1
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Wang P, Ouyang J, Zhou K, Hu D, Zhang S, Zhang A, Yang Y. Olesoxime protects against cisplatin-induced acute kidney injury by attenuating mitochondrial dysfunction. Biomed J 2024; 48:100730. [PMID: 38643825 DOI: 10.1016/j.bj.2024.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a critical factor in the pathogenesis of acute kidney injury (AKI). Agents that ameliorate mitochondrial dysfunction hold potential for AKI treatment. The objective of this study was to investigate the impact of olesoxime, a novel mitochondrial-targeted agent, on cisplatin-induced AKI. METHODS In vivo, a cisplatin-induced AKI mouse model was established by administering a single intraperitoneal dose of cisplatin (25 mg/kg) to male C57BL/6 mice for 72 hours, followed by gavage of either olesoxime or a control solution. In vitro, human proximal tubular HK2 cells were cultured and subjected to treatments with cisplatin, either in the presence or absence of olesoxime. RESULTS In vivo, our findings demonstrated that olesoxime administration significantly mitigated the nephrotoxic effects of cisplatin in mice, as evidenced by reduced blood urea nitrogen (BUN) and serum creatinine (SCr) levels, improved renal histopathology, and decreased expression of renal tubular injury markers such as kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL). Furthermore, olesoxime administration markedly reduced cisplatin-induced apoptosis, inflammation, and oxidative stress in the kidneys of AKI mice. Additionally, olesoxime treatment effectively restored mitochondrial function in the kidneys of AKI mice. In vitro, our results indicated that olesoxime treatment protected against cisplatin-induced apoptosis and mitochondrial dysfunction in cultured HK2 cells. Notably, cisplatin's anticancer effects were unaffected by olesoxime treatment in human cancer cells. CONCLUSION The results of this study suggest that olesoxime is a viable and efficient therapeutic agent in the treatment of cisplatin-induced acute kidney injury presumably by alleviating mitochondrial dysfunction.
Collapse
Affiliation(s)
- Peipei Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jing Ouyang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Kaiqian Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Dandan Hu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shengnan Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| | - Yunwen Yang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nephrology, Children's Hospital of Nanjing Medical University, China; Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Głodowicz P, Kuczyński K, Val R, Dietrich A, Rolle K. Mitochondrial transport of catalytic RNAs and targeting of the organellar transcriptome in human cells. J Mol Cell Biol 2024; 15:mjad051. [PMID: 37591617 PMCID: PMC11148835 DOI: 10.1093/jmcb/mjad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Mutations in the small genome present in mitochondria often result in severe pathologies. Different genetic strategies have been explored, aiming to rescue such mutations. A number of these strategies were based on the capacity of human mitochondria to import RNAs from the cytosol and designed to repress the replication of the mutated genomes or to provide the organelles with wild-type versions of mutant transcripts. However, the mutant RNAs present in mitochondria turned out to be an obstacle to therapy and little attention has been devoted so far to their elimination. Here, we present the development of a strategy to knockdown mitochondrial RNAs in human cells using the transfer RNA-like structure of Brome mosaic virus or Tobacco mosaic virus as a shuttle to drive trans-cleaving ribozymes into the organelles in human cell lines. We obtained a specific knockdown of the targeted mitochondrial ATP6 mRNA, followed by a deep drop in ATP6 protein and a functional impairment of the oxidative phosphorylation chain. Our strategy provides a powerful approach to eliminate mutant organellar transcripts and to analyse the control and communication of the human organellar genetic system.
Collapse
Affiliation(s)
- Paweł Głodowicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Konrad Kuczyński
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Romain Val
- Institute of Plant Molecular Biology, French National Center for Scientific Research (CNRS) and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - André Dietrich
- Institute of Plant Molecular Biology, French National Center for Scientific Research (CNRS) and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
4
|
Abstract
The approval of mRNA-containing lipid nanoparticles (LNPs) for use in a vaccine against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the clinical utility of RNA-loaded nanocapsules has stimulated a rapid acceleration in research in this area. The development of mRNA-containing LNP vaccines has been rapid, not only because of regulatory adjustments, but also to the advances made in nucleic acid delivery as the result of efforts by many basic researchers. RNA functions, not only in the nucleus and cytoplasm, but also in mitochondria, which have their own genomic apparatus. Mitochondrial diseases caused by mutations or defects in the mitochondrial genome, mitochondrial DNA (mtDNA) are intractable and are mainly treated symptomatically, but gene therapy as a fundamental treatment is expected to soon be a reality. To realize this therapy, a drug delivery system (DDS) that delivers nucleic acids including RNA to mitochondria is required, but efforts in this area have been limited compared to research targeting the nucleus and cytoplasm. This contribution provides an overview of mitochondria-targeted gene therapy strategies and discusses studies that have attempted to validate mitochondria-targeted RNA delivery therapies. We also present the results of 'RNA delivery to mitochondria' based on the use of our mitochondria-targeted DDS (MITO-Porter) that was developed in our laboratory.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Japan Science and Technology Agency (JST) Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Kawaguchi, Japan.
| | | |
Collapse
|
5
|
Chang Y, Liu B, Jiang Y, Cao D, Liu Y, Li Y. Induce male sterility by CRISPR/Cas9-mediated mitochondrial genome editing in tobacco. Funct Integr Genomics 2023; 23:205. [PMID: 37335501 DOI: 10.1007/s10142-023-01136-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Genome editing has become more and more popular in animal and plant systems following the emergence of CRISPR/Cas9 technology. However, target sequence modification by CRISPR/Cas9 has not been reported in the plant mitochondrial genome, mtDNA. In plants, a type of male sterility known as cytoplasmic male sterility (CMS) has been associated with certain mitochondrial genes, but few genes have been confirmed by direct mitochondrial gene-targeted modifications. Here, the CMS-associated gene (mtatp9) in tobacco was cleaved using mitoCRISPR/Cas9 with a mitochondrial localization signal. The male-sterile mutant, with aborted stamens, exhibited only 70% of the mtDNA copy number of the wild type and exhibited an altered percentage of heteroplasmic mtatp9 alleles; otherwise, the seed setting rate of the mutant flowers was zero. Transcriptomic analyses showed that glycolysis, tricarboxylic acid cycle metabolism and the oxidative phosphorylation pathway, which are all related to aerobic respiration, were inhibited in stamens of the male-sterile gene-edited mutant. In addition, overexpression of the synonymous mutations dsmtatp9 could restore fertility to the male-sterile mutant. Our results strongly suggest that mutation of mtatp9 causes CMS and that mitoCRISPR/Cas9 can be used to modify the mitochondrial genome of plants.
Collapse
Affiliation(s)
- Yanzi Chang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Jiang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Academy of Agriculture and Forestry Science, Qinghai University, Xining, 810008, Qinghai, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongju Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
7
|
Yazaki E, Yabuki A, Nishimura Y, Shiratori T, Hashimoto T, Inagaki Y. Microheliella maris possesses the most gene-rich mitochondrial genome in Diaphoretickes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1030570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial genomes are very diverse, but their evolutionary history is unclear due to the lack of efforts to sequence those of protists (unicellular eukaryotes), which cover a major part of the eukaryotic tree. Cryptista comprises cryptophytes, goniomonads, kathablepharids, and Palpitomonas bilix, and their mitochondrial genomes (mt-genomes) are characterized by various gene contents, particularly the presence/absence of an ancestral (bacterial) system for the cytochrome c maturation system. To shed light on mt-genome evolution in Cryptista, we report the complete mt-genome of Microheliella maris, which was recently revealed to branch at the root of Cryptista. The M. maris mt-genome was reconstructed as a circular mapping chromosome of 61.2 kbp with a pair of inverted repeats (12.9 kbp) and appeared to be the most gene-rich among the mt-genomes of the members of Diaphoretickes (a mega-scale eukaryotic assembly including Archaeplastida, Cryptista, Haptista, and SAR) studied so far, carrying 53 protein-coding genes. With this newly sequenced mt-genome, we inferred and discussed the evolution of the mt-genome in Cryptista and Diaphoretickes.
Collapse
|
8
|
Boonekamp FJ, Knibbe E, Vieira-Lara MA, Wijsman M, Luttik MAH, van Eunen K, Ridder MD, Bron R, Almonacid Suarez AM, van Rijn P, Wolters JC, Pabst M, Daran JM, Bakker BM, Daran-Lapujade P. Full humanization of the glycolytic pathway in Saccharomyces cerevisiae. Cell Rep 2022; 39:111010. [PMID: 35767960 DOI: 10.1016/j.celrep.2022.111010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses. Human hexokinase 1 and 2, but not 4, required mutations in their catalytic or allosteric sites for functionality in yeast, whereas hexokinase 3 was unable to complement its yeast ortholog. Comparison with human tissues cultures showed preservation of turnover numbers of human glycolytic enzymes in yeast and human cell cultures. This demonstration of transplantation of an entire essential pathway paves the way for establishment of species-, tissue-, and disease-specific metazoan models.
Collapse
Affiliation(s)
- Francine J Boonekamp
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Ewout Knibbe
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Marcel A Vieira-Lara
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Melanie Wijsman
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Marijke A H Luttik
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Karen van Eunen
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maxime den Ridder
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Reinier Bron
- Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ana Maria Almonacid Suarez
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin Pabst
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine and Metabolic Signalling, Center for Liver, Digestive and Metabolic Disease, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van Der Maasweg 9, 2629 Delft, the Netherlands.
| |
Collapse
|
9
|
Yamada Y, Ishizuka S, Arai M, Maruyama M, Harashima H. Recent advances in delivering RNA-based therapeutics to mitochondria. Expert Opin Biol Ther 2022; 22:1209-1219. [PMID: 35543589 DOI: 10.1080/14712598.2022.2070427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION After the emergence of lipid nanoparticles (LNP) containing therapeutic mRNA as vaccines for use against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the clinical usefulness of nucleic acid-encapsulated LNPs is now a fact. In addition to the nucleus and cytoplasm, mitochondria, which have their own genome, are a site where nucleic acids function in the cell. Gene therapies targeting mitochondria are expected to pave the way for the next generation of therapies. AREAS COVERED Methods for delivering nucleic acids to mitochondria are needed in order to realize such innovative therapies. However, only a few reports on delivery systems targeting mitochondria have appeared. In this review, we summarize the current state of research on RNA-based therapeutics targeted to mitochondria, with emphasis on mitochondrial RNA delivery therapies and on therapies that involve the use of mitochondrial genome editing devices. EXPERT OPINION We hope that this review article will focus our attention to this area of research, stimulate more interest in this field of research, and lead to the development of mitochondria-targeted nucleic acid medicine. It has the potential to become a major weapon against urgent and unknown diseases, including SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Fusion Oriented Research for Disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST), Japan
| | - Sen Ishizuka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Manae Arai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Minako Maruyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
10
|
Jang YH, Ahn SR, Shim JY, Lim KI. Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics 2021; 13:810. [PMID: 34071708 PMCID: PMC8227772 DOI: 10.3390/pharmaceutics13060810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are intracellular energy generators involved in various cellular processes. Therefore, mitochondrial dysfunction often leads to multiple serious diseases, including neurodegenerative and cardiovascular diseases. A better understanding of the underlying mitochondrial dysfunctions of the molecular mechanism will provide important hints on how to mitigate the symptoms of mitochondrial diseases and eventually cure them. In this review, we first summarize the key parts of the genetic processes that control the physiology and functions of mitochondria and discuss how alterations of the processes cause mitochondrial diseases. We then list up the relevant core genetic components involved in these processes and explore the mutations of the components that link to the diseases. Lastly, we discuss recent attempts to apply multiple genetic methods to alleviate and further reverse the adverse effects of the core component mutations on the physiology and functions of mitochondria.
Collapse
Affiliation(s)
- Yoon-ha Jang
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Sae Ryun Ahn
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| | - Ji-yeon Shim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
| | - Kwang-il Lim
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea; (Y.-h.J.); (J.-y.S.)
- Industry Collaboration Center, Industry-Academic Cooperation Foundation, Sookmyung Women’s University, Yongsan-gu, Seoul 04310, Korea;
| |
Collapse
|
11
|
Hussain SRA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ. Adapting CRISPR/Cas9 System for Targeting Mitochondrial Genome. Front Genet 2021; 12:627050. [PMID: 33889176 PMCID: PMC8055930 DOI: 10.3389/fgene.2021.627050] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Gene editing of the mitochondrial genome using the CRISPR-Cas9 system is highly challenging mainly due to sub-efficient delivery of guide RNA and Cas9 enzyme complexes into the mitochondria. In this study, we were able to perform gene editing in the mitochondrial DNA by appending an NADH-ubiquinone oxidoreductase chain 4 (ND4) targeting guide RNA to an RNA transport-derived stem loop element (RP-loop) and expressing the Cas9 enzyme with a preceding mitochondrial localization sequence. We observe mitochondrial colocalization of RP-loop gRNA and a marked reduction of ND4 expression in the cells carrying a 11205G variant in their ND4 sequence coincidently decreasing the mtDNA levels. This proof-of-concept study suggests that a stem-loop element added sgRNA can be transported to the mitochondria and functionally interact with Cas9 to mediate sequence-specific mtDNA cleavage. Using this novel approach to target the mtDNA, our results provide further evidence that CRISPR-Cas9-mediated gene editing might potentially be used to treat mitochondrial-related diseases.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Benedict Khoo
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sigrid Eckardt
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - K John McLaughlin
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
12
|
Dong Z, Pu L, Cui H. Mitoepigenetics and Its Emerging Roles in Cancer. Front Cell Dev Biol 2020; 8:4. [PMID: 32039210 PMCID: PMC6989428 DOI: 10.3389/fcell.2020.00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
In human beings, there is a ∼16,569 bp circular mitochondrial DNA (mtDNA) encoding 22 tRNAs, 12S and 16S rRNAs, 13 polypeptides that constitute the central core of ETC/OxPhos complexes, and some non-coding RNAs. Recently, mtDNA has been shown to have some covalent modifications such as methylation or hydroxylmethylation, which play pivotal epigenetic roles in mtDNA replication and transcription. Post-translational modifications of proteins in mitochondrial nucleoids such as mitochondrial transcription factor A (TFAM) also emerge as essential epigenetic modulations in mtDNA replication and transcription. Post-transcriptional modifications of mitochondrial RNAs (mtRNAs) including mt-rRNAs, mt-tRNAs and mt-mRNAs are important epigenetic modulations. Besides, mtDNA or nuclear DNA (n-DNA)-derived non-coding RNAs also play important roles in the regulation of translation and function of mitochondrial genes. These evidences introduce a novel concept of mitoepigenetics that refers to the study of modulations in the mitochondria that alter heritable phenotype in mitochondria itself without changing the mtDNA sequence. Since mitochondrial dysfunction contributes to carcinogenesis and tumor development, mitoepigenetics is also essential for cancer. Understanding the mode of actions of mitoepigenetics in cancers may shade light on the clinical diagnosis and prevention of these diseases. In this review, we summarize the present study about modifications in mtDNA, mtRNA and nucleoids and modulations of mtDNA/nDNA-derived non-coding RNAs that affect mtDNA translation/function, and overview recent studies of mitoepigenetic alterations in cancer.
Collapse
Affiliation(s)
- Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| | - Longjun Pu
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, Southwest University, Chongqing, China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, China.,Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Kotrys AV, Szczesny RJ. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Cells 2019; 9:cells9010017. [PMID: 31861673 PMCID: PMC7017415 DOI: 10.3390/cells9010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.
Collapse
|
14
|
Kamenski PA, Krasheninnikov IA, Tarassov I. 40 Years of Studying RNA Import into Mitochondria: From Basic Mechanisms to Gene Therapy Strategies. Mol Biol 2019. [DOI: 10.1134/s0026893319060074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Kawamura E, Hibino M, Harashima H, Yamada Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion 2019; 49:178-188. [DOI: 10.1016/j.mito.2019.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/30/2022]
|
16
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
17
|
Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of Non-Coding RNAs into Human Mitochondria: A Critical Review and Emerging Approaches. Cells 2019; 8:E286. [PMID: 30917553 PMCID: PMC6468882 DOI: 10.3390/cells8030286] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
Mitochondria harbor their own genetic system, yet critically depend on the import of a number of nuclear-encoded macromolecules to ensure their expression. In all eukaryotes, selected non-coding RNAs produced from the nuclear genome are partially redirected into the mitochondria, where they participate in gene expression. Therefore, the mitochondrial RNome represents an intricate mixture of the intrinsic transcriptome and the extrinsic RNA importome. In this review, we summarize and critically analyze data on the nuclear-encoded transcripts detected in human mitochondria and outline the proposed molecular mechanisms of their mitochondrial import. Special attention is given to the various experimental approaches used to study the mitochondrial RNome, including some recently developed genome-wide and in situ techniques.
Collapse
Affiliation(s)
- Damien Jeandard
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Anna Smirnova
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Ivan Tarassov
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Eric Barrey
- GABI-UMR1313, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Nina Entelis
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| |
Collapse
|
18
|
Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I. Can Mitochondrial DNA be CRISPRized: Pro and Contra. IUBMB Life 2018; 70:1233-1239. [PMID: 30184317 DOI: 10.1002/iub.1919] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria represent a chimera of macromolecules encoded either in the organellar genome, mtDNA, or in the nuclear one. If the pathway of protein targeting to different sub-compartments of mitochondria was relatively well studied, import of small noncoding RNAs into mammalian mitochondria still awaits mechanistic explanations and its functional issues are often not understood thus raising polemics. At the same time, RNA mitochondrial import pathway has an obvious attractiveness as it appears as a unique natural mechanism permitting to address nucleic acids into the organelles. Deciphering the function(s) of imported RNAs inside the mitochondria is extremely complicated due to their relatively low abundance, which suggests their regulatory role. We previously demonstrated that mitochondrial targeting of small noncoding RNAs able to specifically anneal with the mutant mitochondrial DNA led to a decrease of the mtDNA heteroplasmy level by inhibiting mutant mtDNA replication. We then demonstrated that increasing level of expression of such antireplicative recombinant RNAs increases significantly the antireplicative effect. In this report, we present a new data investigating the possibility to establish a CRISPR-Cas9 system targeting mtDNA exploiting of the pathway of RNA import into mitochondria. Mitochondrially addressed Cas9 versions and a set of mitochondrially targeted guide RNAs were tested in vitro and in vivo and their effect on mtDNA copy number was demonstrated. So far, the system appeared as more complicated for use than previously found for nuclear DNA, because only application of a pair of guide RNAs produced the effect of mtDNA depletion. We discuss, in a critical way, these results and put them in a broader context of polemics concerning the possibilities of manipulation of mtDNA in mammalians. The findings described here prove the potential of the RNA import pathway as a tool for studying mtDNA and for future therapy of mitochondrial disorders. © The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1233-1239, 2018.
Collapse
Affiliation(s)
- Romuald Loutre
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anne-Marie Heckel
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anna Smirnova
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Nina Entelis
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| |
Collapse
|
19
|
Loutre R, Heckel AM, Jeandard D, Tarassov I, Entelis N. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. PLoS One 2018; 13:e0199258. [PMID: 29912984 PMCID: PMC6005506 DOI: 10.1371/journal.pone.0199258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion between mutant and wild type mtDNA molecules is not a consequence of a random repopulation of depleted pool of mtDNA genomes. The heteroplasmy change could be also modulated by cell growth conditions, namely increased by cells culturing in a carbohydrate-free medium, thus forcing them to use oxidative phosphorylation and providing a selective advantage for cells with improved respiration capacities. We discuss the advantages and limitations of this approach and propose further development of the anti-replicative strategy based on the RNA import into human mitochondria.
Collapse
Affiliation(s)
- Romuald Loutre
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Anne-Marie Heckel
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Damien Jeandard
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Nina Entelis
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| |
Collapse
|
20
|
Markantone DM, Towheed A, Crain AT, Collins JM, Celotto AM, Palladino MJ. Protein coding mitochondrial-targeted RNAs rescue mitochondrial disease in vivo. Neurobiol Dis 2018; 117:203-210. [PMID: 29908326 DOI: 10.1016/j.nbd.2018.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial encephalomyopathies (MEs) result from mutations in mitochondrial genes critical to oxidative phosphorylation. Severe and untreatable ME results from mutations affecting each endogenous mitochondrial encoded gene, including all 13 established protein coding genes. Effective techniques to manipulate mitochondrial genome are limited and targeted mitochondrial protein expression is currently unavailable. Here we report the development of a mitochondrial-targeted RNA expression (mtTRES) vector capable of protein expression within mitochondria (mtTRESPro). We demonstrate that mtTRESPro expressed RNAs are targeted to mitochondria and are capable of being translated using EGFP encoded constructs in vivo. We additionally test mtTRESPro constructs encoding wild type ATP6 for their ability to rescue an established ATP61Drosophila model of ME. Genetic rescue is examined including tests with co-expression of mitochondrial targeted translational inhibitors TLI-NCL::ATP6 RNAs that function to reduce expression of the endogenous mutant protein. The data demonstrate allotopic RNA expression of mitochondrial targeted wild type ATP6 coding RNAs are sufficient to partially rescue a severe and established animal model of ME but only when combined with a method to inhibit mutant protein expression, which likely competes for incorporation into complex V.
Collapse
Affiliation(s)
- Desiree M Markantone
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Atif Towheed
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Aaron T Crain
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jessica M Collins
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alicia M Celotto
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
21
|
Recent Advances in Detecting Mitochondrial DNA Heteroplasmic Variations. Molecules 2018; 23:molecules23020323. [PMID: 29401641 PMCID: PMC6017848 DOI: 10.3390/molecules23020323] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/27/2018] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
The co-existence of wild-type and mutated mitochondrial DNA (mtDNA) molecules termed heteroplasmy becomes a research hot point of mitochondria. In this review, we listed several methods of mtDNA heteroplasmy research, including the enrichment of mtDNA and the way of calling heteroplasmic variations. At the present, while calling the novel ultra-low level heteroplasmy, high-throughput sequencing method is dominant while the detection limit of recorded mutations is accurate to 0.01% using the other quantitative approaches. In the future, the studies of mtDNA heteroplasmy may pay more attention to the single-cell level and focus on the linkage of mutations.
Collapse
|
22
|
Abstract
Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
23
|
Baleva MV, Meyer M, Entelis N, Tarassov I, Kamenski P, Masquida B. Factors beyond Enolase 2 and Mitochondrial Lysyl-tRNA Synthetase Precursor Are Required for tRNA Import into Yeast Mitochondria. BIOCHEMISTRY (MOSCOW) 2017; 82:1324-1335. [PMID: 29223159 DOI: 10.1134/s0006297917110104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In yeast, the import of tRNALys with CUU anticodon (tRK1) relies on a complex mechanism where interaction with enolase 2 (Eno2p) dictates a deep conformational change of the tRNA. This event is believed to mask the tRNA from the cytosolic translational machinery to re-direct it towards the mitochondria. Once near the mitochondrial outer membrane, the precursor of the mitochondrial lysyl-tRNA synthetase (preMsk1p) takes over enolase to carry the tRNA within the mitochondrial matrix, where it is supposed to participate in translation following correct refolding. Biochemical data presented in this report focus on the role of enolase. They show that despite the inability of Eno2p alone to form a complex with tRK1, mitochondrial import can be recapitulated in vitro using fractions of yeast extracts sharing either recombinant or endogenous yeast Eno2p as one of the main components. Taken together, our data suggest the existence of a protein complex containing Eno2p that is involved in RNA mitochondrial import.
Collapse
Affiliation(s)
- M V Baleva
- GMGM, CNRS - University of Strasbourg, UMR 7156, Strasbourg, 67081, France.
| | | | | | | | | | | |
Collapse
|
24
|
Smirnova EV, Chicherin IV, Baleva MV, Entelis NS, Tarassov IA, Kamenski PA. Procedure for Purification of Recombinant preMsk1p from E. coli Determines Its Properties as a Factor of tRNA Import into Yeast Mitochondria. BIOCHEMISTRY (MOSCOW) 2016; 81:1081-1088. [PMID: 27908233 DOI: 10.1134/s0006297916100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial genomes of many eukaryotic organisms do not code for the full tRNA set necessary for organellar translation. Missing tRNA species are imported from the cytosol. In particular, one out of two cytosolic lysine tRNAs of the yeast Saccharomyces cerevisiae is partially internalized by mitochondria. The key protein factor of this process is the precursor of mitochondrial lysyl-tRNA synthetase, preMsk1p. In this work, we show that recombinant preMsk1p purified from E. coli in native conditions, when used in an in vitro tRNA import system, demonstrates some properties different from those shown by the renatured protein purified from E. coli in the denatured state. We also discuss the possible mechanistic reasons for this phenomenon.
Collapse
Affiliation(s)
- E V Smirnova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | | | |
Collapse
|
25
|
Konstantinov YM, Dietrich A, Weber-Lotfi F, Ibrahim N, Klimenko ES, Tarasenko VI, Bolotova TA, Koulintchenko MV. DNA import into mitochondria. BIOCHEMISTRY (MOSCOW) 2016; 81:1044-1056. [DOI: 10.1134/s0006297916100035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
27
|
Abstract
Human mitochondria produce ATP and metabolites to support development and maintain cellular homeostasis. Mitochondria harbor multiple copies of a maternally inherited, non-nuclear genome (mtDNA) that encodes for 13 subunit proteins of the respiratory chain. Mutations in mtDNA occur mainly in the 24 non-coding genes, with specific mutations implicated in early death, neuromuscular and neurodegenerative diseases, cancer, and diabetes. A significant barrier to new insights in mitochondrial biology and clinical applications for mtDNA disorders is our general inability to manipulate the mtDNA sequence. Microinjection, cytoplasmic fusion, nucleic acid import strategies, targeted endonucleases, and newer approaches, which include the transfer of genomic DNA, somatic cell reprogramming, and a photothermal nanoblade, attempt to change the mtDNA sequence in target cells with varying efficiencies and limitations. Here, we discuss the current state of manipulating mammalian mtDNA and provide an outlook for mitochondrial reverse genetics, which could further enable mitochondrial research and therapies for mtDNA diseases.
Collapse
Affiliation(s)
- Alexander N Patananan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
28
|
Tischner C, Wenz T. Keep the fire burning: Current avenues in the quest of treating mitochondrial disorders. Mitochondrion 2015; 24:32-49. [DOI: 10.1016/j.mito.2015.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/18/2022]
|
29
|
Furukawa R, Yamada Y, Kawamura E, Harashima H. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials 2015; 57:107-15. [PMID: 25913255 DOI: 10.1016/j.biomaterials.2015.04.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Mitochondrial genome-targeting nucleic acids are promising therapeutic candidates for treating mitochondrial diseases. To date, a number of systems for delivering genetic information to the cytosol and the nucleus have been reported, and several successful gene therapies involving gene delivery targeted to the cytosol and the nucleus have been reported. However, much less progress has been made concerning mitochondrial gene delivery systems, and mitochondrial gene therapy has never been achieved. Here, we report on the mitochondrial delivery of an antisense RNA oligonucleotide (ASO) to perform mitochondrial RNA knockdown to regulate mitochondrial function. Mitochondrial delivery of the ASO was achieved using a combination of a MITO-Porter system, which contains mitochondrial fusogenic lipid envelopes for mitochondrial delivery via membrane fusion and D-arm, a mitochondrial import signal of tRNA to the matrix. Mitochondrial delivery of the ASO induces the knockdown of the targeted mitochondria-encoded mRNA and protein, namely cytochrome c oxidase subunit II, a component of the mitochondrial respiratory chain. Furthermore, the mitochondrial membrane potential was depolarized by the down regulation of the respiratory chain as the result of the mitochondrial delivery of ASO. This finding constitutes the first report to demonstrate that the nanocarrier-mediated mitochondrial genome targeting of antisense RNA effects mitochondrial function.
Collapse
Affiliation(s)
- Ryo Furukawa
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yuma Yamada
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Eriko Kawamura
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
30
|
Baleva M, Gowher A, Kamenski P, Tarassov I, Entelis N, Masquida B. A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA. Int J Mol Sci 2015; 16:9354-67. [PMID: 25918939 PMCID: PMC4463592 DOI: 10.3390/ijms16059354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 12/29/2022] Open
Abstract
In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2).
Collapse
Affiliation(s)
- Maria Baleva
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Piotr Kamenski
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Benoît Masquida
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
31
|
Viscomi C, Bottani E, Zeviani M. Emerging concepts in the therapy of mitochondrial disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:544-57. [PMID: 25766847 DOI: 10.1016/j.bbabio.2015.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 03/02/2015] [Indexed: 01/07/2023]
Abstract
Mitochondrial disorders are an important group of genetic conditions characterized by impaired oxidative phosphorylation. Mitochondrial disorders come with an impressive variability of symptoms, organ involvement, and clinical course, which considerably impact the quality of life and quite often shorten the lifespan expectancy. Although the last 20 years have witnessed an exponential increase in understanding the genetic and biochemical mechanisms leading to disease, this has not resulted in the development of effective therapeutic approaches, amenable of improving clinical course and outcome of these conditions to any significant extent. Therapeutic options for mitochondrial diseases still remain focused on supportive interventions aimed at relieving complications. However, new therapeutic strategies have recently been emerging, some of which have shown potential efficacy at the pre-clinical level. This review will present the state of the art on experimental therapy for mitochondrial disorders.
Collapse
Affiliation(s)
- Carlo Viscomi
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| | | | - Massimo Zeviani
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology IRCCS, 20133 Milan, Italy; MRC-Mitochondrial Biology Unit, Cambridge CB2 0XY, UK.
| |
Collapse
|
32
|
Dovydenko I, Heckel AM, Tonin Y, Gowher A, Venyaminova A, Tarassov I, Entelis N. Mitochondrial targeting of recombinant RNA. Methods Mol Biol 2015; 1265:209-25. [PMID: 25634278 DOI: 10.1007/978-1-4939-2288-8_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitochondrial import of small noncoding RNA is found in a large variety of species. In mammalian cells, this pathway can be used for therapeutic purpose, to restore the mitochondrial functions affected by pathogenic mutations. Recently, we developed mitochondrial RNA vectors able to address therapeutic oligoribonucleotides into human mitochondria. Here we provide the protocol for transfection of cultured human cells with small recombinant RNA molecules and describe two approaches useful to demonstrate their import into mitochondria: (1) isolation of RNA from purified mitochondria and quantitative hybridization analysis and (2) confocal microscopy of cells transfected with fluorescently labeled RNA. These protocols can be used in combination with overexpression or downregulation of protein import factors to detect and to evaluate their influence on the mitochondrial import of various RNAs.
Collapse
Affiliation(s)
- Ilya Dovydenko
- UMR 7156 Genetique Moleculaire, Genomique, Microbiologie (GMGM), University of Strasbourg-CNRS, 21 Rue René Descartes, 67084, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Various strategies have been proposed to address these pathologies; unfortunately no efficient treatment is currently available. In some cases, defects may be rescued by targeting into mitochondria nuclear DNA-expressed counterparts of the affected molecules. Another strategy is based on the induced shift of the heteroplasmy, meaning that wild type and mutated mtDNA can coexist in a single cell. The occurrence and severity of the disease depend on the heteroplasmy level, therefore, several approaches have been recently proposed to selectively reduce the levels of mutant mtDNA. Here we describe the experimental systems used to study the molecular mechanisms of mitochondrial dysfunctions: the respiratory deficient yeast strains, mammalian trans-mitochondrial cybrid cells and mice models, and overview the recent advances in development of various therapeutic approaches.
Collapse
Affiliation(s)
- Yann Tonin
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| | - Nina Entelis
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|
34
|
Patrushev MV, Kamenski PA, Mazunin IO. Mutations in mitochondrial DNA and approaches for their correction. BIOCHEMISTRY (MOSCOW) 2014; 79:1151-60. [DOI: 10.1134/s0006297914110029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Leszczynska G, Pięta J, Wozniak K, Malkiewicz A. Site-selected incorporation of 5-carboxymethylaminomethyl(-2-thio)uridine into RNA sequences by phosphoramidite chemistry. Org Biomol Chem 2014; 12:1052-6. [PMID: 24407195 DOI: 10.1039/c3ob42302f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-Carboxymethylaminomethyluridine (cmnm(5)U) and 5-carboxymethylaminomethyl-2-thiouridine (cmnm(5)s(2)U) are located at the wobble position in several cytosolic and mitochondrial tRNA sequences. In this paper, we report the first site-selected incorporation of cmnm(5)U and cmnm(5)s(2)U into RNA sequences by phosphoramidite chemistry on a CPG solid support. Trifluoroacetyl and 2-(trimethylsilyl)ethyl were selected for the protection of the amine and carboxyl functions, respectively.
Collapse
|
36
|
Jackson CB, Zbinden C, Gallati S, Schaller A. Heterologous expression from the human D-Loop in organello. Mitochondrion 2014; 17:67-75. [PMID: 24911383 DOI: 10.1016/j.mito.2014.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 12/20/2022]
Abstract
We report the expression of a linear reporter construct in isolated human mitochondria. The reporter construct contained the entire human D-Loop with adjacent tRNA (MTT) genes (mt.15956-647), the human ND1 gene with an in frame GFP gene and adjacent endogenous MTT genes and heterologous rat MTT genes. Natural competence of isolated human mitochondria of HepG2 cells was used to import reporter constructs. The import efficiency of various fluorescently labelled PCR-generated import substrates in the range of 250bp up to 3.5kb was assessed by quantitative PCR and evaluated by confocal microscopy. Heterologous expression of the imported construct was confirmed at RNA level by a circular RNA (cRNA)-RT-PCR assay for the expression of tRNAs and by in organello [α-(32)P]-UTP labelling and subsequent hybridisation to reporter-specific sequences for monitoring mRNA expression. Heterologous expression of rat mitochondrial tRNA(Leu(UUR)) (rMT-TL1) was confirmed by co-/post-transcriptional trinucleotide (CCA) addition. Interestingly, the rat-specific MT-TL1 was correctly processed in isolated human mitochondria at the 3' end, but showed an aberrant 5' end processing. Correct 3' end processing of the heterologous expressed mitochondrial rat tRNA(Ser2) (MT-TS2) was detected. These findings demonstrate the feasibility of genetic manipulation of human mitochondria, providing a tool for characterisation of cis-acting elements of the human mitochondrial genome and for the study of human mitochondrial tRNA processing in organello.
Collapse
Affiliation(s)
- C B Jackson
- Division of Human Genetics, Departments of Paediatrics Clinical Research, Inselspital, University of Berne, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Berne, Switzerland.
| | - C Zbinden
- Division of Human Genetics, Departments of Paediatrics Clinical Research, Inselspital, University of Berne, Switzerland.
| | - S Gallati
- Division of Human Genetics, Departments of Paediatrics Clinical Research, Inselspital, University of Berne, Switzerland.
| | - A Schaller
- Division of Human Genetics, Departments of Paediatrics Clinical Research, Inselspital, University of Berne, Switzerland.
| |
Collapse
|
37
|
Liu CS, Chang JC, Kuo SJ, Liu KH, Lin TT, Cheng WL, Chuang SF. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol 2014; 53:141-6. [PMID: 24842105 DOI: 10.1016/j.biocel.2014.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/13/2014] [Accepted: 05/11/2014] [Indexed: 01/15/2023]
Abstract
Mitochondrial transfer has been demonstrated to a play a physiological role in the rescuing of mitochondrial DNA deficient cells by co-culture with human mesenchymal stem cells. The successful replacement of mitochondria using microinjection into the embryo has been revealed to improve embryo maturation. Evidence of mitochondrial transfer has been shown to minimize injury of the ischemic-reperfusion rabbit heart model. In this mini review, the therapeutic strategies of mitochondrial diseases based on the concept of mitochondrial transfer are illustrated, as well as a novel approach to peptide-mediated mitochondrial delivery. The possible mechanism of peptide-mediated mitochondrial delivery in the treatment of the myoclonic epilepsy and ragged-red fiber disease is summarized. Understanding the feasibility of mitochondrial manipulation in cells facilitates novel therapeutic skills in the future clinical practice of mitochondrial disorder.
Collapse
Affiliation(s)
- Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan; Department of Neurology, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan; Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung 404, Taiwan.
| | - Jui-Chih Chang
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Shou-Jen Kuo
- Department of Surgery, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Ko-Hung Liu
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Ta-Tsung Lin
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Wen-Ling Cheng
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| | - Sheng-Fei Chuang
- Vascular and Genomic Center, Changhua Christian Hospital, 135 Nanhsiao Street, Changhua 50094, Taiwan
| |
Collapse
|
38
|
Tonin Y, Heckel AM, Vysokikh M, Dovydenko I, Meschaninova M, Rötig A, Munnich A, Venyaminova A, Tarassov I, Entelis N. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 2014; 289:13323-34. [PMID: 24692550 PMCID: PMC4036341 DOI: 10.1074/jbc.m113.528968] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Presently, no efficient therapeutic treatment has been developed against this class of pathologies. Because most of deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mitochondrial DNA (mtDNA) coexist in the same cell, the shift in proportion between mutant and wild type molecules could restore mitochondrial functions. Recently, we developed mitochondrial RNA vectors that can be used to address anti-replicative oligoribonucleotides into human mitochondria and thus impact heteroplasmy level in cells bearing a large deletion in mtDNA. Here, we show that this strategy can be also applied to point mutations in mtDNA. We demonstrate that specifically designed RNA molecules containing structural determinants for mitochondrial import and 20-nucleotide sequence corresponding to the mutated region of mtDNA, are able to anneal selectively to the mutated mitochondrial genomes. After being imported into mitochondria of living human cells in culture, these RNA induced a decrease of the proportion of mtDNA molecules bearing a pathogenic point mutation in the mtDNA ND5 gene.
Collapse
Affiliation(s)
- Yann Tonin
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Anne-Marie Heckel
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Mikhail Vysokikh
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Ilya Dovydenko
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Mariya Meschaninova
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Agnès Rötig
- the Université Paris Descartes-Sorbonne Paris Cité, INSERM U781, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Arnold Munnich
- the Université Paris Descartes-Sorbonne Paris Cité, INSERM U781, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Alya Venyaminova
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Ivan Tarassov
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Nina Entelis
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| |
Collapse
|
39
|
Towheed A, Markantone DM, Crain AT, Celotto AM, Palladino MJ. Small mitochondrial-targeted RNAs modulate endogenous mitochondrial protein expression in vivo. Neurobiol Dis 2014; 69:15-22. [PMID: 24807207 DOI: 10.1016/j.nbd.2014.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/04/2014] [Accepted: 04/27/2014] [Indexed: 11/26/2022] Open
Abstract
Endogenous mitochondrial genes encode critical oxidative phosphorylation components and their mutation results in a set of disorders known collectively as mitochondrial encephalomyopathies. There is intensive interest in modulating mitochondrial function as organelle dysfunction has been associated with numerous disease states. Proteins encoded by the mitochondrial genome cannot be genetically manipulated by current techniques. Here we report the development of a mitochondrial-targeted RNA expression system (mtTRES) utilizing distinct non-coding leader sequences (NCLs) and enabling in vivo expression of small mitochondrial-targeted RNAs. mtTRES expressing small chimeric antisense RNAs was used as translational inhibitors (TLIs) to target endogenous mitochondrial protein expression in vivo. By utilizing chimeric antisense RNA we successfully modulate expression of two mitochondrially-encoded proteins, ATP6 and COXII, and demonstrate the utility of this system in vivo and in human cells. This technique has important and obvious research and clinical implications.
Collapse
Affiliation(s)
- Atif Towheed
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Desiree M Markantone
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Aaron T Crain
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Alicia M Celotto
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Michael J Palladino
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Pittsburgh Institute for Neurodegenerative Diseases (PIND), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
40
|
Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2014; 306:F367-78. [PMID: 24305473 DOI: 10.1152/ajprenal.00571.2013] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial dysfunction has gained recognition as a contributing factor in many diseases. The kidney is a kind of organ with high energy demand, rich in mitochondria. As such, mitochondrial dysfunction in the kidney plays a critical role in the pathogenesis of kidney diseases. Despite the recognized importance mitochondria play in the pathogenesis of the diseases, there is limited understanding of various aspects of mitochondrial biology. This review examines the physiology and pathophysiology of mitochondria. It begins by discussing mitochondrial structure, mitochondrial DNA, mitochondrial reactive oxygen species production, mitochondrial dynamics, and mitophagy, before turning to inherited mitochondrial cytopathies in kidneys (inherited or sporadic mitochondrial DNA or nuclear DNA mutations in genes that affect mitochondrial function). Glomerular diseases, tubular defects, and other renal diseases are then discussed. Next, acquired mitochondrial dysfunction in kidney diseases is discussed, emphasizing the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease and acute kidney injury, as their prevalence is increasing. Finally, it summarizes the possible beneficial effects of mitochondrial-targeted therapeutic agents for treatment of mitochondrial dysfunction-mediated kidney injury-genetic therapies, antioxidants, thiazolidinediones, sirtuins, and resveratrol-as mitochondrial-based drugs may offer potential treatments for renal diseases.
Collapse
Affiliation(s)
- Ruochen Che
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Yanggang Yuan
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
41
|
Pathological Mutations of the Mitochondrial Human Genome: the Instrumental Role of the Yeast S. cerevisiae. Diseases 2014. [DOI: 10.3390/diseases2010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Yasuzaki Y, Yamada Y, Kanefuji T, Harashima H. Localization of exogenous DNA to mitochondria in skeletal muscle following hydrodynamic limb vein injection. J Control Release 2013; 172:805-11. [PMID: 24100263 DOI: 10.1016/j.jconrel.2013.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 09/19/2013] [Accepted: 09/26/2013] [Indexed: 01/16/2023]
Abstract
Mitochondrial genetic disorders are a major cause of mitochondrial diseases. It is therefore likely that mitochondrial gene therapy will be useful for the treatment of such diseases. Here, we report on the possibility of mitochondrial gene delivery in skeletal muscle using hydrodynamic limb vein (HLV) injection. The HLV injection procedure, a useful method for transgene expression in skeletal muscle, involves the rapid injection of a large volume of naked plasmid DNA (pDNA) into the distal vein of a limb. We hypothesized that the technique could be used to deliver pDNA not only to nuclei but also to mitochondria, since cytosolic pDNA that is internalized by the method may be able to overcome mitochondrial membrane. We determined if pDNA could be delivered to myofibrillar mitochondria by HLV injection by PCR analysis. Mitochondrial toxicity assays showed that the HLV injection had no influence on mitochondrial function. These findings indicate that HLV injection promises to be a useful technique for in vivo mitochondrial gene delivery.
Collapse
Affiliation(s)
- Yukari Yasuzaki
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
43
|
Gowher A, Smirnov A, Tarassov I, Entelis N. Induced tRNA import into human mitochondria: implication of a host aminoacyl-tRNA-synthetase. PLoS One 2013; 8:e66228. [PMID: 23799079 PMCID: PMC3683045 DOI: 10.1371/journal.pone.0066228] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
In human cell, a subset of small non-coding RNAs is imported into mitochondria from the cytosol. Analysis of the tRNA import pathway allowing targeting of the yeast tRNA(Lys)(CUU) into human mitochondria demonstrates a similarity between the RNA import mechanisms in yeast and human cells. We show that the cytosolic precursor of human mitochondrial lysyl-tRNA synthetase (preKARS2) interacts with the yeast tRNA(Lys)(CUU) and small artificial RNAs which contain the structural elements determining the tRNA mitochondrial import, and facilitates their internalization by isolated human mitochondria. The tRNA import efficiency increased upon addition of the glycolytic enzyme enolase, previously found to be an actor of the yeast RNA import machinery. Finally, the role of preKARS2 in the RNA mitochondrial import has been directly demonstrated in vivo, in cultured human cells transfected with the yeast tRNA and artificial importable RNA molecules, in combination with preKARS2 overexpression or downregulation by RNA interference. These findings suggest that the requirement of protein factors for the RNA mitochondrial targeting might be a conserved feature of the RNA import pathway in different organisms.
Collapse
Affiliation(s)
- Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Alexandre Smirnov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS - Université de Strasbourg, Strasbourg, France
- * E-mail:
| |
Collapse
|
44
|
Guitart T, Picchioni D, Piñeyro D, Ribas de Pouplana L. Human mitochondrial disease-like symptoms caused by a reduced tRNA aminoacylation activity in flies. Nucleic Acids Res 2013; 41:6595-608. [PMID: 23677612 PMCID: PMC3711456 DOI: 10.1093/nar/gkt402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The translation of genes encoded in the mitochondrial genome requires specific machinery that functions in the organelle. Among the many mutations linked to human disease that affect mitochondrial translation, several are localized to nuclear genes coding for mitochondrial aminoacyl-transfer RNA synthetases. The molecular significance of these mutations is poorly understood, but it is expected to be similar to that of the mutations affecting mitochondrial transfer RNAs. To better understand the molecular features of diseases caused by these mutations, and to improve their diagnosis and therapeutics, we have constructed a Drosophila melanogaster model disrupting the mitochondrial seryl-tRNA synthetase by RNA interference. At the molecular level, the knockdown generates a reduction in transfer RNA serylation, which correlates with the severity of the phenotype observed. The silencing compromises viability, longevity, motility and tissue development. At the cellular level, the knockdown alters mitochondrial morphology, biogenesis and function, and induces lactic acidosis and reactive oxygen species accumulation. We report that administration of antioxidant compounds has a palliative effect of some of these phenotypes. In conclusion, the fly model generated in this work reproduces typical characteristics of pathologies caused by mutations in the mitochondrial aminoacylation system, and can be useful to assess therapeutic approaches.
Collapse
Affiliation(s)
- Tanit Guitart
- Institute for Research in Biomedicine (IRB Barcelona), Gene Translation Laboratory, c/Baldiri Reixac 10, Barcelona, 08028, Catalonia, Spain
| | | | | | | |
Collapse
|
45
|
Vedrenne V, Gowher A, De Lonlay P, Nitschke P, Serre V, Boddaert N, Altuzarra C, Mager-Heckel AM, Chretien F, Entelis N, Munnich A, Tarassov I, Rötig A. Mutation in PNPT1, which encodes a polyribonucleotide nucleotidyltransferase, impairs RNA import into mitochondria and causes respiratory-chain deficiency. Am J Hum Genet 2012; 91:912-8. [PMID: 23084291 DOI: 10.1016/j.ajhg.2012.09.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/10/2012] [Accepted: 09/04/2012] [Indexed: 11/27/2022] Open
Abstract
Multiple-respiratory-chain deficiency represents an important cause of mitochondrial disorders. Hitherto, however, mutations in genes involved in mtDNA maintenance and translation machinery only account for a fraction of cases. Exome sequencing in two siblings, born to consanguineous parents, with severe encephalomyopathy, choreoathetotic movements, and combined respiratory-chain defects allowed us to identify a homozygous PNPT1 missense mutation (c.1160A>G) that encodes the mitochondrial polynucleotide phosphorylase (PNPase). Blue-native polyacrylamide gel electrophoresis showed that no PNPase complex could be detected in subject fibroblasts, confirming that the substitution encoded by c.1160A>G disrupts the trimerization of the protein. PNPase is predominantly localized in the mitochondrial intermembrane space and is implicated in RNA targeting to human mitochondria. Mammalian mitochondria import several small noncoding nuclear RNAs (5S rRNA, MRP RNA, some tRNAs, and miRNAs). By RNA hybridization experiments, we observed a significant decrease in 5S rRNA and MRP-related RNA import into mitochondria in fibroblasts of affected subject 1. Moreover, we found a reproducible decrease in the rate of mitochondrial translation in her fibroblasts. Finally, overexpression of the wild-type PNPT1 cDNA in fibroblasts of subject 1 induced an increase in 5S rRNA import in mitochondria and rescued the mitochondrial-translation deficiency. In conclusion, we report here abnormal RNA import into mitochondria as a cause of respiratory-chain deficiency.
Collapse
|
46
|
Sripada L, Tomar D, Singh R. Mitochondria: One of the destinations of miRNAs. Mitochondrion 2012; 12:593-9. [DOI: 10.1016/j.mito.2012.10.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 08/22/2012] [Accepted: 10/09/2012] [Indexed: 01/15/2023]
|
47
|
Comte C, Tonin Y, Heckel-Mager AM, Boucheham A, Smirnov A, Auré K, Lombès A, Martin RP, Entelis N, Tarassov I. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 2012; 41:418-33. [PMID: 23087375 PMCID: PMC3592399 DOI: 10.1093/nar/gks965] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells. These findings may be relevant to developing of a new tool for therapy of mtDNA associated diseases.
Collapse
Affiliation(s)
- Caroline Comte
- Department of Molecular and Cellular Genetics, UMR Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Read-through therapy for mitochondrial DNA nonsense mutations. Drug Discov Today 2012; 17:1063-7. [DOI: 10.1016/j.drudis.2012.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/27/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022]
|
49
|
Niazi AK, Mileshina D, Cosset A, Val R, Weber-Lotfi F, Dietrich A. Targeting nucleic acids into mitochondria: progress and prospects. Mitochondrion 2012; 13:548-58. [PMID: 22609422 DOI: 10.1016/j.mito.2012.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Given the essential functions of these organelles in cell homeostasis, their involvement in incurable diseases and their potential in biotechnological applications, genetic transformation of mitochondria has been a long pursued goal that has only been reached in a couple of unicellular organisms. The challenge led scientists to explore a wealth of different strategies for mitochondrial delivery of DNA or RNA in living cells. These are the subject of the present review. Targeting DNA into the organelles currently shows promise but remarkably a number of alternative approaches based on RNA trafficking were also established and will bring as well major contributions.
Collapse
Affiliation(s)
- Adnan Khan Niazi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Mutations in the human mitochondrial genome are implicated in neuromuscular diseases, metabolic defects, and aging. An efficient and simple mechanism for neutralizing deleterious mitochondrial DNA (mtDNA) alterations has unfortunately remained elusive. Here, we report that a 20-ribonucleotide stem-loop sequence from the H1 RNA, the RNA component of the human RNase P enzyme, appended to a nonimported RNA directs the import of the resultant RNA fusion transcript into human mitochondria. The methodology is effective for both noncoding RNAs, such as tRNAs, and mRNAs. The RNA import component, polynucleotide phosphorylase (PNPASE), facilitates transfer of this hybrid RNA into the mitochondrial matrix. In addition, nucleus-encoded mRNAs for mitochondrial proteins, such as the mRNA of human mitochondrial ribosomal protein S12 (MRPS12), contain regulatory sequences in their 3'-untranslated region (UTR) that confers localization to the mitochondrial outer membrane, which is postulated to aid in protein translocation after translation. We show that for some mitochondrial-encoded transcripts, such as COX2, a 3'-UTR localization sequence is not required for mRNA import, whereas for corrective mitochondrial-encoded tRNAs, appending the 3'-UTR localization sequence was essential for efficient fusion-transcript translocation into mitochondria. In vivo, functional defects in mitochondrial RNA (mtRNA) translation and cell respiration were reversed in two human disease lines. Thus, this study indicates that a wide range of RNAs can be targeted to mitochondria by appending a targeting sequence that interacts with PNPASE, with or without a mitochondrial localization sequence, providing an exciting, general approach for overcoming mitochondrial genetic disorders.
Collapse
|