1
|
Shevlyakov AD, Kolesnikova TO, de Abreu MS, Petersen EV, Yenkoyan KB, Demin KA, Kalueff AV. Forward Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy. Int J Mol Sci 2023; 24:ijms24065280. [PMID: 36982355 PMCID: PMC10049737 DOI: 10.3390/ijms24065280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Epilepsy is a highly prevalent, severely debilitating neurological disorder characterized by seizures and neuronal hyperactivity due to an imbalanced neurotransmission. As genetic factors play a key role in epilepsy and its treatment, various genetic and genomic technologies continue to dissect the genetic causes of this disorder. However, the exact pathogenesis of epilepsy is not fully understood, necessitating further translational studies of this condition. Here, we applied a computational in silico approach to generate a comprehensive network of molecular pathways involved in epilepsy, based on known human candidate epilepsy genes and their established molecular interactors. Clustering the resulting network identified potential key interactors that may contribute to the development of epilepsy, and revealed functional molecular pathways associated with this disorder, including those related to neuronal hyperactivity, cytoskeletal and mitochondrial function, and metabolism. While traditional antiepileptic drugs often target single mechanisms associated with epilepsy, recent studies suggest targeting downstream pathways as an alternative efficient strategy. However, many potential downstream pathways have not yet been considered as promising targets for antiepileptic treatment. Our study calls for further research into the complexity of molecular mechanisms underlying epilepsy, aiming to develop more effective treatments targeting novel putative downstream pathways of this disorder.
Collapse
Affiliation(s)
- Anton D. Shevlyakov
- Graduate Program in Bioinformatics and Genomics, Sirius University of Science and Technology, 354340 Sochi, Russia
- Neuroscience Program, Sirius University of Science and Technology, 354340 Sochi, Russia
| | | | | | | | - Konstantin B. Yenkoyan
- Neuroscience Laboratory of COBRAIN Center for Fundamental Brain Research, and Biochemistry Department, Yerevan State Medical University named after M. Heratsi, Yerevan 0025, Armenia
| | - Konstantin A. Demin
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 194021 St. Petersburg, Russia
- Correspondence: (K.A.D.); (A.V.K.); Tel.: +7-240-899-9571 (A.V.K.)
| | - Allan V. Kalueff
- Neuroscience Program, Sirius University of Science and Technology, 354340 Sochi, Russia
- Neuroscience Laboratory of COBRAIN Center for Fundamental Brain Research, and Biochemistry Department, Yerevan State Medical University named after M. Heratsi, Yerevan 0025, Armenia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 194021 St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, 197758 Pesochny, Russia
- Neuroscience Group, Ural Federal University, 620002 Ekaterinburg, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Physiology and Basic Medicine, 630117 Novosibirsk, Russia
- Correspondence: (K.A.D.); (A.V.K.); Tel.: +7-240-899-9571 (A.V.K.)
| |
Collapse
|
2
|
Bellchambers HM, Barratt KS, Diamand KEM, Arkell RM. SUMOylation Potentiates ZIC Protein Activity to Influence Murine Neural Crest Cell Specification. Int J Mol Sci 2021; 22:ijms221910437. [PMID: 34638777 PMCID: PMC8509024 DOI: 10.3390/ijms221910437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
The mechanisms of neural crest cell induction and specification are highly conserved among vertebrate model organisms, but how similar these mechanisms are in mammalian neural crest cell formation remains open to question. The zinc finger of the cerebellum 1 (ZIC1) transcription factor is considered a core component of the vertebrate gene regulatory network that specifies neural crest fate at the neural plate border. In mouse embryos, however, Zic1 mutation does not cause neural crest defects. Instead, we and others have shown that murine Zic2 and Zic5 mutate to give a neural crest phenotype. Here, we extend this knowledge by demonstrating that murine Zic3 is also required for, and co-operates with, Zic2 and Zic5 during mammalian neural crest specification. At the murine neural plate border (a region of high canonical WNT activity) ZIC2, ZIC3, and ZIC5 function as transcription factors to jointly activate the Foxd3 specifier gene. This function is promoted by SUMOylation of the ZIC proteins at a conserved lysine immediately N-terminal of the ZIC zinc finger domain. In contrast, in the lateral regions of the neurectoderm (a region of low canonical WNT activity) basal ZIC proteins act as co-repressors of WNT/TCF-mediated transcription. Our work provides a mechanism by which mammalian neural crest specification is restricted to the neural plate border. Furthermore, given that WNT signaling and SUMOylation are also features of non-mammalian neural crest specification, it suggests that mammalian neural crest induction shares broad conservation, but altered molecular detail, with chicken, zebrafish, and Xenopus neural crest induction.
Collapse
|
3
|
Ali RG, Bellchambers HM, Warr N, Ahmed JN, Barratt KS, Neill K, Diamand KEM, Arkell RM. WNT responsive SUMOylation of ZIC5 promotes murine neural crest cell development via multiple effects on transcription. J Cell Sci 2021; 134:jcs.256792. [PMID: 33771929 DOI: 10.1242/jcs.256792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Zinc finger of the cerebellum (Zic) proteins act as classical transcription factors to promote transcription of the Foxd3 gene during neural crest cell specification. Additionally, they can act as co-factors that bind TCF molecules to repress WNT/β-catenin-dependent transcription without contacting DNA. Here, we show ZIC activity at the neural plate border is influenced by WNT-dependent SUMOylation. In a high WNT environment, a lysine within the highly conserved ZF-NC domain of ZIC5 is SUMOylated, which decreases formation of the TCF/ZIC co-repressor complex and shifts the balance towards transcription factor function. The modification is critical in vivo, as a ZIC5 SUMO-incompetent mouse strain exhibits neural crest specification defects. This work reveals the function of the ZIC ZF-NC domain, provides in vivo validation of target protein SUMOylation, and demonstrates that WNT/β-catenin signaling directs transcription at non-TCF DNA binding sites. Furthermore, it can explain how WNT signals convert a broad domain of Zic ectodermal expression into a restricted domain of neural crest cell specification.
Collapse
Affiliation(s)
- Radiya G Ali
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nicholas Warr
- Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire, OX110RD, UK
| | - Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Kieran Neill
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia .,Early Development, Mammalian Genetics Unit, MRC Harwell, Oxfordshire, OX110RD, UK
| |
Collapse
|
4
|
Castilla-Vallmanya L, Gürsoy S, Giray-Bozkaya Ö, Prat-Planas A, Bullich G, Matalonga L, Centeno-Pla M, Rabionet R, Grinberg D, Balcells S, Urreizti R. De Novo PORCN and ZIC2 Mutations in a Highly Consanguineous Family. Int J Mol Sci 2021; 22:ijms22041549. [PMID: 33557041 PMCID: PMC7913830 DOI: 10.3390/ijms22041549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 02/07/2023] Open
Abstract
We present a Turkish family with two cousins (OC15 and OC15b) affected with syndromic developmental delay, microcephaly, and trigonocephaly but with some phenotypic traits distinct between them. OC15 showed asymmetrical skeletal defects and syndactyly, while OC15b presented with a more severe microcephaly and semilobal holoprosencephaly. All four progenitors were related and OC15 parents were consanguineous. Whole Exome Sequencing (WES) analysis was performed on patient OC15 as a singleton and on the OC15b trio. Selected variants were validated by Sanger sequencing. We did not identify any shared variant that could be associated with the disease. Instead, each patient presented a de novo heterozygous variant in a different gene. OC15 carried a nonsense mutation (p.Arg95*) in PORCN, which is a gene responsible for Goltz-Gorlin syndrome, while OC15b carried an indel mutation in ZIC2 leading to the substitution of three residues by a proline (p.His404_Ser406delinsPro). Autosomal dominant mutations in ZIC2 have been associated with holoprosencephaly 5. Both variants are absent in the general population and are predicted to be pathogenic. These two de novo heterozygous variants identified in the two patients seem to explain the major phenotypic alterations of each particular case, instead of a homozygous variant that would be expected by the underlying consanguinity.
Collapse
Affiliation(s)
- Laura Castilla-Vallmanya
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Semra Gürsoy
- Department of Pediatric Genetics, Dr. Behcet Uz Children’s Hospital, Izmir 35210, Turkey;
| | - Özlem Giray-Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey;
| | - Aina Prat-Planas
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Gemma Bullich
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (G.B.); (L.M.)
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain; (G.B.); (L.M.)
| | - Mónica Centeno-Pla
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Raquel Rabionet
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Daniel Grinberg
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Susanna Balcells
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
| | - Roser Urreizti
- IBUB, IRSJD, and CIBERER (ISCIII), Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (L.C.-V.); (A.P.-P.); (M.C.-P.); (R.R.); (D.G.); (S.B.)
- Correspondence:
| |
Collapse
|
5
|
Ahmed JN, Diamand KEM, Bellchambers HM, Arkell RM. Systematized reporter assays reveal ZIC protein regulatory abilities are Subclass-specific and dependent upon transcription factor binding site context. Sci Rep 2020; 10:13130. [PMID: 32753700 PMCID: PMC7403390 DOI: 10.1038/s41598-020-69917-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/21/2020] [Indexed: 11/09/2022] Open
Abstract
The ZIC proteins are a family of transcription regulators with a well-defined zinc finger DNA-binding domain and there is evidence that they elicit functional DNA binding at a ZIC DNA binding site. Little is known, however, regarding domains within ZIC proteins that confer trans-activation or -repression. To address this question, a new cell-based trans-activation assay system suitable for ZIC proteins in HEK293T cells was constructed. This identified two previously unannotated evolutionarily conserved regions of ZIC3 that are necessary for trans-activation. These domains are found in all Subclass A ZIC proteins, but not in the Subclass B proteins. Additionally, the Subclass B proteins fail to elicit functional binding at a multimerised ZIC DNA binding site. All ZIC proteins, however, exhibit functional binding when the ZIC DNA binding site is embedded in a multiple transcription factor locus derived from ZIC target genes in the mouse genome. This ability is due to several domains, some of which are found in all ZIC proteins, that exhibit context dependent trans-activation or -repression activity. This knowledge is valuable for assessing the likely pathogenicity of variant ZIC proteins associated with human disorders and for determining factors that influence functional transcription factor binding.
Collapse
Affiliation(s)
- Jehangir N Ahmed
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Helen M Bellchambers
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
6
|
Al-Naama N, Mackeh R, Kino T. C 2H 2-Type Zinc Finger Proteins in Brain Development, Neurodevelopmental, and Other Neuropsychiatric Disorders: Systematic Literature-Based Analysis. Front Neurol 2020; 11:32. [PMID: 32117005 PMCID: PMC7034409 DOI: 10.3389/fneur.2020.00032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/10/2020] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are multifaceted pathologic conditions manifested with intellectual disability, autistic features, psychiatric problems, motor dysfunction, and/or genetic/chromosomal abnormalities. They are associated with skewed neurogenesis and brain development, in part through dysfunction of the neural stem cells (NSCs) where abnormal transcriptional regulation on key genes play significant roles. Recent accumulated evidence highlights C2H2-type zinc finger proteins (C2H2-ZNFs), the largest transcription factor family in humans, as important targets for the pathologic processes associated with NDDs. In this review, we identified their significant accumulation (74 C2H2-ZNFs: ~10% of all human member proteins) in brain physiology and pathology. Specifically, we discuss their physiologic contribution to brain development, particularly focusing on their actions in NSCs. We then explain their pathologic implications in various forms of NDDs, such as morphological brain abnormalities, intellectual disabilities, and psychiatric disorders. We found an important tendency that poly-ZNFs and KRAB-ZNFs tend to be involved in the diseases that compromise gross brain structure and human-specific higher-order functions, respectively. This may be consistent with their characteristic appearance in the course of species evolution and corresponding contribution to these brain activities.
Collapse
Affiliation(s)
- Njoud Al-Naama
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Rafah Mackeh
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Tomoshige Kino
- Laboratory of Molecular and Genomic Endocrinology, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
7
|
Nasal fistula, epidermal cyst and hypernatremia in a girl presenting holoprosencephaly due to a rare ZIC2 point mutation. Eur J Med Genet 2019; 63:103641. [PMID: 30894326 DOI: 10.1016/j.ejmg.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 11/23/2022]
Abstract
Holoprosencephaly is the most common brain malformation in humans and it is a complex genetic disorder. We report on a patient with holoprosencephaly caused by a rare ZIC2 mutation presenting a bifid nose associated with a nasal fistula and an epidermal cyst, besides hypernatremia. The patient was a 1 year and 4 months old girl that developed an important neuropsychomotor delay. Currently, she uses a wheelchair to move around and only emits sounds. Computed tomography (CT) scan revealed a semilobar holoprosencephaly and a Dandy-Walker variant. Head magnetic resonance imaging also disclosed corpus callosum agenesis and prefrontal subarachnoid space enlargement. On physical examination at 1 year and 4 months of age, we verified growth retardation, microcephaly, bilateral epicantic fold, upslanting palpebral fissures, bifid nose, and limbs spasticity secondary to hypertonia. Later, she began to present hypernatremia; however, its precise cause was not identified. At 6 years and 10 months of age, a nasal fistula was suspected. Facial CT scan showed an epidermal cyst at cartilaginous portion of the nasal septum. High resolution GTG-Banding karyotype was normal. However, molecular analysis through direct sequencing technique showed a mutation at regulatory region of the ZIC2 gene: c.1599*954T > A, a genetic variation previously described only in a Brazilian patient. Our patient presented findings still not reported in literature among patients with holoprosencephaly, including those with ZIC2 mutations. Thus, the spectrum of abnormalities associated to ZIC2 mutations may be broader and include other defects as those observed in our patient.
Collapse
|
8
|
RepEx: A web server to extract sequence repeats from protein and DNA sequences. Comput Biol Chem 2018; 78:424-430. [PMID: 30598392 DOI: 10.1016/j.compbiolchem.2018.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 12/25/2018] [Indexed: 11/20/2022]
Abstract
Evolution builds up new genetic material from existing ones, not in random, but in highly ordered and eloquent patterns. Most of these sequence repeats are revelatory of valuable information contributing to areas of disease research and function of macromolecules, to name a few. In the age of next generation genome sequencing, rapid and efficient extraction of all unbiased sequence repeats from macromolecules is the need of the hour. In view of this reckoning, an online web-based computing server, RepEx, has been developed to extract and display all possible repeats for DNA and protein sequences. Apart from exact or identical repeats, the server has been designed adeptly to identify and extract degenerate, inverted, everted and mirror repeats from both DNA and protein sequences. The server has striking output displays, featuring interactive graphs and comprehensive output files. In addition, RepEx has been accoutered with an easy-to-use interface and search filters to facilitate a user-defined query or search and is freely available and accessible via the World Wide Web at http://bioserver2.physics.iisc.ac.in/RepEx/.
Collapse
|
9
|
Abuzenadah A, Al-Saedi S, Karim S, Al-Qahtani M. Role of Overexpressed Transcription Factor FOXO1 in Fatal Cardiovascular Septal Defects in Patau Syndrome: Molecular and Therapeutic Strategies. Int J Mol Sci 2018; 19:ijms19113547. [PMID: 30423812 PMCID: PMC6274780 DOI: 10.3390/ijms19113547] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Patau Syndrome (PS), characterized as a lethal disease, allows less than 15% survival over the first year of life. Most deaths owe to brain and heart disorders, more so due to septal defects because of altered gene regulations. We ascertained the cytogenetic basis of PS first, followed by molecular analysis and docking studies. Thirty-seven PS cases were referred from the Department of Pediatrics, King Abdulaziz University Hospital to the Center of Excellence in Genomic Medicine Research, Jeddah during 2008 to 2018. Cytogenetic analyses were performed by standard G-band method and trisomy13 were found in all the PS cases. Studies have suggested that genes of chromosome 13 and other chromosomes are associated with PS. We, therefore, did molecular pathway analysis, gene interaction, and ontology studies to identify their associations. Genomic analysis revealed important chr13 genes such as FOXO1, Col4A1, HMGBB1, FLT1, EFNB2, EDNRB, GAS6, TNFSF1, STARD13, TRPC4, TUBA3C, and TUBA3D, and their regulatory partners on other chromosomes associated with cardiovascular disorders, atrial and ventricular septal defects. There is strong indication of involving FOXO1 (Forkhead Box O1) gene-a strong transcription factor present on chr13, interacting with many septal defects link genes. The study was extended using molecular docking to find a potential drug lead for overexpressed FOXO1 inhibition. The phenothiazine and trifluoperazine showed efficiency to inhibit overexpressed FOXO1 protein, and could be potential drugs for PS/trisomy13 after validation.
Collapse
Affiliation(s)
- Adel Abuzenadah
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Saad Al-Saedi
- Department of Pediatric, Faculty of Medicine, King Abdulaziz University Hospital, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia.
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
10
|
Barratt KS, Diamand KEM, Arkell RM. Identification of reference genes suitable for RT-qPCR studies of murine gastrulation and patterning. Mamm Genome 2018; 29:656-662. [PMID: 30094508 DOI: 10.1007/s00335-018-9769-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/20/2018] [Indexed: 11/26/2022]
Abstract
Quantitative reverse transcriptase PCR (RT-qPCR), a powerful and efficient means of rapidly comparing gene expression between experimental conditions, is routinely used as a phenotyping tool in developmental biology. The accurate comparison of gene expression across multiple embryonic stages requires normalisation to reference genes that have stable expression across the time points to be examined. As the embryo and its constituent tissues undergo rapid growth and differentiation during development, reference genes known to be stable across some time points cannot be assumed to be stable across all developmental stages. The immediate post-implantation events of gastrulation and patterning are characterised by a rapid expansion in cell number and increasing specialisation of cells. The optimal reference genes for comparative gene expression studies at these specific stages have not been experimentally identified. In this study, the expression of five commonly used reference genes (H2afz, Ubc, Actb, Tbp and Gapdh) was measured across murine gastrulation and patterning (6.5-9.5 dpc) and analysed with the normalisation tools geNorm, Bestkeeper and Normfinder. The results, validated by RT-qPCR analysis of two genes with well-documented expression patterns across these stages, indicated the best strategy for RT-qPCR studies spanning murine gastrulation and patterning utilises the concurrent reference genes H2afz and Ubc.
Collapse
Affiliation(s)
- Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
11
|
A Requirement for Zic2 in the Regulation of Nodal Expression Underlies the Establishment of Left-Sided Identity. Sci Rep 2018; 8:10439. [PMID: 29992973 PMCID: PMC6041270 DOI: 10.1038/s41598-018-28714-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
ZIC2 mutation is known to cause holoprosencephaly (HPE). A subset of ZIC2 HPE probands harbour cardiovascular and visceral anomalies suggestive of laterality defects. 3D-imaging of novel mouse Zic2 mutants uncovers, in addition to HPE, laterality defects in lungs, heart, vasculature and viscera. A strong bias towards right isomerism indicates a failure to establish left identity in the lateral plate mesoderm (LPM), a phenotype that cannot be explained simply by the defective ciliogenesis previously noted in Zic2 mutants. Gene expression analysis showed that the left-determining NODAL-dependent signalling cascade fails to be activated in the LPM, and that the expression of Nodal at the node, which normally triggers this event, is itself defective in these embryos. Analysis of ChiP-seq data, in vitro transcriptional assays and mutagenesis reveals a requirement for a low-affinity ZIC2 binding site for the activation of the Nodal enhancer HBE, which is normally active in node precursor cells. These data show that ZIC2 is required for correct Nodal expression at the node and suggest a model in which ZIC2 acts at different levels to establish LR asymmetry, promoting both the production of the signal that induces left side identity and the morphogenesis of the cilia that bias its distribution.
Collapse
|
12
|
Qiu J, Wang W, Hu S, Wang Y, Sun W, Hu J, Gan X, Wang J. Molecular cloning, characterization and expression analysis of C/EBP α, β and δ in adipose-related tissues and adipocyte of duck ( Anas platyrhynchos ). Comp Biochem Physiol B Biochem Mol Biol 2018; 221-222:29-43. [DOI: 10.1016/j.cbpb.2018.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022]
|
13
|
Role of Zic Family Proteins in Transcriptional Regulation and Chromatin Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:353-380. [DOI: 10.1007/978-981-10-7311-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Abstract
The ZIC2 transcription factor is one of the most commonly mutated genes in Holoprosencephaly (HPE) probands. HPE is a severe congenital defect of forebrain development which occurs when the cerebral hemispheres fail to separate during the early stages of organogenesis and is typically associated with mispatterning of the embryonic midline. Recent study of genotype-phenotype correlations in HPE cases has defined distinctive features of ZIC2-associated HPE presentation and genetics, revealing that ZIC2 mutation does not produce the craniofacial abnormalities generally thought to characterise HPE but leads to a range of non-forebrain phenotypes. Furthermore, the studies confirm the extent of ZIC2 allelic heterogeneity and that pathogenic variants of ZIC2 are associated with both classic and middle interhemispheric variant (MIHV) HPE which arise from defective ventral and dorsal forebrain patterning, respectively. An allelic series of mouse mutants has helped to delineate the cellular and molecular mechanisms by which one gene leads to defects in these related but distinct embryological processes.
Collapse
Affiliation(s)
- Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
15
|
Diamand KEM, Barratt KS, Arkell RM. Overview of Rodent Zic Genes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1046:179-207. [PMID: 29442323 DOI: 10.1007/978-981-10-7311-3_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The five murine Zic genes encode multifunctional transcriptional regulator proteins important for a large number of processes during embryonic development. The genes and proteins are highly conserved with respect to the orthologous human genes, an attribute evidently mirrored by functional conservation, since the murine and human genes mutate to give the same phenotypes. Each ZIC protein contains a zinc finger domain that participates in both protein-DNA and protein-protein interactions. The ZIC proteins are capable of interacting with the key transcriptional mediators of the SHH, WNT and NODAL signalling pathways as well as with components of the transcriptional machinery and chromatin-modifying complexes. It is possible that this diverse range of protein partners underlies characteristics uncovered by mutagenesis and phenotyping of the murine Zic genes. These features include redundant and unique roles for ZIC proteins, regulatory interdependencies amongst family members and pleiotropic Zic gene function. Future investigations into the complex nature of the Zic gene family activity should be facilitated by recent advances in genome engineering and functional genomics.
Collapse
Affiliation(s)
- Koula E M Diamand
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
16
|
ZIC2 Is Essential for Maintenance of Latency and Is a Target of an Immediate Early Protein during Kaposi's Sarcoma-Associated Herpesvirus Lytic Reactivation. J Virol 2017; 91:JVI.00980-17. [PMID: 28835494 PMCID: PMC5640855 DOI: 10.1128/jvi.00980-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 01/05/2023] Open
Abstract
Bivalent histone modifications are defined as repressive and activating epigenetic marks that simultaneously decorate the same genomic region. The H3K27me3 mark silences gene expression, while the H3K4me3 mark prevents the region from becoming permanently silenced and prepares the domain for activation when needed. Specific regions of Kaposi's sarcoma-associated herpesvirus (KSHV) latent episomes are poised to be activated by the KSHV replication and transcription activator (K-Rta). How KSHV episomes are prepared such that they maintain latent infection and switch to lytic replication by K-Rta remains unclear. K-Rta transactivation activity requires a protein degradation function; thus, we hypothesized that identification of cellular substrates of K-Rta may provide insight into the maintenance of KSHV latent infection and the switch to lytic replication. Here we show that a zinc finger protein, ZIC2, a key regulator for central nervous system development, is a substrate of K-Rta and is responsible for maintaining latency. K-Rta directly interacted with ZIC2 and functioned as an E3 ligase to ubiquitinate ZIC2. ZIC2 localized at immediate early and early gene cluster regions of the KSHV genome and contributed to tethering of polycomb repressive complex 2 through physical interaction, thus maintaining H3K27me3 marks at the K-Rta promoter. Accordingly, depletion of ZIC2 shifted the balance of bivalent histone modifications toward more active forms and induced KSHV reactivation in naturally infected cells. We suggest that ZIC2 turnover by K-Rta is a strategy employed by KSHV to favor the transition from latency to lytic replication. IMPORTANCE Posttranslational histone modifications regulate the accessibility of transcriptional factors to DNA; thus, they have profound effects on gene expression (e.g., viral reactivation). KSHV episomes are known to possess bivalent chromatin domains. How such KSHV chromatin domains are maintained to be reactivatable by K-Rta remains unclear. We found that ZIC2, a transcriptional factor essential for stem cell pluripotency, plays a role in maintaining KSHV latent infection in naturally infected cells. We found that ZIC2 degradation by K-Rta shifts bivalent histone marks to a more active configuration, leading to KSHV reactivation. ZIC2 interacts with and maintains polycomb repressor complex 2 at the K-Rta promoter. Our findings uncover (i) a mechanism utilized by KSHV to maintain latent infection, (ii) a latency-lytic cycle switch operated by K-Rta, and (iii) a molecular mechanism of ZIC2-mediated local histone modification.
Collapse
|
17
|
Sedykh I, Yoon B, Roberson L, Moskvin O, Dewey CN, Grinblat Y. Zebrafish zic2 controls formation of periocular neural crest and choroid fissure morphogenesis. Dev Biol 2017; 429:92-104. [PMID: 28689736 DOI: 10.1016/j.ydbio.2017.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/30/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022]
Abstract
The vertebrate retina develops in close proximity to the forebrain and neural crest-derived cartilages of the face and jaw. Coloboma, a congenital eye malformation, is associated with aberrant forebrain development (holoprosencephaly) and with craniofacial defects (frontonasal dysplasia) in humans, suggesting a critical role for cross-lineage interactions during retinal morphogenesis. ZIC2, a zinc-finger transcription factor, is linked to human holoprosencephaly. We have previously used morpholino assays to show zebrafish zic2 functions in the developing forebrain, retina and craniofacial cartilage. We now report that zebrafish with genetic lesions in zebrafish zic2 orthologs, zic2a and zic2b, develop with retinal coloboma and craniofacial anomalies. We demonstrate a requirement for zic2 in restricting pax2a expression and show evidence that zic2 function limits Hh signaling. RNA-seq transcriptome analysis identified an early requirement for zic2 in periocular neural crest as an activator of alx1, a transcription factor with essential roles in craniofacial and ocular morphogenesis in human and zebrafish. Collectively, these data establish zic2 mutant zebrafish as a powerful new genetic model for in-depth dissection of cell interactions and genetic controls during craniofacial complex development.
Collapse
Affiliation(s)
- Irina Sedykh
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Baul Yoon
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; Genetics Ph. D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Laura Roberson
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Oleg Moskvin
- Primate Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, WI 53706, USA; Department of Neuroscience, University of Wisconsin, Madison, WI 53706, USA; McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
18
|
Li L, Ng NKL, Koon AC, Chan HYE. Expanded polyalanine tracts function as nuclear export signals and promote protein mislocalization via eEF1A1 factor. J Biol Chem 2017; 292:5784-5800. [PMID: 28246169 DOI: 10.1074/jbc.m116.763599] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
Polyalanine (poly(A)) diseases are caused by the expansion of translated GCN triplet nucleotide sequences encoding poly(A) tracts in proteins. To date, nine human disorders have been found to be associated with poly(A) tract expansions, including congenital central hypoventilation syndrome and oculopharyngeal muscular dystrophy. Previous studies have demonstrated that unexpanded wild-type poly(A)-containing proteins localize to the cell nucleus, whereas expanded poly(A)-containing proteins primarily localize to the cytoplasm. Because most of these poly(A) disease proteins are transcription factors, this mislocalization causes cellular transcriptional dysregulation leading to cellular dysfunction. Correcting this faulty localization could potentially point to strategies to treat the aforementioned disorders, so there is a pressing need to identify the mechanisms underlying the mislocalization of expanded poly(A) protein. Here, we performed a glutathione S-transferase pulldown assay followed by mass spectrometry and identified eukaryotic translation elongation factor 1 α1 (eEF1A1) as an interacting partner with expanded poly(A)-containing proteins. Strikingly, knockdown of eEF1A1 expression partially corrected the mislocalization of the expanded poly(A) proteins in the cytoplasm and restored their functions in the nucleus. We further demonstrated that the expanded poly(A) domain itself can serve as a nuclear export signal. Taken together, this study demonstrates that eEF1A1 regulates the subcellular location of expanded poly(A) proteins and is therefore a potential therapeutic target for combating the pathogenesis of poly(A) diseases.
Collapse
Affiliation(s)
- Li Li
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Nelson Ka Lam Ng
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Alex Chun Koon
- From the Laboratory of Drosophila Research.,Biochemistry Program
| | - Ho Yin Edwin Chan
- From the Laboratory of Drosophila Research, .,Biochemistry Program.,Cell and Molecular Biology Program, and.,Molecular Biotechnology Program, School of Life Sciences, Faculty of Science, and.,the Gerald Choa Neuroscience Centre, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
19
|
Zic2mutation causes holoprosencephaly via disruption of NODAL signalling. Hum Mol Genet 2016; 25:3946-3959. [DOI: 10.1093/hmg/ddw235] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/30/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
|
20
|
Twigg SRF, Forecki J, Goos JAC, Richardson ICA, Hoogeboom AJM, van den Ouweland AMW, Swagemakers SMA, Lequin MH, Van Antwerp D, McGowan SJ, Westbury I, Miller KA, Wall SA, van der Spek PJ, Mathijssen IMJ, Pauws E, Merzdorf CS, Wilkie AOM. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability. Am J Hum Genet 2015; 97:378-88. [PMID: 26340333 PMCID: PMC4564895 DOI: 10.1016/j.ajhg.2015.07.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 12/03/2022] Open
Abstract
Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded.
Collapse
Affiliation(s)
- Stephen R F Twigg
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Jennifer Forecki
- Department of Cell Biology and Neuroscience, 513 Leon Johnson Hall, Montana State University, Bozeman, MT 59717, USA
| | - Jacqueline A C Goos
- Department of Plastic Surgery, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Ivy C A Richardson
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - A Jeannette M Hoogeboom
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Ans M W van den Ouweland
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Maarten H Lequin
- Department of Pediatric Radiology, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Daniel Van Antwerp
- Department of Cell Biology and Neuroscience, 513 Leon Johnson Hall, Montana State University, Bozeman, MT 59717, USA
| | - Simon J McGowan
- Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Isabelle Westbury
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Kerry A Miller
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Steven A Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Irene M J Mathijssen
- Department of Plastic Surgery, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Erwin Pauws
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| | - Christa S Merzdorf
- Department of Cell Biology and Neuroscience, 513 Leon Johnson Hall, Montana State University, Bozeman, MT 59717, USA
| | - Andrew O M Wilkie
- Clinical Genetics Group, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
21
|
Radó-Trilla N, Arató K, Pegueroles C, Raya A, de la Luna S, Albà MM. Key Role of Amino Acid Repeat Expansions in the Functional Diversification of Duplicated Transcription Factors. Mol Biol Evol 2015; 32:2263-72. [PMID: 25931513 PMCID: PMC4540963 DOI: 10.1093/molbev/msv103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The high regulatory complexity of vertebrates has been related to two rounds of whole genome duplication (2R-WGD) that occurred before the divergence of the major vertebrate groups. Following these events, many developmental transcription factors (TFs) were retained in multiple copies and subsequently specialized in diverse functions, whereas others reverted to their singleton state. TFs are known to be generally rich in amino acid repeats or low-complexity regions (LCRs), such as polyalanine or polyglutamine runs, which can evolve rapidly and potentially influence the transcriptional activity of the protein. Here we test the hypothesis that LCRs have played a major role in the diversification of TF gene duplicates. We find that nearly half of the TF gene families originated during the 2R-WGD contains LCRs. The number of gene duplicates with LCRs is 155 out of 550 analyzed (28%), about twice as many as the number of single copy genes with LCRs (15 out of 115, 13%). In addition, duplicated TFs preferentially accumulate certain LCR types, the most prominent of which are alanine repeats. We experimentally test the role of alanine-rich LCRs in two different TF gene families, PHOX2A/PHOX2B and LHX2/LHX9. In both cases, the presence of the alanine-rich LCR in one of the copies (PHOX2B and LHX2) significantly increases the capacity of the TF to activate transcription. Taken together, the results provide strong evidence that LCRs are important driving forces of evolutionary change in duplicated genes.
Collapse
Affiliation(s)
- Núria Radó-Trilla
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Krisztina Arató
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Cinta Pegueroles
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Alicia Raya
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Susana de la Luna
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Centre for Genomic Regulation (CRG), Barcelona, Spain Centro de Investigación Biomèdica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Research Institute (IMIM), Barcelona, Spain Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
22
|
Abstract
Amino acid repeats (AARs) are abundant in protein sequences. They have particular roles in protein function and evolution. Simple repeat patterns generated by DNA slippage tend to introduce length variations and point mutations in repeat regions. Loss of normal and gain of abnormal function owing to their variable length are potential risks leading to diseases. Repeats with complex patterns mostly refer to the functional domain repeats, such as the well-known leucine-rich repeat and WD repeat, which are frequently involved in protein–protein interaction. They are mainly derived from internal gene duplication events and stabilized by ‘gate-keeper’ residues, which play crucial roles in preventing inter-domain aggregation. AARs are widely distributed in different proteomes across a variety of taxonomic ranges, and especially abundant in eukaryotic proteins. However, their specific evolutionary and functional scenarios are still poorly understood. Identifying AARs in protein sequences is the first step for the further investigation of their biological function and evolutionary mechanism. In principle, this is an NP-hard problem, as most of the repeat fragments are shaped by a series of sophisticated evolutionary events and become latent periodical patterns. It is not possible to define a uniform criterion for detecting and verifying various repeat patterns. Instead, different algorithms based on different strategies have been developed to cope with different repeat patterns. In this review, we attempt to describe the amino acid repeat-detection algorithms currently available and compare their strategies based on an in-depth analysis of the biological significance of protein repeats.
Collapse
|
23
|
Goggolidou P, Stevens JL, Agueci F, Keynton J, Wheway G, Grimes DT, Patel SH, Hilton H, Morthorst SK, DiPaolo A, Williams DJ, Sanderson J, Khoronenkova SV, Powles-Glover N, Ermakov A, Esapa CT, Romero R, Dianov GL, Briscoe J, Johnson CA, Pedersen LB, Norris DP. ATMIN is a transcriptional regulator of both lung morphogenesis and ciliogenesis. Development 2014; 141:3966-77. [PMID: 25294941 PMCID: PMC4197704 DOI: 10.1242/dev.107755] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Initially identified in DNA damage repair, ATM-interactor (ATMIN) further functions as a transcriptional regulator of lung morphogenesis. Here we analyse three mouse mutants, Atmingpg6/gpg6, AtminH210Q/H210Q and Dynll1GT/GT, revealing how ATMIN and its transcriptional target dynein light chain LC8-type 1 (DYNLL1) are required for normal lung morphogenesis and ciliogenesis. Expression screening of ciliogenic genes confirmed Dynll1 to be controlled by ATMIN and further revealed moderately altered expression of known intraflagellar transport (IFT) protein-encoding loci in Atmin mutant embryos. Significantly, Dynll1GT/GT embryonic cilia exhibited shortening and bulging, highly similar to the characterised retrograde IFT phenotype of Dync2h1. Depletion of ATMIN or DYNLL1 in cultured cells recapitulated the in vivo ciliogenesis phenotypes and expression of DYNLL1 or the related DYNLL2 rescued the effects of loss of ATMIN, demonstrating that ATMIN primarily promotes ciliogenesis by regulating Dynll1 expression. Furthermore, DYNLL1 as well as DYNLL2 localised to cilia in puncta, consistent with IFT particles, and physically interacted with WDR34, a mammalian homologue of the Chlamydomonas cytoplasmic dynein 2 intermediate chain that also localised to the cilium. This study extends the established Atmin-Dynll1 relationship into a developmental and a ciliary context, uncovering a novel series of interactions between DYNLL1, WDR34 and ATMIN. This identifies potential novel components of cytoplasmic dynein 2 and furthermore provides fresh insights into the molecular pathogenesis of human skeletal ciliopathies.
Collapse
Affiliation(s)
- Paraskevi Goggolidou
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jonathan L Stevens
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Francesco Agueci
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jennifer Keynton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Gabrielle Wheway
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Daniel T Grimes
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Saloni H Patel
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Helen Hilton
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Stine K Morthorst
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Antonella DiPaolo
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Debbie J Williams
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Jeremy Sanderson
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Svetlana V Khoronenkova
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-11, Moscow 119991, Russia
| | - Nicola Powles-Glover
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Alexander Ermakov
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Chris T Esapa
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Rosario Romero
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| | - Grigory L Dianov
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - James Briscoe
- MRC National Institute for Medical Research, Mill Hill, London NW7 1AA, UK
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 13, Copenhagen, OE DK-2100, Denmark
| | - Dominic P Norris
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, UK
| |
Collapse
|
24
|
Chervenak AP, Bank LM, Thomsen N, Glanville-Jones HC, Jonathan S, Millen KJ, Arkell RM, Barald KF. The role of Zic genes in inner ear development in the mouse: Exploring mutant mouse phenotypes. Dev Dyn 2014; 243:1487-98. [PMID: 25178196 DOI: 10.1002/dvdy.24186] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/23/2014] [Accepted: 08/25/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Murine Zic genes (Zic1-5) are expressed in the dorsal hindbrain and in periotic mesenchyme (POM) adjacent to the developing inner ear. Zic genes are involved in developmental signaling pathways in many organ systems, including the ear, although their exact roles haven't been fully elucidated. This report examines the role of Zic1, Zic2, and Zic4 during inner ear development in mouse mutants in which these Zic genes are affected. RESULTS Zic1/Zic4 double mutants don't exhibit any apparent defects in inner ear morphology. By contrast, inner ears from Zic2(kd/kd) and Zic2(Ku/Ku) mutants have severe but variable morphological defects in endolymphatic duct/sac and semicircular canal formation and in cochlear extension in the inner ear. Analysis of otocyst patterning in the Zic2(Ku/Ku) mutants by in situ hybridization showed changes in the expression patterns of Gbx2 and Pax2. CONCLUSIONS The experiments provide the first genetic evidence that the Zic genes are required for morphogenesis of the inner ear. Zic2 loss-of-function doesn't prevent initial otocyst patterning but leads to molecular abnormalities concomitant with morphogenesis of the endolymphatic duct. Functional hearing deficits often accompany inner ear dysmorphologies, making Zic2 a novel candidate gene for ongoing efforts to identify the genetic basis of human hearing loss.
Collapse
Affiliation(s)
- Andrew P Chervenak
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan; Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Barratt KS, Glanville-Jones HC, Arkell RM. The Zic2
gene directs the formation and function of node cilia to control cardiac situs. Genesis 2014; 52:626-35. [DOI: 10.1002/dvg.22767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/13/2014] [Accepted: 02/25/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Kristen S. Barratt
- Early Mammalian Development Laboratory; Research School of Biology, Evolution, Ecology and Genetics, The Australian National University; Canberra ACT 0200 Australia
| | - Hannah C. Glanville-Jones
- Early Mammalian Development Laboratory; Research School of Biology, Evolution, Ecology and Genetics, The Australian National University; Canberra ACT 0200 Australia
| | - Ruth M. Arkell
- Early Mammalian Development Laboratory; Research School of Biology, Evolution, Ecology and Genetics, The Australian National University; Canberra ACT 0200 Australia
| |
Collapse
|
26
|
Savastano CP, Bernardi P, Seuánez HN, Moreira MÂM, Orioli IM. Rare nasal cleft in a patient with holoprosencephaly due to a mutation in the ZIC2 gene. ACTA ACUST UNITED AC 2014; 100:300-6. [PMID: 24677696 DOI: 10.1002/bdra.23216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 12/08/2013] [Accepted: 12/12/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Holoprosencephaly (HPE) is a spectrum of midline malformations of the prosencephalon generally reflected in a continuum of midline facial anomalies. Patients with mutation in the ZIC2 gene usually present a normal or mildly dysmorphic face associated with a severe brain malformation. Here we present a rare unilateral nasal cleft (Tessier cleft n. 1) with holoprosencephaly in a patient with a ZIC2 mutation. CASE The male newborn presented with alobar HPE, microcephaly, ocular hypertelorism, upslanting palpebral fissures, a bulky nose with a left paramedian alar cleft. Mutational screening for HPE genes revealed the occurrence of a frameshift mutation in the ZIC2 gene. The mutation was inherited from the father who presented only mild ocular hypotelorism but had an affected child with HPE from his first marriage. CONCLUSION The occurrence of oral clefts is common in patients with HPE, but unusual in patients with mutation in the ZIC2 gene. To our knowledge, clefts of the nasal alae have been reported only once or twice in patients with ZIC2 mutations. In documented patients from the literature, only 2% of individuals with described pathogenic mutations in the ZIC2 gene (3/171) presented facial clefts, one of them a nasal cleft, while common oral clefts were observed in 27% of individuals (7/26) described with nonpathogenic ZIC2 mutations or presenting a concomitant mutation in another HPE gene. When compared with the general population, nasal clefts are common in ZIC2 mutations and these mutations must be searched for in undiagnosed cases.
Collapse
Affiliation(s)
- Clarice Pagani Savastano
- Estudo Colaborativo Latino Americano de Malformações Congênitas (ECLAMC), Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil; INAGEMP - Instituto Nacional de Genética Médica Populacional, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
27
|
Lee K, Mattiske T, Kitamura K, Gecz J, Shoubridge C. Reduced polyalanine-expanded Arx mutant protein in developing mouse subpallium alters Lmo1 transcriptional regulation. Hum Mol Genet 2013; 23:1084-94. [PMID: 24122442 DOI: 10.1093/hmg/ddt503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intellectual disability (ID) is a highly prevalent disorder that affects 1-3% of the population. The Aristaless-related homeobox gene (ARX) is a frequently mutated X-linked ID gene and encodes a transcription factor indispensable for proper forebrain, testis and pancreas development. Polyalanine expansions account for over half of all mutations in ARX and clinically give rise to a spectrum of ID and seizures. To understand how the polyalanine expansions cause the clinical phenotype, we studied mouse models of the two most frequent polyalanine expansion mutations (Arx((GCG)7) and Arx(432-455dup24)). Neither model showed evidence of protein aggregates; however, a marked reduction of Arx protein abundance within the developing forebrain was striking. Examining the expression of known Arx target genes, we found a more prominent loss of Lmo1 repression in Arx((GCG7)/Y) compared with Arx(432-455dup24/Y) mice at 12.5 and 14.5 dpc, stages of peak neural proliferation and neurogenesis, respectively. Once neurogenesis concludes both mutant mouse models showed similar loss of Lmo1 repression. We propose that this temporal difference in the loss of Lmo1 repression may be one of the causes accounting for the phenotypic differences identified between the Arx((GCG)7)and Arx(432-455dup24) mouse models. It is yet to be determined what effect these mutations have on ARX protein in affected males in the human setting.
Collapse
Affiliation(s)
- Kristie Lee
- Robinson Institute, Department of Paediatrics, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
28
|
Houtmeyers R, Souopgui J, Tejpar S, Arkell R. The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol Life Sci 2013; 70:3791-811. [PMID: 23443491 PMCID: PMC11113920 DOI: 10.1007/s00018-013-1285-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 12/18/2022]
Abstract
The zinc finger of the cerebellum gene (ZIC) discovered in Drosophila melanogaster (odd-paired) has five homologs in Xenopus, chicken, mice, and humans, and seven in zebrafish. This pattern of gene copy expansion is accompanied by a divergence in gene and protein structure, suggesting that Zic family members share some, but not all, functions. ZIC genes are implicated in neuroectodermal development and neural crest cell induction. All share conserved regions encoding zinc finger domains, however their heterogeneity and specification remain unexplained. In this review, the evolution, structure, and expression patterns of the ZIC homologs are described; specific functions attributable to individual family members are supported. A review of data from functional studies in Xenopus and murine models suggest that ZIC genes encode multifunctional proteins operating in a context-specific manner to drive critical events during embryogenesis. The identification of ZIC mutations in congenital syndromes highlights the relevance of these genes in human development.
Collapse
Affiliation(s)
- Rob Houtmeyers
- Department of Oncology, Katholieke Universiteit Leuven, O&N1, 3000, Leuven, Belgium,
| | | | | | | |
Collapse
|
29
|
Polyalanine tract disorders and neurocognitive phenotypes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 769:185-203. [PMID: 23560312 DOI: 10.1007/978-1-4614-5434-2_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Expansion of polyalanine tracts cause at least 9 inherited human diseases. Eight of these nine diseases are due to expansions in transcription factors and give rise to congenital disorders, many with neurocognitive phenotypes. Disease-causing expansions vary in length dependingupon the gene in question, with the severity of the associated clinical phenotype generally increasing with length of the polyalanine tract. The past decade has seen considerable progress in the understanding on how these mutations may arise and the functional effect of expanded polyalanine tracts on the resulting protein. Despite this progress, the pathogenic mechanism of expanded polyalanine tracts contributing to the associated disease states remains poorly understood. Gaining insights into the mechanisms that underlie the pathogenesis of different expanded polyalanine tract mutations will be a necessary step on the path to the design of potential treatment strategies for the associated diseases.
Collapse
|
30
|
Ahmed JN, Ali RG, Warr N, Wilson HM, Bellchambers HM, Barratt KS, Thompson AJ, Arkell RM. A murine Zic3 transcript with a premature termination codon evades nonsense-mediated decay during axis formation. Dis Model Mech 2013; 6:755-67. [PMID: 23471918 PMCID: PMC3634658 DOI: 10.1242/dmm.011668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ZIC transcription factors are key mediators of embryonic development and ZIC3 is the gene most commonly associated with situs defects (heterotaxy) in humans. Half of patient ZIC3 mutations introduce a premature termination codon (PTC). In vivo, PTC-containing transcripts might be targeted for nonsense-mediated decay (NMD). NMD efficiency is known to vary greatly between transcripts, tissues and individuals and it is possible that differences in survival of PTC-containing transcripts partially explain the striking phenotypic variability that characterizes ZIC3-associated congenital defects. For example, the PTC-containing transcripts might encode a C-terminally truncated protein that retains partial function or that dominantly interferes with other ZIC family members. Here we describe the katun (Ka) mouse mutant, which harbours a mutation in the Zic3 gene that results in a PTC. At the time of axis formation there is no discernible decrease in this PTC-containing transcript in vivo, indicating that the mammalian Zic3 transcript is relatively insensitive to NMD, prompting the need to re-examine the molecular function of the truncated proteins predicted from human studies and to determine whether the N-terminal portion of ZIC3 possesses dominant-negative capabilities. A combination of in vitro studies and analysis of the Ka phenotype indicate that it is a null allele of Zic3 and that the N-terminal portion of ZIC3 does not encode a dominant-negative molecule. Heterotaxy in patients with PTC-containing ZIC3 transcripts probably arises due to loss of ZIC3 function alone.
Collapse
Affiliation(s)
- Jehangir N Ahmed
- Early Mammalian Development Laboratory, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Poeta L, Fusco F, Drongitis D, Shoubridge C, Manganelli G, Filosa S, Paciolla M, Courtney M, Collombat P, Lioi M, Gecz J, Ursini M, Miano M. A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions in ARX. Am J Hum Genet 2013; 92:114-25. [PMID: 23246292 DOI: 10.1016/j.ajhg.2012.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/07/2012] [Accepted: 11/13/2012] [Indexed: 10/27/2022] Open
Abstract
Intellectual disability (ID) and epilepsy often occur together and have a dramatic impact on the development and quality of life of the affected children. Polyalanine (polyA)-expansion-encoding mutations of aristaless-related homeobox (ARX) cause a spectrum of X-linked ID (XLID) diseases and chronic epilepsy, including infantile spasms. We show that lysine-specific demethylase 5C (KDM5C), a gene known to be mutated in XLID-affected children and involved in chromatin remodeling, is directly regulated by ARX through the binding in a conserved noncoding element. We have studied altered ARX carrying various polyA elongations in individuals with XLID and/or epilepsy. The changes in polyA repeats cause hypomorphic ARX alterations, which exhibit a decreased trans-activity and reduced, but not abolished, binding to the KDM5C regulatory region. The altered functioning of the mutants tested is likely to correlate with the severity of XLID and/or epilepsy. By quantitative RT-PCR, we observed a dramatic Kdm5c mRNA downregulation in murine Arx-knockout embryonic and neural stem cells. Such Kdm5c mRNA diminution led to a severe decrease in the KDM5C content during in vitro neuronal differentiation, which inversely correlated with an increase in H3K4me3 signal. We established that ARX polyA alterations damage the regulation of KDM5C expression, and we propose a potential ARX-dependent path acting via chromatin remodeling.
Collapse
|
32
|
Hughes JN, Thomas PQ. Molecular pathology of polyalanine expansion disorders: new perspectives from mouse models. Methods Mol Biol 2013; 1017:135-51. [PMID: 23719913 DOI: 10.1007/978-1-62703-438-8_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Disease-causing polyalanine (PA) expansion mutations have been identified in nine genes, eight of which encode transcription factors (TFs) with important roles in development. In vitro and cell overexpression studies have shown that expanded PA tracts result in protein misfolding and the formation of aggregates. This feature of PA proteins is reminiscent of the related polyglutamine (PQ) disease proteins, which have been shown to cause disease via a gain-of-function (GOF) mechanism. However, in sharp contrast to PQ disorders, the disease phenotypes associated with PA mutations are more consistent with a LOF and/or mild GOF mechanism, suggesting that their molecular pathology is inherently different to PQ disorders. Elucidating the cellular impact of PA mutations in vivo has been difficult to address as, unlike the late-onset polyglutamine disorders, all PA disorders associated with TF gene mutations are congenital. However, in recent years, significant advances have been made through the analysis of engineered (knock-in) and spontaneous PA mouse models. Here we review these recent findings and propose an updated model of the molecular and cellular mechanism of PA disorders that incorporates both LOF and GOF features.
Collapse
Affiliation(s)
- James N Hughes
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
33
|
Radó-Trilla N, Albà M. Dissecting the role of low-complexity regions in the evolution of vertebrate proteins. BMC Evol Biol 2012; 12:155. [PMID: 22920595 PMCID: PMC3523016 DOI: 10.1186/1471-2148-12-155] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/30/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Low-complexity regions (LCRs) in proteins are tracts that are highly enriched in one or a few amino acids. Given their high abundance, and their capacity to expand in relatively short periods of time through replication slippage, they can greatly contribute to increase protein sequence space and generate novel protein functions. However, little is known about the global impact of LCRs on protein evolution. RESULTS We have traced back the evolutionary history of 2,802 LCRs from a large set of homologous protein families from H.sapiens, M.musculus, G.gallus, D.rerio and C.intestinalis. Transcriptional factors and other regulatory functions are overrepresented in proteins containing LCRs. We have found that the gain of novel LCRs is frequently associated with repeat expansion whereas the loss of LCRs is more often due to accumulation of amino acid substitutions as opposed to deletions. This dichotomy results in net protein sequence gain over time. We have detected a significant increase in the rate of accumulation of novel LCRs in the ancestral Amniota and mammalian branches, and a reduction in the chicken branch. Alanine and/or glycine-rich LCRs are overrepresented in recently emerged LCR sets from all branches, suggesting that their expansion is better tolerated than for other LCR types. LCRs enriched in positively charged amino acids show the contrary pattern, indicating an important effect of purifying selection in their maintenance. CONCLUSION We have performed the first large-scale study on the evolutionary dynamics of LCRs in protein families. The study has shown that the composition of an LCR is an important determinant of its evolutionary pattern.
Collapse
Affiliation(s)
- Núria Radó-Trilla
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics - IMIM Hospital del Mar Research Institute, Universitat Pompeu Fabra, Dr. Aiguader 88, Barcelona 08003, Spain
| | | |
Collapse
|
34
|
Ali RG, Bellchambers HM, Arkell RM. Zinc fingers of the cerebellum (Zic): transcription factors and co-factors. Int J Biochem Cell Biol 2012; 44:2065-8. [PMID: 22964024 DOI: 10.1016/j.biocel.2012.08.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/19/2012] [Accepted: 08/07/2012] [Indexed: 12/17/2022]
Abstract
The Zic genes encode zinc finger containing proteins that can bind proteins and DNA. The understanding of Zic molecular networks has been hampered by functional redundancy amongst family members, and because their loss-of-function phenotypes are indicative of a role in many signalling pathways. Recently molecular evidence has emerged confirming the pleiotropic nature of these proteins: they act both as classical transcription factors and as co-factors to directly and indirectly influence gene expression. It has long been known that germ-line mutation of the Zic genes in human and mouse causes a range of congenital disorders. Recently connections between Zic proteins and stem cell function have also emerged suggesting a role in adult onset diseases. The immediate challenge is to determine when and where these proteins act as transcription factors/co-factors during development and disease and how the switch between these roles is controlled.
Collapse
Affiliation(s)
- Radiya G Ali
- Department of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, Acton 0200, Australia
| | | | | |
Collapse
|
35
|
Ribeiro LA, Roessler E, Hu P, Pineda-Alvarez DE, Zhou N, Jones M, Chandrasekharappa S, Richieri-Costa A, Muenke M. Comparison of mutation findings in ZIC2 between microform and classical holoprosencephaly in a Brazilian cohort. ACTA ACUST UNITED AC 2012; 94:912-7. [PMID: 22847929 DOI: 10.1002/bdra.23047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/10/2012] [Accepted: 05/23/2012] [Indexed: 01/05/2023]
Abstract
BACKGROUND Holoprosencephaly is the most frequent congenital malformation of the forebrain in humans. It is anatomically classified by the relative degree of abnormal formation and separation of the developing central nervous system. Mutations of ZIC2 are the second most common heterozygous variations detected in holoprosencephaly (HPE) patients. Mutations in most known HPE genes typically result in variable phenotypes that rage from classic alobar HPE to microforms represented by hypotelorism, solitary central maxillary incisor (SCMI), and cleft lip/palate, among others. Patients with HPE owing to ZIC2 mutations have recently been described by a distinct phenotype compared with mutations in other HPE causative genes. METHODS We report the comparison of ZIC2 molecular findings by Sanger bidirectional DNA sequencing and ad hoc genotyping in a cohort of 105 Brazilian patients within the clinical spectrum of HPE, including classic and microform groups. RESULTS We detected a total of five variants in the ZIC2 gene: a common histidine tract expansion c.716_718dup (p.His239dup), a rare c.1377_1391del_homozygous (p.Ala466_470del, or Ala 15 to 10 contraction), a novel intronic c.1239+18G>A variant, a novel frameshift c.1215dupC (p.Ser406Glnfs*11), and a c.1401_1406dup (p.Ala469_470dup, or alanine tract expansion to 17 residues). CONCLUSIONS From these patients, only the latter two mutations found in classic HPE are likely to be medically significant. In contrast, variants detected in the microform group are not likely to be pathogenic. We show conclusively that the histidine tract expansion is a polymorphic alteration that demonstrates considerable differences in allele frequencies across different ethnic groups. Therefore, careful population studies of rare variants can improve genotype-phenotype correlations. Birth Defects Research (Part A) 2012.
Collapse
Affiliation(s)
- Lucilene A Ribeiro
- Molecular Genetics Laboratory and Clinical Genetics Service, Hospital for Rehabilitation and Craniofacial Anomalies, University of Sao Paolo, Bauru, Sao Paolo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jobanputra V, Burke A, Kwame AY, Shanmugham A, Shirazi M, Brown S, Warburton PE, Levy B, Warburton D. Duplication of the ZIC2 gene is not associated with holoprosencephaly. Am J Med Genet A 2011; 158A:103-8. [PMID: 22105922 DOI: 10.1002/ajmg.a.34375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 10/17/2011] [Indexed: 11/12/2022]
Abstract
Cytogenetic testing using genomic microarrays presents a clinical challenge when data regarding the phenotypic consequences of the genomic alteration are not available. We describe a chromosome 13q32.3 duplication discovered by microarray testing in a fetus with a prenatally detected apparently balanced de novo translocation 46,XY,t(2;13)(q37;q32). Microarray analysis on the fetal DNA showed duplications of 384 and 564 kb at the breakpoint regions on chromosomes 2q37.3 and 13q32.3, respectively. There were no disease-associated genes in the duplicated region on chromosome 2q37. The duplicated region on chromosome 13q contains the ZIC2 gene. Haploinsufficiency of ZIC2 is known to cause holoprosencephaly and other brain malformations. Studies in the mouse models have suggested that over expression of ZIC2 may also lead to brain malformations. Fetal MRI of the brain was normal and the family elected to continue the pregnancy. An apparently normal baby was born at term. At 3 months of age a physical exam showed no abnormalities and no developmental delay. This report shows that duplication of ZIC2 is not necessarily associated with brain malformations. We also describe the phenotype from four additional patients with duplications of the region of chromosome 13 containing ZIC2 and three previously described patients with supernumerary marker chromosomes derived from distal chromosome 13. None of the eight patients had holoprosencephaly or brain malformations, indicating that duplication of ZIC2 is not associated with brain anomalies. This information will be useful for counseling in other occurrences of this duplication identified by microarray.
Collapse
Affiliation(s)
- Vaidehi Jobanputra
- Department of Pathology, Columbia University Medical Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Luo H, Lin K, David A, Nijveen H, Leunissen JAM. ProRepeat: an integrated repository for studying amino acid tandem repeats in proteins. Nucleic Acids Res 2011; 40:D394-9. [PMID: 22102581 PMCID: PMC3245022 DOI: 10.1093/nar/gkr1019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
ProRepeat (http://prorepeat.bioinformatics.nl/) is an integrated curated repository and analysis platform for in-depth research on the biological characteristics of amino acid tandem repeats. ProRepeat collects repeats from all proteins included in the UniProt knowledgebase, together with 85 completely sequenced eukaryotic proteomes contained within the RefSeq collection. It contains non-redundant perfect tandem repeats, approximate tandem repeats and simple, low-complexity sequences, covering the majority of the amino acid tandem repeat patterns found in proteins. The ProRepeat web interface allows querying the repeat database using repeat characteristics like repeat unit and length, number of repetitions of the repeat unit and position of the repeat in the protein. Users can also search for repeats by the characteristics of repeat containing proteins, such as entry ID, protein description, sequence length, gene name and taxon. ProRepeat offers powerful analysis tools for finding biological interesting properties of repeats, such as the strong position bias of leucine repeats in the N-terminus of eukaryotic protein sequences, the differences of repeat abundance among proteomes, the functional classification of repeat containing proteins and GC content constrains of repeats’ corresponding codons.
Collapse
Affiliation(s)
- Hong Luo
- Laboratory of Bioinformatics, Wageningen University and Research Centre, PO Box 569, 6700 AN Wageningen, Netherlands
| | | | | | | | | |
Collapse
|
38
|
Pourebrahim R, Houtmeyers R, Ghogomu S, Janssens S, Thelie A, Tran HT, Langenberg T, Vleminckx K, Bellefroid E, Cassiman JJ, Tejpar S. Transcription factor Zic2 inhibits Wnt/β-catenin protein signaling. J Biol Chem 2011; 286:37732-40. [PMID: 21908606 DOI: 10.1074/jbc.m111.242826] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Zic transcription factors play critical roles during embryonic development. Mutations in the ZIC2 gene are associated with human holoprosencephaly, but the etiology is still unclear. Here, we report a novel function for ZIC2 as a regulator of β-catenin·TCF4-mediated transcription. We show that ZIC2 can bind directly to the DNA-binding high mobility group box of TCF4 via its zinc finger domain and inhibit the transcriptional activity of the β-catenin·TCF4 complex. However, the binding of TCF4 to DNA was not affected by ZIC2. Zic2 RNA injection completely inhibited β-catenin-induced axis duplication in Xenopus embryos and strongly blocked the ability of β-catenin to induce expression of known Wnt targets in animal caps. Moreover, Zic2 knockdown in transgenic Xenopus Wnt reporter embryos led to ectopic Wnt signaling activity mainly at the midbrain-hindbrain boundary. Together, our results demonstrate a previously unknown role for ZIC2 as a transcriptional regulator of the β-catenin·TCF4 complex.
Collapse
Affiliation(s)
- Rasoul Pourebrahim
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Mutations in CDON, encoding a hedgehog receptor, result in holoprosencephaly and defective interactions with other hedgehog receptors. Am J Hum Genet 2011; 89:231-40. [PMID: 21802063 DOI: 10.1016/j.ajhg.2011.07.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/09/2011] [Accepted: 07/05/2011] [Indexed: 11/20/2022] Open
Abstract
Holoprosencephaly (HPE), a common human congenital anomaly defined by a failure to delineate the midline of the forebrain and/or midface, is associated with diminished Sonic hedgehog (SHH)-pathway activity in development of these structures. SHH signaling is regulated by a network of ligand-binding factors, including the primary receptor PTCH1 and the putative coreceptors, CDON (also called CDO), BOC, and GAS1. Although binding of SHH to these receptors promotes pathway activity, it is not known whether interactions between these receptors are important. We report here identification of missense CDON mutations in human HPE. These mutations diminish CDON's ability to support SHH-dependent gene expression in cell-based signaling assays. The mutations occur outside the SHH-binding domain of CDON, and the encoded variant CDON proteins do not display defects in binding to SHH. In contrast, wild-type CDON associates with PTCH1 and GAS1, but the variants do so inefficiently, in a manner that parallels their activity in cell-based assays. Our findings argue that CDON must associate with both ligand and other hedgehog-receptor components, particularly PTCH1, for signaling to occur and that disruption of the latter interactions is a mechanism of HPE.
Collapse
|
40
|
Łabaj PP, Sykacek P, Kreil DP. An analysis of single amino acid repeats as use case for application specific background models. BMC Bioinformatics 2011; 12:173. [PMID: 21595908 PMCID: PMC3124433 DOI: 10.1186/1471-2105-12-173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 05/19/2011] [Indexed: 11/30/2022] Open
Abstract
Background Sequence analysis aims to identify biologically relevant signals against a backdrop of functionally meaningless variation. Increasingly, it is recognized that the quality of the background model directly affects the performance of analyses. State-of-the-art approaches rely on classical sequence models that are adapted to the studied dataset. Although performing well in the analysis of globular protein domains, these models break down in regions of stronger compositional bias or low complexity. While these regions are typically filtered, there is increasing anecdotal evidence of functional roles. This motivates an exploration of more complex sequence models and application-specific approaches for the investigation of biased regions. Results Traditional Markov-chains and application-specific regression models are compared using the example of predicting runs of single amino acids, a particularly simple class of biased regions. Cross-fold validation experiments reveal that the alternative regression models capture the multi-variate trends well, despite their low dimensionality and in contrast even to higher-order Markov-predictors. We show how the significance of unusual observations can be computed for such empirical models. The power of a dedicated model in the detection of biologically interesting signals is then demonstrated in an analysis identifying the unexpected enrichment of contiguous leucine-repeats in signal-peptides. Considering different reference sets, we show how the question examined actually defines what constitutes the 'background'. Results can thus be highly sensitive to the choice of appropriate model training sets. Conversely, the choice of reference data determines the questions that can be investigated in an analysis. Conclusions Using a specific case of studying biased regions as an example, we have demonstrated that the construction of application-specific background models is both necessary and feasible in a challenging sequence analysis situation.
Collapse
Affiliation(s)
- Paweł P Łabaj
- Chair of Bioinformatics, Boku University Vienna, Muthgasse 18, 1190 Vienna, Austria.
| | | | | |
Collapse
|
41
|
Whan V, Hobbs M, McWilliam S, Lynn DJ, Lutzow YS, Khatkar M, Barendse W, Raadsma H, Tellam RL. Bovine proteins containing poly-glutamine repeats are often polymorphic and enriched for components of transcriptional regulatory complexes. BMC Genomics 2010; 11:654. [PMID: 21092319 PMCID: PMC3014979 DOI: 10.1186/1471-2164-11-654] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/23/2010] [Indexed: 11/12/2022] Open
Abstract
Background About forty human diseases are caused by repeat instability mutations. A distinct subset of these diseases is the result of extreme expansions of polymorphic trinucleotide repeats; typically CAG repeats encoding poly-glutamine (poly-Q) tracts in proteins. Polymorphic repeat length variation is also apparent in human poly-Q encoding genes from normal individuals. As these coding sequence repeats are subject to selection in mammals, it has been suggested that normal variations in some of these typically highly conserved genes are implicated in morphological differences between species and phenotypic variations within species. At present, poly-Q encoding genes in non-human mammalian species are poorly documented, as are their functions and propensities for polymorphic variation. Results The current investigation identified 178 bovine poly-Q encoding genes (Q ≥ 5) and within this group, 26 genes with orthologs in both human and mouse that did not contain poly-Q repeats. The bovine poly-Q encoding genes typically had ubiquitous expression patterns although there was bias towards expression in epithelia, brain and testes. They were also characterised by unusually large sizes. Analysis of gene ontology terms revealed that the encoded proteins were strongly enriched for functions associated with transcriptional regulation and many contributed to physical interaction networks in the nucleus where they presumably act cooperatively in transcriptional regulatory complexes. In addition, the coding sequence CAG repeats in some bovine genes impacted mRNA splicing thereby generating unusual transcriptional diversity, which in at least one instance was tissue-specific. The poly-Q encoding genes were prioritised using multiple criteria for their likelihood of being polymorphic and then the highest ranking group was experimentally tested for polymorphic variation within a cattle diversity panel. Extensive and meiotically stable variation was identified. Conclusions Transcriptional diversity can potentially be generated in poly-Q encoding genes by the impact of CAG repeat tracts on mRNA alternative splicing. This effect, combined with the physical interactions of the encoded proteins in large transcriptional regulatory complexes suggests that polymorphic variations of proteins in these complexes have strong potential to affect phenotype.
Collapse
Affiliation(s)
- Vicki Whan
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, Queensland 4067, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
In vertebrate hedgehog signaling, hedgehog ligands are processed to become bilipidated and then multimerize, which allows them to leave the signaling cell via Dispatched 1 and become transported via glypicans and megalin to the responding cells. Hedgehog then interacts with a complex of Patched 1 and Cdo/Boc, which activates endocytic Smoothened to the cilium. Patched 1 regulates the activity of Smoothened (1) via Vitamin D3, which inhibits Smoothened in the absence of hedgehog ligand or (2) via oxysterols, which activate Smoothened in the presence of hedgehog ligand. Hedgehog ligands also interact with Hip1, Patched 2, and Gas1, which regulate the range as well as the level of hedgehog signaling. In vertebrates, Smoothened is shortened at its C-terminal end and lacks most of the phosphorylation sites of importance in Drosophila. Cos2, also of importance in Drosophila, plays no role in mammalian transduction, nor do its homologs Kif7 and Kif27. The cilium may provide a function analogous to that of Cos2 by linking Smoothened to the modulation of Gli transcription factors. Disorders associated with the hedgehog signaling network follow, including nevoid basal cell carcinoma syndrome, holoprosencephaly, Smith-Lemli-Opitz syndrome, Greig cephalopolysyndactyly syndrome, Pallister-Hall syndrome, Carpenter syndrome, and Rubinstein-Taybi syndrome.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
43
|
Paulussen ADC, Schrander-Stumpel CT, Tserpelis DCJ, Spee MKM, Stegmann APA, Mancini GM, Brooks AS, Collée M, Maat-Kievit A, Simon MEH, van Bever Y, Stolte-Dijkstra I, Kerstjens-Frederikse WS, Herkert JC, van Essen AJ, Lichtenbelt KD, van Haeringen A, Kwee ML, Lachmeijer AMA, Tan-Sindhunata GMB, van Maarle MC, Arens YHJM, Smeets EEJGL, de Die-Smulders CE, Engelen JJM, Smeets HJ, Herbergs J. The unfolding clinical spectrum of holoprosencephaly due to mutations in SHH, ZIC2, SIX3 and TGIF genes. Eur J Hum Genet 2010; 18:999-1005. [PMID: 20531442 PMCID: PMC2987413 DOI: 10.1038/ejhg.2010.70] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/09/2022] Open
Abstract
Holoprosencephaly is a severe malformation of the brain characterized by abnormal formation and separation of the developing central nervous system. The prevalence is 1:250 during early embryogenesis, the live-born prevalence is 1:16 000. The etiology of HPE is extremely heterogeneous and can be teratogenic or genetic. We screened four known HPE genes in a Dutch cohort of 86 non-syndromic HPE index cases, including 53 family members. We detected 21 mutations (24.4%), 3 in SHH, 9 in ZIC2 and 9 in SIX3. Eight mutations involved amino-acid substitutions, 7 ins/del mutations, 1 frame-shift, 3 identical poly-alanine tract expansions and 2 gene deletions. Pathogenicity of mutations was presumed based on de novo character, predicted non-functionality of mutated proteins, segregation of mutations with affected family-members or combinations of these features. Two mutations were reported previously. SNP array confirmed detected deletions; one spanning the ZIC2/ZIC5 genes (approx. 100 kb) the other a 1.45 Mb deletion including SIX2/SIX3 genes. The mutation percentage (24%) is comparable with previous reports, but we detected significantly less mutations in SHH: 3.5 vs 10.7% (P=0.043) and significantly more in SIX3: 10.5 vs 4.3% (P=0.018). For TGIF1 and ZIC2 mutation the rate was in conformity with earlier reports. About half of the mutations were de novo, one was a germ line mosaic. The familial mutations displayed extensive heterogeneity in clinical manifestation. Of seven familial index patients only two parental carriers showed minor HPE signs, five were completely asymptomatic. Therefore, each novel mutation should be considered as a risk factor for clinically manifest HPE, with the caveat of reduced clinical penetrance.
Collapse
Affiliation(s)
- Aimée D C Paulussen
- Department of Clinical Genetics, School for Oncology & Developmental Biology (GROW), Maastricht UMC, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Łabaj PP, Leparc GG, Bardet AF, Kreil G, Kreil DP. Single amino acid repeats in signal peptides. FEBS J 2010; 277:3147-57. [DOI: 10.1111/j.1742-4658.2010.07720.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Mularoni L, Ledda A, Toll-Riera M, Albà MM. Natural selection drives the accumulation of amino acid tandem repeats in human proteins. Genome Res 2010; 20:745-54. [PMID: 20335526 DOI: 10.1101/gr.101261.109] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Amino acid tandem repeats are found in a large number of eukaryotic proteins. They are often encoded by trinucleotide repeats and exhibit high intra- and interspecies size variability due to the high mutation rate associated with replication slippage. The extent to which natural selection is important in shaping amino acid repeat evolution is a matter of debate. On one hand, their high frequency may simply reflect their high probability of expansion by slippage, and they could essentially evolve in a neutral manner. On the other hand, there is experimental evidence that changes in repeat size can influence protein-protein interactions, transcriptional activity, or protein subcellular localization, indicating that repeats could be functionally relevant and thus shaped by selection. To gauge the relative contribution of neutral and selective forces in amino acid repeat evolution, we have performed a comparative analysis of amino acid repeat conservation in a large set of orthologous proteins from 12 vertebrate species. As a neutral model of repeat evolution we have used sequences with the same DNA triplet composition as the coding sequences--and thus expected to be subject to the same mutational forces--but located in syntenic noncoding genomic regions. The results strongly indicate that selection has played a more important role than previously suspected in amino acid tandem repeat evolution, by increasing the repeat retention rate and by modulating repeat size. The data obtained in this study have allowed us to identify a set of 92 repeats that are postulated to play important functional roles due to their strong selective signature, including five cases with direct experimental evidence.
Collapse
Affiliation(s)
- Loris Mularoni
- Biomedical Informatics Research Programme (GRIB), Fundació Institut Municipal d'Investigació Mèdica, Barcelona 08003, Spain
| | | | | | | |
Collapse
|
46
|
Roessler E, Muenke M. The molecular genetics of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2010; 154C:52-61. [PMID: 20104595 DOI: 10.1002/ajmg.c.30236] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Holoprosencephaly (HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic, and environmental information typical for studies of a complex disorder. However, even with the advances in our understanding of HPE in recent years, there are significant obstacles remaining to fully understand its heterogeneity and extensive variability in phenotype. General lessons learned from HPE will likely be applicable to other malformation syndromes. Here we outline the common, and rare, genetic and environmental influences on this conserved developmental program of forebrain development and illustrate the similarities and differences between these malformations in humans and those of animal models.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | | |
Collapse
|
47
|
Solomon BD, Lacbawan F, Mercier S, Clegg NJ, Delgado MR, Rosenbaum K, Dubourg C, David V, Olney AH, Wehner LE, Hehr U, Bale S, Paulussen A, Smeets HJ, Hardisty E, Tylki-Szymanska A, Pronicka E, Clemens M, McPherson E, Hennekam RCM, Hahn J, Stashinko E, Levey E, Wieczorek D, Roeder E, Schell-Apacik CC, Booth CW, Thomas RL, Kenwrick S, Cummings DAT, Bous SM, Keaton A, Balog JZ, Hadley D, Zhou N, Long R, Vélez JI, Pineda-Alvarez DE, Odent S, Roessler E, Muenke M. Mutations in ZIC2 in human holoprosencephaly: description of a novel ZIC2 specific phenotype and comprehensive analysis of 157 individuals. J Med Genet 2009; 47:513-24. [PMID: 19955556 DOI: 10.1136/jmg.2009.073049] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Holoprosencephaly (HPE), the most common malformation of the human forebrain, may be due to mutations in genes associated with non-syndromic HPE. Mutations in ZIC2, located on chromosome 13q32, are a common cause of non-syndromic, non-chromosomal HPE. OBJECTIVE To characterise genetic and clinical findings in patients with ZIC2 mutations. METHODS Through the National Institutes of Health and collaborating centres, DNA from approximately 1200 individuals with HPE spectrum disorders was analysed for sequence variations in ZIC2. Clinical details were examined and all other known cases of mutations in ZIC2 were included through a literature search. RESULTS By direct sequencing of DNA samples of an unselected group of unrelated patients with HPE in our NIH laboratory, ZIC2 mutations were found in 8.4% (49/582) of probands. A total of 157 individuals from 119 unrelated kindreds are described, including 141 patients with intragenic sequence determined mutations in ZIC2. Only 39/157 patients have previously been clinically described. Unlike HPE due to mutations in other genes, most mutations occur de novo and the distribution of HPE types differs significantly from that of non-ZIC2 related HPE. Evidence is presented for the presence of a novel facial phenotype which includes bitemporal narrowing, upslanting palpebral fissures, a short nose with anteverted nares, a broad and well demarcated philtrum, and large ears. CONCLUSIONS HPE due to ZIC2 mutations is distinct from that due to mutations in other genes. This may shed light on the mechanisms involved in formation of the forebrain and face and will help direct genetic counselling and diagnostic strategies.
Collapse
Affiliation(s)
- Benjamin D Solomon
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Understanding the mechanisms of callosal development through the use of transgenic mouse models. Semin Pediatr Neurol 2009; 16:127-42. [PMID: 19778710 DOI: 10.1016/j.spen.2009.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cerebral cortex is the area of the brain where higher-order cognitive processing occurs. The 2 hemispheres of the cerebral cortex communicate through one of the largest fiber tracts in the brain, the corpus callosum. Malformation of the corpus callosum in human beings occurs in 1 in 4000 live births, and those afflicted experience an extensive range of neurologic disorders, from relatively mild to severe cognitive deficits. Understanding the molecular and cellular processes involved in these disorders would therefore assist in the development of prognostic tools and therapies. During the past 3 decades, mouse models have been used extensively to determine which molecules play a role in the complex regulation of corpus callosum development. This review provides an update on these studies, as well as highlights the value of using mouse models with the goal of developing therapies for human acallosal syndromes.
Collapse
|
49
|
Roessler E, Lacbawan F, Dubourg C, Paulussen A, Herbergs J, Hehr U, Bendavid C, Zhou N, Ouspenskaia M, Bale S, Odent S, David V, Muenke M. The full spectrum of holoprosencephaly-associated mutations within the ZIC2 gene in humans predicts loss-of-function as the predominant disease mechanism. Hum Mutat 2009; 30:E541-54. [PMID: 19177455 DOI: 10.1002/humu.20982] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mutations of the ZIC2 transcription factor gene are among the most common heterozygous variations detected in holoprosencephaly (HPE) patients, a patient group who lack critical midline forebrain specification due to defective embryonic signaling during development. Recent studies indicate that complete deficiency of the related murine Zic2 transcription factor can also be a contributing factor to variable midline deficiencies, presenting during mid-gastrulation, that could explain similar forebrain anomalies in this model system. Here we collect and summarize all available mutations in the human ZIC2 gene detected in HPE patients (21 published and 62 novel). Our analysis corroborates this mechanism proposed in mice by predicting loss-of-function as the likely pathogenetic mechanism common to most, if not all, of these mutations in HPE.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892-3717, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Messaed C, Rouleau G. Molecular mechanisms underlying polyalanine diseases. Neurobiol Dis 2009; 34:397-405. [DOI: 10.1016/j.nbd.2009.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 02/12/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022] Open
|