1
|
Pendleton KE, Hernandez-Garcia A, Lyu JM, Campbell IM, Shaw CA, Vogt J, High FA, Donahoe PK, Chung WK, Scott DA. FOXP1 Haploinsufficiency Contributes to the Development of Congenital Diaphragmatic Hernia. J Pediatr Genet 2024; 13:29-34. [PMID: 38567173 PMCID: PMC10984716 DOI: 10.1055/s-0043-1767731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/11/2022] [Indexed: 03/30/2023]
Abstract
FOXP1 encodes a transcription factor involved in tissue regulation and cell-type-specific functions. Haploinsufficiency of FOXP1 is associated with a neurodevelopmental disorder: autosomal dominant mental retardation with language impairment with or without autistic features. More recently, heterozygous FOXP1 variants have also been shown to cause a variety of structural birth defects including central nervous system (CNS) anomalies, congenital heart defects, congenital anomalies of the kidney and urinary tract, cryptorchidism, and hypospadias. In this report, we present a previously unpublished case of an individual with congenital diaphragmatic hernia (CDH) who carries an approximately 3.8 Mb deletion. Based on this deletion, and deletions previously reported in two other individuals with CDH, we define a CDH critical region on chromosome 3p13 that includes FOXP1 and four other protein-coding genes. We also provide detailed clinical descriptions of two previously reported individuals with CDH who carry de novo, pathogenic variants in FOXP1 that are predicted to trigger nonsense-mediated mRNA decay. A subset of individuals with putatively deleterious FOXP4 variants has also been shown to develop CDH. Since FOXP proteins function as homo- or heterodimers and the homologs of FOXP1 and FOXP4 are expressed at the same time points in the embryonic mouse diaphragm, they may function together as a dimer, or in parallel as homodimers, to regulate gene expression during diaphragm development. Not all individuals with heterozygous, loss-of-function changes in FOXP1 develop CDH. Hence, we conclude that FOXP1 acts as a susceptibility factor that contributes to the development of CDH in conjunction with other genetic, epigenetic, environmental, and/or stochastic factors.
Collapse
Affiliation(s)
- Katherine E. Pendleton
- Genetics and Genomics Program, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Jennifer M. Lyu
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, United States
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Ian M. Campbell
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham, United Kingdom
| | - Frances A. High
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, United States
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Patricia K. Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States
| | - Wendy K. Chung
- Departments of Pediatrics, Columbia University, New York, New York, United States
- Department of Medicine, Columbia University, New York, New York, United States
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
2
|
Türkyılmaz A, Cimbek EA, Çebi AH, Acar Arslan E, Karagüzel G. De novo Pure Partial Trisomy 6p Associated with Facial Dysmorphism, Developmental Delay, Brain Anomalies, and Primary Congenital Hypothyroidism. Mol Syndromol 2023; 14:35-43. [PMID: 36777706 PMCID: PMC9912003 DOI: 10.1159/000525393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/04/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Partial trisomy 6p is a rare chromosomal anomaly, characterized by low birth weight, developmental delay, craniofacial abnormalities, feeding difficulties, congenital heart defects, and renal abnormalities. Some of the partial trisomy 6p cases reported in the literature included partial monosomy of another chromosome. This is often due to the fact that one of the parents is a balanced translocation carrier, thereby making it difficult to determine the genotype-phenotype relationship. Pure partial trisomy 6p cases are even rarer and may occur as a result of a marker chromosome, tandem or inverted duplication, and interchromosomal insertion. Case Presentation In this study, we evaluated the physical characteristics and genetic data of a 2-year-old girl with developmental delay and facial dysmorphic features. Dysmorphology assessment revealed the presence of a prominent forehead, short and narrow palpebral fissures, blepharoptosis, convex nasal ridge, hemangioma on the left eyelid, high-arched palate, retromicrognathia, and low-set ears. The patient‧s G-banded karyotype was 46,XX,der(2)t(2;6)(q37.3;p22.1). Upon SNP-array analysis, aimed to determine the origin of the extra chromosomal material detected in chromosome 2 of the patient, there was a de novo 27.5-Mb duplication at 6p, arr[GRCh37] 6p25.3p22.1(204,909_27,835,272)×3, interpreted to be pathogenic. Conclusion We present this case report to clarify the clinical findings of a rare chromosomal anomaly, discuss the genes that may be related to the phenotype and contribute to the literature in terms of knowledge regarding genotype-phenotype correlation.
Collapse
Affiliation(s)
- Ayberk Türkyılmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey,*Ayberk Türkyılmaz,
| | - Emine Ayça Cimbek
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Alper Han Çebi
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Elif Acar Arslan
- Department of Pediatric Neurology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gülay Karagüzel
- Department of Pediatric Endocrinology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
3
|
Syu YM, Ma JY, Ou TH, Lee CL, Lin HY, Lin SP, Lee CJ, Chen CP. De Novo Mosaic 6p23-p25.3 Tetrasomy Caused by a Small Supernumerary Marker Chromosome Presenting Trisomy Distal 6p Phenotype: A Case Report and Literature Review. Diagnostics (Basel) 2022; 12:2306. [PMID: 36291995 PMCID: PMC9600663 DOI: 10.3390/diagnostics12102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022] Open
Abstract
Small supernumerary marker chromosomes (sSMCs) derived from the chromosome 6 short arm are rare and their clinical significance remains unknown. No case with sSMC(6) without centromeric DNA has been reported. Partial trisomy and tetrasomy of distal 6p is a rare but clinically distinct syndrome. We report on a de novo mosaic sSMC causing partial tetrasomy for 6p23-p25.3 in a male infant with symptoms of being small for gestational age, microcephaly, facial dysmorphism, congenital eye defects, and multi-system malformation. Conventional cytogenetic analysis revealed a karyotype of 47,XY,+mar [25]/46,XY [22]. Array comparative genomic hybridization (aCGH) revealed mosaic tetrasomy of distal 6p. This is the first case of mosaic tetrasomy 6p23-p25.3 caused by an inverted duplicated neocentric sSMC with characteristic features of trisomy distal 6p. Comparison of phenotypes in cases with trisomy and tetrasomy of 6p23-p25.3 could facilitate a genotype-phenotype correlation and identification of candidate genes contributing to their presentation. The presentation of anterior segment dysgenesis and anomaly of the renal system suggest triplosensitivity of the FOXC1 gene. In patients with microcephaly growth retardation, and malformation of the cardiac and renal systems, presentation of anterior segment dysgenesis might be indicative of chromosome 6p duplication, and aCGH evaluation should be performed for associated syndromic disease.
Collapse
Affiliation(s)
- Yu-Min Syu
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22021, Taiwan
- Division of Genetics and Metabolism, Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Juine-Yih Ma
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22021, Taiwan
| | - Tzu-Hsuen Ou
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22021, Taiwan
| | - Chung-Lin Lee
- Division of Genetics and Metabolism, Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
| | - Hsiang-Yu Lin
- Division of Genetics and Metabolism, Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, Division of Genetics and Metabolism, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Childhood Care and Education, MacKay Junior College of Medicine, Nursing and Management, Taipei 11260, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| | - Shuan-Pei Lin
- Division of Genetics and Metabolism, Department of Pediatrics, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Rare Disease Center, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medical Research, Division of Genetics and Metabolism, MacKay Memorial Hospital, Taipei 10449, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
| | - Chia-Jung Lee
- Department of Pediatrics, Far Eastern Memorial Hospital, New Taipei City 22021, Taiwan
| | - Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 10449, Taiwan
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei 11230, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11230, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41346, Taiwan
| |
Collapse
|
4
|
Gofin Y, Scott DA. Evidence-Based Genetic Testing for Individuals with Congenital Diaphragmatic Hernia. J Pediatr 2022; 248:13-14. [PMID: 35667445 PMCID: PMC9912172 DOI: 10.1016/j.jpeds.2022.05.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023]
Affiliation(s)
- Yoel Gofin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children’s Hospital, Houston, TX 77030
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Scott DA, Gofin Y, Berry AM, Adams AD. Underlying genetic etiologies of congenital diaphragmatic hernia. Prenat Diagn 2022; 42:373-386. [PMID: 35037267 PMCID: PMC8924940 DOI: 10.1002/pd.6099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is often detectable prenatally. Advances in genetic testing have made it possible to obtain a molecular diagnosis in many fetuses with CDH. Here, we review the aneuploidies, copy number variants (CNVs), and single genes that have been clearly associated with CDH. We suggest that array-based CNV analysis, with or without a chromosome analysis, is the optimal test for identifying chromosomal abnormalities and CNVs in fetuses with CDH. To identify causative sequence variants, whole exome sequencing (WES) is the most comprehensive strategy currently available. Whole genome sequencing (WGS) with CNV analysis has the potential to become the most efficient and effective means of identifying an underlying diagnosis but is not yet routinely available for prenatal diagnosis. We describe how to overcome and address the diagnostic and clinical uncertainty that may remain after genetic testing, and review how a molecular diagnosis may impact recurrence risk estimations, mortality rates, and the availability and outcomes of fetal therapy. We conclude that after the prenatal detection of CDH, patients should be counseled about the possible genetic causes of the CDH, and the genetic testing modalities available to them, in accordance with generally accepted guidelines for pretest counseling in the prenatal setting.
Collapse
Affiliation(s)
- Daryl A. Scott
- Texas Children’s Hospital, Houston, TX, 77030,
USA,Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA,Department of Molecular Physiology and Biophysics, Baylor
College of Medicine, Houston, TX, 77030, USA,Correspondence: Daryl A. Scott, R813, One Baylor
Plaza. BCM225, Houston, TX 77030, USA, Phone: +1 713-203-7242,
| | - Yoel Gofin
- Texas Children’s Hospital, Houston, TX, 77030,
USA,Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA
| | - Aliska M. Berry
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA
| | - April D. Adams
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA,Department of Obstetrics and Gynecology, Division of
Maternal Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
6
|
Bendixen C, Brosens E, Chung WK. Genetic Diagnostic Strategies and Counseling for Families Affected by Congenital Diaphragmatic Hernia. Eur J Pediatr Surg 2021; 31:472-481. [PMID: 34911129 DOI: 10.1055/s-0041-1740337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a relatively common and severe birth defect with variable clinical outcome and associated malformations in up to 60% of patients. Mortality and morbidity remain high despite advances in pre-, intra-, and postnatal management. We review the current literature and give an overview about the genetics of CDH to provide guidelines for clinicians with respect to genetic diagnostics and counseling for families. Until recently, the common practice was (molecular) karyotyping or chromosome microarray if the CDH diagnosis is made prenatally with a 10% diagnostic yield. Undiagnosed patients can be reflexed to trio exome/genome sequencing with an additional diagnostic yield of 10 to 20%. Even with a genetic diagnosis, there can be a range of clinical outcomes. All families with a child with CDH with or without additional malformations should be offered genetic counseling and testing in a family-based trio approach.
Collapse
Affiliation(s)
- Charlotte Bendixen
- Department of General, Visceral, Vascular and Thoracic Surgery, Unit of Pediatric Surgery, Universitätsklinikum Bonn, Bonn, Germany
| | - Erwin Brosens
- Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Wendy Kay Chung
- Department of Medicine, Columbia University Irving Medical Center, New York, United States.,Department of Pediatrics, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
7
|
Brosens E, Peters NCJ, van Weelden KS, Bendixen C, Brouwer RWW, Sleutels F, Bruggenwirth HT, van Ijcken WFJ, Veenma DCM, Otter SCMCD, Wijnen RMH, Eggink AJ, van Dooren MF, Reutter HM, Rottier RJ, Schnater JM, Tibboel D, de Klein A. Unraveling the Genetics of Congenital Diaphragmatic Hernia: An Ongoing Challenge. Front Pediatr 2021; 9:800915. [PMID: 35186825 PMCID: PMC8852845 DOI: 10.3389/fped.2021.800915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/28/2021] [Indexed: 12/16/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital structural anomaly in which the diaphragm has not developed properly. It may occur either as an isolated anomaly or with additional anomalies. It is thought to be a multifactorial disease in which genetic factors could either substantially contribute to or directly result in the developmental defect. Patients with aneuploidies, pathogenic variants or de novo Copy Number Variations (CNVs) impacting specific genes and loci develop CDH typically in the form of a monogenetic syndrome. These patients often have other associated anatomical malformations. In patients without a known monogenetic syndrome, an increased genetic burden of de novo coding variants contributes to disease development. In early years, genetic evaluation was based on karyotyping and SNP-array. Today, genomes are commonly analyzed with next generation sequencing (NGS) based approaches. While more potential pathogenic variants are being detected, analysis of the data presents a bottleneck-largely due to the lack of full appreciation of the functional consequence and/or relevance of the detected variant. The exact heritability of CDH is still unknown. Damaging de novo alterations are associated with the more severe and complex phenotypes and worse clinical outcome. Phenotypic, genetic-and likely mechanistic-variability hampers individual patient diagnosis, short and long-term morbidity prediction and subsequent care strategies. Detailed phenotyping, clinical follow-up at regular intervals and detailed registries are needed to find associations between long-term morbidity, genetic alterations, and clinical parameters. Since CDH is a relatively rare disorder with only a few recurrent changes large cohorts of patients are needed to identify genetic associations. Retrospective whole genome sequencing of historical patient cohorts using will yield valuable data from which today's patients and parents will profit Trio whole genome sequencing has an excellent potential for future re-analysis and data-sharing increasing the chance to provide a genetic diagnosis and predict clinical prognosis. In this review, we explore the pitfalls and challenges in the analysis and interpretation of genetic information, present what is currently known and what still needs further study, and propose strategies to reap the benefits of genetic screening.
Collapse
Affiliation(s)
- Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Nina C J Peters
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Kim S van Weelden
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Charlotte Bendixen
- Unit of Pediatric Surgery, Department of General, Visceral, Vascular and Thoracic Surgery, University Hospital Bonn, Bonn, Germany
| | - Rutger W W Brouwer
- Center for Biomics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Frank Sleutels
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Wilfred F J van Ijcken
- Center for Biomics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Danielle C M Veenma
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Pediatrics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Suzan C M Cochius-Den Otter
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Alex J Eggink
- Division of Obstetrics and Fetal Medicine, Department of Obstetrics and Gynecology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marieke F van Dooren
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Heiko Martin Reutter
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany.,Neonatology and Pediatric Intensive Care, Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - J Marco Schnater
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery and Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
8
|
Russo FM, Debeer A, De Coppi P, Devriendt K, Crombag N, Hubble T, Power B, Benachi A, Deprest J. What should we tell parents? Congenital diaphragmatic hernia. Prenat Diagn 2020; 42:398-407. [PMID: 33599313 DOI: 10.1002/pd.5880] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is characterized by a defect in the muscle dividing the thoracic and abdominal cavities. This leads to herniation of the abdominal organs into the thorax and a disturbance of lung development. Two-thirds of cases are identified by prenatal ultrasound in the second trimester, which should prompt referral to a tertiary center for prognosis assessment and counseling by a multidisciplinary team familiar with this condition. In this review, we summarize evidence on prenatal diagnosis and postnatal management of CDH. There is a focus on information that should be provided to expecting parents during prenatal counseling.
Collapse
Affiliation(s)
- Francesca M Russo
- Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium
| | - Anne Debeer
- Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium.,Neonatal Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Paolo De Coppi
- Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.,Stem Cells & Regenerative Medicine Section, NIHR Biomedical Research Center, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Neeltje Crombag
- Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium
| | - Talia Hubble
- Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium.,Medical Sciences Division, University of Oxford, Oxford, UK
| | | | - Alexandra Benachi
- Department of Obstetrics and Gynecology, Hôpital Antoine Béclère, AP-HP, Université Paris Saclay, Clamart, France.,Centre Référence Maladie Rare: Hernie de Coupole Diaphragmatique, Clamart, France
| | - Jan Deprest
- Clinical Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium.,Academic Department of Development and Regeneration, Cluster Woman and Child, KU Leuven, Leuven, Belgium.,Institute for Women's Health, University College London, London, UK
| |
Collapse
|
9
|
Lalani SR. Other genomic disorders and congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:107-115. [DOI: 10.1002/ajmg.c.31762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Seema R. Lalani
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
| |
Collapse
|
10
|
Kim BJ, Zaveri HP, Jordan VK, Hernandez-Garcia A, Jacob DJ, Zamora DL, Yu W, Schwartz RJ, Scott DA. RERE deficiency leads to decreased expression of GATA4 and the development of ventricular septal defects. Dis Model Mech 2018; 11:dmm.031534. [PMID: 30061196 PMCID: PMC6176990 DOI: 10.1242/dmm.031534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Deletions of chromosome 1p36 are associated with a high incidence of congenital heart defects (CHDs). The arginine-glutamic acid dipeptide repeats gene (RERE) is located in a critical region for CHD on chromosome 1p36 and encodes a cardiac-expressed nuclear receptor co-regulator. Mutations affecting RERE cause atrial and ventricular septal defects (VSDs) in humans, and RERE-deficient mice also develop VSDs. During cardiac development, mesenchymal cells destined to form part of the atrioventricular (AV) septum are generated when endocardial cells in the AV canal undergo epithelial-to-mesenchymal transition (EMT) and migrate into the space between the endocardium and the myocardium. These newly generated mesenchymal cells then proliferate to fill the developing AV endocardial cushions. Here, we demonstrate that RERE-deficient mouse embryos have reduced numbers of mesenchymal cells in their AV endocardial cushions owing to decreased levels of EMT and mesenchymal cell proliferation. In the endocardium, RERE colocalizes with GATA4, a transcription factor required for normal levels of EMT and mesenchymal cell proliferation. Using a combination of in vivo and in vitro studies, we show that Rere and Gata4 interact genetically in the development of CHDs, RERE positively regulates transcription from the Gata4 promoter and GATA4 levels are reduced in the AV canals of RERE-deficient embryos. Tissue-specific ablation of Rere in the endocardium leads to hypocellularity of the AV endocardial cushions, defective EMT and VSDs, but does not result in decreased GATA4 expression. We conclude that RERE functions in the AV canal to positively regulate the expression of GATA4, and that deficiency of RERE leads to the development of VSDs through its effects on EMT and mesenchymal cell proliferation. However, the cell-autonomous role of RERE in promoting EMT in the endocardium must be mediated by its effects on the expression of proteins other than GATA4. This article has an associated First Person interview with the first author of the paper. Summary: In the developing atrioventricular canal, RERE promotes endothelial-to-mesenchymal transition and mesenchymal cell proliferation by positively regulating Gata4. Tissue-specific ablation of Rere in the endocardium causes ventricular septal defects.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daron J Jacob
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana L Zamora
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Yu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Systematic analysis of copy number variation associated with congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 2018; 115:5247-5252. [PMID: 29712845 PMCID: PMC5960281 DOI: 10.1073/pnas.1714885115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and hypoplasia of the lungs, is one of the most common and severe birth defects, and is associated with high morbidity and mortality rates. There is growing evidence demonstrating that genetic factors contribute to CDH, although the pathogenesis remains largely elusive. Single-nucleotide polymorphisms have been studied in recent whole-exome sequencing efforts, but larger copy number variants (CNVs) have not yet been studied on a large scale in a case control study. To capture CNVs within CDH candidate regions, we developed and tested a targeted array comparative genomic hybridization platform to identify CNVs within 140 regions in 196 patients and 987 healthy controls, and identified six significant CNVs that were either unique to patients or enriched in patients compared with controls. These CDH-associated CNVs reveal high-priority candidate genes including HLX, LHX1, and HNF1B We also discuss CNVs that are present in only one patient in the cohort but have additional evidence of pathogenicity, including extremely rare large and/or de novo CNVs. The candidate genes within these predicted disease-causing CNVs form functional networks with other known CDH genes and play putative roles in DNA binding/transcription regulation and embryonic development. These data substantiate the importance of CNVs in the etiology of CDH, identify CDH candidate genes and pathways, and highlight the importance of ongoing analysis of CNVs in the study of CDH and other structural birth defects.
Collapse
|
12
|
Iwashita N, Sakaue M, Shirai M, Yamamoto M. Early development of pleuroperitoneal fold of the diaphragm in the rat fetus. J Vet Med Sci 2017; 80:1-7. [PMID: 29109354 PMCID: PMC5797851 DOI: 10.1292/jvms.17-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The embryonic diaphragm comprises four major structural components derived from the transverse septum, the dorsal foregut mesentery, the pleuroperitoneal folds (PPFs), and the body wall. In this study, the appearance of PPFs and related factors were investigated using light microscopy of horizontal sections of rat fetuses from embryonic day 12 to 13. In rat fetuses, the sign of PPF projection was noted in the sidewall of the pericardioperitoneal canal at embryonic day 12, and was confirmed as folds at embryonic day 12.25. Expressions of GATA4, COUP-TF2, and FOG2 were detected in PPF at the early stage of formation. Localizations of these factors suggested that COUP-TF2 and FOG2 are the main factors in PPF appearance and that GATA4 is unlikely to be a main factor, although it is necessary for PPF formation.
Collapse
Affiliation(s)
- Naoki Iwashita
- Laboratory of Anatomy II, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201, Japan
| | - Motoharu Sakaue
- Laboratory of Anatomy II, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201, Japan
| | - Mitsuyuki Shirai
- Laboratory of Veterinary Pharmacology, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201, Japan
| | - Masako Yamamoto
- Laboratory of Anatomy II, Azabu University, School of Veterinary Medicine, 1-17-71 Fuchinobe, Chuo, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
13
|
Kardon G, Ackerman KG, McCulley DJ, Shen Y, Wynn J, Shang L, Bogenschutz E, Sun X, Chung WK. Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 2017; 10:955-970. [PMID: 28768736 PMCID: PMC5560060 DOI: 10.1242/dmm.028365] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Congenital diaphragmatic hernias (CDHs) and structural anomalies of the diaphragm are a common class of congenital birth defects that are associated with significant morbidity and mortality due to associated pulmonary hypoplasia, pulmonary hypertension and heart failure. In ∼30% of CDH patients, genomic analyses have identified a range of genetic defects, including chromosomal anomalies, copy number variants and sequence variants. The affected genes identified in CDH patients include transcription factors, such as GATA4, ZFPM2, NR2F2 and WT1, and signaling pathway components, including members of the retinoic acid pathway. Mutations in these genes affect diaphragm development and can have pleiotropic effects on pulmonary and cardiac development. New therapies, including fetal endoscopic tracheal occlusion and prenatal transplacental fetal treatments, aim to normalize lung development and pulmonary vascular tone to prevent and treat lung hypoplasia and pulmonary hypertension, respectively. Studies of the association between particular genetic mutations and clinical outcomes should allow us to better understand the origin of this birth defect and to improve our ability to predict and identify patients most likely to benefit from specialized treatment strategies.
Collapse
Affiliation(s)
- Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kate G Ackerman
- Departments of Pediatrics (Critical Care) and Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David J McCulley
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Julia Wynn
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Linshan Shang
- Departments of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Eric Bogenschutz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wendy K Chung
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
14
|
High FA, Bhayani P, Wilson JM, Bult CJ, Donahoe PK, Longoni M. De novo frameshift mutation in COUP-TFII (NR2F2) in human congenital diaphragmatic hernia. Am J Med Genet A 2016; 170:2457-61. [PMID: 27363585 PMCID: PMC5003181 DOI: 10.1002/ajmg.a.37830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/16/2016] [Indexed: 11/09/2022]
Abstract
COUP-TFII (NR2F2) is mapped to the 15q26 deletion hotspot associated with the common and highly morbid congenital diaphragmatic hernia (CDH). Conditional homozygous deletions of COUP-TFII in mice result in diaphragmatic defects analogous to the human Bochdalek-type hernia phenotype. Despite evidence from animal models however, mutations in the coding sequence of COUP-TFII have not been reported in patients, prompting the speculation that additional coding or non-coding sequences in the 15q26 locus are necessary for diaphragmatic hernias to develop. In this report, we describe a case of a patient with a heterozygous de novo COUP-TFII frameshift mutation, presenting with CDH and an atrial septal defect. The p.Pro33AlafsTer77 mutation specifically disrupts protein isoform 1 which contains the DNA binding domain. In addition, we review other COUP-TFII sequence variations and deletions that have been described in cases of CDH. We conclude that COUP-TFII mutations can cause diaphragmatic hernias, and should be included in the differential diagnosis of CDH patients, particularly those with comorbid congenital heart defects. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Frances A. High
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts
| | - Pooja Bhayani
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts
| | - Jay M. Wilson
- Harvard Medical School, Boston, Massachusetts
- Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts
| | | | - Patricia K. Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Scott DA, Hernandez-Garcia A, Azamian MS, Jordan VK, Kim BJ, Starkovich M, Zhang J, Wong LJ, Darilek SA, Breman AM, Yang Y, Lupski JR, Jiwani AK, Das B, Lalani SR, Iglesias AD, Rosenfeld JA, Xia F. Congenital heart defects and left ventricular non-compaction in males with loss-of-function variants in NONO. J Med Genet 2016; 54:47-53. [PMID: 27550220 DOI: 10.1136/jmedgenet-2016-104039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 07/23/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The non-POU domain containing octamer-binding gene (NONO) is located on chromosome Xq13.1 and encodes a member of a small family of RNA-binding and DNA-binding proteins that perform a variety of tasks involved in RNA synthesis, transcriptional regulation and DNA repair. Loss-of-function variants in NONO have been described as a cause of intellectual disability in males but have not been described in association with congenital heart defects or cardiomyopathy. In this article, we seek to further define the phenotypic consequences of NONO depletion in human subjects. METHODS We searched a clinical database of over 6000 individuals referred for exome sequencing and over 60 000 individuals referred for CNV analysis. RESULTS We identified two males with atrial and ventricular septal defects, left ventricular non-compaction (LVNC), developmental delay and intellectual disability, who harboured de novo, loss-of-function variants in NONO. We also identified a male infant with developmental delay, congenital brain anomalies and severe LVNC requiring cardiac transplantation, who inherited a single-gene deletion of NONO from his asymptomatic mother. CONCLUSIONS We conclude that in addition to global developmental delay and intellectual disability, males with loss-of-function variants in NONO may also be predisposed to developing congenital heart defects and LVNC with the penetrance of these cardiac-related problems being influenced by genetic, epigenetic, environmental or stochastic factors. Brain imaging of males with NONO deficiency may reveal structural defects with abnormalities of the corpus callosum being the most common. Although dysmorphic features vary between affected individuals, relative macrocephaly is a common feature.
Collapse
Affiliation(s)
- Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Molly Starkovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jinglan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Sandra A Darilek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Amyn K Jiwani
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Bibhuti Das
- Department of Pediatrics, Children's Medical Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alejandro D Iglesias
- Department of Pediatrics, Division of Medical Genetics, Columbia University, New York, New York, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
16
|
Azamian M, Lalani SR. Cytogenomic Aberrations in Congenital Cardiovascular Malformations. Mol Syndromol 2016; 7:51-61. [PMID: 27385961 DOI: 10.1159/000445788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Congenital cardiovascular malformations are the most common birth defects, with a complex multifactorial etiology. Genetic factors play an important role, illuminated by numerous cytogenetically visible abnormalities, as well as submicroscopic genomic imbalances affecting critical genomic regions in the affected individuals. Study of rare families with Mendelian forms, as well as emerging next-generation sequencing technologies have uncovered a multitude of genes relevant for human congenital cardiac diseases. It is clear that the complex embryology of human cardiac development, with an orchestrated interplay of transcription factors, chromatin regulators, and signal transduction pathway molecules can be easily perturbed by genomic imbalances affecting dosage-sensitive regions. This review focuses on chromosomal abnormalities contributing to congenital heart diseases and underscores several genomic disorders linked to human cardiac malformations in the last few decades.
Collapse
Affiliation(s)
- Mahshid Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex., USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex., USA
| |
Collapse
|
17
|
Stark Z, Behrsin J, Burgess T, Ritchie A, Yeung A, Tan TY, Brown NJ, Savarirayan R, Patel N. SNP microarray abnormalities in a cohort of 28 infants with congenital diaphragmatic hernia. Am J Med Genet A 2015; 167A:2319-26. [DOI: 10.1002/ajmg.a.37177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 05/10/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Zornitza Stark
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
| | - Joanna Behrsin
- Newborn Intensive Care Unit; Royal Children's Hospital; Melbourne Australia
| | - Trent Burgess
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
- University of Melbourne Department of Paediatrics; Melbourne Australia
| | - Anna Ritchie
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
| | - Alison Yeung
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
| | - Tiong Y. Tan
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
- University of Melbourne Department of Paediatrics; Melbourne Australia
| | - Natasha J. Brown
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
- University of Melbourne Department of Paediatrics; Melbourne Australia
| | - Ravi Savarirayan
- VictorianClinicalGenetics Service and Murdoch Children Institute; Melbourne Australia
- University of Melbourne Department of Paediatrics; Melbourne Australia
| | - Neil Patel
- Newborn Intensive Care Unit; Royal Children's Hospital; Melbourne Australia
| |
Collapse
|
18
|
Jordan VK, Rosenfeld JA, Lalani SR, Scott DA. Duplication of HEY2 in cardiac and neurologic development. Am J Med Genet A 2015; 167A:2145-9. [PMID: 25832314 DOI: 10.1002/ajmg.a.37086] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/15/2015] [Indexed: 11/10/2022]
Abstract
HEY2 is a basic helix-loop-helix (bHLH) transcription factor that plays an important role in the developing mammalian heart and brain. In humans, nonsynonymous mutations in HEY2 have been described in patients with atrial ventricular septal defects, and a subset of individuals with chromosomal deletions involving HEY2 have cardiac defects and cognitive impairment. Less is known about the potential effects of HEY2 overexpression. Here, we describe a female child with tetralogy of Fallot who developed severe right ventricular outflow tract obstruction due to a combination of infundibular and valvular pulmonary stenosis. She was also noted to have hypotonia, lower extremity weakness, fine motor delay and speech delay. A copy number variation (CNV) detection analysis followed by real-time quantitative PCR analysis revealed a single gene duplication of HEY2. This is the only duplication involving HEY2 identified in our database of over 70,000 individuals referred for CNV analysis. In the developing heart, overexpression of HEY2 is predicted to cause decreased expression of the cardiac transcription factor GATA4 which, in turn, has been shown to cause tetralogy of Fallot. In mice, misexpression of Hey2 in the developing brain leads to inhibition of neurogenesis and promotion of gliogenesis. Hence, duplication of HEY2 may be a contributing factor to both the congenital heart defects and the neurodevelopmental problems evident in our patient. These results suggest that individuals with HEY2 duplications should be screened for congenital heart defects and monitored closely for evidence of developmental delay and/or cognitive impairment.
Collapse
Affiliation(s)
- Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Daryl A Scott
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
19
|
Abstract
Congenital diaphragmatic hernia (CDH) is a moderately prevalent birth defect that, despite advances in neonatal care, is still a significant cause of infant death, and surviving patients have significant morbidity. The goal of ongoing research to elucidate the genetic causes of CDH is to develop better treatment and ultimately prevention. CDH is a complex developmental defect that is etiologically heterogeneous. This review summarizes the recurrent genetic causes of CDH including aneuploidies, chromosome copy number variants, and single gene mutations. It also discusses strategies for genetic evaluation and genetic counseling in an era of rapidly evolving technologies in clinical genetic diagnostics.
Collapse
Affiliation(s)
| | | | - Wendy K. Chung
- Corresponding author. Address: Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, 1150 St Nicholas Avenue, Room 620, New York, NY 10032, USA. Tel.: +1 212-851-5313; fax: +1 212-851-5306. (W.K. Chung)
| |
Collapse
|
20
|
Brady PD, Van Houdt J, Callewaert B, Deprest J, Devriendt K, Vermeesch JR. Exome sequencing identifies ZFPM2 as a cause of familial isolated congenital diaphragmatic hernia and possibly cardiovascular malformations. Eur J Med Genet 2014; 57:247-52. [PMID: 24769157 DOI: 10.1016/j.ejmg.2014.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/13/2014] [Indexed: 01/02/2023]
Abstract
Using exome sequencing we identify a heterozygous nonsense mutation in ZFPM2 as a cause of familial isolated congenital diaphragmatic hernia in 2 affected siblings. This mutation displays variable phenotypic expression being present in a third sibling with a mild diaphragmatic eventration and a cardiovascular malformation. The same variant is seen in 2 additional family members, both of whom are asymptomatic, thus highlighting that ZFPM2 haploinsufficiency is associated with reduced penetrance. Our finding adds further evidence for ZFPM2 having a role in diaphragm and cardiovascular development.
Collapse
Affiliation(s)
- Paul D Brady
- Centre for Human Genetics, KU Leuven, University Hospital Leuven, Belgium
| | - Jeroen Van Houdt
- Centre for Human Genetics, KU Leuven, University Hospital Leuven, Belgium
| | - Bert Callewaert
- Department of Pediatrics and Medical Genetics, Universiteit Gent, Gent, Belgium
| | - Jan Deprest
- Department of Development and Regeneration, Unit Pregnancy, Foetus and Newborn, KU Leuven, Belgium; Department Obstetrics and Gynaecology, University Hospital Leuven, Belgium
| | - Koenraad Devriendt
- Centre for Human Genetics, KU Leuven, University Hospital Leuven, Belgium
| | - Joris R Vermeesch
- Centre for Human Genetics, KU Leuven, University Hospital Leuven, Belgium
| |
Collapse
|
21
|
Al Turki S, Manickaraj A, Mercer C, Gerety S, Hitz MP, Lindsay S, D’Alessandro L, Swaminathan G, Bentham J, Arndt AK, Louw J, Breckpot J, Gewillig M, Thienpont B, Abdul-Khaliq H, Harnack C, Hoff K, Kramer HH, Schubert S, Siebert R, Toka O, Cosgrove C, Watkins H, Lucassen A, O’Kelly I, Salmon A, Bu’Lock F, Granados-Riveron J, Setchfield K, Thornborough C, Brook J, Mulder B, Klaassen S, Bhattacharya S, Devriendt K, FitzPatrick D, Wilson D, Mital S, Hurles M, Mital S, Hurles ME. Rare variants in NR2F2 cause congenital heart defects in humans. Am J Hum Genet 2014; 94:574-85. [PMID: 24702954 DOI: 10.1016/j.ajhg.2014.03.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/12/2014] [Indexed: 11/25/2022] Open
Abstract
Congenital heart defects (CHDs) are the most common birth defect worldwide and are a leading cause of neonatal mortality. Nonsyndromic atrioventricular septal defects (AVSDs) are an important subtype of CHDs for which the genetic architecture is poorly understood. We performed exome sequencing in 13 parent-offspring trios and 112 unrelated individuals with nonsyndromic AVSDs and identified five rare missense variants (two of which arose de novo) in the highly conserved gene NR2F2, a very significant enrichment (p = 7.7 × 10(-7)) compared to 5,194 control subjects. We identified three additional CHD-affected families with other variants in NR2F2 including a de novo balanced chromosomal translocation, a de novo substitution disrupting a splice donor site, and a 3 bp duplication that cosegregated in a multiplex family. NR2F2 encodes a pleiotropic developmental transcription factor, and decreased dosage of NR2F2 in mice has been shown to result in abnormal development of atrioventricular septa. Via luciferase assays, we showed that all six coding sequence variants observed in individuals significantly alter the activity of NR2F2 on target promoters.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Seema Mital
- Division of Cardiology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|
22
|
Prenatal diagnosis and molecular cytogenetic characterization of de novo pure partial trisomy 6p associated with microcephaly, craniosynostosis and abnormal maternal serum biochemistry. Gene 2014; 536:425-9. [DOI: 10.1016/j.gene.2013.12.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 01/09/2023]
|
23
|
Strassberg M, Fruhman G, Van den Veyver IB. Copy-number changes in prenatal diagnosis. Expert Rev Mol Diagn 2014; 11:579-92. [DOI: 10.1586/erm.11.43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Brady PD, DeKoninck P, Fryns JP, Devriendt K, Deprest JA, Vermeesch JR. Identification of dosage-sensitive genes in fetuses referred with severe isolated congenital diaphragmatic hernia. Prenat Diagn 2013; 33:1283-92. [PMID: 24122781 DOI: 10.1002/pd.4244] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/09/2013] [Accepted: 09/21/2013] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Congenital diaphragmatic hernia (CDH) is a fetal abnormality affecting diaphragm and lung development with a high mortality rate despite advances in fetal and neonatal therapy. CDH may occur either as an isolated defect or in syndromic form for which the prognosis is worse. Although conventional karyotyping and, more recently, chromosomal microarrays support a substantial role for genetic factors, causal genes responsible for isolated CDH remain elusive. We propose that chromosomal microarray analysis will identify copy number variations (CNVs) associated with isolated CDH. METHODS We perform a prospective genome-wide screen for CNVs using chromosomal microarrays on 75 fetuses referred with apparently isolated CDH, six of which were later reclassified as non-isolated CDH. RESULTS The results pinpoint haploinsufficiency of NR2F2 as a cause of CDH and cardiovascular malformations. In addition, the 15q25.2 and 16p11.2 recurrent microdeletions are associated with isolated CDH. By using gene prioritisation and network analysis, we provide strong evidence for several novel dosage-sensitive candidate genes associated with CDH. CONCLUSIONS Chromosomal microarray analysis detects submicroscopic CNVs associated with isolated CDH or CDH with cardiovascular malformations.
Collapse
Affiliation(s)
- P D Brady
- Centre for Human Genetics, KU Leuven/University Hospital Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
25
|
Dauber A, Golzio C, Guenot C, Jodelka FM, Kibaek M, Kjaergaard S, Leheup B, Martinet D, Nowaczyk MJM, Rosenfeld JA, Zeesman S, Zunich J, Beckmann JS, Hirschhorn JN, Hastings ML, Jacquemont S, Katsanis N. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant. Am J Hum Genet 2013; 93:798-811. [PMID: 24140112 DOI: 10.1016/j.ajhg.2013.09.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/10/2013] [Accepted: 09/16/2013] [Indexed: 11/19/2022] Open
Abstract
Copy-number variants (CNVs) represent a significant interpretative challenge, given that each CNV typically affects the dosage of multiple genes. Here we report on five individuals with coloboma, microcephaly, developmental delay, short stature, and craniofacial, cardiac, and renal defects who harbor overlapping microdeletions on 8q24.3. Fine mapping localized a commonly deleted 78 kb region that contains three genes: SCRIB, NRBP2, and PUF60. In vivo dissection of the CNV showed discrete contributions of the planar cell polarity effector SCRIB and the splicing factor PUF60 to the syndromic phenotype, and the combinatorial suppression of both genes exacerbated some, but not all, phenotypic components. Consistent with these findings, we identified an individual with microcephaly, short stature, intellectual disability, and heart defects with a de novo c.505C>T variant leading to a p.His169Tyr change in PUF60. Functional testing of this allele in vivo and in vitro showed that the mutation perturbs the relative dosage of two PUF60 isoforms and, subsequently, the splicing efficiency of downstream PUF60 targets. These data inform the functions of two genes not associated previously with human genetic disease and demonstrate how CNVs can exhibit complex genetic architecture, with the phenotype being the amalgam of both discrete dosage dysfunction of single transcripts and also of binary genetic interactions.
Collapse
Affiliation(s)
- Andrew Dauber
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Castiglione A, Guaran V, Astolfi L, Orioli E, Zeri G, Gemmati D, Bovo R, Montaldi A, Alghisi A, Martini A. Karyotype-phenotype correlation in partial trisomies of the short arm of chromosome 6: a family case report and review of the literature. Cytogenet Genome Res 2013; 141:243-59. [PMID: 23942271 DOI: 10.1159/000353846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 11/19/2022] Open
Abstract
The first child (proband) of nonconsanguineous Caucasian parents underwent genetic investigation because she was affected with congenital choanal atresia, heart defects and kidney hyposplasia with mild transient renal insufficiency. The direct DNA sequencing after PCR of the CHD7 gene, which is thought to be responsible for approximately 60-70% of the cases of CHARGE syndrome/association, found no mutations. The cytogenetic analysis (standard GTG banding karyotype) revealed the presence of extrachromosomal material on 10q. The chromosome analysis was completed with array CGH (30 kb resolution), MLPA and FISH, which allowed the identification of three 6p regions (6p.25.3p23 × 3): 2 of these regions are normally located on chromosome 6, and the third region is translocated to the long arm of chromosome 10. The same chromosomal rearrangement was subsequently found in the father, who was affected with congenital ptosis and progressive hearing loss, and in the proband's sister, the second child, who presented at birth with choanal atresia and congenital heart defects. The mutated karyotypes, which were directly inherited, are thought to be responsible for a variable phenotype, including craniofacial dysmorphisms, choanal atresia, congenital ptosis, sensorineural hearing loss, heart defects, developmental delay, and renal dysfunction. Nevertheless, to achieve a complete audiological assessment of the father, he underwent further investigation that revealed an increased level of the coagulation factor XIII (300% increased activity), fluctuating levels of fibrin D-dimer degradation products (from 296 to 1,587 ng/ml) and a homoplasmic mitochondrial DNA mutation: T961G in the MTRNR1 (12S rRNA) gene. He was made a candidate for cochlear implantation. Preoperative high-resolution computed tomography and magnetic resonance imaging of the temporal bone revealed the presence of an Arnold-Chiari malformation type I. To the best of our knowledge, this study is the second report on partial 6p trisomy that involves the 10q terminal region. Furthermore, we report the first case of documented Arnold-Chiari malformation type I and increased factor XIII activity associated with 6p trisomy. We present a comprehensive report of the familial cases and an exhaustive literature review.
Collapse
Affiliation(s)
- A Castiglione
- Department of Neurosciences, Complex Operative Unit of Otorhinolaryngology and Otosurgery, Padua University Hospital, Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lalani SR, Ware SM, Wang X, Zapata G, Tian Q, Franco LM, Jiang Z, Bucasas K, Scott DA, Campeau PM, Hanchard N, Umaña L, Cast A, Patel A, Cheung SW, McBride KL, Bray M, Craig Chinault A, Boggs BA, Huang M, Baker MR, Hamilton S, Towbin J, Jefferies JL, Fernbach SD, Potocki L, Belmont JW. MCTP2 is a dosage-sensitive gene required for cardiac outflow tract development. Hum Mol Genet 2013; 22:4339-48. [PMID: 23773997 DOI: 10.1093/hmg/ddt283] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coarctation of the aorta (CoA) and hypoplastic left heart syndrome (HLHS) have been reported in rare individuals with large terminal deletions of chromosome 15q26. However, no single gene important for left ventricular outflow tract (LVOT) development has been identified in this region. Using array-comparative genomic hybridization, we identified two half-siblings with CoA with a 2.2 Mb deletion on 15q26.2, inherited from their mother, who was mosaic for this deletion. This interval contains an evolutionary conserved, protein-coding gene, MCTP2 (multiple C2-domains with two transmembrane regions 2). Using gene-specific array screening in 146 individuals with non-syndromic LVOT obstructive defects, another individual with HLHS and CoA was found to have a de novo 41 kb intragenic duplication within MCTP2, predicted to result in premature truncation, p.F697X. Alteration of Mctp2 gene expression in Xenopus laevis embryos by morpholino knockdown and mRNA overexpression resulted in the failure of proper OT development, confirming the functional importance of this dosage-sensitive gene for cardiogenesis. Our results identify MCTP2 as a novel genetic cause of CoA and related cardiac malformations.
Collapse
|
28
|
Golzio C, Katsanis N. Genetic architecture of reciprocal CNVs. Curr Opin Genet Dev 2013; 23:240-8. [PMID: 23747035 DOI: 10.1016/j.gde.2013.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/22/2013] [Accepted: 04/26/2013] [Indexed: 10/26/2022]
Abstract
Copy number variants (CNVs) represent a frequent type of lesion in human genetic disorders that typically affects numerous genes simultaneously. This has raised the challenge of understanding which genes within a CNV drive clinical phenotypes. Although CNVs can arise by multiple mechanisms, a subset is driven by local genomic architecture permissive to recombination events that can lead to both deletions and duplications. Phenotypic analyses of patients with such reciprocal CNVs have revealed instances in which the phenotype is either identical or mirrored; strikingly, molecular studies have shown that such phenotypes are often driven by reciprocal dosage defects of the same transcript. Here we explore how these observations can help the dissection of CNVs and inform the genetic architecture of CNV-induced disorders.
Collapse
Affiliation(s)
- Christelle Golzio
- Center for Human Disease Modeling, Duke University, Durham 27710, USA
| | | |
Collapse
|
29
|
Yu L, Wynn J, Ma L, Guha S, Mychaliska GB, Crombleholme TM, Azarow KS, Lim FY, Chung DH, Potoka D, Warner BW, Bucher B, LeDuc CA, Costa K, Stolar C, Aspelund G, Arkovitz MS, Chung WK. De novo copy number variants are associated with congenital diaphragmatic hernia. J Med Genet 2013; 49:650-9. [PMID: 23054247 DOI: 10.1136/jmedgenet-2012-101135] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a common birth defect with significant morbidity and mortality. Although the aetiology of CDH remains poorly understood, studies from animal models and patients with CDH suggest that genetic factors play an important role in the development of CDH. Chromosomal anomalies have been reported in CDH. METHODS In this study, the authors investigated the frequency of chromosomal anomalies and copy number variants (CNVs) in 256 parent-child trios of CDH using clinical conventional cytogenetic and microarray analysis. The authors also selected a set of CDH related training genes to prioritise the genes in those segmental aneuploidies and identified the genes and gene sets that may contribute to the aetiology of CDH. RESULTS The authors identified chromosomal anomalies in 16 patients (6.3%) of the series including three aneuploidies, two unbalanced translocation, and 11 patients with de novo CNVs ranging in size from 95 kb to 104.6 Mb. The authors prioritised the genes in the CNV segments and identified KCNA2, LMNA, CACNA1S, MYOG, HLX, LBR, AGT, GATA4, SOX7, HYLS1, FOXC1, FOXF2, PDGFA, FGF6, COL4A1, COL4A2, HOMER2, BNC1, BID, and TBX1 as genes that may be involved in diaphragm development. Gene enrichment analysis identified the most relevant gene ontology categories as those involved in tissue development (p=4.4×10(-11)) or regulation of multicellular organismal processes (p=2.8×10(-10)) and 'receptor binding' (p=8.7×10(-14)) and 'DNA binding transcription factor activity' (p=4.4×10(-10)). CONCLUSIONS The present findings support the role of chromosomal anomalies in CDH and provide a set of candidate genes including FOXC1, FOXF2, PDGFA, FGF6, COL4A1, COL4A2, SOX7, BNC1, BID, and TBX1 for further analysis in CDH.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Beck TF, Veenma D, Shchelochkov OA, Yu Z, Kim BJ, Zaveri HP, van Bever Y, Choi S, Douben H, Bertin TK, Patel PI, Lee B, Tibboel D, de Klein A, Stockton DW, Justice MJ, Scott DA. Deficiency of FRAS1-related extracellular matrix 1 (FREM1) causes congenital diaphragmatic hernia in humans and mice. Hum Mol Genet 2012; 22:1026-38. [PMID: 23221805 DOI: 10.1093/hmg/dds507] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a common life-threatening birth defect. Recessive mutations in the FRAS1-related extracellular matrix 1 (FREM1) gene have been shown to cause bifid nose with or without anorectal and renal anomalies (BNAR) syndrome and Manitoba oculotrichoanal (MOTA) syndrome, but have not been previously implicated in the development of CDH. We have identified a female child with an isolated left-sided posterolateral CDH covered by a membranous sac who had no features suggestive of BNAR or MOTA syndromes. This child carries a maternally-inherited ~86 kb FREM1 deletion that affects the expression of FREM1's full-length transcripts and a paternally-inherited splice site mutation that causes activation of a cryptic splice site, leading to a shift in the reading frame and premature termination of all forms of the FREM1 protein. This suggests that recessive FREM1 mutations can cause isolated CDH in humans. Further evidence for the role of FREM1 in the development of CDH comes from an N-ethyl-N-nitrosourea -derived mouse strain, eyes2, which has a homozygous truncating mutation in Frem1. Frem1(eyes2) mice have eye defects, renal agenesis and develop retrosternal diaphragmatic hernias which are covered by a membranous sac. We confirmed that Frem1 is expressed in the anterior portion of the developing diaphragm and found that Frem1(eyes2) embryos had decreased levels of cell proliferation in their developing diaphragms when compared to wild-type embryos. We conclude that FREM1 plays a critical role in the development of the diaphragm and that FREM1 deficiency can cause CDH in both humans and mice.
Collapse
Affiliation(s)
- Tyler F Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Arrington CB, Bleyl SB, Matsunami N, Bowles NE, Leppert TI, Demarest BL, Osborne K, Yoder BA, Byrne JL, Schiffman JD, Null DM, DiGeronimo R, Rollins M, Faix R, Comstock J, Camp NJ, Leppert MF, Yost HJ, Brunelli L. A family-based paradigm to identify candidate chromosomal regions for isolated congenital diaphragmatic hernia. Am J Med Genet A 2012; 158A:3137-47. [PMID: 23165927 DOI: 10.1002/ajmg.a.35664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Accepted: 08/21/2012] [Indexed: 11/09/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a developmental defect of the diaphragm that causes high newborn mortality. Isolated or non-syndromic CDH is considered a multifactorial disease, with strong evidence implicating genetic factors. As low heritability has been reported in isolated CDH, family-based genetic methods have yet to identify the genetic factors associated with the defect. Using the Utah Population Database, we identified distantly related patients from several extended families with a high incidence of isolated CDH. Using high-density genotyping, seven patients were analyzed by homozygosity exclusion rare allele mapping (HERAM) and phased haplotype sharing (HapShare), two methods we developed to map shared chromosome regions. Our patient cohort shared three regions not previously associated with CDH, that is, 2q11.2-q12.1, 4p13 and 7q11.2, and two regions previously involved in CDH, that is, 8p23.1 and 15q26.2. The latter regions contain GATA4 and NR2F2, two genes implicated in diaphragm formation in mice. Interestingly, three patients shared the 8p23.1 locus and one of them also harbored the 15q26.2 segment. No coding variants were identified in GATA4 or NR2F2, but a rare shared variant was found in intron 1 of GATA4. This work shows the role of heritability in isolated CDH. Our family-based strategy uncovers new chromosomal regions possibly associated with disease, and suggests that non-coding variants of GATA4 and NR2F2 may contribute to the development of isolated CDH. This approach could speed up the discovery of the genes and regulatory elements causing multifactorial diseases, such as isolated CDH.
Collapse
Affiliation(s)
- Cammon B Arrington
- Department of Pediatrics (Cardiology), University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wat MJ, Beck TF, Hernández-García A, Yu Z, Veenma D, Garcia M, Holder AM, Wat JJ, Chen Y, Mohila CA, Lally KP, Dickinson M, Tibboel D, de Klein A, Lee B, Scott DA. Mouse model reveals the role of SOX7 in the development of congenital diaphragmatic hernia associated with recurrent deletions of 8p23.1. Hum Mol Genet 2012; 21:4115-25. [PMID: 22723016 DOI: 10.1093/hmg/dds241] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recurrent microdeletions of 8p23.1 that include GATA4 and SOX7 confer a high risk of both congenital diaphragmatic hernia (CDH) and cardiac defects. Although GATA4-deficient mice have both CDH and cardiac defects, no humans with cardiac defects attributed to GATA4 mutations have been reported to have CDH. We were also unable to identify deleterious GATA4 sequence changes in a CDH cohort. This suggested that haploinsufficiency of another 8p23.1 gene may contribute, along with GATA4, to the development of CDH. To determine if haploinsufficiency of SOX7-another transcription factor encoding gene-contributes to the development of CDH, we generated mice with a deletion of the second exon of Sox7. A portion of these Sox7(Δex2/+) mice developed retrosternal diaphragmatic hernias located in the anterior muscular portion of the diaphragm. Anterior CDH is also seen in Gata4(+/-) mice and has been described in association with 8p23.1 deletions in humans. Immunohistochemistry revealed that SOX7 is expressed in the vascular endothelial cells of the developing diaphragm and may be weakly expressed in some diaphragmatic muscle cells. Sox7(Δex2/Δex2) embryos die prior to diaphragm development with dilated pericardial sacs and failure of yolk sac remodeling suggestive of cardiovascular failure. Similar to our experience screening GATA4, no clearly deleterious SOX7 sequence changes were identified in our CDH cohort. We conclude that haploinsufficiency of Sox7 or Gata4 is sufficient to produce anterior CDH in mice and that haploinsufficiency of SOX7 and GATA4 may each contribute to the development of CDH in individuals with 8p23.1 deletions.
Collapse
Affiliation(s)
- Margaret J Wat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Veenma DCM, de Klein A, Tibboel D. Developmental and genetic aspects of congenital diaphragmatic hernia. Pediatr Pulmonol 2012; 47:534-45. [PMID: 22467525 DOI: 10.1002/ppul.22553] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/17/2012] [Indexed: 12/21/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is a frequent occurring cause of neonatal respiratory distress and occurs 1 in every 3,000 liveborns. Ventilatory support and pharmaceutical treatment of the co-occurring lung hypoplasia and pulmonary hypertension are insufficient in, respectively, 20% of isolated cases and 60% of complex ones leading to early perinatal death. The exact cause of CDH remains to be identified in the majority of human CDH patients and prognostic factors predicting treatment refraction are largely unknown. Their identification is hampered by the multifactorial and heterogenic nature of this congenital anomaly. However, application of high-resolution molecular cytogenetic techniques to patients' DNA now enables detection of chromosomal aberrations in 30% of the patients. Furthermore, recent insights in rodent embryogenesis pointed to a specific disruption of the early mesenchymal structures in the primordial diaphragm of CDH-induced offspring. Together, these data allowed for the introduction of new hypotheses on CDH pathogenesis, although many issues remain to be resolved. In this review, we have combined these new insights and remaining questions on diaphragm pathogenesis with a concise overview of the clinical, embryological, and genetic data available.
Collapse
Affiliation(s)
- D C M Veenma
- Department of Paediatric Surgery, Erasmus MC-Sophia, Rotterdam, The Netherlands
| | | | | |
Collapse
|
34
|
Abstract
BACKGROUND AND OBJECTIVE Human genomes include copy number variants (CNVs), defined as regions with DNA gains or losses. Pathologic CNVs, which are larger and often occur de novo, are increasingly associated with disease. Given advances in genetic testing, namely microarray-based comparative genomic hybridization and single nucleotide polymorphism arrays, previously unidentified genotypic aberrations can now be correlated with phenotypic anomalies. The objective of this study was to conduct a nonsystematic literature review to document the role of CNVs as they relate to isolated structural anomalies of the craniofacial, respiratory, renal, and cardiac systems. METHODS All full-length articles in the PubMed database through May 2011 that discussed CNVs and isolated structural defects of the craniofacial, respiratory, renal, and cardiac systems were considered. Search terms queried include CNV, copy number variation, array comparative genomic hybridization, birth defects, craniofacial defects, respiratory defects, renal defects, and congenital heart disease. Reports published in languages other than English and articles regarding CNVs and neurocognitive deficits were not considered. RESULTS Evidence supports that putatively pathogenic CNVs occur at an increased frequency in patients with isolated structural birth defects and implicate specific regions of the genome. Through CNV detection, advances have been made in identifying genes and specific loci that underlie isolated birth defects. CONCLUSIONS Although limited studies have been published, the promising evidence reviewed here warrants the continued investigation of CNVs in children with isolated structural birth defects. Patient care and genetic counseling stand to improve through a better understanding of CNVs and their effect on disease phenotype.
Collapse
|
35
|
Veenma D, Brosens E, de Jong E, van de Ven C, Meeussen C, Cohen-Overbeek T, Boter M, Eussen H, Douben H, Tibboel D, de Klein A. Copy number detection in discordant monozygotic twins of Congenital Diaphragmatic Hernia (CDH) and Esophageal Atresia (EA) cohorts. Eur J Hum Genet 2011; 20:298-304. [PMID: 22071887 DOI: 10.1038/ejhg.2011.194] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The occurrence of phenotypic differences between monozygotic (MZ) twins is commonly attributed to environmental factors, assuming that MZ twins have a complete identical genetic make-up. Yet, recently several lines of evidence showed that both genetic and epigenetic factors could have a role in phenotypic discordance after all. A high occurrence of copy number variation (CNV) differences was observed within MZ twin pairs discordant for Parkinson's disease, thereby stressing on the importance of post-zygotic mutations as disease-predisposing events. In this study, the prevalence of discrepant CNVs was analyzed in discordant MZ twins of the Esophageal Atresia (EA) and Congenital Diaphragmatic Hernia (CDH) cohort in the Netherlands. Blood-derived DNA from 11 pairs (7 EA and 4 CDH) was screened using high-resolution SNP arrays. Results showed an identical copy number profile in each twin pair. Mosaic chromosome gain or losses could not be detected either with a detection threshold of 20%. Some of the germ-line structural events demonstrated in five out of eleven twin pairs could function as a susceptible genetic background. For example, the 177-Kb loss of chromosome 10q26 in CDH pair-3 harbors the TCF7L2 gene (Tcf4 protein), which is implicated in the regulation of muscle fiber type development and maturation. In conclusion, discrepant CNVs are not a common cause of twin discordancy in these investigated congenital anomaly cohorts.
Collapse
Affiliation(s)
- Danielle Veenma
- Department of Paediatric Surgery, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wat MJ, Veenma D, Hogue J, Holder AM, Yu Z, Wat JJ, Hanchard N, Shchelochkov OA, Fernandes CJ, Johnson A, Lally KP, Slavotinek A, Danhaive O, Schaible T, Cheung SW, Rauen KA, Tonk VS, Tibboel D, de Klein A, Scott DA. Genomic alterations that contribute to the development of isolated and non-isolated congenital diaphragmatic hernia. J Med Genet 2011; 48:299-307. [PMID: 21525063 DOI: 10.1136/jmg.2011.089680] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a life threatening birth defect. Most of the genetic factors that contribute to the development of CDH remain unidentified. OBJECTIVE To identify genomic alterations that contribute to the development of diaphragmatic defects. METHODS A cohort of 45 unrelated patients with CDH or diaphragmatic eventrations was screened for genomic alterations by array comparative genomic hybridisation or single nucleotide polymorphism based copy number analysis. RESULTS Genomic alterations that were likely to have contributed to the development of CDH were identified in 8 patients. Inherited deletions of ZFPM2 were identified in 2 patients with isolated diaphragmatic defects and a large de novo 8q deletion overlapping the same gene was found in a patient with non-isolated CDH. A de novo microdeletion of chromosome 1q41q42 and two de novo microdeletions on chromosome 16p11.2 were identified in patients with non-isolated CDH. Duplications of distal 11q and proximal 13q were found in a patient with non-isolated CDH and a de novo single gene deletion of FZD2 was identified in a patient with a partial pentalogy of Cantrell phenotype. CONCLUSIONS Haploinsufficiency of ZFPM2 can cause dominantly inherited isolated diaphragmatic defects with incomplete penetrance. These data define a new minimal deleted region for CDH on 1q41q42, provide evidence for the existence of CDH related genes on chromosomes 16p11.2, 11q23-24 and 13q12, and suggest a possible role for FZD2 and Wnt signalling in pentalogy of Cantrell phenotypes. These results demonstrate the clinical utility of screening for genomic alterations in individuals with both isolated and non-isolated diaphragmatic defects.
Collapse
Affiliation(s)
- Margaret J Wat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Richards EG, Zaveri HP, Wolf VL, Kang SHL, Scott DA. Delineation of a less than 200 kb minimal deleted region for cardiac malformations on chromosome 7p22. Am J Med Genet A 2011; 155A:1729-34. [PMID: 21671376 DOI: 10.1002/ajmg.a.34041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 03/20/2011] [Indexed: 01/11/2023]
Abstract
Cardiac malformations are commonly seen in individuals with terminal and interstitial deletions involving chromosome band 7p22. Although these malformations represent a significant cause of morbidity, the dosage-sensitive gene(s) that underlie these defects have yet to be identified. In this report, we describe a 16-month-old male with tetralogy of Fallot, bilateral second branchial arch remnants, and mild dysmorphic features. Array comparative genomic hybridization analysis revealed a less than 400 kb interstitial deletion on chromosome 7p22. The deletion was confirmed by real-time quantitative PCR and FISH analyses and was not detected in samples obtained from the child's parents. Molecular data from this de novo deletion, in combination with data from other isolated 7p deletions in the literature, can be used to define a less than 200 kb minimal deleted region for cardiac malformations on 7p22. This minimal deleted region spans all, or portions, of the coding regions of four known genes-MAD1L1, FTSJ2, NUDT1, and SNX8-and may include upstream regulatory elements of EIF3B. It is likely that one or more of these five genes, alone or in combination, plays an important, yet previously uncharacterized, role in cardiac development.
Collapse
Affiliation(s)
- Elliott G Richards
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
38
|
Genomic profiling in Down syndrome acute lymphoblastic leukemia identifies histone gene deletions associated with altered methylation profiles. Leukemia 2011; 25:1555-63. [PMID: 21647151 DOI: 10.1038/leu.2011.128] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with Down syndrome (DS) and acute lymphoblastic leukemia (ALL) have distinct clinical and biological features. Whereas most DS-ALL cases lack the sentinel cytogenetic lesions that guide risk assignment in childhood ALL, JAK2 mutations and CRLF2 overexpression are highly enriched. To further characterize the unique biology of DS-ALL, we performed genome-wide profiling of 58 DS-ALL and 68 non-DS (NDS) ALL cases by DNA copy number, loss of heterozygosity, gene expression and methylation analyses. We report a novel deletion within the 6p22 histone gene cluster as significantly more frequent in DS-ALL, occurring in 11 DS (22%) and only 2 NDS cases (3.1%) (Fisher's exact P=0.002). Homozygous deletions yielded significantly lower histone expression levels, and were associated with higher methylation levels, distinct spatial localization of methylated promoters and enrichment of highly methylated genes for specific pathways and transcription factor-binding motifs. Gene expression profiling demonstrated heterogeneity of DS-ALL cases overall, with supervised analysis defining a 45-transcript signature associated with CRLF2 overexpression. Further characterization of pathways associated with histone deletions may identify opportunities for novel targeted interventions.
Collapse
|
39
|
Jaillard S, Loget P, Lucas J, Dubourg C, Le Bouar G, Demurger F, Bertorello I, David V, Poulain P, Odent S, Belaud-Rotureau MA. Terminal 6.9 Mb deletion of chromosome 15q, associated with a structurally abnormal X chromosome in a patient with congenital diaphragmatic hernia and heart defect. Eur J Med Genet 2011; 54:186-8. [DOI: 10.1016/j.ejmg.2010.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 11/02/2010] [Indexed: 11/30/2022]
|
40
|
Tautz J, Veenma D, Eussen B, Joosen L, Poddighe P, Tibboel D, de Klein A, Schaible T. Congenital diaphragmatic hernia and a complex heart defect in association with Wolf-Hirschhorn syndrome. Am J Med Genet A 2011; 152A:2891-4. [PMID: 20830802 DOI: 10.1002/ajmg.a.33660] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Juliane Tautz
- Universitatsklinikum Mannheim, Paediatric Intensive Care Unit, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Teshiba R, Masumoto K, Esumi G, Nagata K, Kinoshita Y, Tajiri T, Taguchi T, Yamamoto K. Identification of TCTE3 as a gene responsible for congenital diaphragmatic hernia using a high-resolution single-nucleotide polymorphism array. Pediatr Surg Int 2011; 27:193-8. [PMID: 21085971 DOI: 10.1007/s00383-010-2778-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Congenital diaphragmatic hernia (CDH) is a birth defect of the diaphragm associated with pulmonary hypoplasia. Although genetic factors have been suggested to play a role, the etiology of CDH is still largely unknown. In this study, we analyzed copy number variants (CNVs) using a single-nucleotide polymorphism (SNP) array to examine whether microdeletions contribute to the pathogenesis of this disease. METHODS A total of 28 CDH patients, including 24 isolated and 4 non-isolated cases, were available. We performed CNV analysis using high-resolution SNP arrays (370K, 550K, 660K; Illumina Inc.) and CNstream software. Deletions in loci that have been suggested in previous studies to contain candidate genes affecting CDH were analyzed. RESULTS We detected 335, 6 and 133 deletions specific for patients in 14 (350K array), 3 (550K) and 11 (660K) cases, respectively. Among these deletions, no segments included the previously suggested candidate genes with the exception of an 18-kb deletion observed in the candidate locus 6q27 in two non-isolated patients. This deleted region contains exon 4 of the t-complex-associated-testis-expressed 3 (TCTE3) gene. CONCLUSION Because TCTE3 encodes a putative light chain of the outer dynein arm of cilia and human diseases caused by ciliary dysfunction show various phenotypes including skeletal defect, TCTE3 may be a genetic candidate influencing CDH.
Collapse
Affiliation(s)
- Risa Teshiba
- Division of Genome Analysis, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Machado I, Heinrich J, Barini R, Peralta C. Copy number imbalances detected with a BAC-based array comparative genomic hybridization platform in congenital diaphragmatic hernia fetuses. GENETICS AND MOLECULAR RESEARCH 2011; 10:261-7. [DOI: 10.4238/vol10-1gmr1001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Veenma D, Beurskens N, Douben H, Eussen B, Noomen P, Govaerts L, Grijseels E, Lequin M, de Krijger R, Tibboel D, de Klein A, Van Opstal D. Comparable low-level mosaicism in affected and non affected tissue of a complex CDH patient. PLoS One 2010; 5:e15348. [PMID: 21203572 PMCID: PMC3006223 DOI: 10.1371/journal.pone.0015348] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/11/2010] [Indexed: 11/19/2022] Open
Abstract
In this paper we present the detailed clinical and cytogenetic analysis of a prenatally detected complex Congenital Diaphragmatic Hernia (CDH) patient with a mosaic unbalanced translocation (5;12). High-resolution whole genome SNP array confirmed a low-level mosaicism (20%) in uncultured cells, underlining the value of array technology for identification studies. Subsequently, targeted Fluorescence In-Situ Hybridization in postmortem collected tissues demonstrated a similar low-level mosaicism, independently of the affected status of the tissue. Thus, a higher incidence of the genetic aberration in affected organs as lung and diaphragm cannot explain the severe phenotype of this complex CDH patient. Comparison with other described chromosome 5p and 12p anomalies indicated that half of the features presented in our patient (including the diaphragm defect) could be attributed to both chromosomal areas. In contrast, a few features such as the palpebral downslant, the broad nasal bridge, the micrognathia, microcephaly, abnormal dermatoglyphics and IUGR better fitted the 5p associated syndromes only. This study underlines the fact that low-level mosaicism can be associated with severe birth defects including CDH. The contribution of mosaicism to human diseases and specifically to congenital anomalies and spontaneous abortions becomes more and more accepted, although its phenotypic consequences are poorly described phenomena leading to counseling issues. Therefore, thorough follow-up of mosaic aberrations such as presented here is indicated in order to provide genetic counselors a more evidence based prediction of fetal prognosis in the future.
Collapse
Affiliation(s)
- Danielle Veenma
- Department of Pediatric Surgery, Erasmus-MC Sophia, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Srisupundit K, Brady PD, Devriendt K, Fryns JP, Cruz-Martinez R, Gratacos E, Deprest JA, Vermeesch JR. Targeted array comparative genomic hybridisation (array CGH) identifies genomic imbalances associated with isolated congenital diaphragmatic hernia (CDH). Prenat Diagn 2010; 30:1198-206. [DOI: 10.1002/pd.2651] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
45
|
Wat MJ, Enciso VB, Wiszniewski W, Resnick T, Bader P, Roeder ER, Freedenberg D, Brown C, Stankiewicz P, Cheung SW, Scott DA. Recurrent microdeletions of 15q25.2 are associated with increased risk of congenital diaphragmatic hernia, cognitive deficits and possibly Diamond--Blackfan anaemia. J Med Genet 2010; 47:777-81. [PMID: 20921022 DOI: 10.1136/jmg.2009.075903] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) can occur in isolation or in association with other abnormalities. We hypothesised that some cases of non-isolated CDH are caused by novel genomic disorders. METHODS AND RESULTS In a cohort of >12, 000 patients referred for array comparative genomic hybridisation testing, we identified three individuals-two of whom had CDH--with deletions involving a ∼2.3 Mb region on chromosome 15q25.2. Two additional patients with deletions of this region have been reported, including a fetus with CDH. Clinical data from these patients suggest that recurrent deletions of 15q25.2 are associated with an increased risk of developing CDH, cognitive deficits, cryptorchidism, short stature and possibly Diamond-Blackfan anaemia (DBA). Although no known CDH-associated genes are located on 15q25.2, four genes in this region--CPEB1, AP3B2, HOMER2 and HDGFRP3--have been implicated in CNS development/function and may contribute to the cognitive deficits seen in deletion patients. Deletions of RPS17 may also predispose individuals with 15q25.2 deletions to DBA and associated anomalies. CONCLUSIONS Individuals with recurrent deletions of 15q25.2 are at increased risk for CDH and other birth defects. A high index of suspicion should exist for the development of cognitive defects, anaemia and DBA-associated malignancies in these individuals.
Collapse
Affiliation(s)
- Margaret J Wat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kantarci S, Ackerman KG, Russell MN, Longoni M, Sougnez C, Noonan KM, Hatchwell E, Zhang X, Vanmarcke RP, Anyane-Yeboa K, Dickman P, Wilson J, Donahoe PK, Pober BR. Characterization of the chromosome 1q41q42.12 region, and the candidate gene DISP1, in patients with CDH. Am J Med Genet A 2010; 152A:2493-504. [PMID: 20799323 PMCID: PMC3797530 DOI: 10.1002/ajmg.a.33618] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cytogenetic and molecular cytogenetic studies demonstrate association between congenital diaphragmatic hernia (CDH) and chromosome 1q41q42 deletions. In this study, we screened a large CDH cohort (N=179) for microdeletions in this interval by the multiplex ligation-dependent probe amplification (MLPA) technique, and also sequenced two candidate genes located therein, dispatched 1 (DISP1) and homo sapiens H2.0-like homeobox (HLX). MLPA analysis verified deletions of this region in two cases, an unreported patient with a 46,XY,del(1)(q41q42.13) karyotype and a previously reported patient with a Fryns syndrome phenotype [Kantarci et al., 2006]. HLX sequencing showed a novel but maternally inherited single nucleotide variant (c.27C>G) in a patient with isolated CDH, while DISP1 sequencing revealed a mosaic de novo heterozygous substitution (c.4412C>G; p.Ala1471Gly) in a male with a left-sided Bochdalek hernia plus multiple other anomalies. Pyrosequencing demonstrated the mutant allele was present in 43%, 12%, and 4.5% of the patient's lymphoblastoid, peripheral blood lymphocytes, and saliva cells, respectively. We examined Disp1 expression at day E11.5 of mouse diaphragm formation and confirmed its presence in the pleuroperitoneal fold, as well as the nearby lung which also expresses Sonic hedgehog (Shh). Our report describes the first de novo DISP1 point mutation in a patient with complex CDH. Combining this finding with Disp1 embryonic mouse diaphragm and lung tissue expression, as well as previously reported human chromosome 1q41q42 aberrations in patients with CDH, suggests that DISP1 may warrant further consideration as a CDH candidate gene.
Collapse
Affiliation(s)
- Sibel Kantarci
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Kate G Ackerman
- Departments of Pediatrics (KGA & XZ) and Biomedical Genetics (KGA), University of Rochester, Rochester, NY
| | - Meaghan N Russell
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Mauro Longoni
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Kristin M Noonan
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Eli Hatchwell
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Xiaoyun Zhang
- Departments of Pediatrics (KGA & XZ) and Biomedical Genetics (KGA), University of Rochester, Rochester, NY
| | | | - Kwame Anyane-Yeboa
- Department of Genetics, Columbia University Medical Center, New York, NY
| | - Paul Dickman
- Department of Pathology, Phoenix Children’s Hospital, Phoenix, AZ
| | - Jay Wilson
- Department of Surgery, Children’s Hospital Boston, Boston, MA
- Harvard Medical School, Boston, MA
| | - Patricia K Donahoe
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Barbara R Pober
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
- Department of Surgery, Children’s Hospital Boston, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
47
|
Zayed H, Chao R, Moshrefi A, Lopezjimenez N, Delaney A, Chen J, Shaw GM, Slavotinek AM. A maternally inherited chromosome 18q22.1 deletion in a male with late-presenting diaphragmatic hernia and microphthalmia-evaluation of DSEL as a candidate gene for the diaphragmatic defect. Am J Med Genet A 2010; 152A:916-23. [PMID: 20358601 DOI: 10.1002/ajmg.a.33341] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using an Affymetrix GeneChip(R) Human Mapping 100K Set to study a patient with a late-presenting, right-sided diaphragmatic hernia and microphthalmia, we found a maternally inherited deletion that was 2.7 Mb in size at chromosome 18q22.1. Mapping of this deletion using fluorescence in situ hybridization revealed three deleted genes-CDH19, DSEL, and TXNDC10, and one gene that contained the deletion breakpoint, CCDC102B. We selected DSEL for further study in 125 patients with diaphragmatic hernias, as it is involved in the synthesis of decorin, a protein that is required for normal collagen formation and that is upregulated during myogenesis. We found p.Met14Ile in an unrelated patient with a late-presenting, anterior diaphragmatic hernia. In the murine diaphragm, Dsel was only weakly expressed at the time of diaphragm closure and its expression in C2C12 myoblast cells did not change significantly during myoblast differentiation, thus reducing the likelihood that the gene is involved in myogenesis of the diaphragm. Although it is possible that the 18q22.1 deletion and haploinsufficiency for DSEL contributed to the diaphragmatic defect in the patient, a definite role for DSEL and decorin in the formation of the collagen-containing, central tendon of the diaphragm has not yet been established.
Collapse
Affiliation(s)
- Hatem Zayed
- Department of Pediatrics, Division of Genetics, University of California, San Francisco, California 94143-0748, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Chao R, Nevin L, Agarwal P, Riemer J, Bai X, Delaney A, Akana M, JimenezLopez N, Bardakjian T, Schneider A, Chassaing N, Schorderet DF, FitzPatrick D, Kwok PY, Ellgaard L, Gould DB, Zhang Y, Malicki J, Baier H, Slavotinek A. A male with unilateral microphthalmia reveals a role for TMX3 in eye development. PLoS One 2010; 5:e10565. [PMID: 20485507 PMCID: PMC2868029 DOI: 10.1371/journal.pone.0010565] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 04/08/2010] [Indexed: 01/01/2023] Open
Abstract
Anophthalmia and microphthalmia are important birth defects, but their pathogenesis remains incompletely understood. We studied a patient with severe unilateral microphthalmia who had a 2.7 Mb deletion at chromosome 18q22.1 that was inherited from his mother. In-situ hybridization showed that one of the deleted genes, TMX3, was expressed in the retinal neuroepithelium and lens epithelium in the developing murine eye. We re-sequenced TMX3 in 162 patients with anophthalmia or microphthalmia, and found two missense substitutions in unrelated patients: c.116G>A, predicting p.Arg39Gln, in a male with unilateral microphthalmia and retinal coloboma, and c.322G>A, predicting p.Asp108Asn, in a female with unilateral microphthalmia and severe micrognathia. We used two antisense morpholinos targeted against the zebrafish TMX3 orthologue, zgc:110025, to examine the effects of reduced gene expression in eye development. We noted that the morphant larvae resulting from both morpholinos had significantly smaller eye sizes and reduced labeling with islet-1 antibody directed against retinal ganglion cells at 2 days post fertilization. Co-injection of human wild type TMX3 mRNA rescued the small eye phenotype obtained with both morpholinos, whereas co-injection of human TMX3(p.Arg39Gln) mutant mRNA, analogous to the mutation in the patient with microphthalmia and coloboma, did not rescue the small eye phenotype. Our results show that haploinsufficiency for TMX3 results in a small eye phenotype and represents a novel genetic cause of microphthalmia and coloboma. Future experiments to determine if other thioredoxins are important in eye morphogenesis and to clarify the mechanism of function of TMX3 in eye development are warranted.
Collapse
Affiliation(s)
- Ryan Chao
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Linda Nevin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Pooja Agarwal
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Jan Riemer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyang Bai
- Departments of Ophthalmology, Anatomy and the Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Allen Delaney
- Genome Sciences Center, BC Cancer Research Center, Vancouver, British Columbia, Canada
| | - Matthew Akana
- Department of Dermatology, Cardiovascular Research Institute and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Nelson JimenezLopez
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Tanya Bardakjian
- Clinical Genetics Division, Albert Einstein Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Adele Schneider
- Clinical Genetics Division, Albert Einstein Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Nicolas Chassaing
- Service de Génétique Médicale, Université de Toulouse, Toulouse, France
| | - Daniel F. Schorderet
- Institut de Recherche en Ophtalmologie, University of Lausanne and Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David FitzPatrick
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Pui-yan Kwok
- Department of Dermatology, Cardiovascular Research Institute and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Douglas B. Gould
- Departments of Ophthalmology, Anatomy and the Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jarema Malicki
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Herwig Baier
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
49
|
Examination of FGFRL1 as a candidate gene for diaphragmatic defects at chromosome 4p16.3 shows that Fgfrl1 null mice have reduced expression of Tpm3, sarcomere genes and Lrtm1 in the diaphragm. Hum Genet 2009; 127:325-36. [PMID: 20024584 DOI: 10.1007/s00439-009-0777-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Fgfrl1 (also known as Fgfr5; OMIM 605830) homozygous null mice have thin, amuscular diaphragms and die at birth because of diaphragm hypoplasia. FGFRL1 is located at 4p16.3, and this chromosome region can be deleted in patients with congenital diaphragmatic hernia (CDH). We examined FGFRL1 as a candidate gene for the diaphragmatic defects associated with 4p16.3 deletions and re-sequenced this gene in 54 patients with CDH. We confirmed six known coding single nucleotide polymorphisms (SNPs): c.209G > A (p.Pro20Pro), c.977G > A (p.Pro276Pro), c.1040T > C (p.Asp297Asp), c.1234C > A (p.Pro362Gln), c.1420G > T (p.Arg424Leu), and c.1540C > T (p.Pro464Leu), but we did not identify any gene mutations. We genotyped additional CDH patients for four of these six SNPs, including the three non-synonymous SNPs, to make a total of 200 chromosomes, and found that the allele frequency for the four SNPs, did not differ significantly between patients and normal controls (p > or = 0.05). We then used Affymetrix Genechip Mouse Gene 1.0 ST arrays and found eight genes with significantly reduced expression levels in the diaphragms of Fgfrl1 homozygous null mice when compared with wildtype mice-Tpm3, Fgfrl1 (p = 0.004), Myl2, Lrtm1, Myh4, Myl3, Myh7 and Hephl1. Lrtm1 is closely related to Slit3, a protein associated with herniation of the central tendon of the diaphragm in mice. The Slit proteins are known to regulate axon branching and cell migration, and inhibition of Slit3 reduces cell motility and decreases the expression of Rac and Cdc42, two genes that are essential for myoblast fusion. Further studies to determine if Lrtm1 has a similar function to Slit3 and if reduced Fgfrl1 expression can cause diaphragm hypoplasia through a mechanism involving decreased myoblast motility and/or myoblast fusion, seem indicated.
Collapse
|
50
|
Beurskens LWJE, Tibboel D, Steegers-Theunissen RÃPM. Role of nutrition, lifestyle factors, and genes in the pathogenesis of congenital diaphragmatic hernia: human and animal studies. Nutr Rev 2009; 67:719-30. [DOI: 10.1111/j.1753-4887.2009.00247.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|