1
|
Liu Q, Iqbal MF, Yaqub T, Firyal S, Zhao Y, Stoneking M, Li M. The Transmission of Human Mitochondrial DNA in Four-Generation Pedigrees. Hum Mutat 2022; 43:1259-1267. [PMID: 35460575 DOI: 10.1002/humu.24390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 11/06/2022]
Abstract
Most of the pathogenic variants in mitochondrial DNA (mtDNA) exist in a heteroplasmic state (coexistence of mutant and wild-type mtDNA). Understanding how mtDNA is transmitted is crucial for predicting mitochondrial disease risk. Previous studies were based mainly on two-generation pedigree data, which are limited by the randomness in a single transmission. In this study, we analyzed the transmission of heteroplasmies in 16 four-generation families. First, we found that 57.8% of the variants in the great grandmother were transmitted to the fourth generation. The direction and magnitude of the frequency change during transmission appeared to be random. Moreover, no consistent correlation was identified between the frequency changes among the continuous transmissions, suggesting that most variants were functionally neutral or mildly deleterious and thus not subject to strong natural selection. Additionally, we found that the frequency of one nonsynonymous variant (m.15773G>A) showed a consistent increase in one family, suggesting that this variant may confer a fitness advantage to the mitochondrion/cell. We also estimated the effective bottleneck size during transmission to be 21-71. In summary, our study demonstrates the advantages of multigeneration data for studying the transmission of mtDNA for shedding new light on the dynamics of the mutation frequency in successive generations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Muhammad Faaras Iqbal
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan.,University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tahir Yaqub
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Sehrish Firyal
- University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany.,Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Villeurbanne, France
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
2
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
3
|
Abstract
In hematopoiesis, mature blood cells, granulocytes, erythrocytes, and megakaryocytes originate from hematopoietic stem cells. With age, changes in hematopoiesis may have clinical consequences: defective immune responses, cytopenias (most commonly anemia and lymphopenia), hematological malignancy, and effects mediated by hematopoietic cells in other organs. Clonal hematopoiesis is commonly seen with aging and has been associated with both blood concerns and atherosclerosis, but further study is required to determine a causative link.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Mark Hatfield Clinical Research Center, Room 3E-5140, 10 Center Drive, Bethesda, MD 20891-1202, USA.
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Mark Hatfield Clinical Research Center, Room 3E-5140, 10 Center Drive, Bethesda, MD 20891-1202, USA
| |
Collapse
|
4
|
Karimova A, Hacioğlu Y, Bahtiyar N, Niyazoğlu M, Akbaş F, Yilmaz E, Ulutin T, Onaran I. Increased mitochondrial common deletion in platelets from patients with type 2 diabetes is not associated with abnormal platelet activity or mitochondrial function. Mol Med Rep 2018; 18:3529-3536. [PMID: 30066943 DOI: 10.3892/mmr.2018.9340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/07/2018] [Indexed: 11/05/2022] Open
Abstract
The present study examined the presence and frequency of the 4,977‑base pair mitochondrial (mt)DNA (mtDNA4977) deletion in blood platelets, and whether increased mtDNA4977 deletion was associated with abnormal mitochondrial and platelet function in type 2 diabetes mellitus. A total of 66 patients with type 2 diabetes mellitus and 23 healthy subjects were included in the present study. Patients were divided into three subgroups according to glycemic control, and the presence or absence of chronic diabetic complications: i) Good glycemic control [glycated hemoglobin (HbA1c) <7] without complications; ii) poor glycemic control (HbA1c ≥7) without complications; and iii) poor glycemic control (HbA1c ≥7) with complications. mtDNA4977 deletion, mtDNA copy number, adenine nucleotides, mitochondrial membrane potential and P‑selectin expression levels were analyzed in platelets. Although the frequency of mtDNA4977 deletion in platelets of the patient (96.9%) and control groups (95.6%) was extremely similar, the deletion level significantly increased in all the diabetic groups, compared with the healthy control group. However, the data from the present study revealed that an increased deletion frequency in platelets was not associated with disease severity, although there was clear interindividual variability. Furthermore, all other parameters were not significantly different among the groups, and there were no correlations between mtDNA4977 deletion frequency and all other studied parameters for any of the case groups. The results indicated that the mtDNA4977 deletion occurred in platelets, and increased deletion in patients with type 2 diabetes did not have a marked influence on mitochondrial and/or platelet dysfunction, when compared with the non‑diabetic subjects. Further research is required to elucidate the sources of inter‑individual variability observed in certain parameters.
Collapse
Affiliation(s)
- Ayla Karimova
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Yalçin Hacioğlu
- Department of Family Medicine, Istanbul Training and Research Hospital, 34098 Istanbul, Turkey
| | - Nurten Bahtiyar
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Mutlu Niyazoğlu
- Department of Endocrinology, Istanbul Training and Research Hospital, 34098 Istanbul, Turkey
| | - Fahri Akbaş
- Department of Medical Biology, Faculty of Medicine at Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Erkan Yilmaz
- Tissue Typing Laboratory, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Ilhan Onaran
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| |
Collapse
|
5
|
Mitochondrial (Dys) Function in Inflammaging: Do MitomiRs Influence the Energetic, Oxidative, and Inflammatory Status of Senescent Cells? Mediators Inflamm 2017; 2017:2309034. [PMID: 29445253 PMCID: PMC5763118 DOI: 10.1155/2017/2309034] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
A relevant feature of aging is chronic low-grade inflammation, termed inflammaging, a key process promoting the development of all major age-related diseases. Senescent cells can acquire the senescence-associated (SA) secretory phenotype (SASP), characterized by the secretion of proinflammatory factors fuelling inflammaging. Cellular senescence is also accompanied by a deep reshaping of microRNA expression and by the modulation of mitochondria activity, both master regulators of the SASP. Here, we synthesize novel findings regarding the role of mitochondria in the SASP and in the inflammaging process and propose a network linking nuclear-encoded SA-miRNAs to mitochondrial gene regulation and function in aging cells. In this conceptual structure, SA-miRNAs can translocate to mitochondria (SA-mitomiRs) and may affect the energetic, oxidative, and inflammatory status of senescent cells. We discuss the potential role of several of SA-mitomiRs (i.e., let-7b, miR-1, miR-130a-3p, miR-133a, miR-146a-5p, miR-181c-5p, and miR-378-5p), using miR-146a as a proof-of-principle model. Finally, we propose a comprehensive, metabolic, and epigenetic view of the senescence process, in order to amplify the range of possible approaches to target inflammaging, with the ultimate goal of decelerating the aging rate, postponing or blunting the development of age-related diseases.
Collapse
|
6
|
Xie M, Doetsch PW, Deng X. Bcl2 inhibition of mitochondrial DNA repair. BMC Cancer 2015; 15:586. [PMID: 26268226 PMCID: PMC4535531 DOI: 10.1186/s12885-015-1594-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 08/06/2015] [Indexed: 01/11/2023] Open
Abstract
Background Accumulation of mitochondrial DNA (mtDNA) damage could enhance the frequency of mitochondrial mutations and promote a variety of mitochondria-related diseases, including cancer. However, the mechanism(s) involved are not fully understood. Methods Quantitative extended length PCR was used to compare mtDNA and nDNA damage in human lung H1299 cells expressing WT Bcl2 or vector-only control. mtAPE1 endonuclease activity was analyzed by AP oligonucleotide assay. mtDNA mutation was measured by single molecule PCR. Subcellular localization of Bcl2 and APE1 was analyzed by subcellular fractionation. Results Bcl2, an anti-apoptotic molecule and oncoprotein, effectively inhibits the endonuclease activity of mitochondrial APE1 (mtAPE1), leading to significant retardation of mtDNA repair and enhanced frequency of mtDNA mutations following exposure of cells to hydrogen peroxide (H2O2) or nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK, a carcinogen in cigarette smoke). Inversely, depletion of endogenous Bcl2 by RNA interference increases mtAPE1 endonuclease activity leading to accelerated mtDNA repair and decreased mtDNA mutation. Higher levels of mtAPE1 were observed in human lung cancer cells than in normal human bronchial epithelial cells (i.e. BEAS-2B). Bcl2 partially co-localizes with APE1 in the mitochondria of human lung cancer cells. Bcl2 directly interacts with mtAPE1 via its BH domains. Removal of any of the BH domains from Bcl2 abolishes Bcl2’s capacity to interact with mtAPE1 as well as its inhibitory effects on mtAPE1 activity and mtDNA repair. Conclusions Based our findings, we propose that Bcl2 suppression of mtDNA repair occurs through direct interaction with mtAPE1 and inhibition of its endonuclease activity in mitochondria, which may contribute to enhanced mtDNA mutations and carcinogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1594-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maohua Xie
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Paul W Doetsch
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA. .,Biochemistry, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| | - Xingming Deng
- Division of Cancer Biology, Departments of Radiation Oncology, Emory University School of Medicine and Winship Cancer Institute of Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
7
|
Yao YG, Kajigaya S, Young NS. Mitochondrial DNA mutations in single human blood cells. Mutat Res 2015; 779:68-77. [PMID: 26149767 DOI: 10.1016/j.mrfmmm.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/07/2023]
Abstract
Determination mitochondrial DNA (mtDNA) sequences from extremely small amounts of DNA extracted from tissue of limited amounts and/or degraded samples is frequently employed in medical, forensic, and anthropologic studies. Polymerase chain reaction (PCR) amplification followed by DNA cloning is a routine method, especially to examine heteroplasmy of mtDNA mutations. In this review, we compare the mtDNA mutation patterns detected by three different sequencing strategies. Cloning and sequencing methods that are based on PCR amplification of DNA extracted from either single cells or pooled cells yield a high frequency of mutations, partly due to the artifacts introduced by PCR and/or the DNA cloning process. Direct sequencing of PCR product which has been amplified from DNA in individual cells is able to detect the low levels of mtDNA mutations present within a cell. We further summarize the findings in our recent studies that utilized this single cell method to assay mtDNA mutation patterns in different human blood cells. Our data show that many somatic mutations observed in the end-stage differentiated cells are found in hematopoietic stem cells (HSCs) and progenitors within the CD34(+) cell compartment. Accumulation of mtDNA variations in the individual CD34+ cells is affected by both aging and family genetic background. Granulocytes harbor higher numbers of mutations compared with the other cells, such as CD34(+) cells and lymphocytes. Serial assessment of mtDNA mutations in a population of single CD34(+) cells obtained from the same donor over time suggests stability of some somatic mutations. CD34(+) cell clones from a donor marked by specific mtDNA somatic mutations can be found in the recipient after transplantation. The significance of these findings is discussed in terms of the lineage tracing of HSCs, aging effect on accumulation of mtDNA mutations and the usage of mtDNA sequence in forensic identification.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China.
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Levin L, Mishmar D. A Genetic View of the Mitochondrial Role in Ageing: Killing Us Softly. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 847:89-106. [DOI: 10.1007/978-1-4939-2404-2_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Li H, Sharma LK, Li Y, Hu P, Idowu A, Liu D, Lu J, Bai Y. Comparative bioenergetic study of neuronal and muscle mitochondria during aging. Free Radic Biol Med 2013; 63:30-40. [PMID: 23643721 PMCID: PMC3786194 DOI: 10.1016/j.freeradbiomed.2013.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 04/11/2013] [Accepted: 04/23/2013] [Indexed: 12/28/2022]
Abstract
Mitochondrial respiratory chain defects have been associated with various diseases and with normal aging, particularly in tissues with high energy demands, including brain and skeletal muscle. Tissue-specific manifestation of mitochondrial DNA (mtDNA) mutations and mitochondrial dysfunction are hallmarks of mitochondrial diseases although the underlying mechanisms are largely unclear. Previously, we and others have established approaches for transferring mtDNA from muscle and synaptosomes of mice at various ages to cell cultures. In this study, we carried out a comprehensive bioenergetic analysis of cells bearing mitochondria derived from young, middle-aged, and old mouse skeletal muscles and synaptosomes. Significant age-associated alterations in oxidative phosphorylation and regulation during aging were observed in cybrids carrying mitochondria from both skeletal muscle and synaptosomes. Our results also revealed that loss of oxidative phosphorylation capacity may occur at various ages in muscle and brain. These findings indicate the existence of a tissue-specific regulatory mechanism for oxidative phosphorylation.
Collapse
Affiliation(s)
- Hongzhi Li
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lokendra Kumar Sharma
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Youfen Li
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- School of Life Science, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Peiqing Hu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Abimbola Idowu
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Danhui Liu
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lu
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | - Yidong Bai
- School of Life Science, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Corresponding author at: Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA. Fax: +210 567 3803. (Y. Bai)
| |
Collapse
|
10
|
Mohsin S, Khan M, Nguyen J, Alkatib M, Siddiqi S, Hariharan N, Wallach K, Monsanto M, Gude N, Dembitsky W, Sussman MA. Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ Res 2013; 113:1169-79. [PMID: 24044948 DOI: 10.1161/circresaha.113.302302] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE Myocardial function is enhanced by adoptive transfer of human cardiac progenitor cells (hCPCs) into a pathologically challenged heart. However, advanced age, comorbidities, and myocardial injury in patients with heart failure constrain the proliferation, survival, and regenerative capacity of hCPCs. Rejuvenation of senescent hCPCs will improve the outcome of regenerative therapy for a substantial patient population possessing functionally impaired stem cells. OBJECTIVE Reverse phenotypic and functional senescence of hCPCs by ex vivo modification with Pim-1. METHODS AND RESULTS C-kit-positive hCPCs were isolated from heart biopsy samples of patients undergoing left ventricular assist device implantation. Growth kinetics, telomere lengths, and expression of cell cycle regulators showed significant variation between hCPC isolated from multiple patients. Telomere length was significantly decreased in hCPC with slow-growth kinetics concomitant with decreased proliferation and upregulation of senescent markers compared with hCPC with fast-growth kinetics. Desirable youthful characteristics were conferred on hCPCs by genetic modification using Pim-1 kinase, including increases in proliferation, telomere length, survival, and decreased expression of senescence markers. CONCLUSIONS Senescence characteristics of hCPCs are ameliorated by Pim-1 kinase resulting in rejuvenation of phenotypic and functional properties. hCPCs show improved cellular properties resulting from Pim-1 modification, but benefits were more pronounced in hCPC with slow-growth kinetics relative to hCPC with fast-growth kinetics. With the majority of patients with heart failure presenting advanced age, infirmity, and impaired regenerative capacity, the use of Pim-1 modification should be incorporated into cell-based therapeutic approaches to broaden inclusion criteria and address limitations associated with the senescent phenotype of aged hCPC.
Collapse
Affiliation(s)
- Sadia Mohsin
- From the San Diego Heart Research Institute and Biology Department, San Diego State University, CA, and Sharp Memorial Hospital, San Diego, CA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Pazdro R, Harrison DE. Murine adipose tissue-derived stromal cell apoptosis and susceptibility to oxidative stress in vitro are regulated by genetic background. PLoS One 2013; 8:e61235. [PMID: 23593442 PMCID: PMC3617166 DOI: 10.1371/journal.pone.0061235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/08/2013] [Indexed: 11/24/2022] Open
Abstract
Adipose tissue-derived stromal cells (ADSCs) are of interest for regenerative medicine as they are isolated easily and can differentiate into multiple cell lineages. Studies of their in vitro proliferation, survival, and differentiation are common; however, genetic effects on these phenotypes remain unknown. To test if these phenotypes are genetically regulated, ADSCs were isolated from three genetically diverse inbred mouse strains- C57BL/6J (B6), BALB/cByJ (BALB), and DBA/2J (D2)- in which genetic regulation of hematopoietic stem function is well known. ADSCs from all three strains differentiated into osteogenic and chondrogenic lineages in vitro. ADSCs from BALB grew least well in vitro, probably due to apoptotic cell death after several days in culture. BALB ADSCs were also the most susceptible to the free radical inducers menadione and H2O2. ADSCs from the three possible F1 hybrids were employed to further define genetic regulation of ADSC phenotypes. D2, but not B6, alleles stimulated ADSC expansion in BALB cells. In contrast, B6, but not D2, alleles rescued BALB H2O2 resistance. We conclude that low oxidative stress resistance does not limit BALB ADSC growth in vitro, as these phenotypes are genetically regulated independently. In addition, ADSCs from these strains are an appropriate model system to investigate genetic regulation of ADSC apoptosis and stress resistance in future studies. Such investigations are essential to optimize cell expansion and differentiation and thus, potential for regenerative medicine.
Collapse
Affiliation(s)
- Robert Pazdro
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - David E. Harrison
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail:
| |
Collapse
|
13
|
Yao YG, Kajigaya S, Feng X, Samsel L, McCoy JP, Torelli G, Young NS. Accumulation of mtDNA variations in human single CD34+ cells from maternally related individuals: effects of aging and family genetic background. Stem Cell Res 2013; 10:361-70. [PMID: 23455392 DOI: 10.1016/j.scr.2013.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/17/2013] [Accepted: 01/20/2013] [Indexed: 10/27/2022] Open
Abstract
Marked sequence variation in the mtDNA control region has been observed in human single CD34(+) cells, which persist in vivo and are present also in differentiated hematopoietic cells. In this study, we analyzed 5071 single CD34(+) cells from 49 individuals (including 31 maternally related members from four families and 18 unrelated donors) in order to determine the mutation spectrum within the mtDNA control region in single cells, as related to aging and family genetic background. Many highly mutated sites among family members were hypervariable sites in the mtDNA control region. Further, CD34(+) cells from members of the same family also shared several unique mtDNA variants, suggesting pedigree-specific occurrence of these variants. Overall age-related accumulation of mtDNA mutations in CD34(+) cells varied in different families, suggesting a specific accumulation pattern, which might be modulated by family genetic background. Our current findings have implications for the occurrence of mtDNA mutations in hematopoietic stem cells and progenitors.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Hematology Branch and Flow Cytometry Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
George SK, Jiao Y, Bishop CE, Lu B. Oxidative stress is involved in age-dependent spermatogenic damage of Immp2l mutant mice. Free Radic Biol Med 2012; 52:2223-33. [PMID: 22569411 PMCID: PMC3377857 DOI: 10.1016/j.freeradbiomed.2012.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/22/2012] [Accepted: 04/05/2012] [Indexed: 02/07/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) have been implicated in spermatogenic damage, although direct in vivo evidence is lacking. We recently generated a mouse in which the inner mitochondrial membrane peptidase 2-like (Immp2l) gene is mutated. This Immp2l mutation impairs the processing of signal peptide sequences from mitochondrial cytochrome c₁ and glycerol phosphate dehydrogenase 2. The mitochondria from mutant mice generate elevated levels of superoxide ion, which causes age-dependent spermatogenic damage. Here we confirm age-dependent spermatogenic damage in a new cohort of mutants, which started at the age of 10.5 months. Compared with age-matched controls, protein carbonyl content was normal in testes of 2- to 5-month-old mutants, but significantly elevated in testes of 13-month-old mutants, indicating elevated oxidative stress in the testes at the time of impaired spermatogenesis. Testicular expression of superoxide dismutases was not different between control and mutant mice, whereas that of catalase was increased in young and old mutants. The expression of cytosolic glutathione peroxidase 4 (phospholipid hydroperoxidase) in testes was significantly reduced in 13-month-old mutants, concomitant with impaired spermatogenesis. Apoptosis of all testicular populations was increased in mutant mice with spermatogenic damage. The mitochondrial DNA (mtDNA) mutation rate in germ cells of mutant mice with impaired spermatogenesis was unchanged, excluding a major role of mtDNA mutation in ROS-mediated spermatogenic damage. Our data show that increased mitochondrial ROS are one of the driving forces for spermatogenic impairment.
Collapse
Affiliation(s)
| | | | | | - Baisong Lu
- To whom all correspondence and proofs should be sent: Baisong Lu, PhD, Wake Forest University Health Sciences, Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, Tel: 336-713-7276, Fax: 336-713-7290,
| |
Collapse
|
15
|
Iannitti T, Palmieri B. Inflammation and genetics: an insight in the centenarian model. Hum Biol 2012; 83:531-59. [PMID: 21846209 DOI: 10.3378/027.083.0407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The number of centenarians is growing worldwide. This specific cohort has aroused the attention of scientists worldwide and is considered one of the most valuable models to study the mechanisms involved in the aging process. In fact, they have reached the extreme limits of human life span and, most important of all, they show relatively good health being able to perform their routine daily life. Because they have escaped the common lethal diseases, the role of their genetic background has been brought into focus. In fact, sequence variations, in a variety of pro- or anti-inflammatory cytokine genes, have been found to influence successful ageing and longevity. The key role played by cytokines has been also confirmed in centenarians as we know that inflammation has been related to several pathological burdens (e.g., obesity, atherosclerosis, and diabetes). Successful ageing seems to be related to an optimal functioning of the immune system, pointing out that polymorphisms for the immune system genes, which are involved in the regulation of immune-inflammatory responses, may play a key role in the genetics of ageing. This review provides an update in the field of ageing related to inflammation and genetics.
Collapse
Affiliation(s)
- Tommaso Iannitti
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, Scotland, United Kingdom.
| | | |
Collapse
|
16
|
Hematopoietic stem cell development, aging and functional failure. Int J Hematol 2011; 94:3-10. [DOI: 10.1007/s12185-011-0856-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/04/2011] [Accepted: 04/06/2011] [Indexed: 12/28/2022]
|
17
|
Mitochondrial C150T polymorphism increases the risk of cervical cancer and HPV infection. Mitochondrion 2011; 11:559-63. [PMID: 21385627 DOI: 10.1016/j.mito.2011.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/06/2011] [Accepted: 02/25/2011] [Indexed: 11/23/2022]
Abstract
During a survey of control region (D-loop) sequence variances in 142 cervical cancer (CC) patients and 136 controls, all Chinese women, including both HPV-positive (human papillomavirus) and HPV-negative subjects, we determined that the C150T polymorphism increased the CC risk in a case-control study (OR=3.0, 95% CI=1.8-5.0, P<0.05). HPV-positive individuals were more likely to carry the C150T polymorphism than HPV-negative controls (OR=5.8, 95% CI=2.6-13.2, P=2.3×10(-5)). HPV-positive CC patients were more likely to carry the C150T polymorphism than HPV-negative controls (OR=4.9, 95% CI=2.6-9.3, P=9.9×10(-7)). In all subjects, an increased risk of HPV infection was also associated with the C150T polymorphism (OR=4.5, 95% CI=2.5-8.1, P=6.6×10(-7)). However, no significant difference in the frequency of other alleles was found at the variable sites in D146, D152, D310 and D514. These results indicated that the C150T polymorphism increased the risk of HPV infection and CC progression. Additionally, we assessed the association of mtDNA copy number with CC risk or the C150T polymorphism in 45 CC patients and 43 controls. There was no significant association of mtDNA copy number with CC risk or the C150T polymorphism. To the best of our knowledge, this is the first report to suggest that mtDNA C150T polymorphism was positively associated with HPV infection and subsequent CC risk among Chinese women.
Collapse
|
18
|
Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: a GEHA study. PLoS One 2010; 5:e13395. [PMID: 20976236 PMCID: PMC2954809 DOI: 10.1371/journal.pone.0013395] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/18/2010] [Indexed: 02/02/2023] Open
Abstract
Tissue specific somatic mutations occurring in the mtDNA control region have been proposed to provide a survival advantage. Data on twins and on relatives of long-lived subjects suggested that the occurrence/accumulation of these mutations may be genetically influenced. To further investigate control region somatic heteroplasmy in the elderly, we analyzed the segment surrounding the nt 150 position (previously reported as specific of Leukocytes) in various types of leukocytes obtained from 195 ultra-nonagenarians sib-pairs of Italian or Finnish origin collected in the frame of the GEHA Project. We found a significant correlation of the mtDNA control region heteroplasmy between sibs, confirming a genetic influence on this phenomenon. Furthermore, many subjects showed heteroplasmy due to mutations different from the C150T transition. In these cases heteroplasmy was correlated within sibpairs in Finnish and northern Italian samples, but not in southern Italians. This suggested that the genetic contribution to control region mutations may be population specific. Finally, we observed a possible correlation between heteroplasmy and Hand Grip strength, one of the best markers of physical performance and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions.
Collapse
|
19
|
Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends Immunol 2010; 31:191-8. [DOI: 10.1016/j.it.2010.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/02/2010] [Accepted: 02/25/2010] [Indexed: 12/28/2022]
|
20
|
Barker PE, Murthy M. Biomarker Validation for Aging: Lessons from mtDNA Heteroplasmy Analyses in Early Cancer Detection. Biomark Insights 2009; 4:165-79. [PMID: 20029650 PMCID: PMC2796862 DOI: 10.4137/bmi.s2253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The anticipated biological and clinical utility of biomarkers has attracted significant interest recently. Aging and early cancer detection represent areas active in the search for predictive and prognostic biomarkers. While applications differ, overlapping biological features, analytical technologies and specific biomarker analytes bear comparison. Mitochondrial DNA (mtDNA) as a biomarker in both biological models has been evaluated. However, it remains unclear whether mtDNA changes in aging and cancer represent biological relationships that are causal, incidental, or a combination of both. This article focuses on evaluation of mtDNA-based biomarkers, emerging strategies for quantitating mtDNA admixtures, and how current understanding of mtDNA in aging and cancer evolves with introduction of new technologies. Whether for cancer or aging, lessons from mtDNA based biomarker evaluations are several. Biological systems are inherently dynamic and heterogeneous. Detection limits for mtDNA sequencing technologies differ among methods for low-level DNA sequence admixtures in healthy and diseased states. Performance metrics of analytical mtDNA technology should be validated prior to application in heterogeneous biologically-based systems. Critical in evaluating biomarker performance is the ability to distinguish measurement system variance from inherent biological variance, because it is within the latter that background healthy variability as well as high-value, disease-specific information reside.
Collapse
Affiliation(s)
- Peter E. Barker
- Bioassay Methods Group, Biochemical Sciences Division, Bldg 227/B248, NIST, 100 Bureau Drive, Gaithersburg, Maryland
| | - Mahadev Murthy
- Division of Aging Biology (DAB), National Institute on Aging, 7201 Wisconsin Ave., GW 2C231, Bethesda, MD 20892.
;
| |
Collapse
|
21
|
Ma YS, Wu SB, Lee WY, Cheng JS, Wei YH. Response to the increase of oxidative stress and mutation of mitochondrial DNA in aging. Biochim Biophys Acta Gen Subj 2009; 1790:1021-9. [DOI: 10.1016/j.bbagen.2009.04.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 04/17/2009] [Accepted: 04/20/2009] [Indexed: 01/01/2023]
|
22
|
Salvioli S, Capri M, Santoro A, Raule N, Sevini F, Lukas S, Lanzarini C, Monti D, Passarino G, Rose G, De Benedictis G, Franceschi C. The impact of mitochondrial DNA on human lifespan: a view from studies on centenarians. Biotechnol J 2008; 3:740-9. [PMID: 18548739 DOI: 10.1002/biot.200800046] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The role of inherited and somatic mutations of mitochondrial DNA (mtDNA) in aging and longevity is complex and highly controversial, owing to its peculiar genetics, including the phenomenon of heteroplasmy. Most of the data on mtDNA and longevity have been obtained on humans and particularly on centenarians, i. e., people who escaped or delayed the major age-related pathologies and reached the extreme limit of human lifespan. In this review we summarize the most recent advances in this field that suggest a consistent role in human longevity of both germ-line inherited and somatically acquired mutations. The particular case of the association with longevity of the somatic C150T mutation is extensively discussed, challenging the tenet that mtDNA mutations are basically detrimental. We also stress several limitations of our present knowledge, regarding the difficulty in extrapolating to humans the results obtained in animal models, owing to a variety of biological differences, including the very limited genetic variability of mtDNA in the strains used in laboratory experiments. The use of high-throughput technologies and the extensive analysis, possibly at the single cell level, of different tissues and cell types derived from the same individual will help in disentangling the complexity of mtDNA in aging and longevity.
Collapse
Affiliation(s)
- Stefano Salvioli
- Department of Experimental Pathology, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen J, Ellison FM, Keyvanfar K, Omokaro SO, Desierto MJ, Eckhaus MA, Young NS. Enrichment of hematopoietic stem cells with SLAM and LSK markers for the detection of hematopoietic stem cell function in normal and Trp53 null mice. Exp Hematol 2008; 36:1236-43. [PMID: 18562080 DOI: 10.1016/j.exphem.2008.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 04/09/2008] [Accepted: 04/24/2008] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To test function of hematopoietic stem cells (HSCs) in vivo in C57BL/6 (B6) and Trp53-deficient (Trp53 null) mice by using two HSC enrichment schemes. MATERIALS AND METHODS Bone marrow (BM) Lin-CD41-CD48-CD150+ (signaling lymphocyte activation molecules [SLAM]), Lin-CD41-CD48-CD150- (SLAM-) and Lin-Sca1+CD117+ (LSK) cells were defined by fluorescence-activated cell staining (FACS). Cellular reactive oxygen species (ROS) level was also analyzed by FACS. Sorted SLAM, SLAM-, and LSK cells were tested in vivo in the competitive repopulation (CR) and serial transplantation assays. RESULTS SLAM cell fraction was 0.0078%+/-0.0010% and 0.0135%+/-0.0010% of total BM cells in B6 and Trp53 null mice, and was highly correlated (R2=0.7116) with LSK cells. CD150+ BM cells also contained more ROSlow cells than did CD150- cells. B6 SLAM cells repopulated recipients much better than B6 SLAM- cells, showing high HSC enrichment. B6 SLAM cells also engrafted recipients better than Trp53 null SLAM cells in the CR and the follow-up serial transplantation assays. Similarly, LSK cells from B6 donors also had higher repopulating ability than those from Trp53 null donors. However, whole BM cells from the same B6 and Trp53 null donors showed the opposite functional trend in recipient engraftment. CONCLUSION Both SLAM and LSK marker sets can enrich HSCs from B6 and Trp53 mice. Deficiency of Trp53 upregulates HSC self-renewal but causes no gain of HSC function.
Collapse
Affiliation(s)
- Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Hematopoietic stem cell aging: wrinkles in stem cell potential. ACTA ACUST UNITED AC 2008; 3:201-11. [PMID: 17917133 DOI: 10.1007/s12015-007-0027-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSC) continuously replenish the blood and immune systems. Their activity must be sustained throughout life to support optimal immune responses. It has been thought that stem cells may be somewhat protected from age because of their perpetual requirement to replenish the blood, however studies over the past 10 years have revealed dramatic changes in HSC function and phenotype with respect to age. When the number of HSC within murine bone marrow is measured, an increase in concentration and absolute number of HSC within the bone marrow is observed as the animal ages, paralleled with increased homogeneity of stem cell marker expression. Results from transplantation studies demonstrate that although there is a decline in hematopoietic output on a per-cell basis, the increase in number provides sufficient, yet abnormal, blood production throughout the lifespan of the animal. HSC may play a role in immunosenescence through cell-fate decisions leading to an overproduction of myeloid cells and an underproduction of lymphocytes. When examining gene expression of aged HSC, recent studies have highlighted several key factors contributing to increased inflammation, stress response and genomic instability. Here, we will review the general phenotype observed with aging of the hematopoietic system, focusing on the HSC, and compile recent expression profiling efforts that have examined HSC aging.
Collapse
|
25
|
Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol 2007; 19:331-40. [PMID: 18024073 DOI: 10.1016/j.smim.2007.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 10/02/2007] [Indexed: 12/14/2022]
Abstract
The immune system undergoes dramatic changes with age-the thymus involutes, particularly from puberty, with the gradual loss of newly produced naïve T cells resulting in a restricted T cell receptor repertoire, skewed towards memory cells. Coupled with a similar, though less dramatic age-linked decline in bone marrow function, this translates to a reduction in immune responsiveness and has important clinical implications particularly in immune reconstitution following cytoablation regimes for cancer treatment or following severe viral infections such as HIV. Given that long-term reconstitution of the immune system is dependent on the bi-directional interplay between primary lymphoid organ stromal cells and the progenitors whose downstream differentiation they direct, regeneration of the thymus is fundamental to developing new strategies for the clinical management of many major diseases of immunological origin. This review will discuss the impact of aging on primary lymphoid organ niches and current approaches for thymic regeneration and immune reconstitution.
Collapse
|
26
|
Abstract
The population of elderly individuals has increased significantly over the past century and is predicted to rise even more rapidly in the future. Ageing is a major risk factor for many diseases such as neurodegenerative disease, diabetes and cancer. This highlights the importance of understanding the mechanisms involved in the ageing process. One plausible mechanism for ageing is accumulation of mutations in the mitochondrial genome. In this review, we discuss some of the most convincing data surrounding age-related mtDNA mutations and the evidence that these mutations contribute to the ageing process.
Collapse
Affiliation(s)
- Kim J Krishnan
- School of Neurology, Neurobiology and Psychiatry and Institute for Ageing and Health, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | |
Collapse
|
27
|
Yao YG, Bandelt HJ, Young NS. External contamination in single cell mtDNA analysis. PLoS One 2007; 2:e681. [PMID: 17668059 PMCID: PMC1930155 DOI: 10.1371/journal.pone.0000681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 06/19/2007] [Indexed: 12/31/2022] Open
Abstract
Background Mitochondrial DNA (mtDNA) variation in single hematopoietic cells, muscle fibers, oocytes, and from tiny amount of tumor tissues and degraded clinical specimens has been reported in many medical publications. External DNA contamination, notoriously difficult to avoid, threatens the integrity of such studies. Methodology/Principal Findings Employing a phylogenetic approach, we analyzed the geographic origins of mtDNA sequence anomalies observed during multiple studies of mtDNA sequence variation in a total of 7094 single hematopoietic cells. 40 events with irregular mtDNA patterns were detected: eight instances (from seven different haplotypes) could be traced to laboratory personnel; six cases were caused by sample cross-contamination. The sources of the remaining events could not be identified, and the anomalous sequence variation referred to matrilines from East Asia, Africa, or West Eurasia, respectively. These mtDNA sequence anomalies could be best explained by contamination. Conclusions Using the known world mtDNA phylogeny, we could distinguish the geographic origin of the anomalous mtDNA types, providing some useful information regarding the source of contamination. Our data suggest that routine mtDNA sequence analysis of laboratory personnel is insufficient to identify and eliminate all contaminants. A rate of 0.6% of external contamination in this study, while low, is not negligible: Unrecognized contaminants will be mistaken as evidence of remarkable somatic mutations associated with the development of cancer and other diseases. The effective contamination rate can increase by a factor of more than an order of magnitude in some studies that did not institute high standards. Our results are of particular relevance to mtDNA research in medicine, and such an approach should be adopted to maintain and improve quality control in single-cell analyses.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | | | | |
Collapse
|
28
|
Yao YG, Childs RW, Kajigaya S, McCoy JP, Young NS. Mitochondrial DNA sequence heterogeneity of single CD34+ cells after nonmyeloablative allogeneic stem cell transplantation. Stem Cells 2007; 25:2670-6. [PMID: 17628021 DOI: 10.1634/stemcells.2007-0269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We applied a single-cell method to detect mitochondrial DNA (mtDNA) mutations to evaluate the reconstitution of hematopoietic stem cells (HSCs) and committed progenitor cells after nonmyeloablative allogeneic stem cell transplantation in humans. In a total of 1,958 single CD34(+) cells from six human leukocyte antigen-matched sibling donor and recipient pairs, individual CD34(+) clones were recognized based on the observed donor- or recipient-specific mtDNA sequence somatic alteration. There was no overall reduction of mtDNA heterogeneity among CD34(+) cells from the recipient after transplantation. Samples collected from two donors over time showed the persistence of certain CD34(+) clones marked by specific mutations. Our results demonstrate the feasibility of distinguishing donor and recipient individual CD34(+) clones based on mtDNA mutations during engraftment. HSCs were not limited in number, and similar mtDNA heterogeneity levels suggested representation of the total stem cell compartment during rapid hematopoietic reconstitution in the recipient. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Building 10 CRC, Room 3E-5140, 10 Center Drive, Bethesda, Maryland 20892-1202, USA.
| | | | | | | | | |
Collapse
|