1
|
Association between Synonymous SNPs of SOX10 and Plumage Color and Reproductive Traits of Ducks. Animals (Basel) 2022; 12:ani12233345. [PMID: 36496864 PMCID: PMC9736065 DOI: 10.3390/ani12233345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SOX10 gene affect the plumage color of chickens and pigeons. The mutation also causes abnormal pigmentation of the skin and hair color, as well as postnatal growth retardation and reproduction problems in humans and mice. In this study, we investigated the association between the SOX10 gene and plumage color and reproductive traits of ducks using SNPs. We found six novel SNPs from 11 identified SNP sites using direct sequencing for PCR products from three different mixed DNA pools. We found two coding SNPs to be associated with the plumage color of ducks (ZJU1.0 Chr1. g.54065419C>T and g.54070844C>T), and found three coding SNPs associated with the reproductive traits of ducks (g.54065419C>T, g.54070844C>T, and g.54070904C>T), which were age at sexual maturity, body weight at sexual maturity, and the Haugh unit for egg quality traits and egg production in different productive periods. These results also indicated that the T alleles of the three SNPs of the coding region of SOX10 contribute to lower reproductive traits.
Collapse
|
2
|
Zhu T, Liu M, Peng S, Zhang X, Chen Y, Lv X, Yang W, Li K, Zhang J, Wang H, Li H, Ning Z, Wang L, Qu L. A Deletion Upstream of SOX10 Causes Light Yellow Plumage Colour in Chicken. Genes (Basel) 2022; 13:327. [PMID: 35205371 PMCID: PMC8872211 DOI: 10.3390/genes13020327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Chicken plumage colour is a complex trait controlled by many genes. Herein, through Rhode Island Red (RIR) and White Leghorn (WL) F1 cross populations, the segregation of plumage color was observed in females, showing white in males, and dark red (DR) and light yellow (LY) in females. The white has been found to be caused by dominant white alleles (I) and the DR phenotype is attributed to a sex-linked recessive silver allele (S∗S). LY is a derived feather colour phenotype and the genetic mechanism of this is unclear. In order to explore the genetic basis for LY, we randomly selected 40 DR and 39 LY chickens for paired-end sequencing. Through the use of association analysis, we found the LY phenotype is caused by a 7.6 kb non-coding deletion near the SOX10 gene. This mutation has been reported to be responsible for dark brown plumage in chicken, and subsequent diagnostic PCR tests showed that the length of the long-range non-coding deletion is 7.6 kb instead of 8.3 kb as previously reported.
Collapse
Affiliation(s)
- Tao Zhu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (X.Z.); (Z.N.)
| | - Mengchao Liu
- Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing 100005, China;
| | - Shan Peng
- Guiyang Municipal General Station of Animal Science, Guizhou 550081, China; (S.P.); (L.W.)
| | - Xinye Zhang
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (X.Z.); (Z.N.)
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (Y.C.); (X.L.); (W.Y.); (K.L.); (J.Z.)
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (Y.C.); (X.L.); (W.Y.); (K.L.); (J.Z.)
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (Y.C.); (X.L.); (W.Y.); (K.L.); (J.Z.)
| | - Kaiyang Li
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (Y.C.); (X.L.); (W.Y.); (K.L.); (J.Z.)
| | - Jianwei Zhang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (Y.C.); (X.L.); (W.Y.); (K.L.); (J.Z.)
| | - Huie Wang
- College of Animal Science, Tarim University, Alar 843300, China;
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumchi 830000, China;
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (X.Z.); (Z.N.)
| | - Liang Wang
- Guiyang Municipal General Station of Animal Science, Guizhou 550081, China; (S.P.); (L.W.)
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (T.Z.); (X.Z.); (Z.N.)
| |
Collapse
|
3
|
Waardenburg syndrome type II in a Chinese pedigree caused by frameshift mutation in the SOX10 gene. Biosci Rep 2021; 41:227397. [PMID: 33345266 PMCID: PMC8217986 DOI: 10.1042/bsr20193375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/21/2023] Open
Abstract
Waardenburg syndrome (WS) is a congenital hereditary disease, attributed to the most common symptoms of sensorineural deafness and iris hypopigmentation. It is also known as the hearing-pigmentation deficient syndrome. Mutations on SOXl0 gene often lead to congenital deafness and has been shown to play an important role in the pathogenesis of WS. We investigated one family of five members, with four patients exhibiting the classic form of WS2, whose DNA samples were analyzed by the technique of Whole-exome sequencing (WES). From analysis of WES data, we found that both the mother and all three children in the family have a heterozygous mutation on the Sex Determining Region Y - Box 10 (SOX10) gene. The mutation was c.298_300delinsGG in exon 2 of SOX10 (NM_006941), which leads to a frameshift of nine nucleotides, hence the amino acids (p. S100Rfs*9) are altered and the protein translation may be terminated prematurely. Further flow cytometry confirmed significant down-regulation of SOX10 protein, which indicated the SOX10 gene mutation was responsible for the pathogenesis of WS2 patients. In addition, we speculated that some other mutated genes might be related to disease phenotype in this family, which might also participate in promoting the progression of WS2.
Collapse
|
4
|
Deal KK, Rosebrock JC, Eeds AM, DeKeyser JML, Musser MA, Ireland SJ, May-Zhang AA, Buehler DP, Southard-Smith EM. Sox10-cre BAC transgenes reveal temporal restriction of mesenchymal cranial neural crest and identify glandular Sox10 expression. Dev Biol 2020; 471:119-137. [PMID: 33316258 DOI: 10.1016/j.ydbio.2020.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Diversity of neural crest derivatives has been studied with a variety of approaches during embryonic development. In mammals Cre-LoxP lineage tracing is a robust means to fate map neural crest relying on cre driven from regulatory elements of early neural crest genes. Sox10 is an essential transcription factor for normal neural crest development. A variety of efforts have been made to label neural crest derivatives using partial Sox10 regulatory elements to drive cre expression. To date published Sox10-cre lines have focused primarily on lineage tracing in specific tissues or during early fetal development. We describe two new Sox10-cre BAC transgenes, constitutive (cre) and inducible (cre/ERT2), that contain the complete repertoire of Sox10 regulatory elements. We present a thorough expression profile of each, identifying a few novel sites of Sox10 expression not captured by other neural crest cre drivers. Comparative mapping of expression patterns between the Sox10-cre and Sox10-cre/ERT2 transgenes identified a narrow temporal window in which Sox10 expression is present in mesenchymal derivatives prior to becoming restricted to neural elements during embryogenesis. In more caudal structures, such as the intestine and lower urinary tract, our Sox10-cre BAC transgene appears to be more efficient in labeling neural crest-derived cell types than Wnt1-cre. The analysis reveals consistent expression of Sox10 in non-neural crest derived glandular epithelium, including salivary, mammary, and urethral glands of adult mice. These Sox10-cre and Sox10-cre/ERT2 transgenic lines are verified tools that will enable refined temporal and cell-type specific lineage analysis of neural crest derivatives as well as glandular tissues that rely on Sox10 for proper development and function.
Collapse
Affiliation(s)
- Karen K Deal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jennifer C Rosebrock
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela M Eeds
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jean-Marc L DeKeyser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Northwestern University, Dept. of Pharmacology, USA
| | - Melissa A Musser
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA; Present address: Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Sara J Ireland
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Aaron A May-Zhang
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dennis P Buehler
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
5
|
Zhao C, Wang D, Wang X, Mao Y, Xu Z, Sun Y, Mei X, Song J, Shi W. Down-regulation of exosomal miR-200c derived from keratinocytes in vitiligo lesions suppresses melanogenesis. J Cell Mol Med 2020; 24:12164-12175. [PMID: 32918341 PMCID: PMC7579706 DOI: 10.1111/jcmm.15864] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/01/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Vitiligo is a refractory disfiguring skin disease. However, the aetiology and pathogenesis of vitiligo have not been fully defined. Previous studies have shown that exosomes from normal human keratinocytes improve melanogenesis by up‐regulating the expression of melanogenesis‐related proteins. Several microRNAs (miRNAs) have been demonstrated to be effective in modulating melanogenesis via exosomes. In the present study, it was found that the effect of exosomes derived from keratinocytes in vitiligo lesions in regulating melanin synthesis is weakened. Furthermore, miR‐200c was detected to be significantly down‐regulated in exosomes from keratinocytes in vitiligo lesions. In addition, miR‐200c enhanced the expression of melanogenesis‐related genes via suppressing SOX1 to activate β‐catenin. In conclusion, our study revealed that the effect of exosomes secreted by keratinocytes in vitiligo lesions exhibited a weaker capacity in promoting melanogenesis of melanocytes. Moreover, the expression of miR‐200c, which mediates melanogenesis in exosomes secreted by keratinocytes in vitiligo lesions, is down‐regulated, which may be one of the pathogenesis in vitiligo. Therefore, keratinocyte‐derived exosomal miR‐200c may be a potential target for the treatment of vitiligo.
Collapse
Affiliation(s)
- Chaoshuai Zhao
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongliang Wang
- Department of Nuclear Medicine, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xin Wang
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaqi Mao
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ziqian Xu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yue Sun
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Song
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
SOX10-regulated promoter use defines isoform-specific gene expression in Schwann cells. BMC Genomics 2020; 21:549. [PMID: 32770939 PMCID: PMC7430845 DOI: 10.1186/s12864-020-06963-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Multicellular organisms adopt various strategies to tailor gene expression to cellular contexts including the employment of multiple promoters (and the associated transcription start sites (TSSs)) at a single locus that encodes distinct gene isoforms. Schwann cells—the myelinating cells of the peripheral nervous system (PNS)—exhibit a specialized gene expression profile directed by the transcription factor SOX10, which is essential for PNS myelination. SOX10 regulates promoter elements associated with unique TSSs and gene isoforms at several target loci, implicating SOX10-mediated, isoform-specific gene expression in Schwann cell function. Here, we report on genome-wide efforts to identify SOX10-regulated promoters and TSSs in Schwann cells to prioritize genes and isoforms for further study. Results We performed global TSS analyses and mined previously reported ChIP-seq datasets to assess the activity of SOX10-bound promoters in three models: (i) an adult mammalian nerve; (ii) differentiating primary Schwann cells, and (iii) cultured Schwann cells with ablated SOX10 function. We explored specific characteristics of SOX10-dependent TSSs, which provides confidence in defining them as SOX10 targets. Finally, we performed functional studies to validate our findings at four previously unreported SOX10 target loci: ARPC1A, CHN2, DDR1, and GAS7. These findings suggest roles for the associated SOX10-regulated gene products in PNS myelination. Conclusions In sum, we provide comprehensive computational and functional assessments of SOX10-regulated TSS use in Schwann cells. The data presented in this study will stimulate functional studies on the specific mRNA and protein isoforms that SOX10 regulates, which will improve our understanding of myelination in the peripheral nerve.
Collapse
|
7
|
A de novo EGR2 variant, c.1232A > G p.Asp411Gly, causes severe early-onset Charcot-Marie-Tooth Neuropathy Type 3 (Dejerine-Sottas Neuropathy). Sci Rep 2019; 9:19336. [PMID: 31852952 PMCID: PMC6920433 DOI: 10.1038/s41598-019-55875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 01/04/2023] Open
Abstract
EGR2 (early growth response 2) is a crucial transcription factor for the myelination of the peripheral nervous system. Mutations in EGR2 are reported to cause a heterogenous spectrum of peripheral neuropathy with wide variation in both severity and age of onset, including demyelinating and axonal forms of Charcot-Marie Tooth (CMT) neuropathy, Dejerine-Sottas neuropathy (DSN/CMT3), and congenital hypomyelinating neuropathy (CHN/CMT4E). Here we report a sporadic de novo EGR2 variant, c.1232A > G (NM_000399.5), causing a missense p.Asp411Gly substitution and discovered through whole-exome sequencing (WES) of the proband. The resultant phenotype is severe demyelinating DSN with onset at two years of age, confirmed through nerve biopsy and electrophysiological examination. In silico analyses showed that the Asp411 residue is evolutionarily conserved, and the p.Asp411Gly variant was predicted to be deleterious by multiple in silico analyses. A luciferase-based reporter assay confirmed the reduced ability of p.Asp411Gly EGR2 to activate a PMP22 (peripheral myelin protein 22) enhancer element compared to wild-type EGR2. This study adds further support to the heterogeneity of EGR2-related peripheral neuropathies and provides strong functional evidence for the pathogenicity of the p.Asp411Gly EGR2 variant.
Collapse
|
8
|
Stage-dependent differential gene expression profiles of cranial neural crest-like cells derived from mouse-induced pluripotent stem cells. Med Mol Morphol 2019; 53:28-41. [PMID: 31297611 PMCID: PMC7033077 DOI: 10.1007/s00795-019-00229-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Cranial neural crest cells are multipotent cells that migrate into the pharyngeal arches of the vertebrate embryo and differentiate into various craniofacial organ derivatives. Therefore, migrating cranial neural crest cells are considered one of the most attractive candidate cell sources in regenerative medicine. We generated cranial neural crest like cell (cNCCs) using mouse-induced pluripotent stem cells cultured in neural crest-inducing medium for 14 days. Subsequently, we conducted RNA sequencing experiments to analyze gene expression profiles of cNCCs at different time points after induction. cNCCs expressed several neural crest specifier genes; however, some previously reported specifier genes such as paired box 3 and Forkhead box D3, which are essential for embryonic neural crest development, were not expressed. Moreover, ETS proto-oncogene 1, transcription factor and sex-determining region Y-box 10 were only expressed after 14 days of induction. Finally, cNCCs expressed multiple protocadherins and a disintegrin and metalloproteinase with thrombospondin motifs enzymes, which may be crucial for their migration.
Collapse
|
9
|
Domyan ET, Hardy J, Wright T, Frazer C, Daniels J, Kirkpatrick J, Kirkpatrick J, Wakamatsu K, Hill JT. SOX10 regulates multiple genes to direct eumelanin versus pheomelanin production in domestic rock pigeon. Pigment Cell Melanoma Res 2019; 32:634-642. [PMID: 30838786 PMCID: PMC6850303 DOI: 10.1111/pcmr.12778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
The domesticated rock pigeon (Columba livia) has been bred for hundreds of years to display an immense variety of ornamental attributes such as feather color and color patterns. Color is influenced by multiple loci that impact the type and amount of melanin deposited on the feathers. Pigeons homozygous for the "recessive red" mutation, which causes downregulation of Sox10, display brilliant red feathers instead of blue/black feathers. Sox10 encodes a transcription factor important for melanocyte differentiation and function, but the genes that mediate its promotion of black versus red pigment are unknown. Here, we present a transcriptomic comparison of regenerating feathers from wild-type and recessive red pigeons to identify candidate SOX10 targets. Our results identify both known and novel targets, including many genes not previously implicated in pigmentation. These data highlight the value of using novel, emerging model organisms to gain insight into the genetic basis of pigment variation.
Collapse
Affiliation(s)
- Eric T Domyan
- Department of Biology, Utah Valley University, Orem, Utah
| | - Jeremy Hardy
- Department of Biology, Utah Valley University, Orem, Utah
| | - Tanner Wright
- Department of Biology, Utah Valley University, Orem, Utah
| | - Cody Frazer
- Department of Biology, Utah Valley University, Orem, Utah
| | - Jordan Daniels
- Department of Biology, Utah Valley University, Orem, Utah
| | | | | | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| |
Collapse
|
10
|
Law WD, Fogarty EA, Vester A, Antonellis A. A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve. BMC Genomics 2018; 19:311. [PMID: 29716548 PMCID: PMC5930951 DOI: 10.1186/s12864-018-4692-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
Background Identifying functional non-coding variation is critical for defining the genetic contributions to human disease. While single-nucleotide polymorphisms (SNPs) within cis-acting transcriptional regulatory elements have been implicated in disease pathogenesis, not all cell types have been assessed and functional validations have been limited. In particular, the cells of the peripheral nervous system have been excluded from genome-wide efforts to link non-coding SNPs to altered gene function. Addressing this gap is essential for defining the genetic architecture of diseases that affect the peripheral nerve. We developed a computational pipeline to identify SNPs that affect regulatory function (rSNPs) and evaluated our predictions on a set of 144 regions in Schwann cells, motor neurons, and muscle cells. Results We identified 28 regions that display regulatory activity in at least one cell type and 13 SNPs that affect regulatory function. We then tailored our pipeline to one peripheral nerve cell type by incorporating SOX10 ChIP-Seq data; SOX10 is essential for Schwann cells. We prioritized 22 putative SOX10 response elements harboring a SNP and rapidly validated two rSNPs. We then selected one of these elements for further characterization to assess the biological relevance of our approach. Deletion of the element from the genome of cultured Schwann cells—followed by differential gene expression studies—revealed Tubb2b as a candidate target gene. Studying the enhancer in developing mouse embryos revealed activity in SOX10-positive cells including the dorsal root ganglia and melanoblasts. Conclusions Our efforts provide insight into the utility of employing strict conservation for rSNP discovery. This strategy, combined with functional analyses, can yield candidate target genes. In support of this, our efforts suggest that investigating the role of Tubb2b in SOX10-positive cells may reveal novel biology within these cell populations. Electronic supplementary material The online version of this article (10.1186/s12864-018-4692-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth A Fogarty
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aimée Vester
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA. .,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Neurology, University of Michigan Medical School, 3710A Medical Sciences II, 1241 E. Catherine St. SPC 5618, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Li H, Jin P, Hao Q, Zhu W, Chen X, Wang P. Identification of a Novel De Novo Heterozygous Deletion in the SOX10 Gene in Waardenburg Syndrome Type II Using Next-Generation Sequencing. Genet Test Mol Biomarkers 2017; 21:681-685. [PMID: 29045167 DOI: 10.1089/gtmb.2016.0421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Waardenburg syndrome (WS) is a rare autosomal dominant disorder associated with pigmentation abnormalities and sensorineural hearing loss. In this study, we investigated the genetic cause of WSII in a patient and evaluated the reliability of the targeted next-generation exome sequencing method for the genetic diagnosis of WS. METHODS Clinical evaluations were conducted on the patient and targeted next-generation sequencing (NGS) was used to identify the candidate genes responsible for WSII. Multiplex ligation-dependent probe amplification (MLPA) and real-time quantitative polymerase chain reaction (qPCR) were performed to confirm the targeted NGS results. RESULTS Targeted NGS detected the entire deletion of the coding sequence (CDS) of the SOX10 gene in the WSII patient. MLPA results indicated that all exons of the SOX10 heterozygous deletion were detected; no aberrant copy number in the PAX3 and microphthalmia-associated transcription factor (MITF) genes was found. Real-time qPCR results identified the mutation as a de novo heterozygous deletion. CONCLUSIONS This is the first report of using a targeted NGS method for WS candidate gene sequencing; its accuracy was verified by using the MLPA and qPCR methods. Our research provides a valuable method for the genetic diagnosis of WS.
Collapse
Affiliation(s)
- Haonan Li
- 1 Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University , Changchun, China
| | - Peng Jin
- 1 Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University , Changchun, China
| | - Qian Hao
- 2 Department of Ophthalmology, First Hospital of Jilin University , Changchun, China
| | - Wei Zhu
- 1 Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University , Changchun, China
| | - Xia Chen
- 3 Department of Pharmacology, College of Basic Medical Sciences, Jilin University , Changchun, China
| | - Ping Wang
- 1 Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University , Changchun, China
| |
Collapse
|
12
|
Regulation of SOX10 stability via ubiquitination-mediated degradation by Fbxw7α modulates melanoma cell migration. Oncotarget 2017; 6:36370-82. [PMID: 26461473 PMCID: PMC4742183 DOI: 10.18632/oncotarget.5639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/29/2015] [Indexed: 01/01/2023] Open
Abstract
Dysregulation of SOX10 was reported to be correlated with the progression of multiple cancer types, including melanocytic tumors and tumors of the nervous system. However, the mechanisms by which SOX10 is dysregulated in these tumors are poorly understood. In this study, we report that SOX10 is a direct substrate of Fbxw7α E3 ubiquitin ligase, a tumor suppressor in multiple cancers. Fbxw7α promotes SOX10 ubiquitination-mediated turnover through CPD domain of SOX10. Besides, GSK3β phosphorylates SOX10 at CPD domain and facilitates Fbxw7α-mediated SOX10 degradation. Moreover, SOX10 protein levels were inversely correlated with Fbxw7α in melanoma cells, and modulation of Fbxw7α levels regulated the expression of SOX10 and its downstream gene MIA. More importantly, SOX10 reversed Fbxw7α-mediated suppression of melanoma cell migration. This study provides evidence that the tumor suppressor Fbxw7α is the E3 ubiquitin ligase responsible for the degradation of SOX10, and suggests that reduced Fbxw7α might contribute to the upregulation of SOX10 in melanoma cells.
Collapse
|
13
|
Gopinath C, Law WD, Rodríguez-Molina JF, Prasad AB, Song L, Crawford GE, Mullikin JC, Svaren J, Antonellis A. Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation. BMC Genomics 2016; 17:887. [PMID: 27821050 PMCID: PMC5100263 DOI: 10.1186/s12864-016-3167-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background The transcription factor SOX10 is essential for all stages of Schwann cell development including myelination. SOX10 cooperates with other transcription factors to activate the expression of key myelin genes in Schwann cells and is therefore a context-dependent, pro-myelination transcription factor. As such, the identification of genes regulated by SOX10 will provide insight into Schwann cell biology and related diseases. While genome-wide studies have successfully revealed SOX10 target genes, these efforts mainly focused on myelinating stages of Schwann cell development. We propose that less-biased approaches will reveal novel functions of SOX10 outside of myelination. Results We developed a stringent, computational-based screen for genome-wide identification of SOX10 response elements. Experimental validation of a pilot set of predicted binding sites in multiple systems revealed that SOX10 directly regulates a previously unreported alternative promoter at SOX6, which encodes a transcription factor that inhibits glial cell differentiation. We further explored the utility of our computational approach by combining it with DNase-seq analysis in cultured Schwann cells and previously published SOX10 ChIP-seq data from rat sciatic nerve. Remarkably, this analysis enriched for genomic segments that map to loci involved in the negative regulation of gliogenesis including SOX5, SOX6, NOTCH1, HMGA2, HES1, MYCN, ID4, and ID2. Functional studies in Schwann cells revealed that: (1) all eight loci are expressed prior to myelination and down-regulated subsequent to myelination; (2) seven of the eight loci harbor validated SOX10 binding sites; and (3) seven of the eight loci are down-regulated upon repressing SOX10 function. Conclusions Our computational strategy revealed a putative novel function for SOX10 in Schwann cells, which suggests a model where SOX10 activates the expression of genes that inhibit myelination during non-myelinating stages of Schwann cell development. Importantly, the computational and functional datasets we present here will be valuable for the study of transcriptional regulation, SOX protein function, and glial cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3167-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - José F Rodríguez-Molina
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Arjun B Prasad
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, 27708, USA
| | - James C Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
14
|
Bergeron KF, Nguyen CMA, Cardinal T, Charrier B, Silversides DW, Pilon N. Upregulation of the Nr2f1-A830082K12Rik gene pair in murine neural crest cells results in a complex phenotype reminiscent of Waardenburg syndrome type 4. Dis Model Mech 2016; 9:1283-1293. [PMID: 27585883 PMCID: PMC5117235 DOI: 10.1242/dmm.026773] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/16/2016] [Indexed: 01/01/2023] Open
Abstract
Waardenburg syndrome is a neurocristopathy characterized by a combination of skin and hair depigmentation, and inner ear defects. In the type 4 form, these defects show comorbidity with Hirschsprung disease, a disorder marked by an absence of neural ganglia in the distal colon, triggering functional intestinal obstruction. Here, we report that the Spot mouse line - obtained through an insertional mutagenesis screen for genes involved in neural crest cell (NCC) development - is a model for Waardenburg syndrome type 4. We found that the Spot insertional mutation causes overexpression of an overlapping gene pair composed of the transcription-factor-encoding Nr2f1 and the antisense long non-coding RNA A830082K12Rik in NCCs through a mechanism involving relief of repression of these genes. Consistent with the previously described role of Nr2f1 in promoting gliogenesis in the central nervous system, we further found that NCC-derived progenitors of the enteric nervous system fail to fully colonize Spot embryonic guts owing to their premature differentiation in glial cells. Taken together, our data thus identify silencer elements of the Nr2f1-A830082K12Rik gene pair as new candidate loci for Waardenburg syndrome type 4.
Collapse
Affiliation(s)
- Karl-F Bergeron
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Chloé M A Nguyen
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Tatiana Cardinal
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - Baptiste Charrier
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| | - David W Silversides
- Veterinary Genetics Laboratory, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, J2S 7C6, Canada
| | - Nicolas Pilon
- Molecular Genetics of Development Laboratory, Department of Biological Sciences and BioMed Research Center, University of Quebec at Montreal (UQAM), Montreal, H2X 3Y7, Canada
| |
Collapse
|
15
|
Fogarty EA, Brewer MH, Rodriguez-Molina JF, Law WD, Ma KH, Steinberg NM, Svaren J, Antonellis A. SOX10 regulates an alternative promoter at the Charcot-Marie-Tooth disease locus MTMR2. Hum Mol Genet 2016; 25:3925-3936. [PMID: 27466180 DOI: 10.1093/hmg/ddw233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Schwann cells are the myelinating glia of the peripheral nervous system and dysfunction of these cells causes motor and sensory peripheral neuropathy. The transcription factor SOX10 is critical for Schwann cell development and maintenance, and many SOX10 target genes encode proteins required for Schwann cell function. Loss-of-function mutations in the gene encoding myotubularin-related protein 2 (MTMR2) cause Charcot-Marie-Tooth disease type 4B1 (CMT4B1), a severe demyelinating peripheral neuropathy characterized by myelin outfoldings along peripheral nerves. Previous reports indicate that MTMR2 is ubiquitously expressed making it unclear how loss of this gene causes a Schwann cell-specific phenotype. To address this, we performed computational and functional analyses at MTMR2 to identify transcriptional regulatory elements important for Schwann cell expression. Through these efforts, we identified an alternative, SOX10-responsive promoter at MTMR2 that displays strong regulatory activity in immortalized rat Schwann (S16) cells. This promoter directs transcription of a previously unidentified MTMR2 transcript that is enriched in mouse Schwann cells compared to immortalized mouse motor neurons (MN-1), and is predicted to encode an N-terminally truncated protein isoform. The expression of the endogenous transcript is induced in a heterologous cell line by ectopically expressing SOX10, and is nearly ablated in Schwann cells by impairing SOX10 function. Intriguingly, overexpressing the two MTMR2 protein isoforms in HeLa cells revealed that both localize to nuclear puncta and the shorter isoform displays higher nuclear localization compared to the longer isoform. Combined, our data warrant further investigation of the truncated MTMR2 protein isoform in Schwann cells and in CMT4B1 pathogenesis.
Collapse
Affiliation(s)
| | - Megan H Brewer
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - William D Law
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ki H Ma
- Cellular and Molecular Pathology (CMP) Program
| | - Noah M Steinberg
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Svaren
- Waisman Center.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Antonellis
- Neuroscience Graduate Program .,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Saldana-Caboverde A, Perera EM, Watkins-Chow DE, Hansen NF, Vemulapalli M, Mullikin JC, Pavan WJ, Kos L. The transcription factors Ets1 and Sox10 interact during murine melanocyte development. Dev Biol 2015; 407:300-12. [PMID: 25912689 PMCID: PMC4618791 DOI: 10.1016/j.ydbio.2015.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
Abstract
Melanocytes, the pigment-producing cells, arise from multipotent neural crest (NC) cells during embryogenesis. Many genes required for melanocyte development were identified using mouse pigmentation mutants. The variable spotting mouse pigmentation mutant arose spontaneously at the Jackson Laboratory. We identified a G-to-A nucleotide transition in exon 3 of the Ets1 gene in variable spotting, which results in a missense G102E mutation. Homozygous variable spotting mice exhibit sporadic white spotting. Similarly, mice carrying a targeted deletion of Ets1 exhibit hypopigmentation; nevertheless, the function of Ets1 in melanocyte development is unknown. The transcription factor Ets1 is widely expressed in developing organs and tissues, including the NC. In the chick, Ets1 is required for the expression of Sox10, a transcription factor critical for the development of various NC derivatives, including melanocytes. We show that Ets1 is required early for murine NC cell and melanocyte precursor survival in vivo. Given the importance of Ets1 for Sox10 expression in the chick, we investigated a potential genetic interaction between these genes by comparing the hypopigmentation phenotypes of single and double heterozygous mice. The incidence of hypopigmentation in double heterozygotes was significantly greater than in single heterozygotes. The area of hypopigmentation in double heterozygotes was significantly larger than would be expected from the addition of the areas of hypopigmentation of single heterozygotes, suggesting that Ets1 and Sox10 interact synergistically in melanocyte development. Since Sox10 is also essential for enteric ganglia development, we examined the distal colons of Ets1 null mutants and found a significant decrease in enteric innervation, which was exacerbated by Sox10 heterozygosity. At the molecular level, Ets1 was found to activate an enhancer critical for Sox10 expression in NC-derived structures. Furthermore, enhancer activation was significantly inhibited by the variable spotting mutation. Together, these results suggest that Ets1 and Sox10 interact to promote proper melanocyte and enteric ganglia development from the NC.
Collapse
Affiliation(s)
| | - Erasmo M Perera
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nancy F Hansen
- Comparative Genomics Analysis Unit, CGCGB, National Human Genome Research Institute, Bethesda, MD, USA
| | - Meghana Vemulapalli
- NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - James C Mullikin
- Comparative Genomics Analysis Unit, CGCGB, National Human Genome Research Institute, Bethesda, MD, USA; NIH Intramural Sequencing Center, National Human Genome Research Institute, Rockville, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lidia Kos
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL.
| |
Collapse
|
18
|
Fufa TD, Harris ML, Watkins-Chow DE, Levy D, Gorkin DU, Gildea DE, Song L, Safi A, Crawford GE, Sviderskaya EV, Bennett DC, Mccallion AS, Loftus SK, Pavan WJ. Genomic analysis reveals distinct mechanisms and functional classes of SOX10-regulated genes in melanocytes. Hum Mol Genet 2015; 24:5433-50. [PMID: 26206884 PMCID: PMC4572067 DOI: 10.1093/hmg/ddv267] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/09/2015] [Accepted: 07/06/2015] [Indexed: 12/31/2022] Open
Abstract
SOX10 is required for melanocyte development and maintenance, and has been linked to melanoma initiation and progression. However, the molecular mechanisms by which SOX10 guides the appropriate gene expression programs necessary to promote the melanocyte lineage are not fully understood. Here we employ genetic and epigenomic analysis approaches to uncover novel genomic targets and previously unappreciated molecular roles of SOX10 in melanocytes. Through global analysis of SOX10-binding sites and epigenetic characteristics of chromatin states, we uncover an extensive catalog of SOX10 targets genome-wide. Our findings reveal that SOX10 predominantly engages 'open' chromatin regions and binds to distal regulatory elements, including novel and previously known melanocyte enhancers. Integrated chromatin occupancy and transcriptome analysis suggest a role for SOX10 in both transcriptional activation and repression to regulate functionally distinct classes of genes. We demonstrate that distinct epigenetic signatures and cis-regulatory sequence motifs predicted to bind putative co-regulatory transcription factors define SOX10-activated and SOX10-repressed target genes. Collectively, these findings uncover a central role of SOX10 as a global regulator of gene expression in the melanocyte lineage by targeting diverse regulatory pathways.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Denise Levy
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David U Gorkin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA, Department of Pediatrics, Division of Molecular Genetics, Duke University, Durham, NC 27708, USA and
| | - Elena V Sviderskaya
- Molecular Cell Sciences Research Centre, St George's, University of London, London SW17 0RE, UK
| | - Dorothy C Bennett
- Molecular Cell Sciences Research Centre, St George's, University of London, London SW17 0RE, UK
| | - Andrew S Mccallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA,
| |
Collapse
|
19
|
Stolt CC, Wegner M. Schwann cells and their transcriptional network: Evolution of key regulators of peripheral myelination. Brain Res 2015; 1641:101-110. [PMID: 26423937 DOI: 10.1016/j.brainres.2015.09.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/18/2015] [Accepted: 09/20/2015] [Indexed: 11/29/2022]
Abstract
As derivatives of the neural crest, Schwann cells represent a vertebrate invention. Their development and differentiation is under control of a newly constructed, vertebrate-specific regulatory network that contains Sox10, Oct6 and Krox20 as cornerstones and central regulators of peripheral myelination. In this review, we discuss the function and relationship of these transcription factors among each other and in the context of their regulatory network, and present ideas of how neofunctionalization may have helped to recruit them to their novel task in Schwann cells. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- C Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| |
Collapse
|
20
|
Brewer MH, Ma KH, Beecham GW, Gopinath C, Baas F, Choi BO, Reilly MM, Shy ME, Züchner S, Svaren J, Antonellis A. Haplotype-specific modulation of a SOX10/CREB response element at the Charcot-Marie-Tooth disease type 4C locus SH3TC2. Hum Mol Genet 2014; 23:5171-87. [PMID: 24833716 PMCID: PMC4168306 DOI: 10.1093/hmg/ddu240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 12/22/2022] Open
Abstract
Loss-of-function mutations in the Src homology 3 (SH3) domain and tetratricopeptide repeats 2 (SH3TC2) gene cause autosomal recessive demyelinating Charcot-Marie-Tooth neuropathy. The SH3TC2 protein has been implicated in promyelination signaling through axonal neuregulin-1 and the ERBB2 Schwann cell receptor. However, little is known about the transcriptional regulation of the SH3TC2 gene. We performed computational and functional analyses that revealed two cis-acting regulatory elements at SH3TC2-one at the promoter and one ∼150 kb downstream of the transcription start site. Both elements direct reporter gene expression in Schwann cells and are responsive to the transcription factor SOX10, which is essential for peripheral nervous system myelination. The downstream enhancer harbors a single-nucleotide polymorphism (SNP) that causes an ∼80% reduction in enhancer activity. The SNP resides directly within a predicted binding site for the transcription factor cAMP response element binding protein (CREB), and we demonstrate that this regulatory element binds to CREB and is activated by CREB expression. Finally, forskolin induces Sh3tc2 expression in rat primary Schwann cells, indicating that SH3TC2 is a CREB target gene. These findings prompted us to determine if SNP genotypes at SH3TC2 are associated with differential phenotypes in the most common demyelinating peripheral neuropathy, CMT1A. Interestingly, this revealed several associations between SNP alleles and disease severity. In summary, our data indicate that SH3TC2 is regulated by the transcription factors CREB and SOX10, define a regulatory SNP at this disease-associated locus and reveal SH3TC2 as a candidate modifier locus of CMT disease phenotypes.
Collapse
Affiliation(s)
| | - Ki Hwan Ma
- Cellular and Molecular Pathology (CMP) Program
| | - Gary W Beecham
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Centre, Amsterdam, The Netherlands
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-Gu, Seoul, Korea
| | - Mary M Reilly
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London, UK
| | - Michael E Shy
- Department of Neurology Department of Pediatrics and Department of Physiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Stephan Züchner
- Dr John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Antonellis
- Department of Human Genetics Department of Neurology and Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Epistatic and combinatorial effects of pigmentary gene mutations in the domestic pigeon. Curr Biol 2014; 24:459-64. [PMID: 24508169 DOI: 10.1016/j.cub.2014.01.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 01/10/2023]
Abstract
Understanding the molecular basis of phenotypic diversity is a critical challenge in biology, yet we know little about the mechanistic effects of different mutations and epistatic relationships among loci that contribute to complex traits. Pigmentation genetics offers a powerful model for identifying mutations underlying diversity and for determining how additional complexity emerges from interactions among loci. Centuries of artificial selection in domestic rock pigeons (Columba livia) have cultivated tremendous variation in plumage pigmentation through the combined effects of dozens of loci. The dominance and epistatic hierarchies of key loci governing this diversity are known through classical genetic studies, but their molecular identities and the mechanisms of their genetic interactions remain unknown. Here we identify protein-coding and cis-regulatory mutations in Tyrp1, Sox10, and Slc45a2 that underlie classical color phenotypes of pigeons and present a mechanistic explanation of their dominance and epistatic relationships. We also find unanticipated allelic heterogeneity at Tyrp1 and Sox10, indicating that color variants evolved repeatedly though mutations in the same genes. These results demonstrate how a spectrum of coding and regulatory mutations in a small number of genes can interact to generate substantial phenotypic diversity in a classic Darwinian model of evolution.
Collapse
|
22
|
Cowley M, Garfield AS, Madon-Simon M, Charalambous M, Clarkson RW, Smalley MJ, Kendrick H, Isles AR, Parry AJ, Carney S, Oakey RJ, Heisler LK, Moorwood K, Wolf JB, Ward A. Developmental programming mediated by complementary roles of imprinted Grb10 in mother and pup. PLoS Biol 2014; 12:e1001799. [PMID: 24586114 PMCID: PMC3934836 DOI: 10.1371/journal.pbio.1001799] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 01/15/2014] [Indexed: 01/21/2023] Open
Abstract
Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk.
Collapse
Affiliation(s)
- Michael Cowley
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
- Department of Medical & Molecular Genetics, King's College London, London, United Kingdom
| | - Alastair S. Garfield
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Marta Madon-Simon
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Marika Charalambous
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | | | - Matthew J. Smalley
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Cardiff, United Kingdom
| | - Howard Kendrick
- European Cancer Stem Cell Research Institute, Cardiff School of Biosciences, Biomedical Sciences Building, Cardiff University, Cardiff, United Kingdom
| | - Anthony R. Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine and Psychology, Cardiff University, Cardiff, United Kingdom
| | - Aled J. Parry
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Sara Carney
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King's College London, London, United Kingdom
| | - Lora K. Heisler
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Kim Moorwood
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Jason B. Wolf
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Andrew Ward
- Department of Biology & Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| |
Collapse
|
23
|
Yekti APA, Hsu HJ, Wang WD. The Effect of Paclobutrazol on the Development of Zebrafish (Danio Rerio) Embryos. Zebrafish 2014; 11:1-9. [DOI: 10.1089/zeb.2013.0902] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hwei-Jan Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Der Wang
- Department of BioAgricultural Science, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
24
|
Bondurand N, Sham MH. The role of SOX10 during enteric nervous system development. Dev Biol 2013; 382:330-43. [DOI: 10.1016/j.ydbio.2013.04.024] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 04/24/2013] [Indexed: 12/30/2022]
|
25
|
Symmons O, Spitz F. From remote enhancers to gene regulation: charting the genome's regulatory landscapes. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120358. [PMID: 23650632 DOI: 10.1098/rstb.2012.0358] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vertebrate genes are characterized by the presence of cis-regulatory elements located at great distances from the genes they control. Alterations of these elements have been implicated in human diseases and evolution, yet little is known about how these elements interact with their surrounding sequences. A recent survey of the mouse genome with a regulatory sensor showed that the regulatory activities of these elements are not organized in a gene-centric manner, but instead are broadly distributed along chromosomes, forming large regulatory landscapes with distinct tissue-specific activities. A large genome-wide collection of expression data from this regulatory sensor revealed some basic principles of this complex genome regulatory architecture, including a substantial interplay between enhancers and other types of activities to modulate gene expression. We discuss the implications of these findings for our understanding of non-coding transcription, and of the possible consequences of structural genomic variations in disease and evolution.
Collapse
Affiliation(s)
- Orsolya Symmons
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
26
|
Moore SW. Chromosomal and related Mendelian syndromes associated with Hirschsprung's disease. Pediatr Surg Int 2012; 28:1045-58. [PMID: 23001136 DOI: 10.1007/s00383-012-3175-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
Hirschsprung's disease (HSCR) is a fairly frequent cause of intestinal obstruction in children. It is characterized as a sex-linked heterogonous disorder with variable severity and incomplete penetrance giving rise to a variable pattern of inheritance. Although Hirschsprung's disease occurs as an isolated phenotype in at least 70% of cases, it is not infrequently associated with a number of congenital abnormalities and associated syndromes, demonstrating a spectrum of congenital anomalies. Certain of these syndromic phenotypes have been linked to distinct genetic sites, indicating underlying genetic associations of the disease and probable gene-gene interaction, in its pathogenesis. These associations with HSCR include Down's syndrome and other chromosomal anomalies, Waardenburg syndrome and other Dominant sensorineural deafness, the Congenital Central Hypoventilation and Mowat-Wilson and other brain-related syndromes, as well as the MEN2 and other tumour associations. A number of other autosomal recessive syndromes include the Shah-Waardenburg, the Bardet-Biedl and Cartilage-hair hypoplasia, Goldberg-Shprintzen syndromes and other syndromes related to cholesterol and fat metabolism among others. The genetics of Hirschsprung's disease are highly complex with the majority of known genetic sites relating to the main susceptibility pathways (RET an EDNRB). Non-syndromic non-familial, short-segment HSCR appears to represent a non-Mendelian condition with variable expression and sex-dependent penetrance. Syndromic and familial forms, on the other hand, have complex patterns of inheritance and being reported as autosomal dominant, recessive and polygenic patterns of inheritance. The phenotypic variability and incomplete penetrance observed in Hirschsprung's disease could also be explained by the involvement of modifier genes, especially in its syndromic forms. In this review, we look at the chromosomal and Mendelian associations and their underlying signalling pathways, to obtain a better understanding of the pathogenetic mechanisms involved in developing aganglionosis of the distal bowel.
Collapse
Affiliation(s)
- S W Moore
- Division of Pediatric Surgery, Department of Surgical Sciences, Faculty of Health Sciences, University of Stellenbosch, P.O. Box 19063, Tygerberg, South Africa.
| |
Collapse
|
27
|
Gorkin DU, Lee D, Reed X, Fletez-Brant C, Bessling SL, Loftus SK, Beer MA, Pavan WJ, McCallion AS. Integration of ChIP-seq and machine learning reveals enhancers and a predictive regulatory sequence vocabulary in melanocytes. Genome Res 2012; 22:2290-301. [PMID: 23019145 PMCID: PMC3483558 DOI: 10.1101/gr.139360.112] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We take a comprehensive approach to the study of regulatory control of gene expression in melanocytes that proceeds from large-scale enhancer discovery facilitated by ChIP-seq; to rigorous validation in silico, in vitro, and in vivo; and finally to the use of machine learning to elucidate a regulatory vocabulary with genome-wide predictive power. We identify 2489 putative melanocyte enhancer loci in the mouse genome by ChIP-seq for EP300 and H3K4me1. We demonstrate that these putative enhancers are evolutionarily constrained, enriched for sequence motifs predicted to bind key melanocyte transcription factors, located near genes relevant to melanocyte biology, and capable of driving reporter gene expression in melanocytes in culture (86%; 43/50) and in transgenic zebrafish (70%; 7/10). Next, using the sequences of these putative enhancers as a training set for a supervised machine learning algorithm, we develop a vocabulary of 6-mers predictive of melanocyte enhancer function. Lastly, we demonstrate that this vocabulary has genome-wide predictive power in both the mouse and human genomes. This study provides deep insight into the regulation of gene expression in melanocytes and demonstrates a powerful approach to the investigation of regulatory sequences that can be applied to other cell types.
Collapse
Affiliation(s)
- David U Gorkin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Srinivasan R, Sun G, Keles S, Jones EA, Jang SW, Krueger C, Moran JJ, Svaren J. Genome-wide analysis of EGR2/SOX10 binding in myelinating peripheral nerve. Nucleic Acids Res 2012; 40:6449-60. [PMID: 22492709 PMCID: PMC3413122 DOI: 10.1093/nar/gks313] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 11/17/2022] Open
Abstract
Myelin is essential for the rapidity of saltatory nerve conduction, and also provides trophic support for axons to prevent axonal degeneration. Two critical determinants of myelination are SOX10 and EGR2/KROX20. SOX10 is required for specification of Schwann cells from neural crest, and is required at every stage of Schwann cell development. Egr2/Krox20 expression is activated by axonal signals in myelinating Schwann cells, and is required for cell cycle arrest and myelin formation. To elucidate the integrated function of these two transcription factors during peripheral nerve myelination, we performed in vivo ChIP-Seq analysis of myelinating peripheral nerve. Integration of these binding data with loss-of-function array data identified a range of genes regulated by these factors. In addition, although SOX10 itself regulates Egr2/Krox20 expression, leading to coordinate activation of several major myelin genes by the two factors, there is a large subset of genes that are activated independent of EGR2. Finally, the results identify a set of SOX10-dependent genes that are expressed in early Schwann cell development, but become subsequently repressed by EGR2/KROX20.
Collapse
Affiliation(s)
- Rajini Srinivasan
- Waisman Center, Department of Statistics, Department of Biostatistics and Medical Informatics, Program in Cellular and Molecular Biology and, Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Guannan Sun
- Waisman Center, Department of Statistics, Department of Biostatistics and Medical Informatics, Program in Cellular and Molecular Biology and, Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Sunduz Keles
- Waisman Center, Department of Statistics, Department of Biostatistics and Medical Informatics, Program in Cellular and Molecular Biology and, Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Erin A. Jones
- Waisman Center, Department of Statistics, Department of Biostatistics and Medical Informatics, Program in Cellular and Molecular Biology and, Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Sung-Wook Jang
- Waisman Center, Department of Statistics, Department of Biostatistics and Medical Informatics, Program in Cellular and Molecular Biology and, Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - Courtney Krueger
- Waisman Center, Department of Statistics, Department of Biostatistics and Medical Informatics, Program in Cellular and Molecular Biology and, Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - John J. Moran
- Waisman Center, Department of Statistics, Department of Biostatistics and Medical Informatics, Program in Cellular and Molecular Biology and, Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| | - John Svaren
- Waisman Center, Department of Statistics, Department of Biostatistics and Medical Informatics, Program in Cellular and Molecular Biology and, Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
29
|
Baral V, Chaoui A, Watanabe Y, Goossens M, Attie-Bitach T, Marlin S, Pingault V, Bondurand N. Screening of MITF and SOX10 regulatory regions in Waardenburg syndrome type 2. PLoS One 2012; 7:e41927. [PMID: 22848661 PMCID: PMC3407046 DOI: 10.1371/journal.pone.0041927] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/29/2012] [Indexed: 02/03/2023] Open
Abstract
Waardenburg syndrome (WS) is a rare auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and pigmentation defects. Four subtypes are clinically defined based on the presence or absence of additional symptoms. WS type 2 (WS2) can result from mutations within the MITF or SOX10 genes; however, 70% of WS2 cases remain unexplained at the molecular level, suggesting that other genes might be involved and/or that mutations within the known genes escaped previous screenings. The recent identification of a deletion encompassing three of the SOX10 regulatory elements in a patient presenting with another WS subtype, WS4, defined by its association with Hirschsprung disease, led us to search for deletions and point mutations within the MITF and SOX10 regulatory elements in 28 yet unexplained WS2 cases. Two nucleotide variations were identified: one in close proximity to the MITF distal enhancer (MDE) and one within the U1 SOX10 enhancer. Functional analyses argued against a pathogenic effect of these variations, suggesting that mutations within regulatory elements of WS genes are not a major cause of this neurocristopathy.
Collapse
|
30
|
Jones EA, Brewer MH, Srinivasan R, Krueger C, Sun G, Charney KN, Keles S, Antonellis A, Svaren J. Distal enhancers upstream of the Charcot-Marie-Tooth type 1A disease gene PMP22. Hum Mol Genet 2012; 21:1581-91. [PMID: 22180461 PMCID: PMC3298281 DOI: 10.1093/hmg/ddr595] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/12/2011] [Indexed: 11/14/2022] Open
Abstract
Myelin insulates axons in the peripheral nervous system to allow rapid propagation of action potentials, and proper myelination requires the precise regulation of genes encoding myelin proteins, including PMP22. The correct gene dosage of PMP22 is critical; a duplication of PMP22 is the most common cause of the peripheral neuropathy Charcot-Marie-Tooth Disease (CMT) (classified as type 1A), while a deletion of PMP22 leads to another peripheral neuropathy, hereditary neuropathy with liability to pressure palsies. Recently, duplications upstream of PMP22, but not containing the gene itself, were reported in patients with CMT1A like symptoms, suggesting that this region contains regulators of PMP22. Using chromatin immunoprecipitation analysis of two transcription factors known to upregulate PMP22-EGR2 and SOX10-we found several enhancers in this upstream region that contain open chromatin and direct reporter gene expression in tissue culture and in vivo in zebrafish. These studies provide a novel means to identify critical regulatory elements in genes that are required for myelination, and elucidate the functional significance of non-coding genomic rearrangements.
Collapse
Affiliation(s)
- Erin A. Jones
- Program in Cellular and Molecular Biology
- Waisman Center
| | | | | | | | - Guannan Sun
- Department of Statistics
- Department of Biostatistics and Medical Informatics and
| | | | - Sunduz Keles
- Department of Statistics
- Department of Biostatistics and Medical Informatics and
| | - Anthony Antonellis
- Department of Human Genetics
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - John Svaren
- Waisman Center
- Department of Comparative Biosciences, Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
31
|
Alu-mediated deletion of SOX10 regulatory elements in Waardenburg syndrome type 4. Eur J Hum Genet 2012; 20:990-4. [PMID: 22378281 DOI: 10.1038/ejhg.2012.29] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Waardenburg syndrome type 4 (WS4) is a rare neural crest disorder defined by the combination of Waardenburg syndrome (sensorineural hearing loss and pigmentation defects) and Hirschsprung disease (intestinal aganglionosis). Three genes are known to be involved in this syndrome, that is, EDN3 (endothelin-3), EDNRB (endothelin receptor type B), and SOX10. However, 15-35% of WS4 remains unexplained at the molecular level, suggesting that other genes could be involved and/or that mutations within known genes may have escaped previous screenings. Here, we searched for deletions within recently identified SOX10 regulatory sequences and describe the first characterization of a WS4 patient presenting with a large deletion encompassing three of these enhancers. Analysis of the breakpoint region suggests a complex rearrangement involving three Alu sequences that could be mediated by a FosTes/MMBIR replication mechanism. Taken together with recent reports, our results demonstrate that the disruption of highly conserved non-coding elements located within or at a long distance from the coding sequences of key genes can result in several neurocristopathies. This opens up new routes to the molecular dissection of neural crest disorders.
Collapse
|
32
|
Hodonsky CJ, Kleinbrink EL, Charney KN, Prasad M, Bessling SL, Jones EA, Srinivasan R, Svaren J, McCallion AS, Antonellis A. SOX10 regulates expression of the SH3-domain kinase binding protein 1 (Sh3kbp1) locus in Schwann cells via an alternative promoter. Mol Cell Neurosci 2011; 49:85-96. [PMID: 22037207 DOI: 10.1016/j.mcn.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/07/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022] Open
Abstract
The transcription factor SOX10 has essential roles in neural crest-derived cell populations, including myelinating Schwann cells-specialized glial cells responsible for ensheathing axons in the peripheral nervous system. Importantly, SOX10 directly regulates the expression of genes essential for proper myelin function. To date, only a handful of SOX10 target loci have been characterized in Schwann cells. Addressing this lack of knowledge will provide a better understanding of Schwann cell biology and candidate loci for relevant diseases such as demyelinating peripheral neuropathies. We have identified a highly-conserved SOX10 binding site within an alternative promoter at the SH3-domain kinase binding protein 1 (Sh3kbp1) locus. The genomic segment identified at Sh3kbp1 binds to SOX10 and displays strong promoter activity in Schwann cells in vitro and in vivo. Mutation of the SOX10 binding site ablates promoter activity, and ectopic expression of SOX10 in SOX10-negative cells promotes the expression of endogenous Sh3kbp1. Combined, these data reveal Sh3kbp1 as a novel target of SOX10 and raise important questions regarding the function of SH3KBP1 isoforms in Schwann cells.
Collapse
Affiliation(s)
- Chani J Hodonsky
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wahlbuhl M, Reiprich S, Vogl MR, Bösl MR, Wegner M. Transcription factor Sox10 orchestrates activity of a neural crest-specific enhancer in the vicinity of its gene. Nucleic Acids Res 2011; 40:88-101. [PMID: 21908409 PMCID: PMC3245941 DOI: 10.1093/nar/gkr734] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Sox10 transcription factor is a central regulator of vertebrate neural crest and nervous system development. Its expression is likely controlled by multiple enhancer elements, among them U3 (alternatively known as MCS4). Here we analyze U3 activity to obtain deeper insights into Sox10 function and expression in the neural crest and its derivatives. U3 activity strongly depends on the presence of Sox10 that regulates its own expression as commonly observed for important developmental regulators. Sox10 bound directly as monomer to at least three sites in U3, whereas a fourth site preferred dimers. Deletion of these sites efficiently reduced U3 activity in transfected cells and transgenic mice. In stimulating the U3 enhancer, Sox10 synergized with many other transcription factors present in neural crest and developing peripheral nervous system including Pax3, FoxD3, AP2α, Krox20 and Sox2. In case of FoxD3, synergism involved Sox10-dependent recruitment to the U3 enhancer, while Sox10 and AP2α each had to bind to the regulatory region. Our study points to the importance of autoregulatory activity and synergistic interactions for maintenance of Sox10 expression and functional activity of Sox10 in the neural crest regulatory network.
Collapse
Affiliation(s)
- Mandy Wahlbuhl
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
34
|
Greenhill ER, Rocco A, Vibert L, Nikaido M, Kelsh RN. An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development. PLoS Genet 2011; 7:e1002265. [PMID: 21909283 PMCID: PMC3164703 DOI: 10.1371/journal.pgen.1002265] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 07/12/2011] [Indexed: 11/18/2022] Open
Abstract
The mechanisms generating stably differentiated cell-types from multipotent precursors are key to understanding normal development and have implications for treatment of cancer and the therapeutic use of stem cells. Pigment cells are a major derivative of neural crest stem cells and a key model cell-type for our understanding of the genetics of cell differentiation. Several factors driving melanocyte fate specification have been identified, including the transcription factor and master regulator of melanocyte development, Mitf, and Wnt signalling and the multipotency and fate specification factor, Sox10, which drive mitf expression. While these factors together drive multipotent neural crest cells to become specified melanoblasts, the mechanisms stabilising melanocyte differentiation remain unclear. Furthermore, there is controversy over whether Sox10 has an ongoing role in melanocyte differentiation. Here we use zebrafish to explore in vivo the gene regulatory network (GRN) underlying melanocyte specification and differentiation. We use an iterative process of mathematical modelling and experimental observation to explore methodically the core melanocyte GRN we have defined. We show that Sox10 is not required for ongoing differentiation and expression is downregulated in differentiating cells, in response to Mitfa and Hdac1. Unexpectedly, we find that Sox10 represses Mitf-dependent expression of melanocyte differentiation genes. Our systems biology approach allowed us to predict two novel features of the melanocyte GRN, which we then validate experimentally. Specifically, we show that maintenance of mitfa expression is Mitfa-dependent, and identify Sox9b as providing an Mitfa-independent input to melanocyte differentiation. Our data supports our previous suggestion that Sox10 only functions transiently in regulation of mitfa and cannot be responsible for long-term maintenance of mitfa expression; indeed, Sox10 is likely to slow melanocyte differentiation in the zebrafish embryo. More generally, this novel approach to understanding melanocyte differentiation provides a basis for systematic modelling of differentiation in this and other cell-types.
Collapse
Affiliation(s)
- Emma R. Greenhill
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Andrea Rocco
- Department of Mathematics, University of Bath, Bath, United Kingdom
| | - Laura Vibert
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Masataka Nikaido
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| |
Collapse
|
35
|
Prasad MK, Reed X, Gorkin DU, Cronin JC, McAdow AR, Chain K, Hodonsky CJ, Jones EA, Svaren J, Antonellis A, Johnson SL, Loftus SK, Pavan WJ, McCallion AS. SOX10 directly modulates ERBB3 transcription via an intronic neural crest enhancer. BMC DEVELOPMENTAL BIOLOGY 2011; 11:40. [PMID: 21672228 PMCID: PMC3124416 DOI: 10.1186/1471-213x-11-40] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/14/2011] [Indexed: 12/21/2022]
Abstract
Background The ERBB3 gene is essential for the proper development of the neural crest (NC) and its derivative populations such as Schwann cells. As with all cell fate decisions, transcriptional regulatory control plays a significant role in the progressive restriction and specification of NC derived lineages during development. However, little is known about the sequences mediating transcriptional regulation of ERBB3 or the factors that bind them. Results In this study we identified three transcriptional enhancers at the ERBB3 locus and evaluated their regulatory potential in vitro in NC-derived cell types and in vivo in transgenic zebrafish. One enhancer, termed ERBB3_MCS6, which lies within the first intron of ERBB3, directs the highest reporter expression in vitro and also demonstrates epigenetic marks consistent with enhancer activity. We identify a consensus SOX10 binding site within ERBB3_MCS6 and demonstrate, in vitro, its necessity and sufficiency for the activity of this enhancer. Additionally, we demonstrate that transcription from the endogenous Erbb3 locus is dependent on Sox10. Further we demonstrate in vitro that Sox10 physically interacts with that ERBB3_MCS6. Consistent with its in vitro activity, we also show that ERBB3_MCS6 drives reporter expression in NC cells and a subset of its derivative lineages in vivo in zebrafish in a manner consistent with erbb3b expression. We also demonstrate, using morpholino analysis, that Sox10 is necessary for ERBB3_MCS6 expression in vivo in zebrafish. Conclusions Taken collectively, our data suggest that ERBB3 may be directly regulated by SOX10, and that this control may in part be facilitated by ERBB3_MCS6.
Collapse
Affiliation(s)
- Megana K Prasad
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Nguyen DK, Yang F, Kaul R, Alkan C, Antonellis A, Friery KF, Zhu B, de Jong PJ, Disteche CM. Clcn4-2 genomic structure differs between the X locus in Mus spretus and the autosomal locus in Mus musculus: AT motif enrichment on the X. Genome Res 2011; 21:402-9. [PMID: 21282478 DOI: 10.1101/gr.108563.110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In Mus spretus, the chloride channel 4 gene Clcn4-2 is X-linked and dosage compensated by X up-regulation and X inactivation, while in the closely related mouse species Mus musculus, Clcn4-2 has been translocated to chromosome 7. We sequenced Clcn4-2 in M. spretus and identified the breakpoints of the evolutionary translocation in the Mus lineage. Genetic and epigenetic differences were observed between the 5'ends of the autosomal and X-linked loci. Remarkably, Clcn4-2 introns have been truncated on chromosome 7 in M. musculus as compared with the X-linked loci from seven other eutherian mammals. Intron sequences specifically preserved in the X-linked loci were significantly enriched in AT-rich oligomers. Genome-wide analyses showed an overall enrichment in AT motifs unique to the eutherian X (except for genes that escape X inactivation), suggesting a role for these motifs in regulation of the X chromosome.
Collapse
Affiliation(s)
- Di Kim Nguyen
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gunnarsson U, Kerje S, Bed'hom B, Sahlqvist AS, Ekwall O, Tixier-Boichard M, Kämpe O, Andersson L. The Dark brown plumage color in chickens is caused by an 8.3-kb deletion upstream of SOX10. Pigment Cell Melanoma Res 2011; 24:268-74. [PMID: 21210960 DOI: 10.1111/j.1755-148x.2011.00825.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Dark brown (DB) mutation in chickens reduces expression of black eumelanin and enhances expression of red pheomelanin, but only in certain parts of the plumage. Here, we present genetic evidence that an 8.3-kb deletion upstream of the SOX10 transcription start site is the causal mutation underlying the DB phenotype. The SOX10 transcription factor has a well-established role in melanocyte biology and is essential for melanocyte migration and survival. Previous studies have demonstrated that the mouse homolog of a highly conserved element within the deleted region is a SOX10 enhancer. The mechanism of action of this mutation remains to be established, but one possible scenario is that the deletion leads to reduced SOX10 expression which in turn down-regulates expression of key enzymes in pigment synthesis such as tyrosinase. Lower tyrosinase activity leads to a shift toward a more pheomelanistic (reddish) plumage color, which is the characteristic feature of the DB phenotype.
Collapse
Affiliation(s)
- Ulrika Gunnarsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Hurle B, Marques-Bonet T, Antonacci F, Hughes I, Ryan JF, Eichler EE, Ornitz DM, Green ED. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses. BMC Evol Biol 2011; 11:23. [PMID: 21261979 PMCID: PMC3038909 DOI: 10.1186/1471-2148-11-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 01/24/2011] [Indexed: 11/19/2022] Open
Abstract
Background Mutations in the Otopetrin 1 gene (Otop1) in mice and fish produce an unusual bilateral vestibular pathology that involves the absence of otoconia without hearing impairment. The encoded protein, Otop1, is the only functionally characterized member of the Otopetrin Domain Protein (ODP) family; the extended sequence and structural preservation of ODP proteins in metazoans suggest a conserved functional role. Here, we use the tools of sequence- and cytogenetic-based comparative genomics to study the Otop1 and the Otop2-Otop3 genes and to establish their genomic context in 25 vertebrates. We extend our evolutionary study to include the gene mutated in Usher syndrome (USH) subtype 1G (Ush1g), both because of the head-to-tail clustering of Ush1g with Otop2 and because Otop1 and Ush1g mutations result in inner ear phenotypes. Results We established that OTOP1 is the boundary gene of an inversion polymorphism on human chromosome 4p16 that originated in the common human-chimpanzee lineage more than 6 million years ago. Other lineage-specific evolutionary events included a three-fold expansion of the Otop genes in Xenopus tropicalis and of Ush1g in teleostei fish. The tight physical linkage between Otop2 and Ush1g is conserved in all vertebrates. To further understand the functional organization of the Ushg1-Otop2 locus, we deduced a putative map of binding sites for CCCTC-binding factor (CTCF), a mammalian insulator transcription factor, from genome-wide chromatin immunoprecipitation-sequencing (ChIP-seq) data in mouse and human embryonic stem (ES) cells combined with detection of CTCF-binding motifs. Conclusions The results presented here clarify the evolutionary history of the vertebrate Otop and Ush1g families, and establish a framework for studying the possible interaction(s) of Ush1g and Otop in developmental pathways.
Collapse
Affiliation(s)
- Belen Hurle
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Baxter LL, Loftus SK, Pavan WJ. Networks and pathways in pigmentation, health, and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:359-371. [PMID: 20161540 DOI: 10.1002/wsbm.20] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Extensive studies of the biology of the pigment-producing cell (melanocyte) have resulted in a wealth of knowledge regarding the genetics and developmental mechanisms governing skin and hair pigmentation. The ease of identification of altered pigment phenotypes, particularly in mouse coat color mutants, facilitated early use of the pigmentary system in mammalian genetics and development. In addition to the large collection of developmental genetics data, melanocytes are of interest because their malignancy results in melanoma, a highly aggressive and frequently fatal cancer that is increasing in Caucasian populations worldwide. The genetic programs regulating melanocyte development, function, and malignancy are highly complex and only partially understood. Current research in melanocyte development and pigmentation is revealing new genes important in these processes and additional functions for previously known individual components. A detailed understanding of all the components involved in melanocyte development and function, including interactions with neighboring cells and response to environmental stimuli, will be necessary to fully comprehend this complex system. The inherent characteristics of pigmentation biology as well as the resources available to researchers in the pigment cell community make melanocytes an ideal cell type for analysis using systems biology approaches. In this review, the study of melanocyte development and pigmentation is considered as a candidate for systems biology-based analyses.
Collapse
Affiliation(s)
- Laura L Baxter
- Mouse Embryology Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stacie K Loftus
- Mouse Embryology Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Mouse Embryology Section, Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Domené S, Stanescu H, Wallis D, Tinloy B, Pineda DE, Kleta R, Arcos-Burgos M, Roessler E, Muenke M. Screening of human LPHN3 for variants with a potential impact on ADHD susceptibility. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:11-8. [PMID: 21184580 DOI: 10.1002/ajmg.b.31141] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/18/2010] [Indexed: 11/06/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common behavioral disorder in childhood, and often has effects detectable into adulthood. Advances in genetic linkage and association analysis have begun to elucidate some of the genetic factors underlying this complex disorder. Recently, we identified LPHN3, a novel ADHD susceptibility gene harbored in 4q, and showed that a LPHN3 common haplotype confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Here we present the mutational analysis of the entire coding region of LPHN3 in a cohort of 139 ADHD subjects and 52 controls from across the USA. We identified 21 variants, of which 14 have been reported and 7 are novel. These include 5 missense, 8 synonymous, and 8 intronic changes. Interestingly, neither susceptibility nor protective haplotype alleles are associated with obviously significant coding region changes, or canonical splice site alterations, suggesting that non-coding variations determining the quantity and/or quality of LPHN3 isoforms are the likely contributors to this common behavioral disorder.
Collapse
Affiliation(s)
- Sabina Domené
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3717, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Antonellis A, Dennis MY, Burzynski G, Huynh J, Maduro V, Hodonsky CJ, Khajavi M, Szigeti K, Mukkamala S, Bessling SL, Pavan WJ, McCallion AS, Lupski JR, Green ED. A rare myelin protein zero (MPZ) variant alters enhancer activity in vitro and in vivo. PLoS One 2010; 5:e14346. [PMID: 21179557 PMCID: PMC3002941 DOI: 10.1371/journal.pone.0014346] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/26/2010] [Indexed: 01/16/2023] Open
Abstract
Background Myelin protein zero (MPZ) is a critical structural component of myelin in the peripheral nervous system. The MPZ gene is regulated, in part, by the transcription factors SOX10 and EGR2. Mutations in MPZ, SOX10, and EGR2 have been implicated in demyelinating peripheral neuropathies, suggesting that components of this transcriptional network are candidates for harboring disease-causing mutations (or otherwise functional variants) that affect MPZ expression. Methodology We utilized a combination of multi-species sequence comparisons, transcription factor-binding site predictions, targeted human DNA re-sequencing, and in vitro and in vivo enhancer assays to study human non-coding MPZ variants. Principal Findings Our efforts revealed a variant within the first intron of MPZ that resides within a previously described SOX10 binding site is associated with decreased enhancer activity, and alters binding of nuclear proteins. Additionally, the genomic segment harboring this variant directs tissue-relevant reporter gene expression in zebrafish. Conclusions This is the first reported MPZ variant within a cis-acting transcriptional regulatory element. While we were unable to implicate this variant in disease onset, our data suggests that similar non-coding sequences should be screened for mutations in patients with neurological disease. Furthermore, our multi-faceted approach for examining the functional significance of non-coding variants can be readily generalized to study other loci important for myelin structure and function.
Collapse
Affiliation(s)
- Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Megan Y. Dennis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Grzegorz Burzynski
- McKusick–Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jimmy Huynh
- McKusick–Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Valerie Maduro
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chani J. Hodonsky
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mehrdad Khajavi
- Department of Molecular and Human Genetics, Houston, Texas, United States of America
| | - Kinga Szigeti
- Department of Molecular and Human Genetics, Houston, Texas, United States of America
- Department of Neurology, Houston, Texas, United States of America
| | - Sandeep Mukkamala
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Seneca L. Bessling
- McKusick–Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - NISC Comparative Sequencing Program
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew S. McCallion
- McKusick–Nathans Institute of Genetic Medicine and Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Hospital, Houston, Texas, United States of America
| | - Eric D. Green
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- NIH Intramural Sequencing Center (NISC), National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
42
|
Harris ML, Baxter LL, Loftus SK, Pavan WJ. Sox proteins in melanocyte development and melanoma. Pigment Cell Melanoma Res 2010; 23:496-513. [PMID: 20444197 DOI: 10.1111/j.1755-148x.2010.00711.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over 10 years have passed since the first Sox gene was implicated in melanocyte development. Since then, we have discovered that SOX5, SOX9, SOX10 and SOX18 all participate as transcription factors that affect key melanocytic genes in both regulatory and modulatory fashions. Both SOX9 and SOX10 play major roles in the establishment and normal function of the melanocyte; SOX10 has been shown to heavily influence melanocyte development and SOX9 has been implicated in melanogenesis in the adult. Despite these advances, the precise cellular and molecular details of how these SOX proteins are regulated and interact during all stages of the melanocyte life cycle remain unknown. Improper regulation of SOX9 or SOX10 is also associated with cancerous transformation, and thus understanding the normal function of SOX proteins in the melanocyte will be key to revealing how these proteins contribute to melanoma.
Collapse
Affiliation(s)
- Melissa L Harris
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
43
|
Stanchina L, Van de Putte T, Goossens M, Huylebroeck D, Bondurand N. Genetic interaction between Sox10 and Zfhx1b during enteric nervous system development. Dev Biol 2010; 341:416-28. [PMID: 20206619 DOI: 10.1016/j.ydbio.2010.02.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/29/2010] [Accepted: 02/25/2010] [Indexed: 01/12/2023]
Abstract
The involvement of SOX10 and ZFHX1B in Waardenburg-Hirschsprung disease (hypopigmentation, deafness, and absence of enteric ganglia) and Mowat-Wilson syndrome (mental retardation, facial dysmorphy and variable congenital malformations including Hirschsprung disease) respectively, highlighted the importance of both transcription factors during enteric nervous system (ENS) development. The expression and function of SOX10 are now well established, but those of ZFHX1B remain elusive. Here we describe the expression profile of Zfhx1b and its genetic interactions with Sox10 during mouse ENS development. Through phenotype analysis of Sox10;Zfhx1b double mutants, we show that a coordinated and balanced interaction between these two genes is required for normal ENS development. Double mutants present with more severe ENS defects due to decreased proliferation of enteric progenitors and increased neuronal differentiation from E11.5 onwards. Thus, joint activity between these two transcription factors is crucial for proper ENS development and our results contribute to the understanding of the molecular basis of ENS defects observed both in mutant mouse models and in patients carrying SOX10 and ZFHX1B mutations.
Collapse
|
44
|
Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. Proc Natl Acad Sci U S A 2010; 107:3570-5. [PMID: 20139305 DOI: 10.1073/pnas.0906596107] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neural crest is a multipotent, stem cell-like population that migrates extensively in the embryo and forms a wide array of derivatives, ranging from neurons to melanocytes and cartilage. Analyses of the gene regulatory network driving neural crest development revealed Sox10 as one of the earliest neural crest-specifying genes, cell-autonomously driving delamination and directly regulating numerous downstream effectors and differentiation gene batteries. In search of direct inputs to the neural crest specifier module, we dissected the chick Sox10 genomic region and isolated two downstream regulatory regions with distinct spatiotemporal activity. A unique element, Sox10E2 represents the earliest-acting neural crest cis-regulatory element, critical for initiating Sox10 expression in newly formed cranial, but not vagal and trunk neural crest. A second element, Sox10E1, acts in later migrating vagal and trunk crest cells. Deep characterization of Sox10E2 reveals Sox9, Ets1, and cMyb as direct inputs mediating enhancer activity. ChIP, DNA-pull down, and gel-shift assays demonstrate their direct binding to the Sox10E2 enhancer in vivo, whereas mutation of their corresponding binding sites, or inactivation of the three upstream regulators, abolishes both reporter and endogenous Sox10 expression. Using cis-regulatory analysis as a tool, our study makes critical connections within the neural crest gene regulatory network, thus being unique in establishing a direct link of upstream effectors to a key neural crest specifier.
Collapse
|
45
|
Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res 2008; 18:1163-76. [PMID: 19002157 DOI: 10.1038/cr.2008.303] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Human neurocristopathies include a number of syndromes, tumors, and dysmorphologies of neural crest (NC) stem cell derivatives. In recent years, many white spotting genes have been associated with hypopigmentary disorders and deafness in neurocristopathies resulting from NC stem cell-derived melanocyte deficiency during development. These include PAX3, SOX10, MITF, SNAI2, EDNRB, EDN3, KIT, and KITL. Recent studies have revealed surprising new insights into a central role of MITF in the complex network of interacting genes in melanocyte development. In this perspective, we provide an overview of some of the current findings and explore complex functional roles of these genes during NC stem cell-derived melanocyte development.
Collapse
Affiliation(s)
- Ling Hou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science of China Ministry of Health, Eye Hospital, Wenzhou Medical College, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| | | |
Collapse
|
46
|
Loftus SK, Antonellis A, Matera I, Renaud G, Baxter LL, Reid D, Wolfsberg TG, Chen Y, Wang C, Prasad MK, Bessling SL, McCallion AS, Green ED, Bennett DC, Pavan WJ. Gpnmb is a melanoblast-expressed, MITF-dependent gene. Pigment Cell Melanoma Res 2008; 22:99-110. [PMID: 18983539 DOI: 10.1111/j.1755-148x.2008.00518.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Expression profile analysis clusters Gpnmb with known pigment genes, Tyrp1, Dct, and Si. During development, Gpnmb is expressed in a pattern similar to Mitf, Dct and Si with expression vastly reduced in Mitf mutant animals. Unlike Dct and Si, Gpnmb remains expressed in a discrete population of caudal melanoblasts in Sox10-deficient embryos. To understand the transcriptional regulation of Gpnmb we performed a whole genome annotation of 2,460,048 consensus MITF binding sites, and cross-referenced this with evolutionarily conserved genomic sequences at the GPNMB locus. One conserved element, GPNMB-MCS3, contained two MITF consensus sites, significantly increased luciferase activity in melanocytes and was sufficient to drive expression in melanoblasts in vivo. Deletion of the 5'-most MITF consensus site dramatically reduced enhancer activity indicating a significant role for this site in Gpnmb transcriptional regulation. Future analysis of the Gpnmb locus will provide insight into the transcriptional regulation of melanocytes, and Gpnmb expression can be used as a marker for analyzing melanocyte development and disease progression.
Collapse
Affiliation(s)
- Stacie K Loftus
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dutton JR, Antonellis A, Carney TJ, Rodrigues FSLM, Pavan WJ, Ward A, Kelsh RN. An evolutionarily conserved intronic region controls the spatiotemporal expression of the transcription factor Sox10. BMC DEVELOPMENTAL BIOLOGY 2008; 8:105. [PMID: 18950534 PMCID: PMC2601039 DOI: 10.1186/1471-213x-8-105] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 10/26/2008] [Indexed: 11/20/2022]
Abstract
Background A major challenge lies in understanding the complexities of gene regulation. Mutation of the transcription factor SOX10 is associated with several human diseases. The disease phenotypes reflect the function of SOX10 in diverse tissues including the neural crest, central nervous system and otic vesicle. As expected, the SOX10 expression pattern is complex and highly dynamic, but little is known of the underlying mechanisms regulating its spatiotemporal pattern. SOX10 expression is highly conserved between all vertebrates characterised. Results We have combined in vivo testing of DNA fragments in zebrafish and computational comparative genomics to identify the first regulatory regions of the zebrafish sox10 gene. Both approaches converged on the 3' end of the conserved 1st intron as being critical for spatial patterning of sox10 in the embryo. Importantly, we have defined a minimal region crucial for this function. We show that this region contains numerous binding sites for transcription factors known to be essential in early neural crest induction, including Tcf/Lef, Sox and FoxD3. We show that the identity and relative position of these binding sites are conserved between zebrafish and mammals. A further region, partially required for oligodendrocyte expression, lies in the 5' region of the same intron and contains a putative CSL binding site, consistent with a role for Notch signalling in sox10 regulation. Furthermore, we show that β-catenin, Notch signalling and Sox9 can induce ectopic sox10 expression in early embryos, consistent with regulatory roles predicted from our transgenic and computational results. Conclusion We have thus identified two major sites of sox10 regulation in vertebrates and provided evidence supporting a role for at least three factors in driving sox10 expression in neural crest, otic epithelium and oligodendrocyte domains.
Collapse
Affiliation(s)
- James R Dutton
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | | | | | | | | | | |
Collapse
|
48
|
Antonellis A, Huynh JL, Lee-Lin SQ, Vinton RM, Renaud G, Loftus SK, Elliot G, Wolfsberg TG, Green ED, McCallion AS, Pavan WJ. Identification of neural crest and glial enhancers at the mouse Sox10 locus through transgenesis in zebrafish. PLoS Genet 2008; 4:e1000174. [PMID: 18773071 PMCID: PMC2518861 DOI: 10.1371/journal.pgen.1000174] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/17/2008] [Indexed: 11/18/2022] Open
Abstract
Sox10 is a dynamically regulated transcription factor gene that is essential for the development of neural crest-derived and oligodendroglial populations. Developmental genes often require multiple regulatory sequences that integrate discrete and overlapping functions to coordinate their expression. To identify Sox10 cis-regulatory elements, we integrated multiple model systems, including cell-based screens and transposon-mediated transgensis in zebrafish, to scrutinize mammalian conserved, noncoding genomic segments at the mouse Sox10 locus. We demonstrate that eight of 11 Sox10 genomic elements direct reporter gene expression in transgenic zebrafish similar to patterns observed in transgenic mice, despite an absence of observable sequence conservation between mice and zebrafish. Multiple segments direct expression in overlapping populations of neural crest derivatives and glial cells, ranging from pan-Sox10 and pan-neural crest regulatory control to the modulation of expression in subpopulations of Sox10-expressing cells, including developing melanocytes and Schwann cells. Several sequences demonstrate overlapping spatial control, yet direct expression in incompletely overlapping developmental intervals. We were able to partially explain neural crest expression patterns by the presence of head to head SoxE family binding sites within two of the elements. Moreover, we were able to use this transcription factor binding site signature to identify the corresponding zebrafish enhancers in the absence of overall sequence homology. We demonstrate the utility of zebrafish transgenesis as a high-fidelity surrogate in the dissection of mammalian gene regulation, especially those with dynamically controlled developmental expression.
Collapse
Affiliation(s)
- Anthony Antonellis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jimmy L. Huynh
- McKusick–Nathans Institute of Genetic Medicine, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shih-Queen Lee-Lin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ryan M. Vinton
- McKusick–Nathans Institute of Genetic Medicine, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gabriel Renaud
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stacie K. Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gene Elliot
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tyra G. Wolfsberg
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric D. Green
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrew S. McCallion
- McKusick–Nathans Institute of Genetic Medicine, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
49
|
Bondurand N, Dastot-Le Moal F, Stanchina L, Collot N, Baral V, Marlin S, Attie-Bitach T, Giurgea I, Skopinski L, Reardon W, Toutain A, Sarda P, Echaieb A, Lackmy-Port-Lis M, Touraine R, Amiel J, Goossens M, Pingault V. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet 2007; 81:1169-85. [PMID: 17999358 PMCID: PMC2276340 DOI: 10.1086/522090] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 08/01/2007] [Indexed: 12/14/2022] Open
Abstract
Waardenburg syndrome (WS) is an auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair and skin. Depending on additional symptoms, WS is classified into four subtypes, WS1-WS4. Absence of additional features characterizes WS2. The association of facial dysmorphic features defines WS1 and WS3, whereas the association with Hirschsprung disease (aganglionic megacolon) characterizes WS4, also called "Waardenburg-Hirschsprung disease." Mutations within the genes MITF and SNAI2 have been identified in WS2, whereas mutations of EDN3, EDNRB, and SOX10 have been observed in patients with WS4. However, not all cases are explained at the molecular level, which raises the possibility that other genes are involved or that some mutations within the known genes are not detected by commonly used genotyping methods. We used a combination of semiquantitative fluorescent multiplex polymerase chain reaction and fluorescent in situ hybridization to search for SOX10 heterozygous deletions. We describe the first characterization of SOX10 deletions in patients presenting with WS4. We also found SOX10 deletions in WS2 cases, making SOX10 a new gene of WS2. Interestingly, neurological phenotypes reminiscent of that observed in WS4 (PCWH syndrome [peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, WS, and Hirschsprung disease]) were observed in some WS2-affected patients with SOX10 deletions. This study further characterizes the molecular complexity and the close relationship that links the different subtypes of WS.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM U841, Institut Mondor de Recherche Biomedicale, Département de Génétique, Université Paris 12, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Werner T, Hammer A, Wahlbuhl M, Bösl MR, Wegner M. Multiple conserved regulatory elements with overlapping functions determine Sox10 expression in mouse embryogenesis. Nucleic Acids Res 2007; 35:6526-38. [PMID: 17897962 PMCID: PMC2095789 DOI: 10.1093/nar/gkm727] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Expression and function of the transcription factor Sox10 is predominant in neural crest cells, its derivatives and in oligodendrocytes. To understand how Sox10 expression is regulated during development, we analysed the potential of evolutionary conserved non-coding sequences in the Sox10 genomic region to function as enhancers. By linking these sequences to a β-galactosidase marker gene under the control of a minimal promoter, five regulatory regions were identified that direct marker gene expression in transgenic mice to Sox10 expressing cell types and tissues in a defined temporal pattern. These possible enhancers of the Sox10 gene mediate Sox10 expression in the otic vesicle, in oligodendrocytes and in several neural crest derivatives including the developing peripheral nervous system and the adrenal gland. They furthermore exhibit overlapping activities and share binding sites for Sox, Lef/Tcf, Pax and AP2 transcription factors. This may explain high level and robustness of Sox10 expression during embryonic development.
Collapse
Affiliation(s)
- Torsten Werner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen and Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | - Alexander Hammer
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen and Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | - Mandy Wahlbuhl
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen and Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | - Michael R. Bösl
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen and Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen-Nürnberg, Erlangen and Max-Planck-Institut für Neurobiologie, Martinsried, Germany
- *To whom correspondence should be addressed. +49 9131 85 24620+49 9131 85 22484
| |
Collapse
|