster (β - 12.6 µm2/h, 95%CI - 14.6; - 10.5, p < 0.001). Oocytes that resulted in a used embryo were larger at all time-points and reached tPNf faster than oocytes that fertilized but were discarded (oocyte area at tPNf in used 9864 ± 595 µm2 versus discarded 9679 ± 673 µm2, p < 0.001, tPNf in used 23.6 ± 3.2 h versus discarded 25.6 ± 5.9 h, p < 0.001). Larger oocytes had higher odds of being used (oocyte area at tPNf ORused 1.669, 95%CI 1.336; 2.085, p < 0.001), were associated with faster embryo development up to the morula stage (e.g., t9 β - 0.131 min, 95%CI - 0.237; - 0.025, p = 0.016) and higher ICM quality. CONCLUSION Oocyte area is an informative marker for the preimplantation development of the embryo, as a larger oocyte area is associated with higher quality, faster developing embryos, and higher chance of being used. Identifying determinants associated with oocyte and embryo viability and quality could contribute to improved preconception care and subsequently healthy pregnancies.
Collapse
Affiliation(s)
- Rosalieke E Wiegel
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Eleonora Rubini
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Joop S E Laven
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Esther B Baart
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | | |
Collapse
|
10
|
High-fat diet induced obesity alters Dnmt1 and Dnmt3a levels and global DNA methylation in mouse ovary and testis. Histochem Cell Biol 2023; 159:339-352. [PMID: 36624173 DOI: 10.1007/s00418-022-02173-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
Obesity impairs reproductive capacity, and the link between imprinting disorders and obesity has been discussed in many studies. Recent studies indicate that a high-fat diet may cause epigenetic changes in maternal and paternal genes, which may be transmitted to offspring and negatively affect their development. On this basis, our study aims to reveal the changes in DNA methylation and DNA methyltransferase enzymes in the ovaries and testes of C57BL/6 mice fed a high-fat diet and created a model of obesity, by comparing them with the control group. For this purpose, we demonstrated the presence and quantitative differences of DNA methyltransferase 1 and DNA methyltransferase 3a enzymes as well as global DNA methylation in ovaries and testis of C57BL/6 mice fed a high-fat diet by using immunohistochemistry and western blot methods. We found that a high-fat diet induces the levels of Dnmt1 and Dnmt3a proteins (p < 0.05). We observed increased global DNA methylation in testes but, interestingly, decreased global DNA methylation in ovaries. We think that our outcomes have significant value to demonstrate the effects of obesity on ovarian follicle development and testicular spermatogenesis and may bring a new perspective to obesity-induced infertility treatments. Additionally, to the best of our knowledge, this is the first study to document dynamic alteration of Dnmt1 and Dnmt3a as well as global DNA methylation patterns during follicle development in healthy mouse ovaries.
Collapse
|
11
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
12
|
Marttila S, Tamminen H, Rajić S, Mishra PP, Lehtimäki T, Raitakari O, Kähönen M, Kananen L, Jylhävä J, Hägg S, Delerue T, Peters A, Waldenberger M, Kleber ME, März W, Luoto R, Raitanen J, Sillanpää E, Laakkonen EK, Heikkinen A, Ollikainen M, Raitoharju E. Methylation status of VTRNA2-1/ nc886 is stable across populations, monozygotic twin pairs and in majority of tissues. Epigenomics 2022; 14:1105-1124. [PMID: 36200237 DOI: 10.2217/epi-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims & methods: The aim of this study was to characterize the methylation level of a polymorphically imprinted gene, VTRNA2-1/nc886, in human populations and somatic tissues.48 datasets, consisting of more than 30 tissues and >30,000 individuals, were used. Results: nc886 methylation status is associated with twin status and ethnic background, but the variation between populations is limited. Monozygotic twin pairs present concordant methylation, whereas ∼30% of dizygotic twin pairs present discordant methylation in the nc886 locus. The methylation levels of nc886 are uniform across somatic tissues, except in cerebellum and skeletal muscle. Conclusion: The nc886 imprint may be established in the oocyte, and, after implantation, the methylation status is stable, excluding a few specific tissues.
Collapse
Affiliation(s)
- Saara Marttila
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Gerontology Research Center, Tampere University, Tampere, 33014, Finland
| | - Hely Tamminen
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Sonja Rajić
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Fimlab Laboratories, Arvo Ylpön katu 4, Tampere, 33520, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Fimlab Laboratories, Arvo Ylpön katu 4, Tampere, 33520, Finland
| | - Olli Raitakari
- Centre for Population Health Research, University of Turku & Turku University Hospital, Turku, 20014, Finland.,Research Centre of Applied & Preventive Cardiovascular Medicine, University of Turku, Turku, 20014, Finland.,Department of Clinical Physiology & Nuclear Medicine, Turku University Hospital, Turku, 20014, Finland
| | - Mika Kähönen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
| | - Laura Kananen
- Faculty of Medicine & Health Technology, & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520,Finland.,Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden.,Faculty of Social Sciences (Health Sciences), & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Juulia Jylhävä
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden.,Faculty of Social Sciences (Health Sciences), & Gerontology Research Center, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Sara Hägg
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Thomas Delerue
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764,, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Bavaria, D-85764,, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.,SYNLAB MVZ Humangenetik Mannheim, Mannheim, Germany
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany.,Competence Cluster for Nutrition & Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Jena, 07743, Germany.,SYNLAB Academy, SYNLAB Holding Deutschland GmbH, Augsburg, 86156, Germany.,Clinical Institute of Medical & Chemical Laboratory Diagnostics, Medical University of Graz, Graz, 8010, Austria
| | - Riitta Luoto
- The Social Insurance Institute of Finland (Kela), Helsinki, 00250, Finland.,The UKK Institute for Health Promotion Research, Kaupinpuistonkatu 1, Tampere, 33500, Finland
| | - Jani Raitanen
- The UKK Institute for Health Promotion Research, Kaupinpuistonkatu 1, Tampere, 33500, Finland.,Faculty of Social Sciences (Health Sciences), Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| | - Elina Sillanpää
- Gerontology Research Center & Faculty of Sport & Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland.,Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Eija K Laakkonen
- Gerontology Research Center & Faculty of Sport & Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Aino Heikkinen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland, FIMM, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
| | - Emma Raitoharju
- Molecular Epidemiology, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland.,Finnish Cardiovascular Research Center Tampere, Faculty of Medicine & Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere, 33520, Finland
| |
Collapse
|
13
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Ishihara T, Hickford D, Fenelon JC, Griffith OW, Suzuki S, Renfree MB. Evolution of the short form of DNMT3A, DNMT3A2, occurred in the common ancestor of mammals. Genome Biol Evol 2022; 14:6615359. [PMID: 35749276 PMCID: PMC9254654 DOI: 10.1093/gbe/evac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is found in marsupial and eutherian mammals, but not in monotremes. While the primary regulator of genomic imprinting in eutherians is differential DNA methylation between parental alleles, conserved imprinted genes in marsupials tend to lack DNA methylation at their promoters. DNA methylation at eutherian imprinted genes is mainly catalysed by a DNA methyltransferase (DNMT) enzyme, DNMT3A. There are two isoforms of eutherian DNMT3A: DNMT3A and DNMT3A2. DNMT3A2 is the primary isoform for establishing DNA methylation at eutherian imprinted genes and is essential for eutherian genomic imprinting. In this study, we investigated whether DNMT3A2 is also present in the two other mammalian lineages, marsupials and monotremes. We identified DNMT3A2 in both marsupials and monotremes, although imprinting has not been identified in monotremes. By analysing genomic sequences and transcriptome data across vertebrates, we concluded that the evolution of DNMT3A2 occurred in the common ancestor of mammals. In addition, DNMT3A/3A2 gene and protein expression during gametogenesis showed distinct sexual dimorphisms in a marsupial, the tammar wallaby, and this pattern coincided with the sex-specific DNA methylation reprogramming in this species as it does in mice. Our results show that DNMT3A2 is present in all mammalian groups and suggests that the basic DNMT3A/3A2-based DNA methylation mechanism is conserved at least in therian mammals.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Danielle Hickford
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Shinshu University, Nagano, Japan
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Lafontaine S, Sirard MA. IGF2R, KCNQ1, PLAGL1, and SNRPN DNA methylation is completed in bovine by the early antral follicle stage. Mol Reprod Dev 2022; 89:290-297. [PMID: 35698757 DOI: 10.1002/mrd.23621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/06/2022]
Abstract
Imprinted genes are inherited with different DNA methylation patterns depending on the maternal or paternal origin of the allele. In cattle (Bos taurus), abnormal methylation of these genes is linked to the large offspring syndrome, a neonatal overgrowth phenotype analogous to the human Beckwith-Wiedemann syndrome. We hypothesized that in bovine oocytes, some of the methylation patterns on maternally imprinted genes are acquired in the last phase of folliculogenesis. The pyrosequencing analysis of IGF2R, KCNQ1, PLAGL1, and SNRPN imprinted genes showed no clear progression of methylation in oocytes from follicles 1-2 mm (late pre antral/early antral) and up. Instead, these oocytes displayed complete methylation at the imprinted differentially methylated regions (>80%). Other mechanisms related to imprint maintenance should be investigated to explain the hypomethylation at IGF2R, KCNQ1, PLAGL1, and SNRPN maternally imprinted sites observed in some bovine embryos.
Collapse
Affiliation(s)
- Simon Lafontaine
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, Canada
| | - Marc-André Sirard
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Département des Sciences Animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, Canada
| |
Collapse
|
16
|
Shirane K. The dynamic chromatin landscape and mechanisms of DNA methylation during mouse germ cell development. Gene 2022; 97:3-14. [PMID: 35431282 DOI: 10.1266/ggs.21-00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epigenetic marks including DNA methylation (DNAme) play a critical role in the transcriptional regulation of genes and retrotransposons. Defects in DNAme are detected in infertility, imprinting disorders and congenital diseases in humans, highlighting the broad importance of this epigenetic mark in both development and disease. While DNAme in terminally differentiated cells is stably propagated following cell division by the maintenance DNAme machinery, widespread erasure and subsequent de novo establishment of this epigenetic mark occur early in embryonic development as well as in germ cell development. Combined with deep sequencing, low-input methods that have been developed in the past several years have enabled high-resolution and genome-wide mapping of both DNAme and histone post-translational modifications (PTMs) in rare cell populations including developing germ cells. Epigenome studies using these novel methods reveal an unprecedented view of the dynamic chromatin landscape during germ cell development. Furthermore, integrative analysis of chromatin marks in normal germ cells and in those deficient in chromatin-modifying enzymes uncovers a critical interplay between histone PTMs and de novo DNAme in the germline. This review discusses work on mechanisms of the erasure and subsequent de novo DNAme in mouse germ cells as well as the outstanding questions relating to the regulation of the dynamic chromatin landscape in germ cells.
Collapse
Affiliation(s)
- Kenjiro Shirane
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
17
|
Hubert JN, Demars J. Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches. Front Genet 2022; 13:838534. [PMID: 35368671 PMCID: PMC8965095 DOI: 10.3389/fgene.2022.838534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.
Collapse
|
18
|
Kaneko-Ishino T, Ishino F. The Evolutionary Advantage in Mammals of the Complementary Monoallelic Expression Mechanism of Genomic Imprinting and Its Emergence From a Defense Against the Insertion Into the Host Genome. Front Genet 2022; 13:832983. [PMID: 35309133 PMCID: PMC8928582 DOI: 10.3389/fgene.2022.832983] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/11/2022] [Indexed: 12/30/2022] Open
Abstract
In viviparous mammals, genomic imprinting regulates parent-of-origin-specific monoallelic expression of paternally and maternally expressed imprinted genes (PEGs and MEGs) in a region-specific manner. It plays an essential role in mammalian development: aberrant imprinting regulation causes a variety of developmental defects, including fetal, neonatal, and postnatal lethality as well as growth abnormalities. Mechanistically, PEGs and MEGs are reciprocally regulated by DNA methylation of germ-line differentially methylated regions (gDMRs), thereby exhibiting eliciting complementary expression from parental genomes. The fact that most gDMR sequences are derived from insertion events provides strong support for the claim that genomic imprinting emerged as a host defense mechanism against the insertion in the genome. Recent studies on the molecular mechanisms concerning how the DNA methylation marks on the gDMRs are established in gametes and maintained in the pre- and postimplantation periods have further revealed the close relationship between genomic imprinting and invading DNA, such as retroviruses and LTR retrotransposons. In the presence of gDMRs, the monoallelic expression of PEGs and MEGs confers an apparent advantage by the functional compensation that takes place between the two parental genomes. Thus, it is likely that genomic imprinting is a consequence of an evolutionary trade-off for improved survival. In addition, novel genes were introduced into the mammalian genome via this same surprising and complex process as imprinted genes, such as the genes acquired from retroviruses as well as those that were duplicated by retropositioning. Importantly, these genes play essential/important roles in the current eutherian developmental system, such as that in the placenta and/or brain. Thus, genomic imprinting has played a critically important role in the evolutionary emergence of mammals, not only by providing a means to escape from the adverse effects of invading DNA with sequences corresponding to the gDMRs, but also by the acquisition of novel functions in development, growth and behavior via the mechanism of complementary monoallelic expression.
Collapse
Affiliation(s)
- Tomoko Kaneko-Ishino
- School of Medicine, Tokai University, Isehara, Japan
- *Correspondence: Tomoko Kaneko-Ishino, ; Fumitoshi Ishino,
| | - Fumitoshi Ishino
- Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- *Correspondence: Tomoko Kaneko-Ishino, ; Fumitoshi Ishino,
| |
Collapse
|
19
|
Kobayashi H. Canonical and Non-canonical Genomic Imprinting in Rodents. Front Cell Dev Biol 2021; 9:713878. [PMID: 34422832 PMCID: PMC8375499 DOI: 10.3389/fcell.2021.713878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic phenomenon that results in unequal expression of homologous maternal and paternal alleles. This process is initiated in the germline, and the parental epigenetic memories can be maintained following fertilization and induce further allele-specific transcription and chromatin modifications of single or multiple neighboring genes, known as imprinted genes. To date, more than 260 imprinted genes have been identified in the mouse genome, most of which are controlled by imprinted germline differentially methylated regions (gDMRs) that exhibit parent-of-origin specific DNA methylation, which is considered primary imprint. Recent studies provide evidence that a subset of gDMR-less, placenta-specific imprinted genes is controlled by maternal-derived histone modifications. To further understand DNA methylation-dependent (canonical) and -independent (non-canonical) imprints, this review summarizes the loci under the control of each type of imprinting in the mouse and compares them with the respective homologs in other rodents. Understanding epigenetic systems that differ among loci or species may provide new models for exploring genetic regulation and evolutionary divergence.
Collapse
Affiliation(s)
- Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
20
|
The Improvement and Clinical Application of Human Oocyte In Vitro Maturation (IVM). Reprod Sci 2021; 29:2127-2135. [PMID: 34076873 DOI: 10.1007/s43032-021-00613-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
Oocyte in vitro maturation (IVM) is a technology with a long history that was established before IVF. Although it has been studied extensively, the efficiency of IVM has been poor for almost 30 years. In terms of the benefits of IVM, the efficiency and adoption of IVM are being improved by some notable improvements that have occurred in recent years. The establishment of biphasic IVM is the most important advancement in recent years. Biphasic IVM includes the pre-IVM culturing phase and IVM phase. The CNP-mediated pre-IVM culturing system is specifically tailored for non/minimally stimulated immature oocytes, and its efficiency has been shown. This is the most significant improvement made in recent decades in this area. In the clinic, IVM can be used for PCOS patients to avoid the occurrence of ovarian hyperstimulation syndrome (OHSS). Additionally, this method can solve the reproductive problems of some patients with special diseases (resistant ovary syndrome) that cannot be solved by IVF. In most fertility preservation procedures, oocytes in small antral follicles are lost. However, IVM has the ability to capture this kind of oocyte and save reproductive potential. IVM can be easily combined with fertility preservation strategies that have been applied in the clinic and improve the efficiency of fertility preservation. IVM is a useful and attractive technology and may be used widely worldwide in the near future.
Collapse
|
21
|
Lozano-Ureña A, Jiménez-Villalba E, Pinedo-Serrano A, Jordán-Pla A, Kirstein M, Ferrón SR. Aberrations of Genomic Imprinting in Glioblastoma Formation. Front Oncol 2021; 11:630482. [PMID: 33777782 PMCID: PMC7994891 DOI: 10.3389/fonc.2021.630482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
In human glioblastoma (GBM), the presence of a small population of cells with stem cell characteristics, the glioma stem cells (GSCs), has been described. These cells have GBM potential and are responsible for the origin of the tumors. However, whether GSCs originate from normal neural stem cells (NSCs) as a consequence of genetic and epigenetic changes and/or dedifferentiation from somatic cells remains to be investigated. Genomic imprinting is an epigenetic marking process that causes genes to be expressed depending on their parental origin. The dysregulation of the imprinting pattern or the loss of genomic imprinting (LOI) have been described in different tumors including GBM, being one of the earliest and most common events that occurs in human cancers. Here we have gathered the current knowledge of the role of imprinted genes in normal NSCs function and how the imprinting process is altered in human GBM. We also review the changes at particular imprinted loci that might be involved in the development of the tumor. Understanding the mechanistic similarities in the regulation of genomic imprinting between normal NSCs and GBM cells will be helpful to identify molecular players that might be involved in the development of human GBM.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| | | | | | | | - Martina Kirstein
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| | - Sacri R Ferrón
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Valencia, Spain.,Departamento de Biología Celular, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
22
|
Abstract
Abstract
Genomic imprinting ensures the parent-specific expression of either the maternal or the paternal allele, by different epigenetic processes (DNA methylation and histone modifications) that confer parent-specific marks (imprints) in the paternal and maternal germline, respectively. Most protein-coding imprinted genes are involved in embryonic growth, development, and behavior. They are usually organized in genomic domains that are regulated by differentially methylated regions (DMRs). Genomic imprints are erased in the primordial germ cells and then reset in a gene-specific manner according to the sex of the germline. The imprinted genes regulate and interact with other genes, consistent with the existence of an imprinted gene network. Defects of genomic imprinting result in syndromal imprinting disorders. To date a dozen congenital imprinting disorders are known. Usually, a given imprinting disorder can be caused by different types of defects, including point mutations, deletions/duplications, uniparental disomy, and epimutations. Causative trans-acting factors in imprinting disorders, including ZFP57 and the subcortical maternal complex (SCMC), have the potential to affect multiple DMRs across the genome, resulting in a multi-locus imprinting disturbance. There is evidence that mutations in components of the SCMC can confer an increased risk for imprinting disorders.
Collapse
Affiliation(s)
- Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine , University Medical Centre Johannes Gutenberg University Mainz , Obere Zahlbacher Str. 63 , Mainz , Germany
| | - Thomas Haaf
- Institute of Human Genetics , Julius Maximilians University , Würzburg , Germany
| |
Collapse
|
23
|
Lafontaine S, Labrecque R, Palomino JM, Blondin P, Sirard MA. Specific imprinted genes demethylation in association with oocyte donor's age and culture conditions in bovine embryos assessed at day 7 and 12 post insemination. Theriogenology 2020; 158:321-330. [PMID: 33010654 DOI: 10.1016/j.theriogenology.2020.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
Abstract
The production of bovine embryos through in vitro maturation and fertilization is an important tool of the genomic revolution in dairy cattle. Gene expression analysis of these embryos revealed differences according to the culture conditions or oocyte donor's pubertal status compared to in vivo derived embryos. We hypothesized that some of the methylation patterns in oocytes are acquired in the last step of folliculogenesis and could be influenced by the environment created in the follicles containing these oocytes. These altered patterns may not be erased during the first week of embryonic development in culture or may be sensitive to the conditions during that time. To quantify the changes related to culture conditions, an in vivo control group consisting of embryos (Day 12 post fertilization for all groups) obtained from superovulated and artificially inseminated cows was compared to in vitro produced (IVP) embryos cultured with or without Fetal Bovine Serum (FBS). To measure the effect of the oocytes donor's age, we also compared a fourth group consisting of IVP embryos produced with oocytes collected following ovarian stimulation of pre-pubertal animals. Embryonic disk and trophoblast cells were processed separately and the methylation status of ten imprinted genes (H19, MEST, KCNQ1, SNRPN, PEG3, NNAT, GNASXL, IGF2R, PEG10, and PLAGL1) was assessed by pyrosequencing. Next, ten Day 7 blastocysts were produced following the same methodology as for the D12 embryos (four groups) to observe the most interesting genes (KCNQ1, SNRPN, IGF2R and PLAGL1) at an earlier developmental stage. For all samples, we observed overall lower methylation levels and greater variability in the three in vitro groups compared to the in vivo group. The individual embryo analysis indicated that some embryos were deviant from the others and some were not affected. We concluded that IGF2R, SNRPN, and PEG10 were particularly sensitive to culture conditions and the presence of FBS, while KCNQ1 and PLAGL1 were more affected in embryos derived from pre-pubertal donors. This work provides markers at the single imprinted control region (ICR) resolution to assess the culture environment required to minimize epigenetic perturbations in bovine embryos generated by assisted reproduction techniques, thus laying the groundwork for a better comprehension of the complex interplay between in vitro conditions and imprinted genes.
Collapse
Affiliation(s)
- Simon Lafontaine
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animals, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada
| | - Rémi Labrecque
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | | | - Patrick Blondin
- SEMEX Boviteq, 3450 Rue Sicotte, Saint-Hyacinthe, QC J2S, Canada
| | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animals, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Canada.
| |
Collapse
|
24
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
25
|
Li QN, Ma JY, Liu WB, Meng TG, Wang F, Hou Y, Schatten H, Sun QY, Ou XH. DNA methylation establishment of CpG islands near maternally imprinted genes on chromosome 7 during mouse oocyte growth. Mol Reprod Dev 2020; 87:800-807. [PMID: 32558133 DOI: 10.1002/mrd.23395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022]
Abstract
The genome methylation is globally erased in early fetal germ cells, and it is gradually re-established during gametogenesis. The expression of some imprinted genes is regulated by the methylation status of CpG islands, while the exact time of DNA methylation establishment near maternal imprinted genes during oocyte growth is not well known. Here, growing oocytes were divided into three groups based on follicle diameters including the S-group (60-100 μm), M-group (100-140 μm), and L-group (140-180 μm). The fully grown germinal vesicle (GV)-stage and metaphase II (M2)-stage mature oocytes were also collected. These oocytes were used for single-cell bisulfite sequencing to detect the methylation status of CpG islands near imprinted genes on chromosome 7. The results showed that the CpG islands near Ndn, Magel2, Mkrn3, Peg12, and Igf2 were completely unmethylated, but those of Peg3, Snrpn, and Kcnq1ot1 were hypermethylated in MII-stage oocytes. The methylation of CpG islands near different maternal imprinted genes occurred asynchronously, being completed in later-stage growing oocytes, fully grown GV oocytes, and mature MII-stage oocytes, respectively. These results show that CpG islands near some maternally imprinted genes are not necessarily methylated, and that the establishment of methylation of other maternally imprinted genes is completed at different stages of oocyte growth, providing a novel understanding of the establishment of maternally imprinted genes in oocytes.
Collapse
Affiliation(s)
- Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jun-Yu Ma
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wen-Bo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Ferring Institute of Reproductive Biology, FIRM, Beijing, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
26
|
The role and mechanisms of DNA methylation in the oocyte. Essays Biochem 2020; 63:691-705. [PMID: 31782490 PMCID: PMC6923320 DOI: 10.1042/ebc20190043] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Epigenetic information in the mammalian oocyte has the potential to be transmitted to the next generation and influence gene expression; this occurs naturally in the case of imprinted genes. Therefore, it is important to understand how epigenetic information is patterned during oocyte development and growth. Here, we review the current state of knowledge of de novo DNA methylation mechanisms in the oocyte: how a distinctive gene-body methylation pattern is created, and the extent to which the DNA methylation machinery reads chromatin states. Recent epigenomic studies building on advances in ultra-low input chromatin profiling methods, coupled with genetic studies, have started to allow a detailed interrogation of the interplay between DNA methylation establishment and chromatin states; however, a full mechanistic description awaits.
Collapse
|
27
|
Ponzi D, Flinn MV, Muehlenbein MP, Nepomnaschy PA. Hormones and human developmental plasticity. Mol Cell Endocrinol 2020; 505:110721. [PMID: 32004677 DOI: 10.1016/j.mce.2020.110721] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
Abstract
Natural selection favors the evolution of mechanisms that optimize the allocation of resources and time among competing traits. Hormones mediate developmental plasticity, the changes in the phenotype that occur during ontogeny. Despite their highly conserved functions, the flexibilities of human hormonal systems suggest a strong history of adaptation to variable environments. Physiological research on developmental plasticity has focused on the early programming effects of stress, the hypothalamus-pituitary-adrenal axis (HPAA) and the hypothalamus-pituitary-gonadal axis (HPGA) during critical periods, when the hormones produced have the strongest influence on the developing brain. Often this research emphasizes the maladaptive effects of early stressful experiences. Here we posit that the HPAA and HPAG systems in human developmental plasticity have evolved to be responsive to complex and dynamic problems associated with human sociality. The lengthy period of human offspring dependency, and its associated brain development and risks, is linked to the uniquely human combination of stable breeding bonds, extensive paternal effort in a multi-male group, extended bilateral kin recognition, grandparenting, and controlled exchange of mates among kin groups. We evaluate an evolutionary framework that integrates proximate physiological explanations with ontogeny, phylogeny, adaptive function, and comparative life history data.
Collapse
Affiliation(s)
- Davide Ponzi
- Unit of Neuroscience, Department of Medicine and Surgery, University of Parma, Italy.
| | - Mark V Flinn
- Department of Anthropology, Baylor University, Waco, TX, USA
| | | | | |
Collapse
|
28
|
Zhou Q, Meng QR, Meng TG, He QL, Zhao ZH, Li QN, Lei WL, Liu SZ, Schatten H, Wang ZB, Sun QY. Deletion of BAF250a affects oocyte epigenetic modifications and embryonic development. Mol Reprod Dev 2020; 87:550-564. [PMID: 32215983 DOI: 10.1002/mrd.23339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 11/10/2022]
Abstract
BRG1-associated factor 250a (BAF250a) is a component of the SWI/SNF adenosine triphosphate-dependent chromatin remodeling complex, which has been shown to control chromatin structure and transcription. BAF250a was reported to be a key component of the gene regulatory machinery in embryonic stem cells controlling self-renewal, differentiation, and cell lineage decisions. Here we constructed Baf250aF/F ;Gdf9-cre (Baf250aCKO ) mice to specifically delete BAF250a in oocytes to investigate the role of maternal BAF250a in female germ cells and embryo development. Our results showed that BAF250a deletion did not affect folliculogenesis, ovulation, and fertilization, but it caused late embryonic death. RNA sequencing analysis showed that the expression of genes involved in cell proliferation and differentiation, tissue morphogenesis, histone modification, and nucleosome remodeling were perturbed in Baf250aCKO MII oocytes. We showed that covalent histone modifications such as H3K27me3 and H3K27ac were also significantly affected in oocytes, which may reduce oocyte quality and lead to birth defects. In addition, the DNA methylation level of Igf2r, Snrpn, and Peg3 differentially methylated regions was decreased in Baf250aCKO oocytes. Quantitative real-time polymerase chain reaction analysis showed that the relative messenger RNA (mRNA) expression levels of Igf2r and Snrpn were significantly increased. The mRNA expression level of Dnmt1, Dnmt3a, Dnmt3l, and Uhrf1 was decreased, and the protein expression in these genes was also reduced, which might be the cause for impaired imprinting establishment. In conclusion, our results demonstrate that BAF250a plays an important role in oocyte transcription regulation, epigenetic modifications, and embryo development.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Ren Meng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Long He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zheng-Hui Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wen-Long Lei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shu-Zhen Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Ly L, Chan D, Landry M, Angle C, Martel J, Trasler J. Impact of mothers' early life exposure to low or high folate on progeny outcome and DNA methylation patterns. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa018. [PMID: 33240529 PMCID: PMC7673481 DOI: 10.1093/eep/dvaa018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 05/14/2023]
Abstract
The dynamic patterning of DNA and histone methylation during oocyte development presents a potentially susceptible time for epigenetic disruption due to early life environmental exposure of future mothers. We investigated whether maternal exposure to folic acid deficient and supplemented diets starting in utero could affect oocytes and cause adverse developmental and epigenetic effects in next generation progeny. Female BALB/c mice (F0) were placed on one of four amino acid defined diets for 4 weeks before pregnancy and throughout gestation and lactation: folic acid control (rodent recommended daily intake; Ctrl), 7-fold folic acid deficient, 10-fold folic acid supplemented or 20-fold folic acid supplemented diets. F1 female pups were weaned onto Ctrl diets, mated to produce the F2 generation and the F2 offspring were examined at E18.5 for developmental and epigenetic abnormalities. Resorption rates were increased and litter sizes decreased amongst F2 E18.5-day litters in the 20-fold folic acid supplemented group. Increases in abnormal embryo outcomes were observed in all three folic acid deficient and supplemented groups. Subtle genome-wide DNA methylation alterations were found in the placentas and brains of F2 offspring in the 7-fold folic acid deficient , 10-fold folic acid supplemented and 20-fold folic acid supplemented groups; in contrast, global and imprinted gene methylation were not affected. The findings show that early life female environmental exposures to both low and high folate prior to oocyte maturation can compromise oocyte quality, adversely affecting offspring of the next generation, in part by altering DNA methylation patterns.
Collapse
Affiliation(s)
- Lundi Ly
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Donovan Chan
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mylène Landry
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Camille Angle
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | - Josée Martel
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
- Department of Pediatrics, McGill University, Montreal, QC, Canada
- Correspondence address. Research Institute of the McGill University Health Centre, 1001 Boulevard Décarie, Block E.M.0.3211, Montreal, QC, Canada H4A 3J1. Tel: +1-514-934-1934 (ext. 25235); Fax: +1-514-933-9673; E-mail:
| |
Collapse
|
30
|
Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Epigenetic changes and assisted reproductive technologies. Epigenetics 2020; 15:12-25. [PMID: 31328632 PMCID: PMC6961665 DOI: 10.1080/15592294.2019.1646572] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023] Open
Abstract
Children conceived by Assisted Reproductive Technologies (ART) are at moderately increased risk for a number of undesirable outcomes, including low birth weight. Whether the additional risk is associated with specific procedures used in ART or biological factors that are intrinsic to infertility has been the subject of much debate, as has the mechanism by which ART or infertility might influence this risk. The potential effect of ART clinical and laboratory procedures on the gamete and embryo epigenomes heads the list of mechanistic candidates that might explain the association between ART and undesirable clinical outcomes. The reason for this focus is that the developmental time points at which ART clinical and laboratory procedures are implemented are precisely the time points at which large-scale reorganization of the epigenome takes place during normal development. In this manuscript, we review the many human studies comparing the epigenomes of ART children with children conceived in vivo, as well as assess the potential of individual ART clinical and laboratory procedures to alter the epigenome.
Collapse
Affiliation(s)
- Sneha Mani
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jayashri Ghosh
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Carmen Sapienza
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, PA, USA
| | - Monica Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
31
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
32
|
Demond H, Anvar Z, Jahromi BN, Sparago A, Verma A, Davari M, Calzari L, Russo S, Jahromi MA, Monk D, Andrews S, Riccio A, Kelsey G. A KHDC3L mutation resulting in recurrent hydatidiform mole causes genome-wide DNA methylation loss in oocytes and persistent imprinting defects post-fertilisation. Genome Med 2019; 11:84. [PMID: 31847873 PMCID: PMC6918611 DOI: 10.1186/s13073-019-0694-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Background Maternal effect mutations in the components of the subcortical maternal complex (SCMC) of the human oocyte can cause early embryonic failure, gestational abnormalities and recurrent pregnancy loss. Enigmatically, they are also associated with DNA methylation abnormalities at imprinted genes in conceptuses: in the devastating gestational abnormality biparental complete hydatidiform mole (BiCHM) or in multi-locus imprinting disease (MLID). However, the developmental timing, genomic extent and mechanistic basis of these imprinting defects are unknown. The rarity of these disorders and the possibility that methylation defects originate in oocytes have made these questions very challenging to address. Methods Single-cell bisulphite sequencing (scBS-seq) was used to assess methylation in oocytes from a patient with BiCHM identified to be homozygous for an inactivating mutation in the human SCMC component KHDC3L. Genome-wide methylation analysis of a preimplantation embryo and molar tissue from the same patient was also performed. Results High-coverage scBS-seq libraries were obtained from five KHDC3Lc.1A>G oocytes, which revealed a genome-wide deficit of DNA methylation compared with normal human oocytes. Importantly, germline differentially methylated regions (gDMRs) of imprinted genes were affected similarly to other sequence features that normally become methylated in oocytes, indicating no selectivity towards imprinted genes. A range of methylation losses was observed across genomic features, including gDMRs, indicating variable sensitivity to defects in the SCMC. Genome-wide analysis of a pre-implantation embryo and molar tissue from the same patient showed that following fertilisation methylation defects at imprinted genes persist, while most non-imprinted regions of the genome recover near-normal methylation post-implantation. Conclusions We show for the first time that the integrity of the SCMC is essential for de novo methylation in the female germline. These findings have important implications for understanding the role of the SCMC in DNA methylation and for the origin of imprinting defects, for counselling affected families, and will help inform future therapeutic approaches.
Collapse
Affiliation(s)
- Hannah Demond
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Zahra Anvar
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran. .,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. .,Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.
| | - Bahia Namavar Jahromi
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Angela Sparago
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Ankit Verma
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', Consiglio Nazionale delle Ricerche (CNR), Naples, Italy.,Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy
| | - Maryam Davari
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,IVF Section, Ghadir-Mother and Child Hospital of Shiraz, Shiraz, Iran
| | - Luciano Calzari
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Silvia Russo
- Medical Cytogenetics and Molecular Genetics Laboratory, Centro di Ricerche e Tecnologie Biomediche IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | | | - David Monk
- Imprinting and Cancer Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge, UK
| | - Andrea Riccio
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso', Consiglio Nazionale delle Ricerche (CNR), Naples, Italy. .,Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania 'Luigi Vanvitelli', Caserta, Italy.
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, UK. .,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
33
|
Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, Krueger F, Segonds-Pichon A, De Vos M, Andrews S, Smitz J, Kelsey G, Anckaert E. DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum Reprod 2019; 34:1640-1649. [PMID: 31398248 DOI: 10.1093/humrep/dez121] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 11/08/2023] Open
Abstract
STUDY QUESTION Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients? SUMMARY ANSWER No significant differences in imprinted DNA methylation and gene expression were detected between COS and CAPA-IVM blastocysts. WHAT IS KNOWN ALREADY Animal models have revealed alterations in DNA methylation maintenance at imprinted germline differentially methylated regions (gDMRs) after use of ARTs. This effect increases as more ART interventions are applied to oocytes or embryos. IVM is a minimal-stimulation ART with reduced hormone-related side effects and risks for patients. CAPA-IVM is an improved IVM system that includes a pre-maturation step (CAPA), followed by an IVM step, both in the presence of physiological compounds that promote oocyte developmental capacity. STUDY DESIGN, SIZE, DURATION For DNA methylation analysis 20 CAPA-IVM blastocysts were compared to 12 COS blastocysts. For RNA-Seq analysis a separate set of 15 CAPA-IVM blastocysts were compared to 5 COS blastocysts. PARTICIPANTS/MATERIALS, SETTING, METHODS COS embryos originated from 12 patients with PCOS (according to Rotterdam criteria) who underwent conventional ovarian stimulation. For CAPA-IVM 23 women were treated for 3-5 days with highly purified hMG (HP-hMG) and no hCG trigger was given before oocyte retrieval. Oocytes were first cultured in pre-maturation medium (CAPA for 24 h containing C-type natriuretic peptide), followed by an IVM step (30 h) in medium containing FSH and Amphiregulin. After ICSI, Day 5 or 6 embryos in both groups were vitrified and used for post-bisulphite adaptor tagging (PBAT) DNA methylation analysis or RNA-seq gene expression analysis of individual embryos. Data from specific genes and gDMRs were extracted from the PABT and RNA-seq datasets. MAIN RESULTS AND THE ROLE OF CHANCE CAPA-IVM blastocysts showed similar rates of methylation and gene expression at gDMRs compared to COS embryos. In addition, expression of major epigenetic regulators was similar between the groups. LIMITATIONS, REASONS FOR CAUTION The embryos from the COS group were generated in a range of culture media. The CAPA-IVM embryos were all generated using the same sperm donor. The DNA methylation level of gDMRs in purely in vivo-derived human blastocysts is not known. WIDER IMPLICATIONS OF THE FINDINGS A follow-up of children born after CAPA-IVM is important as it is for other new ARTs, which are generally introduced into clinical practice without prior epigenetic safety studies on human blastocysts. CAPA-IVM opens new perspectives for patient-friendly ART in PCOS. STUDY FUNDING/COMPETING INTEREST(S) IVM research at the Vrije Universiteit Brussel has been supported by grants from the Institute for the Promotion of Innovation by Science and Technology in Flanders (Agentschap voor Innovatie door Wetenschap en Technologie-IWT, project 110680), the Fund for Research Flanders (Fonds voor Wetenschappelijk Onderzoek-Vlaanderen-FWO-AL 679 project, project G.0343.13), the Belgian Foundation Against Cancer (HOPE project, Dossier C69Ref Nr 2016-119) and the Vrije Universiteit Brussel (IOF Project 4R-ART Nr 2042). Work in G.K.'s laboratory is supported by the UK Biotechnology and Biological Sciences Research Council and Medical Research Council. The authors have no conflicts of interest.
Collapse
Affiliation(s)
- M D Saenz-de-Juano
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Switzerland
| | - E Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - S Romero
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Reproductive Biology and Fertility Preservation, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - F Lolicato
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Fertilab Barcelona, Via Augusta, 237-239, Barcelona 08021, Spain
| | - F Sánchez
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Reproductive Biology and Fertility Preservation, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - H Van Ranst
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - F Krueger
- Bioinformatics Unit, The Babraham Institute, Cambridge, UK
| | | | - M De Vos
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- Centre for Reproductive Medicine, UZ Brussel, Brussels 1090, Belgium
| | - S Andrews
- Bioinformatics Unit, The Babraham Institute, Cambridge, UK
| | - J Smitz
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - G Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - E Anckaert
- Follicle Biology Laboratory (FOBI), UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
34
|
Clarke H. Control of Mammalian Oocyte Development by Interactions with the Maternal Follicular Environment. Results Probl Cell Differ 2019; 63:17-41. [PMID: 28779312 DOI: 10.1007/978-3-319-60855-6_2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Development of animal germ cells depends critically on continuous contact and communication with the somatic compartment of the gonad. In females, each oocyte is enclosed within a follicle, whose somatic cells supply nutrients that sustain basal metabolic activity of the oocyte and send signals that regulate its differentiation. This maternal microenvironment thus plays an indispensable role in ensuring the production of fully differentiated oocytes that can give rise to healthy embryos. The granulosa cells send signals, likely membrane-associated Kit ligand, which trigger oocytes within resting-stage primordial follicles to initiate growth. During growth, the granulosa cells feed amino acids, nucleotides, and glycolytic substrates to the oocyte. These factors are necessary for the oocyte to complete its growth and are delivered via gap junctions that couple the granulosa cells to the oocyte. In a complementary manner, growing oocytes also release growth factors, notably growth-differentiation factor 9 and bone morphogenetic protein 15, which are necessary for proper differentiation of the granulosa cells and for these cells to support oocyte growth. During the late stages of oocyte growth, cyclic GMP that is synthesized by the granulosa cells and diffuses into the oocyte is required to prevent its precocious entry into meiotic maturation. Finally, at the early stages of maturation, granulosa cell signals promote the synthesis of a subset of proteins within the oocyte that enhance their ability to develop as embryos. Thus, the maternal legacy of the follicular microenvironment is witnessed by the fertilization of the ovulated oocyte and subsequent birth of healthy offspring.
Collapse
Affiliation(s)
- Hugh Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Room E.M0.2218, Glen Research Building, 100 Boul Decarie, Montreal, QC, Canada, H4A 3J1.
| |
Collapse
|
35
|
Lewis MW, Vargas-Franco D, Morse DA, Resnick JL. A mouse model of Angelman syndrome imprinting defects. Hum Mol Genet 2019; 28:220-229. [PMID: 30260400 DOI: 10.1093/hmg/ddy345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/21/2018] [Indexed: 02/07/2023] Open
Abstract
Angelman syndrome, Prader-Will syndrome and Dup15q syndrome map to a cluster of imprinted genes located at 15q11-q13. Imprinting at this domain is regulated by an imprinting control region consisting of two distinct elements, the Angelman syndrome imprinting center (AS-IC) and the Prader-Willi syndrome imprinting center (PWS-IC). Individuals inheriting deletions of the AS-IC exhibit reduced expression of the maternally expressed UBE3A gene and biallelic expression of paternal-only genes. We have previously demonstrated that AS-IC activity partly consists of providing transcription across the PWS-IC in oocytes, and that these transcripts are necessary for maternal imprinting of Snrpn. Here we report a novel mouse mutation that truncates transcripts prior to transiting the PWS-IC and results in a domain-wide imprinting defect. These results confirm a transcription-based model for imprint setting at this domain. The imprinting defect can be preempted by removal of the transcriptional block in oocytes, but not by its removal in early embryos. Imprinting defect mice exhibit several traits often found in individuals with Angelman syndrome imprinting defects.
Collapse
Affiliation(s)
- Michael W Lewis
- Department of Molecular Genetics and Microbiology College of Medicine University of Florida, Gainsvile, FL, USA
| | - Dorianmarie Vargas-Franco
- Department of Molecular Genetics and Microbiology College of Medicine University of Florida, Gainsvile, FL, USA
| | - Deborah A Morse
- Department of Molecular Genetics and Microbiology College of Medicine University of Florida, Gainsvile, FL, USA
| | - James L Resnick
- Department of Molecular Genetics and Microbiology College of Medicine University of Florida, Gainsvile, FL, USA
| |
Collapse
|
36
|
Cao Y, Li M, Liu F, Ni X, Wang S, Zhang H, Sui X, Huo R. Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos. FASEB J 2019; 33:8294-8305. [PMID: 30995416 DOI: 10.1096/fj.201801696rrrr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ubiquitin-like, containing PHD and RING finger domains, 1 (UHRF1) protein recognizes DNA methylation and histone modification and plays a critical role in epigenetic regulation. Recently, UHRF1 was shown to have a role in DNA methylation in oocytes and early embryos. Here, we reveal that maternal UHRF1 determines the quality of mouse oocytes. We generated oocyte-specific Uhrf1-knockout mice and found that females were sterile, and few maternal UHRF1-null embryos developed into blastocysts. The UHRF1-null oocytes had an increased incidence of aneuploidy and DNA damage. In addition to defective DNA methylation, histone modification was affected during oogenesis, with UHRF1-null germinal vesicle and metaphase II-stage oocytes exhibiting reduced global histone H3 lysine 9 dimethylation levels and elevated acetylation of histone H4 lysine 12. Taken together, our results suggest that UHRF1 plays an important role in determining oocyte quality and affects epigenetic regulation of oocyte maturation as a maternal protein, which is crucial for embryo developmental potential. Further exploration of the biologic function and underlying mechanisms of maternal UHRF1 will enhance our understanding of the maternal control of the oocyte and early embryonic development.-Cao, Y., Li, M., Liu, F., Ni, X., Wang, S., Zhang, H., Sui, X., Huo, R. Deletion of maternal UHRF1 severely reduces mouse oocyte quality and causes developmental defects in preimplantation embryos.
Collapse
Affiliation(s)
- Yumeng Cao
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Mingrui Li
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Fei Liu
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - XiaoBei Ni
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuai Wang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xuesong Sui
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ran Huo
- Department of Histology and Embryology, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Larose H, Shami AN, Abbott H, Manske G, Lei L, Hammoud SS. Gametogenesis: A journey from inception to conception. Curr Top Dev Biol 2019; 132:257-310. [PMID: 30797511 PMCID: PMC7133493 DOI: 10.1016/bs.ctdb.2018.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gametogenesis, the process of forming mature germ cells, is an integral part of both an individual's and a species' health and well-being. This chapter focuses on critical male and female genetic and epigenetic processes underlying normal gamete formation through their differentiation to fertilization. Finally, we explore how knowledge gained from this field has contributed to progress in areas with great clinical promise, such as in vitro gametogenesis.
Collapse
Affiliation(s)
- Hailey Larose
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Haley Abbott
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabriel Manske
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lei Lei
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Saher Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Urology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
38
|
Bewick AJ, Sanchez Z, Mckinney EC, Moore AJ, Moore PJ, Schmitz RJ. Dnmt1 is essential for egg production and embryo viability in the large milkweed bug, Oncopeltus fasciatus. Epigenetics Chromatin 2019; 12:6. [PMID: 30616649 PMCID: PMC6322253 DOI: 10.1186/s13072-018-0246-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/18/2018] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The function of cytosine (DNA) methylation in insects remains inconclusive due to a lack of mutant and/or genetic studies. RESULTS Here, we provide evidence for the functional role of the maintenance DNA methyltransferase 1 (Dnmt1) in an insect using experimental manipulation. Through RNA interference (RNAi), we successfully posttranscriptionally knocked down Dnmt1 in ovarian tissue of the hemipteran Oncopeltus fasciatus (the large milkweed bug). Individuals depleted for Dnmt1, and subsequently DNA methylation, failed to reproduce. Eggs were inviable and declined in number, and nuclei structure of follicular epithelium was aberrant. Erasure of DNA methylation from gene or transposon element bodies did not reveal a direct causal link to steady-state mRNA levels in somatic cells. These results reveal an important function of Dnmt1 seemingly not contingent on directly controlling gene expression. CONCLUSIONS This study provides direct experimental evidence for a functional role of Dnmt1 in egg production and embryo viability and uncovers a trivial role, if any, for DNA methylation in control of gene expression in O. fasciatus.
Collapse
Affiliation(s)
- Adam J. Bewick
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Zachary Sanchez
- Department of Entomology, University of Georgia, Athens, GA 30602 USA
| | | | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602 USA
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602 USA
| | | |
Collapse
|
39
|
Chamani IJ, Keefe DL. Epigenetics and Female Reproductive Aging. Front Endocrinol (Lausanne) 2019; 10:473. [PMID: 31551923 PMCID: PMC6736555 DOI: 10.3389/fendo.2019.00473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
With more women than ever waiting until a more advanced age to have children, there exists a newfound urgency to identify the various implications aging has on human reproduction, and understand the disrupted biological processes that result in these changes. In this review, we focus on one recent area of study: the age related epigenetic changes that have been found in female reproductive organs, and the effect these changes may contribute to reproductive outcomes.
Collapse
Affiliation(s)
| | - David L. Keefe
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, United States
- *Correspondence: David L. Keefe
| |
Collapse
|
40
|
Marshall KL, Wang J, Ji T, Rivera RM. The effects of biological aging on global DNA methylation, histone modification, and epigenetic modifiers in the mouse germinal vesicle stage oocyte. Anim Reprod 2018; 15:1253-1267. [PMID: 34221140 PMCID: PMC8203117 DOI: 10.21451/1984-3143-ar2018-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A cultural trend in developed countries is favoring a delay in maternal age at first childbirth.
In mammals fertility and chronological age show an inverse correlation. Oocyte quality is
a contributing factor to this multifactorial phenomenon that may be influenced by age-related
changes in the oocyte epigenome. Based on previous reports, we hypothesized that advanced
maternal age would lead to alterations in the oocyte’s epigenome. We tested our hypothesis
by determining protein levels of various epigenetic modifications and modifiers in fully-grown
(≥70 µm), germinal vesicle (GV) stage oocytes of young (10-13 weeks) and aged
(69-70 weeks) mice. Our results demonstrate a significant increase in protein amounts of
the maintenance DNA methyltransferase DNMT1 (P = 0.003) and a trend toward increased global
DNA methylation (P = 0.09) with advanced age. MeCP2, a methyl DNA binding domain protein, recognizes
methylated DNA and induces chromatin compaction and silencing. We hypothesized that chromatin
associated MeCP2 would be increased similarly to DNA methylation in oocytes of aged female
mice. However, we detected a significant decrease (P = 0.0013) in protein abundance of MeCP2
between GV stage oocytes from young and aged females. Histone posttranslational modifications
can also alter chromatin conformation. Di-methylation of H3K9 (H3K9me2) is associated with
permissive heterochromatin while acetylation of H4K5 (H4K5ac) is associated with euchromatin.
Our results indicate a trend toward decreasing H3K9me2 (P = 0.077) with advanced female age
and no significant differences in levels of H4K5ac. These data demonstrate that physiologic
aging affects the mouse oocyte epigenome and provide a better understanding of the mechanisms
underlying the decrease in oocyte quality and reproductive potential of aged females.
Collapse
Affiliation(s)
- Kira Lynn Marshall
- Division of Animal Sciences.,Reproductive Sciences, San Diego Zoo Global Institute for Conservation Research, San Pasqual Valley Rd
| | | | | | | |
Collapse
|
41
|
SanMiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod 2018; 99:252-262. [PMID: 29462489 PMCID: PMC6044325 DOI: 10.1093/biolre/ioy036] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023] Open
Abstract
DNA methylation is an essential epigenetic mark crucial for normal mammalian development. This modification controls the expression of a unique class of genes, designated as imprinted, which are expressed monoallelically and in a parent-of-origin-specific manner. Proper parental allele-specific DNA methylation at imprinting control regions (ICRs) is necessary for appropriate imprinting. Processes that deregulate DNA methylation of imprinted loci cause disease in humans. DNA methylation patterns dramatically change during mammalian development: first, the majority of the genome, with the exception of ICRs, is demethylated after fertilization, and subsequently undergoes genome-wide de novo DNA methylation. Secondly, after primordial germ cells are specified in the embryo, another wave of demethylation occurs, with ICR demethylation occurring late in the process. Lastly, ICRs reacquire DNA methylation imprints in developing germ cells. We describe the past discoveries and current literature defining these crucial dynamics in relation to imprinted genes and the rest of the genome.
Collapse
Affiliation(s)
- Jennifer M SanMiguel
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
42
|
Joh K, Matsuhisa F, Kitajima S, Nishioka K, Higashimoto K, Yatsuki H, Kono T, Koseki H, Soejima H. Growing oocyte-specific transcription-dependent de novo DNA methylation at the imprinted Zrsr1-DMR. Epigenetics Chromatin 2018; 11:28. [PMID: 29875017 PMCID: PMC5989421 DOI: 10.1186/s13072-018-0200-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022] Open
Abstract
Background Zrsr1 is a paternally expressed imprinted gene located in the first intron of Commd1, and the Zrsr1 promoter resides in a differentially methylated region (DMR) that is maternally methylated in the oocyte. However, a mechanism for the establishment of the methylation has remained obscure. Commd1 is transcribed in the opposite direction to Zrsr1 with predominant maternal expression, especially in the adult brain.
Results We found Commed1 transcribed through the DMR in the growing oocyte. Zrsr1-DMR methylation was abolished by the prevention of Commd1 transcription. Furthermore, methylation did not occur at the artificially unmethylated maternal Zrsr1-DMR during embryonic development when transcription through the DMR was restored in the zygote. Loss of methylation at the maternal Zrsr1-DMR resulted in biallelic Zrsr1 expression and reduced the extent of the predominant maternal expression of Commd1. Conclusions These results indicate that the establishment of methylation at Zrsr1-DMR occurs in a transcription-dependent and oocyte-specific manner and caused Zrsr1 imprinting by repressing maternal expression. The predominant maternal expression of Commd1 is likely caused by transcriptional interference by paternal Zrsr1 expression. Electronic supplementary material The online version of this article (10.1186/s13072-018-0200-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keiichiro Joh
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Fumikazu Matsuhisa
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Kenichi Nishioka
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Tomohiro Kono
- Laboratory of Animal Developmental Biology, Department of Bioscience, Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
43
|
Bretz CL, Frey WD, Teruyama R, Kim J. Allele and dosage specificity of the Peg3 imprinted domain. PLoS One 2018; 13:e0197069. [PMID: 29734399 PMCID: PMC5937776 DOI: 10.1371/journal.pone.0197069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/25/2018] [Indexed: 11/19/2022] Open
Abstract
The biological impetus for gene dosage and allele specificity of mammalian imprinted genes is not fully understood. To address this, we generated and analyzed four sets of mice from a single breeding scheme with varying allelic expression and gene dosage of the Peg3 domain. The mutants with abrogation of the two paternally expressed genes, Peg3 and Usp29, showed a significant decrease in growth rates for both males and females, while the mutants with biallelic expression of Peg3 and Usp29 resulted in an increased growth rate of female mice only. The mutant cohort with biallelic expression of Peg3 and Usp29 tended to have greater numbers of pups compared to the other genotypes. The mutants with switched active alleles displayed overall similar phenotypes to the wild type, but did show some differences in gene expression, suggesting potential non-redundant roles contributed by the maternal and paternal alleles. Overall, this study demonstrates a novel in vivo approach to investigate the allele and dosage specificity of mammalian imprinted domains.
Collapse
Affiliation(s)
- Corey L. Bretz
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Wesley D. Frey
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Ryoichi Teruyama
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
| | - Joomyeong Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
Since every cell of a multicellular organism contains the same genome, it is intriguing to understand why genetically homogenous cells are different from each other and what controls this. Several observations indicate that DNA methylation has an essential regulatory function in mammalian development, which is to establish the correct pattern of gene expression, and that DNA methylation pattern is tightly correlated with chromatin structure. Various physiological processes are controlled by specific DNA methylation patterns including genomic imprinting, inactivation of the X chromosome, regulation of tissue-specific gene expression and repression of transposons. Moreover, aberrant methylation could confer a selective advantage to cells, leading to cancerous growth. In this review we focus on the epigenetic molecular mechanisms during normal development and discuss how DNA methylation could affect the expression of genes leading to cancer transformation.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
45
|
Marshall KL, Rivera RM. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol Reprod Dev 2018; 85:90-105. [PMID: 29280527 DOI: 10.1002/mrd.22951] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A societal preference of delaying maternal age at first childbirth has increased reliance on assisted reproductive technologies/therapies (ART) to conceive a child. Oocytes that have undergone physiologic aging (≥35 years for humans) are now commonly used for ART, yet evidence is building that suboptimal reproductive environments associated with aging negatively affect oocyte competence and embryo development-although the mechanisms underlying these relationship are not yet well understood. Epigenetic programming of the oocyte occurs during its growth within a follicle, so the ovarian stimulation protocols that administer exogenous hormones, as part of the first step for all ART procedures, may prevent the gamete from establishing an appropriate epigenetic state. Therefore, understanding how oocyte. Therefore, understanding how hormone stimulation and oocyte physiologic age independently and synergistically physiologic age independently and synergistically affect the epigenetic programming of these gametes, and how this may affect their developmental competence, are crucial to improved ART outcomes. Here, we review studies that measured the developmental outcomes affected by superovulation and aging, focusing on how the epigenome (i.e., global and imprinted DNA methylation, histone modifications, and epigenetic modifiers) of gametes and embryos acquired from females undergoing physiologic aging and exogenous ovarian stimulation is affected.
Collapse
Affiliation(s)
- Kira L Marshall
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
46
|
Whidden L, Martel J, Rahimi S, Chaillet JR, Chan D, Trasler JM. Compromised oocyte quality and assisted reproduction contribute to sex-specific effects on offspring outcomes and epigenetic patterning. Hum Mol Genet 2018; 25:4649-4660. [PMID: 28173052 DOI: 10.1093/hmg/ddw293] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/04/2016] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Clinical studies have revealed an increased incidence of growth and genomic imprinting disorders in children conceived using assisted reproductive technologies (ARTs), and aberrant DNA methylation has been implicated. We propose that compromised oocyte quality associated with female infertility may make embryos more susceptible to the induction of epigenetic defects by ART. DNA methylation patterns in the preimplantation embryo are dependent on the oocyte-specific DNA methyltransferase 1o (DNMT1o), levels of which are decreased in mature oocytes of aging females. Here, we assessed the effects of maternal deficiency in DNMT1o (Dnmt1Δ1o/+) in combination with superovulation and embryo transfer on offspring DNA methylation and development. We demonstrated a significant increase in the rates of morphological abnormalities in offspring collected from Dnmt1Δ1o/+ females only when combined with ART. Together, maternal oocyte DNMT1o deficiency and ART resulted in an accentuation of placental imprinting defects and the induction of genome-wide DNA methylation alterations, which were exacerbated in the placenta compared to the embryo. Significant sex-specific trends were also apparent, with a preponderance of DNA hypomethylation in females. Among genic regions affected, a significant enrichment for neurodevelopmental pathways was observed. Taken together, our results demonstrate that oocyte DNMT1o-deficiency exacerbates genome-wide DNA methylation abnormalities induced by ART in a sex-specific manner and plays a role in mediating poor embryonic outcome.
Collapse
Affiliation(s)
- Laura Whidden
- Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Josée Martel
- Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sophia Rahimi
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - J Richard Chaillet
- Department of OB/GYN and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donovan Chan
- Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jacquetta M Trasler
- Montreal Children's Hospital and Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada,Department of Human Genetics, McGill University, Montreal, QC, Canada,Department of Pediatrics, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Clarke HJ. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:10.1002/wdev.294. [PMID: 28892263 PMCID: PMC5746469 DOI: 10.1002/wdev.294] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/21/2022]
Abstract
Prior to ovulation, the mammalian oocyte undergoes a process of differentiation within the ovarian follicle that confers on it the ability to give rise to an embryo. Differentiation comprises two phases-growth, during which the oocyte increases more than 100-fold in volume as it accumulates macromolecules and organelles that will sustain early embryogenesis; and meiotic maturation, during which the oocyte executes the first meiotic division and prepares for the second division. Entry of an oocyte into the growth phase appears to be triggered when the adjacent granulosa cells produce specific growth factors. As the oocyte grows, it elaborates a thick extracellular coat termed the zona pellucida. Nonetheless, cytoplasmic extensions of the adjacent granulosa cells, termed transzonal projections (TZPs), enable them to maintain contact-dependent communication with the oocyte. Through gap junctions located where the TZP tips meet the oocyte membrane, they provide the oocyte with products that sustain its metabolic activity and signals that regulate its differentiation. Conversely, the oocyte secretes diffusible growth factors that regulate proliferation and differentiation of the granulosa cells. Gap junction-permeable products of the granulosa cells prevent precocious initiation of meiotic maturation, and the gap junctions also enable oocyte maturation to begin in response to hormonal signals received by the granulosa cells. Development of the oocyte or the somatic compartment may also be regulated by extracellular vesicles newly identified in follicular fluid and at TZP tips, which could mediate intercellular transfer of macromolecules. Oocyte differentiation thus depends on continuous signaling interactions with the somatic cells of the follicle. WIREs Dev Biol 2018, 7:e294. doi: 10.1002/wdev.294 This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Signaling Pathways > Cell Fate Signaling Early Embryonic Development > Gametogenesis.
Collapse
Affiliation(s)
- Hugh J Clarke
- Department of Obstetrics and Gynecology, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| |
Collapse
|
48
|
Denham J. Exercise and epigenetic inheritance of disease risk. Acta Physiol (Oxf) 2018; 222. [PMID: 28371392 DOI: 10.1111/apha.12881] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/18/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Epigenetics is the study of gene expression changes that occur in the absence of altered genotype. Current evidence indicates a role for environmentally induced alterations to epigenetic modifications leading to health and disease changes across multiple generations. This phenomenon is called intergenerational or transgenerational epigenetic inheritance of health or disease. Environmental insults, in the form of toxins, plastics and particular dietary interventions, perturb the epigenetic landscape and influence the health of F1 through to F4 generations in rodents. There is, however, the possibility that healthy lifestyles and environmental factors, such as exercise training, could lead to favourable, heritable epigenetic modifications that augment transcriptional programmes protective of disease, including metabolic dysfunction, heart disease and cancer. The health benefits conferred by regular physical exercise training are unquestionable, yet many of the molecular changes may have heritable health implications for future generations. Similar to other environmental factors, exercise modulates the epigenome of somatic cells and researchers are beginning to study exercise epigenetics in germ cells. The germ cell epigenetic modifications affected by exercise offer a molecular mechanism for the inheritance of health and disease risk. The aims of this review are to: (i) provide an update on the expanding field of exercise epigenetics; (ii) offer an overview of data on intergenerational/transgenerational epigenetic inheritance of disease by environmental insults; (iii) to discuss the potential of exercise-induced intergenerational inheritance of health and disease risk; and finally, outline potential mechanisms and avenues for future work on epigenetic inheritance through exercise.
Collapse
Affiliation(s)
- J. Denham
- School of Science and Technology; University of New England; Armidale NSW Australia
| |
Collapse
|
49
|
Lozano-Ureña A, Montalbán-Loro R, Ferguson-Smith AC, Ferrón SR. Genomic Imprinting and the Regulation of Postnatal Neurogenesis. Brain Plast 2017; 3:89-98. [PMID: 29765862 PMCID: PMC5928554 DOI: 10.3233/bpl-160041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Most genes required for mammalian development are expressed from both maternally and paternally inherited chromosomal homologues. However, there are a small number of genes known as “imprinted genes” that only express a single allele from one parent, which is repressed on the gene from the other parent. Imprinted genes are dependent on epigenetic mechanisms such as DNA methylation and post-translational modifications of the DNA-associated histone proteins to establish and maintain their parental identity. In the brain, multiple transcripts have been identified which show parental origin-specific expression biases. However, the mechanistic relationship with canonical imprinting is unknown. Recent studies on the postnatal neurogenic niches raise many intriguing questions concerning the role of genomic imprinting and gene dosage during postnatal neurogenesis, including how imprinted genes operate in concert with signalling cues to contribute to newborn neurons’ formation during adulthood. Here we have gathered the current knowledge on the imprinting process in the neurogenic niches. We also review the phenotypes associated with genetic mutations at particular imprinted loci in order to consider the impact of imprinted genes in the maintenance and/or differentiation of the neural stem cell pool in vivo and during brain tumour formation.
Collapse
Affiliation(s)
- Anna Lozano-Ureña
- ERI BiotecMed Departamento de Biología Celular, Universidad de Valencia, Spain
| | | | | | - Sacri R Ferrón
- ERI BiotecMed Departamento de Biología Celular, Universidad de Valencia, Spain
| |
Collapse
|
50
|
Velker BAM, Denomme MM, Krafty RT, Mann MRW. Maintenance of Mest imprinted methylation in blastocyst-stage mouse embryos is less stable than other imprinted loci following superovulation or embryo culture. ENVIRONMENTAL EPIGENETICS 2017; 3:dvx015. [PMID: 29492315 PMCID: PMC5804554 DOI: 10.1093/eep/dvx015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/07/2017] [Accepted: 07/19/2017] [Indexed: 06/08/2023]
Abstract
Assisted reproductive technologies are fertility treatments used by subfertile couples to conceive their biological child. Although generally considered safe, these pregnancies have been linked to genomic imprinting disorders, including Beckwith-Wiedemann and Silver-Russell Syndromes. Silver-Russell Syndrome is a growth disorder characterized by pre- and post-natal growth retardation. The Mest imprinted domain is one candidate region on chromosome 7 implicated in Silver-Russell Syndrome. We have previously shown that maintenance of imprinted methylation was disrupted by superovulation or embryo culture during pre-implantation mouse development. For superovulation, this disruption did not originate in oogenesis as a methylation acquisition defect. However, in comparison to other genes, Mest exhibits late methylation acquisition kinetics, possibly making Mest more vulnerable to perturbation by environmental insult. In this study, we present a comprehensive evaluation of the effects of superovulation and in vitro culture on genomic imprinting at the Mest gene. Superovulation resulted in disruption of imprinted methylation at the maternal Mest allele in blastocysts with an equal frequency of embryos having methylation errors following low or high hormone treatment. This disruption was not due to a failure of imprinted methylation acquisition at Mest in oocytes. For cultured embryos, both the Fast and Slow culture groups experienced a significant loss of maternal Mest methylation compared to in vivo-derived controls. This loss of methylation was independent of development rates in culture. These results indicate that Mest is more susceptible to imprinted methylation maintenance errors compared to other imprinted genes.
Collapse
Affiliation(s)
- Brenna A. M. Velker
- Department of Obstetrics & Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| | - Michelle M. Denomme
- Department of Obstetrics & Gynecology, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Department of Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
- Fertility Laboratories Of Colorado, 10290 Ridgegate Circle, Lonetree, CO 80124 USA
| | - Robert T. Krafty
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mellissa R. W. Mann
- Magee-Womens Research Institute, Pittsburgh, PA, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|