1
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
2
|
Jiang Y, MacNeil LT. Simple model systems reveal conserved mechanisms of Alzheimer's disease and related tauopathies. Mol Neurodegener 2023; 18:82. [PMID: 37950311 PMCID: PMC10638731 DOI: 10.1186/s13024-023-00664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
The lack of effective therapies that slow the progression of Alzheimer's disease (AD) and related tauopathies highlights the need for a more comprehensive understanding of the fundamental cellular mechanisms underlying these diseases. Model organisms, including yeast, worms, and flies, provide simple systems with which to investigate the mechanisms of disease. The evolutionary conservation of cellular pathways regulating proteostasis and stress response in these organisms facilitates the study of genetic factors that contribute to, or protect against, neurodegeneration. Here, we review genetic modifiers of neurodegeneration and related cellular pathways identified in the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster, focusing on models of AD and related tauopathies. We further address the potential of simple model systems to better understand the fundamental mechanisms that lead to AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Lesley T MacNeil
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada.
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, 1280 Main St W, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
3
|
McMillan PJ, Benbow SJ, Uhrich R, Saxton A, Baum M, Strovas T, Wheeler JM, Baker J, Liachko NF, Keene CD, Latimer CS, Kraemer BC. Tau-RNA complexes inhibit microtubule polymerization and drive disease-relevant conformation change. Brain 2023; 146:3206-3220. [PMID: 36732296 PMCID: PMC10393409 DOI: 10.1093/brain/awad032] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease and related disorders feature neurofibrillary tangles and other neuropathological lesions composed of detergent-insoluble tau protein. In recent structural biology studies of tau proteinopathy, aggregated tau forms a distinct set of conformational variants specific to the different types of tauopathy disorders. However, the constituents driving the formation of distinct pathological tau conformations on pathway to tau-mediated neurodegeneration remain unknown. Previous work demonstrated RNA can serve as a driver of tau aggregation, and RNA associates with tau containing lesions, but tools for evaluating tau/RNA interactions remain limited. Here, we employed molecular interaction studies to measure the impact of tau/RNA binding on tau microtubule binding and aggregation. To investigate the importance of tau/RNA complexes (TRCs) in neurodegenerative disease, we raised a monoclonal antibody (TRC35) against aggregated tau/RNA complexes. We showed that native tau binds RNA with high affinity but low specificity, and tau binding to RNA competes with tau-mediated microtubule assembly functions. Tau/RNA interaction in vitro promotes the formation of higher molecular weight tau/RNA complexes, which represent an oligomeric tau species. Coexpression of tau and poly(A)45 RNA transgenes in Caenorhabditis elegans exacerbates tau-related phenotypes including neuronal dysfunction and pathological tau accumulation. TRC35 exhibits specificity for Alzheimer's disease-derived detergent-insoluble tau relative to soluble recombinant tau. Immunostaining with TRC35 labels a wide variety of pathological tau lesions in animal models of tauopathy, which are reduced in mice lacking the RNA binding protein MSUT2. TRC-positive lesions are evident in many human tauopathies including Alzheimer's disease, progressive supranuclear palsy, corticobasal degeneration and Pick's disease. We also identified ocular pharyngeal muscular dystrophy as a novel tauopathy disorder, where loss of function in the poly(A) RNA binding protein (PABPN1) causes accumulation of pathological tau in tissue from post-mortem human brain. Tau/RNA binding drives tau conformational change and aggregation inhibiting tau-mediated microtubule assembly. Our findings implicate cellular tau/RNA interactions as modulators of both normal tau function and pathological tau toxicity in tauopathy disorders and suggest feasibility for novel therapeutic approaches targeting TRCs.
Collapse
Affiliation(s)
- Pamela J McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah J Benbow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Rikki Uhrich
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Misa Baum
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Timothy Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jeanna M Wheeler
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Jeremy Baker
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C Kraemer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Kow RL, Black AH, Henderson BP, Kraemer BC. Sut-6/NIPP1 modulates tau toxicity. Hum Mol Genet 2023; 32:2292-2306. [PMID: 37000013 PMCID: PMC10321383 DOI: 10.1093/hmg/ddad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Neurodegenerative diseases exhibiting the pathological accumulation of tau such as Alzheimer's disease and related disorders still have no disease-modifying treatments and the molecular mechanisms of neurodegeneration remain unclear. To discover additional suppressor of tauopathy (sut) genes that mediate or modulate the toxicity of pathological tau, we performed a classical genetic screen using a tau transgenic Caenorhabditis elegans model. From this screen, we identified the suppressing mutation W292X in sut-6, the C. elegans homolog of human NIPP1, which truncates the C-terminal RNA-binding domain. Using CRISPR-based genome editing approaches, we generated null and additional C-terminally truncated alleles in sut-6 and found that loss of sut-6 or sut-6(W292X) suppresses tau-induced behavioral locomotor deficits, tau protein accumulation and neuron loss. The sut-6(W292X) mutation showed stronger and semi-dominant suppression of tau toxicity while sut-6 deletion acted recessively. Neuronal overexpression of SUT-6 protein did not significantly alter tau toxicity, but neuronal overexpression of SUT-6 W292X mutant protein reduced tau-mediated deficits. Epistasis studies showed tauopathy suppression by sut-6 occurs independent of other known nuclear speckle-localized suppressors of tau such as sut-2, aly-1/aly-3 and spop-1. In summary, we have shown that sut-6/NIPP1 modulates tau toxicity and found a dominant mutation in the RNA-binding domain of sut-6 which strongly suppresses tau toxicity. This suggests that altering RNA-related functions of SUT-6/NIPP1 instead of complete loss of SUT-6/NIPP1 will provide the strongest suppression of tau.
Collapse
Affiliation(s)
- R L Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - A H Black
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - B P Henderson
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - B C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Psychiatry and Behavioral Sciences
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules 2023; 13:biom13030478. [PMID: 36979413 PMCID: PMC10046667 DOI: 10.3390/biom13030478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/18/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In recent years, advances in science and technology have improved our quality of life, enabling us to tackle diseases and increase human life expectancy. However, longevity is accompanied by an accretion in the frequency of age-related neurodegenerative diseases, creating a growing burden, with pervasive social impact for human societies. The cost of managing such chronic disorders and the lack of effective treatments highlight the need to decipher their molecular and genetic underpinnings, in order to discover new therapeutic targets. In this effort, the nematode Caenorhabditis elegans serves as a powerful tool to recapitulate several disease-related phenotypes and provides a highly malleable genetic model that allows the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screens. Its anatomical transparency allows the use of co-expressed fluorescent proteins to track the progress of neurodegeneration. Moreover, the functional conservation of neuronal processes, along with the high homology between nematode and human genomes, render C. elegans extremely suitable for the study of human neurodegenerative disorders. This review describes nematode models used to study neurodegeneration and underscores their contribution in the effort to dissect the molecular basis of human diseases and identify novel gene targets with therapeutic potential.
Collapse
|
6
|
Aquino Nunez W, Combs B, Gamblin TC, Ackley BD. Age-dependent accumulation of tau aggregation in Caenorhabditis elegans. FRONTIERS IN AGING 2022; 3:928574. [PMID: 36062211 PMCID: PMC9437221 DOI: 10.3389/fragi.2022.928574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Aging is the primary risk factor for Alzheimer's disease (AD) and related disorders (ADRDs). Tau aggregation is a hallmark of AD and other tauopathies. Even in normal aging, tau aggregation is found in brains, but in disease states, significantly more aggregated tau is present in brain regions demonstrating synaptic degeneration and neuronal loss. It is unclear how tau aggregation and aging interact to give rise to the phenotypes observed in disease states. Most AD/ADRD animal models have focused on late stages, after significant tau aggregation has occurred. There are fewer where we can observe the early aggregation events and progression during aging. In an attempt to address this gap, we created C. elegans models expressing a GFP-tagged version of the human tau protein. Here we examined how tau-gfp behaved during aging, comparing wild-type tau (hTau40), a disease-associated mutation (P301S), and an aggregation-prone variant (3PO). We measured age-dependent changes in GFP intensity and correlated those changes to normal aging in the nematode. We found differences in tau stability and accumulation depending on the tau variant expressed. hTau40GFP and P301SGFP were localized to axons and cell bodies, while 3POGFP was more concentrated within cell bodies. Expression of 3POGFP resulted in decreased lifespan and variations in locomotor rate, consistent with a pathological effect. Finally, we found that the human tau interacted genetically with the C. elegans ortholog of human tau, ptl-1, where the loss of ptl-1 significantly accelerated the time to death in animals expressing 3PO.
Collapse
Affiliation(s)
- Wendy Aquino Nunez
- Laboratory Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
| | - Benjamin Combs
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, MI, United States
| | - T. Chris Gamblin
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas San Antonio, San Antonio, TX, United States
| | - Brian D. Ackley
- Laboratory Department of Molecular Biosciences, The University of Kansas, Lawrence, KS, United States
| |
Collapse
|
7
|
Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111166. [PMID: 35176489 DOI: 10.1016/j.cbpa.2022.111166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
As human life expectancy increases, neurodegenerative diseases present a growing public health threat, for which there are currently few effective treatments. There is an urgent need to understand the molecular and genetic underpinnings of these disorders so new therapeutic targets can be identified. Here we present the argument that the simple nematode worm Caenorhabditis elegans is a powerful tool to rapidly study neurodegenerative disorders due to their short lifespan and vast array of genetic tools, which can be combined with characterization of conserved neuronal processes and behavior orthologous to those disrupted in human disease. We review how pre-existing C. elegans models provide insight into human neurological disease as well as an overview of current tools available to study neurodegenerative diseases in the worm, with an emphasis on genetics and behavior. We also discuss open questions that C. elegans may be particularly well suited for in future studies and how worms will be a valuable preclinical model to better understand these devastating neurological disorders.
Collapse
|
8
|
Latimer CS, Stair JG, Hincks JC, Currey HN, Bird TD, Keene CD, Kraemer BC, Liachko NF. TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans. Dis Model Mech 2022; 15:275149. [PMID: 35178571 PMCID: PMC9066518 DOI: 10.1242/dmm.049323] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although amyloid β (Aβ) and tau aggregates define the neuropathology of Alzheimer's disease (AD), TDP-43 has recently emerged as a co-morbid pathology in more than half of patients with AD. Individuals with concomitant Aβ, tau and TDP-43 pathology experience accelerated cognitive decline and worsened brain atrophy, but the molecular mechanisms of TDP-43 neurotoxicity in AD are unknown. Synergistic interactions among Aβ, tau and TDP-43 may be responsible for worsened disease outcomes. To study the biology underlying this process, we have developed new models of protein co-morbidity using the simple animal Caenorhabditis elegans. We demonstrate that TDP-43 specifically enhances tau but not Aβ neurotoxicity, resulting in neuronal dysfunction, pathological tau accumulation and selective neurodegeneration. Furthermore, we find that synergism between tau and TDP-43 is rescued by loss-of-function of the robust tau modifier sut-2. Our results implicate enhanced tau neurotoxicity as the primary driver underlying worsened clinical and neuropathological phenotypes in AD with TDP-43 pathology, and identify cell-type specific sensitivities to co-morbid tau and TDP-43. Determining the relationship between co-morbid TDP-43 and tau is crucial to understand, and ultimately treat, mixed pathology AD.
Collapse
Affiliation(s)
- Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joshua C. Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather N. Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Thomas D. Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Neurology, University of Washington, Seattle, WA 98104, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Author for correspondence ()
| |
Collapse
|
9
|
Kow RL, Black AH, Saxton AD, Liachko NF, Kraemer BC. Loss of aly/ALYREF suppresses toxicity in both tau and TDP-43 models of neurodegeneration. GeroScience 2022; 44:747-761. [PMID: 35122183 PMCID: PMC9135935 DOI: 10.1007/s11357-022-00526-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/27/2022] [Indexed: 11/04/2022] Open
Abstract
Neurodegenerative diseases with tau pathology, or tauopathies, include Alzheimer's disease and related dementia disorders. Previous work has shown that loss of the poly(A) RNA-binding protein gene sut-2/MSUT2 strongly suppressed tauopathy in Caenorhabditis elegans, human cell culture, and mouse models of tauopathy. However, the mechanism of suppression is still unclear. Recent work has shown that MSUT2 protein interacts with the THO complex and ALYREF, which are components of the mRNA nuclear export complex. Additionally, previous work showed ALYREF homolog Ref1 modulates TDP-43 and G4C2 toxicity in Drosophila melanogaster models. We used transgenic C. elegans models of tau or TDP-43 toxicity to investigate the effects of loss of ALYREF function on tau and TDP-43 toxicity. In C. elegans, three genes are homologous to human ALYREF: aly-1, aly-2, and aly-3. We found that loss of C. elegans aly gene function, especially loss of both aly-2 and aly-3, suppressed tau-induced toxic phenotypes. Loss of aly-2 and aly-3 was also able to suppress TDP-43-induced locomotor behavior deficits. However, loss of aly-2 and aly-3 had divergent effects on mRNA and protein levels as total tau protein levels were reduced while mRNA levels were increased, but no significant effects were seen on total TDP-43 protein or mRNA levels. Our results suggest that although aly genes modulate both tau and TDP-43-induced toxicity phenotypes, the molecular mechanisms of suppression are different and separated from impacts on mRNA and protein levels. Altogether, this study highlights the importance of elucidating RNA-related mechanisms in both tau and TDP-43-induced toxicity.
Collapse
Affiliation(s)
- Rebecca L Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
| | - Aristide H Black
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, 98104, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
10
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
11
|
Giong HK, Subramanian M, Yu K, Lee JS. Non-Rodent Genetic Animal Models for Studying Tauopathy: Review of Drosophila, Zebrafish, and C. elegans Models. Int J Mol Sci 2021; 22:8465. [PMID: 34445171 PMCID: PMC8395099 DOI: 10.3390/ijms22168465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Tauopathy refers to a group of progressive neurodegenerative diseases, including frontotemporal lobar degeneration and Alzheimer's disease, which correlate with the malfunction of microtubule-associated protein Tau (MAPT) due to abnormal hyperphosphorylation, leading to the formation of intracellular aggregates in the brain. Despite extensive efforts to understand tauopathy and develop an efficient therapy, our knowledge is still far from complete. To find a solution for this group of devastating diseases, several animal models that mimic diverse disease phenotypes of tauopathy have been developed. Rodents are the dominating tauopathy models because of their similarity to humans and established disease lines, as well as experimental approaches. However, powerful genetic animal models using Drosophila, zebrafish, and C. elegans have also been developed for modeling tauopathy and have contributed to understanding the pathophysiology of tauopathy. The success of these models stems from the short lifespans, versatile genetic tools, real-time in-vivo imaging, low maintenance costs, and the capability for high-throughput screening. In this review, we summarize the main findings on mechanisms of tauopathy and discuss the current tauopathy models of these non-rodent genetic animals, highlighting their key advantages and limitations in tauopathy research.
Collapse
Affiliation(s)
- Hoi-Khoanh Giong
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Manivannan Subramanian
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kweon Yu
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jeong-Soo Lee
- Disease Target Structure Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.-K.G.); (M.S.)
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
- Dementia DTC R&D Convergence Program, KIST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
12
|
McMillan PJ, Strovas TJ, Baum M, Mitchell BK, Eck RJ, Hendricks N, Wheeler JM, Latimer CS, Keene CD, Kraemer BC. Pathological tau drives ectopic nuclear speckle scaffold protein SRRM2 accumulation in neuron cytoplasm in Alzheimer's disease. Acta Neuropathol Commun 2021; 9:117. [PMID: 34187600 PMCID: PMC8243890 DOI: 10.1186/s40478-021-01219-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/19/2023] Open
Abstract
Several conserved nuclear RNA binding proteins (sut-1, sut-2, and parn-2) control tau aggregation and toxicity in C. elegans, mice, and human cells. MSUT2 protein normally resides in nuclear speckles, membraneless organelles composed of phase-separated RNAs and RNA-binding proteins that mediate critical steps in mRNA processing including mRNA splicing. We used human pathological tissue and transgenic mice to identify Alzheimer’s disease-specific cellular changes related to nuclear speckles. We observed that nuclear speckle constituent scaffold protein SRRM2 is mislocalized and accumulates in cytoplasmic lesions in AD brain tissue. Furthermore, progression of tauopathy in transgenic mice is accompanied by increasing mislocalization of SRRM2 from the neuronal nucleus to the soma. In AD brain tissue, SRRM2 mislocalization associates with increased severity of pathological tau deposition. These findings suggest potential mechanisms by which pathological tau impacts nuclear speckle function in diverse organisms ranging from C. elegans to mice to humans. Future translational studies aimed at restoring nuclear speckle homeostasis may provide novel candidate therapeutic targets for pharmacological intervention.
Collapse
|
13
|
Kow RL, Strovas TJ, McMillan PJ, Jacobi AM, Behlke MA, Saxton AD, Latimer CS, Keene CD, Kraemer BC. Distinct Poly(A) nucleases have differential impact on sut-2 dependent tauopathy phenotypes. Neurobiol Dis 2021; 147:105148. [PMID: 33184027 PMCID: PMC8092974 DOI: 10.1016/j.nbd.2020.105148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/03/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Aging drives pathological accumulation of proteins such as tau, causing neurodegenerative dementia disorders like Alzheimer's disease. Previously we showed loss of function mutations in the gene encoding the poly(A) RNA binding protein SUT-2/MSUT2 suppress tau-mediated neurotoxicity in C. elegans neurons, cultured human cells, and mouse brain, while loss of PABPN1 had the opposite effect (Wheeler et al., 2019). Here we found that blocking poly(A) tail extension with cordycepin exacerbates tauopathy in cultured human cells, which is rescued by MSUT2 knockdown. To further investigate the molecular mechanisms of poly(A) RNA-mediated tauopathy suppression, we examined whether genes encoding poly(A) nucleases also modulated tauopathy in a C. elegans tauopathy model. We found that loss of function mutations in C. elegans ccr-4 and panl-2 genes enhanced tauopathy phenotypes in tau transgenic C. elegans while loss of parn-2 partially suppressed tauopathy. In addition, loss of parn-1 blocked tauopathy suppression by loss of parn-2. Epistasis analysis showed that sut-2 loss of function suppressed the tauopathy enhancement caused by loss of ccr-4 and SUT-2 overexpression exacerbated tauopathy even in the presence of parn-2 loss of function in tau transgenic C. elegans. Thus sut-2 modulation of tauopathy is epistatic to ccr-4 and parn-2. We found that human deadenylases do not colocalize with human MSUT2 in nuclear speckles; however, expression levels of TOE1, the homolog of parn-2, correlated with that of MSUT2 in post-mortem Alzheimer's disease patient brains. Alzheimer's disease patients with low TOE1 levels exhibited significantly increased pathological tau deposition and loss of NeuN staining. Taken together, this work suggests suppressing tauopathy cannot be accomplished by simply extending poly(A) tails, but rather a more complex relationship exists between tau, sut-2/MSUT2 function, and control of poly(A) RNA metabolism, and that parn-2/TOE1 may be altered in tauopathy in a similar way.
Collapse
Affiliation(s)
- Rebecca L. Kow
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Timothy J. Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA
| | - Pamela J. McMillan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | - Aleen D. Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA
| | - Caitlin S. Latimer
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - C. Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health, Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Department of Pathology, University of Washington, Seattle, WA 98195, USA,Corresponding author at: Seattle Veterans Affairs Puget Sound Health Care System, S182, 1660 South Columbian Way, Seattle, WA 98108, USA. (B.C. Kraemer)
| |
Collapse
|
14
|
Vilasboas-Campos D, Costa MD, Teixeira-Castro A, Rios R, Silva FG, Bessa C, Dias ACP, Maciel P. Neurotherapeutic effect of Hyptis spp. leaf extracts in Caenorhabditis elegans models of tauopathy and polyglutamine disease: Role of the glutathione redox cycle. Free Radic Biol Med 2021; 162:202-215. [PMID: 33096249 DOI: 10.1016/j.freeradbiomed.2020.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 01/19/2023]
Abstract
Hyptis suaveolens (HS), Hyptis pectinata (HP) and Hyptis marrubioides (HM) are plants used in folk medicine for treatment of several diseases. Here, we tested the in vivo antioxidant and neuroprotective potential of methanolic extracts from these plants, containing several rosmarinic acid derivatives and isoquercetin. In C. elegans, HS, HP and HM leaf extracts enhanced the antioxidant responses through the induction of specific antioxidant enzymes and demonstrated neurotherapeutic potential in transgenic models of genetically determined human neurodegenerative diseases - Frontotemporal dementia with parkinsonism linked to chromosome 17 and Machado-Joseph disease. Chronic treatment of disease models with HS, HP and HM leaf extracts improved the animals' motor function and increased their tolerance to an oxidative insult. The restorative effect of HM extract in motor performance of both disease models required the presence of glutathione reductase (gsr-1), an enzyme that assures the glutathione redox cycle, highlighting the role of this pathway and unveiling a common candidate therapeutic target for these diseases. Our findings strengthen the relevance of plant-derived bioactive compound discovery for neurodegenerative disorders that remain without effective treatment.
Collapse
Affiliation(s)
- Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal; Biology Department - University of Minho, School of Sciences (DB-ECUM), Campus de Gualtar, 4710-057, Braga, Portugal
| | - Marta Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rejaine Rios
- Biology Department - University of Minho, School of Sciences (DB-ECUM), Campus de Gualtar, 4710-057, Braga, Portugal; Federal Institute of Education, Science and Technology Goiano, Biology Departament, Campus Rio Verde, Goiás, Brazil
| | - Fabiano Guimarães Silva
- Federal Institute of Education, Science and Technology Goiano, Biology Departament, Campus Rio Verde, Goiás, Brazil
| | - Carlos Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Alberto C P Dias
- Biology Department - University of Minho, School of Sciences (DB-ECUM), Campus de Gualtar, 4710-057, Braga, Portugal; Centre of Molecular and Environmental Biology (CBMA) - University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; CITAB-UM, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
15
|
Caldwell KA, Willicott CW, Caldwell GA. Modeling neurodegeneration in Caenorhabditis elegans. Dis Model Mech 2020; 13:13/10/dmm046110. [PMID: 33106318 PMCID: PMC7648605 DOI: 10.1242/dmm.046110] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The global burden of neurodegenerative diseases underscores the urgent need for innovative strategies to define new drug targets and disease-modifying factors. The nematode Caenorhabditis elegans has served as the experimental subject for multiple transformative discoveries that have redefined our understanding of biology for ∼60 years. More recently, the considerable attributes of C. elegans have been applied to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease. Transgenic nematodes with genes encoding normal and disease variants of proteins at the single- or multi-copy level under neuronal-specific promoters limits expression to select neuronal subtypes. The anatomical transparency of C. elegans affords the use of co-expressed fluorescent proteins to follow the progression of neurodegeneration as the animals age. Significantly, a completely defined connectome facilitates detailed understanding of the impact of neurodegeneration on organismal health and offers a unique capacity to accurately link cell death with behavioral dysfunction or phenotypic variation in vivo. Moreover, chemical treatments, as well as forward and reverse genetic screening, hasten the identification of modifiers that alter neurodegeneration. When combined, these chemical-genetic analyses establish critical threshold states to enhance or reduce cellular stress for dissecting associated pathways. Furthermore, C. elegans can rapidly reveal whether lifespan or healthspan factor into neurodegenerative processes. Here, we outline the methodologies employed to investigate neurodegeneration in C. elegans and highlight numerous studies that exemplify its utility as a pre-clinical intermediary to expedite and inform mammalian translational research. Summary: While unsurpassed as an experimental system for fundamental biology, Caenorhabditis elegans remains undervalued for its translational potential. Here, we highlight significant outcomes from, and resources available for, C. elegans-based research into neurodegenerative disorders.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA .,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey W Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Wheeler JM, McMillan P, Strovas TJ, Liachko NF, Amlie-Wolf A, Kow RL, Klein RL, Szot P, Robinson L, Guthrie C, Saxton A, Kanaan NM, Raskind M, Peskind E, Trojanowski JQ, Lee VMY, Wang LS, Keene CD, Bird T, Schellenberg GD, Kraemer B. Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Sci Transl Med 2020; 11:11/523/eaao6545. [PMID: 31852801 DOI: 10.1126/scitranslmed.aao6545] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Brain lesions composed of pathological tau help to drive neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Here, we identified the mammalian suppressor of tauopathy 2 (MSUT2) gene as a modifier of susceptibility to tau toxicity in two mouse models of tauopathy. Transgenic PS19 mice overexpressing tau, a model of AD, and lacking the Msut2 gene exhibited decreased learning and memory deficits, reduced neurodegeneration, and reduced accumulation of pathological tau compared to PS19 tau transgenic mice expressing Msut2 Conversely, Msut2 overexpression in 4RTauTg2652 tau transgenic mice increased pathological tau deposition and promoted the neuroinflammatory response to pathological tau. MSUT2 is a poly(A) RNA binding protein that antagonizes the canonical nuclear poly(A) binding protein PABPN1. In individuals with AD, MSUT2 abundance in postmortem brain tissue predicted an earlier age of disease onset. Postmortem AD brain tissue samples with normal amounts of MSUT2 showed elevated neuroinflammation associated with tau pathology. We observed co-depletion of MSUT2 and PABPN1 in postmortem brain samples from a subset of AD cases with higher tau burden and increased neuronal loss. This suggested that MSUT2 and PABPN1 may act together in a macromolecular complex bound to poly(A) RNA. Although MSUT2 and PABPN1 had opposing effects on both tau aggregation and poly(A) RNA tail length, we found that increased poly(A) tail length did not ameliorate tauopathy, implicating other functions of the MSUT2/PABPN1 complex in tau proteostasis. Our findings implicate poly(A) RNA binding proteins both as modulators of pathological tau toxicity in AD and as potential molecular targets for interventions to slow neurodegeneration in tauopathies.
Collapse
Affiliation(s)
- Jeanna M Wheeler
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Pamela McMillan
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Timothy J Strovas
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Alexandre Amlie-Wolf
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca L Kow
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - Ronald L Klein
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Patricia Szot
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Linda Robinson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Chris Guthrie
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Aleen Saxton
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicholas M Kanaan
- Department of Translational Sciences and Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Murray Raskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Elaine Peskind
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Thomas Bird
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA. .,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Liang JJH, McKinnon IA, Rankin CH. The contribution of C. elegans neurogenetics to understanding neurodegenerative diseases. J Neurogenet 2020; 34:527-548. [DOI: 10.1080/01677063.2020.1803302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joseph J. H. Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Issa A. McKinnon
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Catharine H. Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
18
|
Wong SQ, Kumar AV, Mills J, Lapierre LR. C. elegans to model autophagy-related human disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:325-373. [PMID: 32620247 DOI: 10.1016/bs.pmbts.2020.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly conserved degradation process that clears damaged intracellular macromolecules and organelles in order to maintain cellular health. Dysfunctional autophagy is fundamentally linked to the development of various human disorders and pathologies. The use of the nematode Caenorhabditis elegans as a model system to study autophagy has improved our understanding of its regulation and function in organismal physiology. Here, we review the genetic, functional, and regulatory conservation of the autophagy pathway in C. elegans and we describe tools to quantify and study the autophagy process in this incredibly useful model organism. We further discuss how these nematodes have been modified to model autophagy-related human diseases and underscore the important insights obtained from such models. Altogether, we highlight the strengths of C. elegans as an exceptional tool to understand the genetic and molecular foundations underlying autophagy-related human diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Anita V Kumar
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Joslyn Mills
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States
| | - Louis R Lapierre
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States.
| |
Collapse
|
19
|
Saldi TK, Gonzales P, Garrido-Lecca A, Dostal V, Roberts CM, Petrucelli L, Link CD. The Caenorhabditis elegans Ortholog of TDP-43 Regulates the Chromatin Localization of the Heterochromatin Protein 1 Homolog HPL-2. Mol Cell Biol 2018; 38:e00668-17. [PMID: 29760282 PMCID: PMC6048318 DOI: 10.1128/mcb.00668-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/04/2018] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
TDP-1 is the Caenorhabditis elegans ortholog of mammalian TDP-43, which is strongly implicated in the etiology of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). We discovered that deletion of the tdp-1 gene results in enhanced nuclear RNA interference (RNAi). As nuclear RNAi in C. elegans involves chromatin changes moderated by HPL-2, a homolog of heterochromatin protein 1 (HP1), we investigated the interaction of TDP-1 and HPL-2. We found that TDP-1 and HPL-2 interact directly and that loss of TDP-1 dramatically alters the chromatin association of HPL-2. We showed previously that deletion of the tdp-1 gene results in transcriptional alterations and the accumulation of double-stranded RNA (dsRNA). These molecular changes are replicated in an hpl-2 deletion strain, consistent with HPL-2 acting in consort with TDP-1 to modulate these aspects of RNA metabolism. Our observations identify novel mechanisms by which HP1 homologs can be recruited to chromatin and by which nuclear depletion of human TDP-43 may lead to changes in RNA metabolism that are relevant to disease.
Collapse
Affiliation(s)
- Tassa K Saldi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Patrick Gonzales
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Alfonso Garrido-Lecca
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Vishantie Dostal
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | | | | | - Christopher D Link
- Integrative Physiology, University of Colorado, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
20
|
Wong SQ, Pontifex MG, Phelan MM, Pidathala C, Kraemer BC, Barclay JW, Berry NG, O'Neill PM, Burgoyne RD, Morgan A. α-Methyl-α-phenylsuccinimide ameliorates neurodegeneration in a C. elegans model of TDP-43 proteinopathy. Neurobiol Dis 2018; 118:40-54. [PMID: 29940336 PMCID: PMC6097874 DOI: 10.1016/j.nbd.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/15/2018] [Indexed: 12/12/2022] Open
Abstract
The antiepileptic drug ethosuximide has recently been shown to be neuroprotective in various Caenorhabditis elegans and rodent neurodegeneration models. It is therefore a promising repurposing candidate for the treatment of multiple neurodegenerative diseases. However, high concentrations of the drug are required for its protective effects in animal models, which may impact on its translational potential and impede the identification of its molecular mechanism of action. Therefore, we set out to develop more potent neuroprotective lead compounds based on ethosuximide as a starting scaffold. Chemoinformatic approaches were used to identify compounds with structural similarity to ethosuximide and to prioritise these based on good predicated blood-brain barrier permeability and C. elegans bioaccumulation properties. Selected compounds were initially screened for anti-convulsant activity in a C. elegans pentylenetetrazol-induced seizure assay, as a rapid primary readout of bioactivity; and then assessed for neuroprotective properties in a C. elegans TDP-43 proteinopathy model based on pan-neuronal expression of human A315T mutant TDP-43. The most potent compound screened, α-methyl-α-phenylsuccinimide (MPS), ameliorated the locomotion defects and extended the shortened lifespan of TDP-43 mutant worms. MPS also directly protected against neurodegeneration by reducing the number of neuronal breaks and cell body losses in GFP-labelled GABAergic motor neurons. Importantly, optimal neuroprotection was exhibited by external application of 50 μM MPS, compared to 8 mM for ethosuximide. This greater potency of MPS was not due to bioaccumulation to higher internal levels within the worm, based on 1H-nuclear magnetic resonance analysis. Like ethosuximide, the activity of MPS was abolished by mutation of the evolutionarily conserved FOXO transcription factor, daf-16, suggesting that both compounds act via the same neuroprotective pathway(s). In conclusion, we have revealed a novel neuroprotective activity of MPS that is >100-fold more potent than ethosuximide. This increased potency will facilitate future biochemical studies to identify the direct molecular target(s) of both compounds, as we have shown here that they share a common downstream DAF-16-dependent mechanism of action. Furthermore, MPS is the active metabolite of another approved antiepileptic drug, methsuximide. Therefore, methsuximide may have repurposing potential for treatment of TDP-43 proteinopathies and possibly other human neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Quan Wong
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Matthew G Pontifex
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Marie M Phelan
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | | | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Seattle Veterans Affairs Puget Sound Health Care System, University of Washington Department of Medicine, Seattle, WA 98108, USA.
| | - Jeff W Barclay
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Neil G Berry
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, UK.
| | - Robert D Burgoyne
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
21
|
Shen P, Yue Y, Zheng J, Park Y. Caenorhabditis elegans: A Convenient In Vivo Model for Assessing the Impact of Food Bioactive Compounds on Obesity, Aging, and Alzheimer's Disease. Annu Rev Food Sci Technol 2018; 9:1-22. [DOI: 10.1146/annurev-food-030117-012709] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peiyi Shen
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Yiren Yue
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
22
|
Griffin EF, Caldwell KA, Caldwell GA. Genetic and Pharmacological Discovery for Alzheimer's Disease Using Caenorhabditis elegans. ACS Chem Neurosci 2017; 8:2596-2606. [PMID: 29022701 DOI: 10.1021/acschemneuro.7b00361] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The societal burden presented by Alzheimer's disease warrants both innovative and expedient means by which its underlying molecular causes can be both identified and mechanistically exploited to discern novel therapeutic targets and strategies. The conserved characteristics, defined neuroanatomy, and advanced technological application of Caenorhabditis elegans render this metazoan an unmatched tool for probing neurotoxic factors. In addition, its short lifespan and importance in the field of aging make it an ideal organism for modeling age-related neurodegenerative disease. As such, this nematode system has demonstrated its value in predicting functional modifiers of human neurodegenerative disorders. Here, we review how C. elegans has been utilized to model Alzheimer's disease. Specifically, we present how the causative neurotoxic peptides, amyloid-β and tau, contribute to disease-like neurodegeneration in C. elegans and how they translate to human disease. Furthermore, we describe how a variety of transgenic animal strains, each with distinct utility, have been used to identify both genetic and pharmacological modifiers of toxicity in C. elegans. As technological advances improve the prospects for intervention, the rapidity, unparalleled accuracy, and scale that C. elegans offers researchers for defining functional modifiers of neurodegeneration should speed the discovery of improved therapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward F. Griffin
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Kim A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Guy A. Caldwell
- Department
of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama 35487, United States
- Departments
of Neurology and Neurobiology, Center for Neurodegeneration and Experimental
Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, Alabama 35294, United States
| |
Collapse
|
23
|
Pir GJ, Choudhary B, Mandelkow E. Caenorhabditis elegans models of tauopathy. FASEB J 2017; 31:5137-5148. [PMID: 29191965 DOI: 10.1096/fj.201701007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022]
Abstract
One of the hallmarks of the tauopathies, which include the neurodegenerative disorders, such as Alzheimer disease (AD), corticobasal degeneration, frontotemporal dementia, and progressive supranuclear palsy (PSP), is the abnormal accumulation of post-translationally modified, insoluble tau. The result is a loss of neurons, decreased mental function, and complete dependence of patients on others. Aggregation of tau, which under physiologic conditions is a highly soluble protein, is thought to be central to the pathogenesis of these diseases. Indeed one of the strongest lines of evidence is the MAPT gene polymorphisms that lead to the familial forms of tauopathy. Extensive research in animal models over the years has contributed some of the most important findings regarding the pathogenesis of these diseases. Despite this, the precise molecular mechanisms that lead to abnormal tau folding, accumulation, and spreading remain unknown. Owing to the fact that most of the biochemical pathways are conserved, Caenorhabditis elegans provides an alternative approach to identify cellular mechanisms and druggable genes that operate in such disorders. Many human genes implicated in neurodegenerative diseases have counterparts in C. elegans, making it an excellent model in which to study their pathogenesis. In this article, we review some of the important findings gained from C. elegans tauopathy models.-Pir, G. J., Choudhary, B., Mandelkow, E. Caenorhabditiselegans models of tauopathy.
Collapse
Affiliation(s)
- Ghulam Jeelani Pir
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; .,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany
| | - Bikash Choudhary
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Max-Planck-Institute for Metabolism Research-Cologne, Hamburg, Germany.,Caesar Research Center, Bonn, Germany
| |
Collapse
|
24
|
Flores-Ponce M, Vallebueno-Estrada M, González-Orozco E, Ramos-Aboites HE, García-Chávez JN, Simões N, Montiel R. Signatures of co-evolutionary host-pathogen interactions in the genome of the entomopathogenic nematode Steinernema carpocapsae. BMC Evol Biol 2017; 17:108. [PMID: 28446150 PMCID: PMC5405473 DOI: 10.1186/s12862-017-0935-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/13/2017] [Indexed: 11/22/2022] Open
Abstract
Background The entomopathogenic nematode Steinernema carpocapsae has been used worldwide as a biocontrol agent for insect pests, making it an interesting model for understanding parasite-host interactions. Two models propose that these interactions are co-evolutionary processes in such a way that equilibrium is never reached. In one model, known as “arms race”, new alleles in relevant genes are fixed in both host and pathogens by directional positive selection, producing recurrent and alternating selective sweeps. In the other model, known as“trench warfare”, persistent dynamic fluctuations in allele frequencies are sustained by balancing selection. There are some examples of genes evolving according to both models, however, it is not clear to what extent these interactions might alter genome-level evolutionary patterns and intraspecific diversity. Here we investigate some of these aspects by studying genomic variation in S. carpocapsae and other pathogenic and free-living nematodes from phylogenetic clades IV and V. Results To look for signatures of an arms-race dynamic, we conducted massive scans to detect directional positive selection in interspecific data. In free-living nematodes, we detected a significantly higher proportion of genes with sites under positive selection than in parasitic nematodes. However, in these genes, we found more enriched Gene Ontology terms in parasites. To detect possible effects of dynamic polymorphisms interactions we looked for signatures of balancing selection in intraspecific genomic data. The observed distribution of Tajima’s D values in S. carpocapsae was more skewed to positive values and significantly different from the observed distribution in the free-living Caenorhabditis briggsae. Also, the proportion of significant positive values of Tajima’s D was elevated in genes that were differentially expressed after induction with insect tissues as compared to both non-differentially expressed genes and the global scan. Conclusions Our study provides a first portrait of the effects that lifestyle might have in shaping the patterns of selection at the genomic level. An arms-race between hosts and pathogens seems to be affecting specific genetic functions but not necessarily increasing the number of positively selected genes. Trench warfare dynamics seem to be acting more generally in the genome, likely focusing on genes responding to the interaction, rather than targeting specific genetic functions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0935-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mitzi Flores-Ponce
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Miguel Vallebueno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Eduardo González-Orozco
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Hilda E Ramos-Aboites
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - J Noé García-Chávez
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico
| | - Nelson Simões
- CIRN/Departamento de Biologia, Universidade dos Açores, Rua Mãe de Deus, 13, 9500-321, Ponta Delgada, S. Miguel - Açores, Portugal
| | - Rafael Montiel
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 9.6 Libramiento Norte Carretera Irapuato - León, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
25
|
Pir GJ, Choudhary B, Mandelkow E, Mandelkow EM. Tau mutant A152T, a risk factor for FTD/PSP, induces neuronal dysfunction and reduced lifespan independently of aggregation in a C. elegans Tauopathy model. Mol Neurodegener 2016; 11:33. [PMID: 27118310 PMCID: PMC4847334 DOI: 10.1186/s13024-016-0096-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/08/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A certain number of mutations in the Microtubule-Associated Protein Tau (MAPT) gene have been identified in individuals with high risk to develop neurodegenerative diseases, collectively called tauopathies. The mutation A152TMAPT was recently identified in patients diagnosed with frontotemporal spectrum disorders, including Progressive Supranuclear Palsy (PSP), Frontotemporal Dementia (FTD), Corticobasal Degeneration (CBD), and Alzheimer disease (AD). The A152TMAPT mutation is unusual since it lies within the N-terminal region of Tau protein, far outside the repeat domain that is responsible for physiological Tau-microtubule interactions and pathological Tau aggregation. How A152TMAPT causes neurodegeneration remains elusive. RESULTS To understand the pathological consequences of this mutation, here we present a new Caenorhabditis elegans model expressing the mutant A152TMAPT in neurons. While expression of full-length wild-type human tau (Tau(wt), 2N4R) in C. elegans neurons induces a progressive mild uncoordinated locomotion in a dose-dependent manner, mutant tau (Tau(A152T), 2N4R) induces a severe paralysis accompanied by acute neuronal dysfunction. Mutant Tau(A152T) worms display morphological changes in neurons reminiscent of neuronal aging and a shortened life-span. Moreover, mutant A152T overexpressing neurons show mislocalization of pre-synaptic proteins as well as distorted mitochondrial distribution and trafficking. Strikingly, mutant tau-transgenic worms do not accumulate insoluble tau aggregates, although soluble oligomeric tau was detected. In addition, the full-length A152T-tau remains in a pathological conformation that accounts for its toxicity. Moreover, the N-terminal region of tau is not toxic per se, despite the fact that it harbours the A152T mutation, but requires the C-terminal region including the repeat domain to move into the neuronal processes in order to execute the pathology. CONCLUSION In summary, we show that the mutant Tau(A152T) induces neuronal dysfunction, morphological alterations in neurons akin to aging phenotype and reduced life-span independently of aggregation. This comprehensive description of the pathology due to Tau(A152T) opens up multiple possibilities to identify cellular targets involved in the Tau-dependent pathology for a potential therapeutic intervention.
Collapse
Affiliation(s)
- Ghulam Jeelani Pir
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| | - Bikash Choudhary
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
- Caesar Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Eva-Maria Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Caesar Research Center, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
- Max-Planck-Institute for Metabolism Research (Cologne), Hamburg Outstation, c/o DESY, Notkestrasse 85, 22607, Hamburg, Germany.
| |
Collapse
|
26
|
Abstract
Tau is a microtubule-associated protein that has a role in stabilizing neuronal microtubules and thus in promoting axonal outgrowth. Structurally, tau is a natively unfolded protein, is highly soluble and shows little tendency for aggregation. However, tau aggregation is characteristic of several neurodegenerative diseases known as tauopathies. The mechanisms underlying tau pathology and tau-mediated neurodegeneration are debated, but considerable progress has been made in the field of tau research in recent years, including the identification of new physiological roles for tau in the brain. Here, we review the expression, post-translational modifications and functions of tau in physiology and in pathophysiology.
Collapse
Affiliation(s)
- Yipeng Wang
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.,CAESAR Research Center, 53175 Bonn, Germany.,Max Planck Institute for Metabolism Research, Hamburg Outstation, c/o DESY, Hamburg, Germany
| |
Collapse
|
27
|
Dujardin S, Colin M, Buée L. Invited review: Animal models of tauopathies and their implications for research/translation into the clinic. Neuropathol Appl Neurobiol 2015; 41:59-80. [DOI: 10.1111/nan.12200] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/23/2014] [Indexed: 02/01/2023]
Affiliation(s)
- Simon Dujardin
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| | - Morvane Colin
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| | - Luc Buée
- Inserm, UMR1172 Jean-Pierre Aubert Research Centre; Lille France
- Faculté de Médecine; Université de Lille; France
- Memory Clinic; CHRU; Lille France
| |
Collapse
|
28
|
Liachko NF, McMillan PJ, Strovas TJ, Loomis E, Greenup L, Murrell JR, Ghetti B, Raskind MA, Montine TJ, Bird TD, Leverenz JB, Kraemer BC. The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43. PLoS Genet 2014; 10:e1004803. [PMID: 25473830 PMCID: PMC4256087 DOI: 10.1371/journal.pgen.1004803] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/03/2014] [Indexed: 12/12/2022] Open
Abstract
Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP.
Collapse
Affiliation(s)
- Nicole F. Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Pamela J. McMillan
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| | - Timothy J. Strovas
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Elaine Loomis
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Lynne Greenup
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Jill R. Murrell
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Bernardino Ghetti
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Murray A. Raskind
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Thomas J. Montine
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Parkinson's Disease Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Thomas D. Bird
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - James B. Leverenz
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Mental Illness Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
- Parkinson's Disease Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
| | - Brian C. Kraemer
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
29
|
Alexander AG, Marfil V, Li C. Use of Caenorhabditis elegans as a model to study Alzheimer's disease and other neurodegenerative diseases. Front Genet 2014; 5:279. [PMID: 25250042 PMCID: PMC4155875 DOI: 10.3389/fgene.2014.00279] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/31/2014] [Indexed: 12/12/2022] Open
Abstract
Advances in research and technology has increased our quality of life, allowed us to combat diseases, and achieve increased longevity. Unfortunately, increased longevity is accompanied by a rise in the incidences of age-related diseases such as Alzheimer’s disease (AD). AD is the sixth leading cause of death, and one of the leading causes of dementia amongst the aged population in the USA. It is a progressive neurodegenerative disorder, characterized by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles, derived from the proteolysis of the amyloid precursor protein (APP) and the hyperphosphorylation of microtubule-associated protein tau, respectively. Despite years of extensive research, the molecular mechanisms that underlie the pathology of AD remain unclear. Model organisms, such as the nematode, Caenorhabditis elegans, present a complementary approach to addressing these questions. C. elegans has many advantages as a model system to study AD and other neurodegenerative diseases. Like their mammalian counterparts, they have complex biochemical pathways, most of which are conserved. Genes in which mutations are correlated with AD have counterparts in C. elegans, including an APP-related gene, apl-1, a tau homolog, ptl-1, and presenilin homologs, such as sel-12 and hop-1. Since the neuronal connectivity in C. elegans has already been established, C. elegans is also advantageous in modeling learning and memory impairments seen during AD. This article addresses the insights C. elegans provide in studying AD and other neurodegenerative diseases. Additionally, we explore the advantages and drawbacks associated with using this model.
Collapse
Affiliation(s)
- Adanna G Alexander
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| | - Vanessa Marfil
- Department of Biology, City College of New York New York, NY, USA
| | - Chris Li
- Department of Biology, City College of New York New York, NY, USA ; Department of Biology, The Graduate Center, City University of New York New York, NY, USA
| |
Collapse
|
30
|
Li J, Le W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 2013; 250:94-103. [PMID: 24095843 DOI: 10.1016/j.expneurol.2013.09.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/18/2013] [Accepted: 09/21/2013] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases which include Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington disease (HD), and others are becoming an increasing threat to human health worldwide. The degeneration and death of certain specific groups of neurons are the hallmarks of these diseases. Despite the research progress in identification of several disease-related genes, the mechanisms underlying the neurodegeneration in these diseases remain unclear. Given the molecular conservation in neuronal signaling between Caenorhabditis elegans and vertebrates, an increasing number of research scientists have used the nematode to study this group of diseases. This review paper will focus on the model system that has been established in C. elegans to investigate the pathogenetic roles of those reported disease-related genes in AD, PD, ALS, HD and others. The progress in C. elegans provides useful information of the genetic interactions and molecular pathways that are critical in the disease process, and may help better our understanding of the disease mechanisms and search for new therapeutics for these devastating diseases.
Collapse
Affiliation(s)
- Jia Li
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200025, P.R. China
| | | |
Collapse
|
31
|
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med 2013; 2:a006247. [PMID: 22762014 DOI: 10.1101/cshperspect.a006247] [Citation(s) in RCA: 549] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tau represents the subunit protein of one of the major hallmarks of Alzheimer disease (AD), the neurofibrillary tangles, and is therefore of major interest as an indicator of disease mechanisms. Many of the unusual properties of Tau can be explained by its nature as a natively unfolded protein. Examples are the large number of structural conformations and biochemical modifications (phosphorylation, proteolysis, glycosylation, and others), the multitude of interaction partners (mainly microtubules, but also other cytoskeletal proteins, kinases, and phosphatases, motor proteins, chaperones, and membrane proteins). The pathological aggregation of Tau is counterintuitive, given its high solubility, but can be rationalized by short hydrophobic motifs forming β structures. The aggregation of Tau is toxic in cell and animal models, but can be reversed by suppressing expression or by aggregation inhibitors. This review summarizes some of the structural, biochemical, and cell biological properties of Tau and Tau fibers. Further aspects of Tau as a diagnostic marker and therapeutic target, its involvement in other Tau-based diseases, and its histopathology are covered by other chapters in this volume.
Collapse
Affiliation(s)
- Eva-Maria Mandelkow
- Max-Planck Unit for Structural Molecular Biology, c/o DESY, 22607 Hamburg, Germany; DZNE, German Center for Neurodegenerative Diseases, and CAESAR Research Center, 53175 Bonn, Germany.
| | | |
Collapse
|
32
|
Liachko NF, McMillan PJ, Guthrie CR, Bird TD, Leverenz JB, Kraemer BC. CDC7 inhibition blocks pathological TDP-43 phosphorylation and neurodegeneration. Ann Neurol 2013; 74:39-52. [PMID: 23424178 DOI: 10.1002/ana.23870] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/14/2012] [Accepted: 01/25/2013] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 (S409/410) drives neurotoxicity in disease models; therefore, TDP-43-specific kinases are candidate targets for intervention. METHODS To find therapeutic targets for the prevention of TDP-43 phosphorylation, we assembled and screened a comprehensive RNA interference library targeting kinases in TDP-43 transgenic Caenorhabditis elegans. RESULTS We show CDC7 robustly phosphorylates TDP-43 at pathological residues S409/410 in C. elegans, in vitro, and in human cell culture. In frontotemporal lobar degeneration (FTLD)-TDP cases, CDC7 immunostaining overlaps with the phospho-TDP-43 pathology found in frontal cortex. Furthermore, PHA767491, a small molecule inhibitor of CDC7, reduces TDP-43 phosphorylation and prevents TDP-43-dependent neurodegeneration in TDP-43-transgenic animals. INTERPRETATION Taken together, these data support CDC7 as a novel therapeutic target for TDP-43 proteinopathies, including FTLD-TDP and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Nicole F Liachko
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | |
Collapse
|
33
|
Using C. elegans to Decipher the Cellular and Molecular Mechanisms Underlying Neurodevelopmental Disorders. Mol Neurobiol 2013; 48:465-89. [DOI: 10.1007/s12035-013-8434-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/26/2013] [Indexed: 10/27/2022]
|
34
|
Dopamine D2 receptor antagonism suppresses tau aggregation and neurotoxicity. Biol Psychiatry 2013; 73:464-71. [PMID: 23140663 PMCID: PMC3570611 DOI: 10.1016/j.biopsych.2012.08.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND Tauopathies, including Alzheimer's disease and frontotemporal dementia, are diseases characterized by the formation of pathological tau protein aggregates in the brain and progressive neurodegeneration. Presently no effective disease-modifying treatments exist for tauopathies. METHODS To identify drugs targeting tau neurotoxicity, we have used a Caenorhabditis elegans model of tauopathy to screen a drug library containing 1120 compounds approved for human use for the ability to suppress tau-induced behavioral effects. RESULTS One compound, the typical antipsychotic azaperone, improved the motility of tau transgenic worms, reduced levels of insoluble tau, and was protective against neurodegeneration. We found that azaperone reduces insoluble tau in a human cell culture model of tau aggregation and that other antipsychotic drugs (flupenthixol, perphenazine, and zotepine) also ameliorate the effects of tau expression in both models. CONCLUSIONS Reduction of dopamine signaling through the dopamine D2 receptor with the use of gene knockouts in Caenorhabditis elegans or RNA interference knockdown in human cell culture has similar protective effects against tau toxicity. These results suggest dopamine D2 receptor antagonism holds promise as a potential neuroprotective strategy for targeting tau aggregation and neurotoxicity.
Collapse
|
35
|
Abstract
Tauopathies are neurodegenerative diseases, including AD (Alzheimer's disease) and FTLD-T (tau-positive frontotemporal lobar degeneration), with shared pathology presenting as accumulation of detergent-insoluble hyperphosphorylated tau deposits in the central nervous system. The currently available treatments for AD address only some of the symptoms, and do not significantly alter the progression of the disease, namely the development of protein aggregates and loss of functional neurons. The development of effective treatments for various tauopathies will require the identification of common mechanisms of tau neurotoxicity, and pathways that can be modulated to protect against neurodegeneration. Model organisms, such as Caenorhabditis elegans, provide methods for identifying novel genes and pathways that are involved in tau pathology and may be exploited for treatment of various tauopathies. In the present paper, we summarize data regarding characterization of MSUT2 (mammalian suppressor of tau pathology 2), a protein identified in a C. elegans tauopathy model and subsequently shown to modify tau toxicity in mammalian cell culture via the effects on autophagy pathways. MSUT2 represents a potential drug target for prevention of tau-related neurodegeneration.
Collapse
|
36
|
Fatouros C, Pir GJ, Biernat J, Koushika SP, Mandelkow E, Mandelkow EM, Schmidt E, Baumeister R. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity. Hum Mol Genet 2012; 21:3587-603. [PMID: 22611162 DOI: 10.1093/hmg/dds190] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents β-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood-brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective.
Collapse
Affiliation(s)
- Chronis Fatouros
- Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chen X, Burgoyne RD. Identification of common genetic modifiers of neurodegenerative diseases from an integrative analysis of diverse genetic screens in model organisms. BMC Genomics 2012; 13:71. [PMID: 22333271 PMCID: PMC3292922 DOI: 10.1186/1471-2164-13-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/14/2012] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND An array of experimental models have been developed in the small model organisms C. elegans, S. cerevisiae and D. melanogaster for the study of various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and expanded polyglutamine diseases as exemplified by Huntington's disease (HD) and related ataxias. Genetic approaches to determine the nature of regulators of the disease phenotypes have ranged from small scale to essentially whole genome screens. The published data covers distinct models in all three organisms and one important question is the extent to which shared genetic factors can be uncovered that affect several or all disease models. Surprisingly it has appeared that there may be relatively little overlap and that many of the regulators may be organism or disease-specific. There is, however, a need for a fully integrated analysis of the available genetic data based on careful comparison of orthologues across the species to determine the real extent of overlap. RESULTS We carried out an integrated analysis using C. elegans as the baseline model organism since this is the most widely studied in this context. Combination of data from 28 published studies using small to large scale screens in all three small model organisms gave a total of 950 identifications of genetic regulators. Of these 624 were separate genes with orthologues in C. elegans. In addition, 34 of these genes, which all had human orthologues, were found to overlap across studies. Of the common genetic regulators some such as chaperones, ubiquitin-related enzymes (including the E3 ligase CHIP which directly links the two pathways) and histone deacetylases were involved in expected pathways whereas others such as the peroxisomal acyl CoA-oxidase suggest novel targets for neurodegenerative disease therapy CONCLUSIONS We identified a significant number of overlapping regulators of neurodegenerative disease models. Since the diseases have, as an underlying feature, protein aggregation phenotypes it was not surprising that some of the overlapping genes encode proteins involved in protein folding and protein degradation. Interestingly, however, some of the overlapping genes encode proteins that have not previously featured in targeted studies of neurodegeneration and this information will form a useful resource to be exploited in further studies of potential drug-targets.
Collapse
Affiliation(s)
- Xi Chen
- Department of Cellular and Molecular Physiology, Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Crown St, Liverpool L69 3BX, UK
| | | |
Collapse
|
38
|
Caenorhabditis elegans as an experimental tool for the study of complex neurological diseases: Parkinson's disease, Alzheimer's disease and autism spectrum disorder. INVERTEBRATE NEUROSCIENCE 2011; 11:73-83. [PMID: 22068627 DOI: 10.1007/s10158-011-0126-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 10/21/2011] [Indexed: 12/23/2022]
Abstract
The nematode Caenorhabditis elegans has a very well-defined and genetically tractable nervous system which offers an effective model to explore basic mechanistic pathways that might be underpin complex human neurological diseases. Here, the role C. elegans is playing in understanding two neurodegenerative conditions, Parkinson's and Alzheimer's disease (AD), and a complex neurological condition, autism, is used as an exemplar of the utility of this model system. C. elegans is an imperfect model of Parkinson's disease because it lacks orthologues of the human disease-related genes PARK1 and LRRK2 which are linked to the autosomal dominant form of this disease. Despite this fact, the nematode is a good model because it allows transgenic expression of these human genes and the study of the impact on dopaminergic neurons in several genetic backgrounds and environmental conditions. For AD, C. elegans has orthologues of the amyloid precursor protein and both human presenilins, PS1 and PS2. In addition, many of the neurotoxic properties linked with Aβ amyloid and tau peptides can be studied in the nematode. Autism spectrum disorder is a complex neurodevelopmental disorder characterised by impairments in human social interaction, difficulties in communication, and restrictive and repetitive behaviours. Establishing C. elegans as a model for this complex behavioural disorder is difficult; however, abnormalities in neuronal synaptic communication are implicated in the aetiology of the disorder. Numerous studies have associated autism with mutations in several genes involved in excitatory and inhibitory synapses in the mammalian brain, including neuroligin, neurexin and shank, for which there are C. elegans orthologues. Thus, several molecular pathways and behavioural phenotypes in C. elegans have been related to autism. In general, the nematode offers a series of advantages that combined with knowledge from other animal models and human research, provides a powerful complementary experimental approach for understanding the molecular mechanisms and underlying aetiology of complex neurological diseases.
Collapse
|
39
|
Guthrie CR, Greenup L, Leverenz JB, Kraemer BC. MSUT2 is a determinant of susceptibility to tau neurotoxicity. Hum Mol Genet 2011; 20:1989-99. [PMID: 21355046 DOI: 10.1093/hmg/ddr079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lesions containing abnormal aggregated tau protein are one of the diagnostic hallmarks of Alzheimer's disease (AD) and related tauopathy disorders. How aggregated tau leads to dementia remains enigmatic, although neuronal dysfunction and loss clearly contribute. We previously identified sut-2 as a gene required for tau neurotoxicity in a transgenic Caenorhabditis elegans model of tauopathy. Here, we further explore the role of sut-2 and show that overexpression of SUT-2 protein enhances tau-induced neuronal dysfunction, neurotoxicity and accumulation of insoluble tau. We also explore the relationship between sut-2 and its human homolog, mammalian SUT-2 (MSUT2) and find both proteins to be predominantly nuclear and localized to SC35-positive nuclear speckles. Using a cell culture model for the accumulation of pathological tau, we find that high tau levels lead to increased expression of MSUT2 protein. We analyzed MSUT2 protein in age-matched post-mortem brain samples from AD patients and observe a marked decrease in overall MSUT2 levels in the temporal lobe of AD patients. Analysis of post-mortem tissue from AD cases shows a clear reduction in neuronal MSUT2 levels in brain regions affected by tau pathology, but little change in regions lacking tau pathology. RNAi knockdown of MSUT2 in cultured human cells overexpressing tau causes a marked decrease in tau aggregation. Both cell culture and post-mortem tissue studies suggest that MSUT2 levels may influence neuronal vulnerability to tau toxicity and aggregation. Thus, neuroprotective strategies targeting MSUT2 may be of therapeutic interest for tauopathy disorders.
Collapse
Affiliation(s)
- Chris R Guthrie
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle Division, Seattle, WA 98108, USA
| | | | | | | |
Collapse
|
40
|
Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci 2011; 30:16208-19. [PMID: 21123567 DOI: 10.1523/jneurosci.2911-10.2010] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders characterized by neuronal and glial lesions containing aggregated pathological TDP-43 protein in the cytoplasm, nucleus, or neurites are collectively referred to as TDP-43 proteinopathies. Lesions containing aggregated TDP-43 protein are a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). In addition, mutations in human TDP-43 cause ALS. We have developed a Caenorhabditis elegans model of TDP-43 proteinopathies to study the cellular, molecular, and genetic underpinnings of TDP-43-mediated neurotoxicity. Expression of normal human TDP-43 in all C. elegans neurons causes moderate motor defects, whereas ALS-mutant G290A, A315T, or M337V TDP-43 transgenes cause severe motor dysfunction. The model recapitulates some characteristic features of ALS and FTLD-U including age-induced decline in motor function, decreased life span, and degeneration of motor neurons accompanied by hyperphosphorylation, truncation, and ubiquitination of TDP-43 protein that accumulates in detergent-insoluble protein deposits. In C. elegans, TDP-43 neurotoxicity is independent of activity of the cell death caspase CED-3. Furthermore, phosphorylation of TDP-43 at serine residues 409/410 drives mutant TDP-43 toxicity. This model provides a tractable system for additional dissection of the cellular and molecular mechanisms underlying TDP-43 neuropathology.
Collapse
|
41
|
Watching worms whither: modeling neurodegeneration in C. elegans. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:499-514. [PMID: 21377635 DOI: 10.1016/b978-0-12-384878-9.00015-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Caenorhabditis elegans is increasingly being used to study neurodegenerative diseases. Nematodes are translucent, which facilitates study of particular neurons in the living animal, and easy to manipulate genetically. Despite vast evolutionary divergence, human proteins are functionally active when expressed in C. elegans, and disease-linked mutations in these proteins also cause phenotypic changes in the nematode. In this chapter, we review use of C. elegans to investigate the pathophysiology of Alzheimer's disease, Parkinson's disease, and axonal degeneration. Studies of presenilin, β-amyloid, tau, α-synuclein, and LRRK2 all produce strong phenotypic effects in C. elegans, and in many cases reproduce selective neuronal vulnerability observed in humans. Disease-linked mutations enhance degeneration in the C. elegans models. These studies are increasingly leading to high-throughput screens that identify novel genes and novel pharmaceuticals that modify the disease course.
Collapse
|
42
|
Markaki M, Tavernarakis N. Modeling human diseases in Caenorhabditis elegans. Biotechnol J 2010; 5:1261-76. [PMID: 21154667 DOI: 10.1002/biot.201000183] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 10/22/2010] [Accepted: 10/25/2010] [Indexed: 01/15/2023]
Abstract
Genes linked to human diseases often function in evolutionarily conserved pathways, which can be readily dissected in simple model organisms. Because of its short lifespan and well-known biology, coupled with a completely sequenced genome that shares extensive homology with that of mammals, Caenorhabditis elegans is one of the most versatile and powerful model organisms. Research in C. elegans has been instrumental for the elucidation of molecular pathways implicated in many human diseases. In this review, we introduce C. elegans as a model organism for biomedical research and we survey recent relevant findings that shed light on the basic molecular determinants of human disease pathophysiology. The nematode holds promise of providing clear leads towards the identification of potential targets for the development of new therapeutic interventions against human diseases.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | | |
Collapse
|
43
|
The role of MSUT-2 in tau neurotoxicity: a target for neuroprotection in tauopathy? Biochem Soc Trans 2010; 38:973-6. [PMID: 20658987 DOI: 10.1042/bst0380973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We previously developed a transgenic Caenorhabditis elegans model of human tauopathy disorders by expressing human tau in nematode worm neurons to explore genetic pathways contributing to tau-induced neurodegeneration. This animal model recapitulates several hallmarks of human tauopathies, including altered behaviour, accumulation of detergent-insoluble phosphorylated tau protein and neurodegeneration. To identify genes required for tau neurotoxicity, we carried out a forward genetic screen for mutations that suppress tau neurotoxicity. We ultimately cloned the sut-2 (suppressor of tau pathology-2) gene, mutations in which alleviate tau neurotoxicity in C. elegans. SUT-2 encodes a novel subtype of CCCH zinc-finger protein conserved across animal phyla. SUT-2 shares significant identity with the mammalian SUT-2 (MSUT-2). We identified components of the aggresome as binding partners of MSUT-2. Thus we hypothesize that MSUT-2 plays a role in the formation and/or clearance of protein aggregates. We are currently exploring the role of MSUT-2 in tauopathy using mammalian systems. The identification of sut-2 as a gene required for tau neurotoxicity in C. elegans suggests new neuroprotective strategies targeting MSUT-2 that may be effective in modulating tau neurotoxicity in human tauopathy disorders.
Collapse
|
44
|
Abstract
The simple nematode worm Caenorhabditis elegans has been instrumental in deciphering the molecular mechanisms underlying apoptosis. Beyond apoptosis, several paradigms of non-apoptotic cell death, either genetically or extrinsically triggered, have also been described in C. elegans. Remarkably, non-apoptotic cell death in worms and pathological cell death in humans share numerous key features and mechanistic aspects. Such commonalities suggest that similarly to apoptosis, non-apoptotic cell death mechanisms are also conserved, and render the worm a useful organism, in which to model and dissect human pathologies. Indeed, the genetic malleability and the sophisticated molecular tools available for C. elegans have contributed decisively to advance our understanding of non-apoptotic cell death. Here, we review the literature on the various types of non-apoptotic cell death in C. elegans and discuss the implications, relevant to pathological conditions in humans.
Collapse
Affiliation(s)
- Manolis Vlachos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
| | | |
Collapse
|
45
|
Caenorhabditis elegans: a useful tool to decipher neurodegenerative pathways. Biochem Soc Trans 2010; 38:559-63. [PMID: 20298221 DOI: 10.1042/bst0380559] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases affect millions of people. These disorders are age-dependent, progressive and, at present, incurable. A practical and relevant model is needed to investigate the molecular determinants of these debilitating diseases. Mammalian models are often prohibitively expensive, time-consuming and very complex. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for the investigation of the pathophysiology of these disorders. We describe recent findings in this area and show how C. elegans is being used to broaden our knowledge of human neurodegenerative diseases.
Collapse
|
46
|
Dimitriadi M, Hart AC. Neurodegenerative disorders: insights from the nematode Caenorhabditis elegans. Neurobiol Dis 2010; 40:4-11. [PMID: 20493260 DOI: 10.1016/j.nbd.2010.05.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022] Open
Abstract
Neurodegenerative diseases impose a burden on society, yet for the most part, the mechanisms underlying neuronal dysfunction and death in these disorders remain unclear despite the identification of relevant disease genes. Given the molecular conservation in neuronal signaling pathways across vertebrate and invertebrate species, many researchers have turned to the nematode Caenorhabditis elegans to identify the mechanisms underlying neurodegenerative disease pathology. C. elegans can be engineered to express human proteins associated with neurodegeneration; additionally, the function of C. elegans orthologs of human neurodegenerative disease genes can be dissected. Herein, we examine major C. elegans neurodegeneration models that recapitulate many aspects of human neurodegenerative disease and we survey the screens that have identified modifier genes. This review highlights how the C. elegans community has used this versatile organism to model several aspects of human neurodegeneration and how these studies have contributed to our understanding of human disease.
Collapse
Affiliation(s)
- Maria Dimitriadi
- Department of Neuroscience, Brown University, 185 Meeting Street, Providence, RI 02912, USA
| | | |
Collapse
|
47
|
Wentzell J, Kretzschmar D. Alzheimer's disease and tauopathy studies in flies and worms. Neurobiol Dis 2010; 40:21-8. [PMID: 20302939 DOI: 10.1016/j.nbd.2010.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 12/24/2022] Open
Abstract
Progressive dementias like Alzheimer's Disease (AD) and other tauopathies are an increasing threat to human health worldwide. Although significant progress has been made in understanding the pathogenesis of these diseases using cell culture and mouse models, the complexity of these diseases has still prevented a comprehensive understanding of their underlying causes. As with other neurological diseases, invertebrate models have provided novel genetic approaches for investigating the molecular pathways that are affected in tauopathies, including AD. This review focuses on transgenic models that have been established in Drosophila melanogaster and Caenorhabditis elegans to investigate these diseases, and the insights that have been gained from these studies. Also included are a brief description of the endogenous versions of human "disease genes" (like tau and the Amyloid Precursor Protein) that are expressed in invertebrates, and an overview of results that have been obtained from animals lacking or overexpressing these genes. These diverse models can be used to advance our knowledge about how these proteins acquire a pathogenic function and how disrupting their normal functions may contribute to neurological pathologies. They also provide powerful assays for identifying molecular and genetic interactions that are important in developing or preventing the deleterious effects.
Collapse
Affiliation(s)
- Jill Wentzell
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
48
|
Ewald CY, Li C. Understanding the molecular basis of Alzheimer's disease using a Caenorhabditis elegans model system. Brain Struct Funct 2010; 214:263-83. [PMID: 20012092 PMCID: PMC3902020 DOI: 10.1007/s00429-009-0235-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 11/17/2009] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the major cause of dementia in the United States. At the cellular level, the brains of AD patients are characterized by extracellular dense plaques and intracellular neurofibrillary tangles whose major components are the beta-amyloid peptide and tau, respectively. The beta-amyloid peptide is a cleavage product of the amyloid precursor protein (APP); mutations in APP have been correlated with a small number of cases of familial Alzheimer's disease. APP is the canonical member of the APP family, whose functions remain unclear. The nematode Caenorhabditis elegans, one of the premier genetic workhorses, is being used in a variety of ways to address the functions of APP and determine how the beta-amyloid peptide and tau can induce toxicity. First, the function of the C. elegans APP-related gene, apl-1, is being examined. Although different organisms may use APP and related proteins, such as APL-1, in different functional contexts, the pathways in which they function and the molecules with which they interact are usually conserved. Second, components of the gamma-secretase complex and their respective functions are being revealed through genetic analyses in C. elegans. Third, to address questions of toxicity, onset of degeneration, and protective mechanisms, different human beta-amyloid peptide and tau variants are being introduced into C. elegans and the resultant transgenic lines examined. Here, we summarize how a simple system such as C. elegans can be used as a model to understand APP function and suppression of beta-amyloid peptide and tau toxicity in higher organisms.
Collapse
Affiliation(s)
- Collin Y. Ewald
- Graduate Center and Department of Biology, City College of the City University of New York, MR526, 160 Convent Avenue, New York, NY 10031, USA
| | - Chris Li
- Graduate Center and Department of Biology, City College of the City University of New York, MR526, 160 Convent Avenue, New York, NY 10031, USA
| |
Collapse
|
49
|
Teschendorf D, Link CD. What have worm models told us about the mechanisms of neuronal dysfunction in human neurodegenerative diseases? Mol Neurodegener 2009; 4:38. [PMID: 19785750 PMCID: PMC2762972 DOI: 10.1186/1750-1326-4-38] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/28/2009] [Indexed: 11/13/2022] Open
Abstract
The nematode worm Caenorhabditis elegans has become an intensely studied model organism, and worm studies have made significant contributions to developmental biology and other fields. The experimental advantages of C. elegans, particularly its simple anatomy, optical transparency, short lifespan, and facile genetics, have also led researchers to use this model to investigate neuronal cell degeneration and death. Worm studies of neurodegeneration can be divided into two general classes: studies in which mutations of C. elegans genes lead to neuronal dysfunction and death, and studies in which external manipulations (e.g., chemical treatments or introduction of engineered transgenes) are used to induce neurodegeneration. For both types of studies the primary approach has been to use forward genetic, reverse genetic, or candidate gene approaches to identify genes that modify neurodegeneration. The ease and relatively low cost of C. elegans propagation also suggests a role for these C. elegans models for compound screening. An excellent review has been previously published that summarizes much of the work done on mutationally-induced neuronal death in C. elegans [1]. This review focuses on studies that have attempted to model specific human neurodegenerative diseases using transgenic approaches. These studies have given us a variety of insights into the specific disruptions of cellular processes that may underlie human neurodegenerative diseases.
Collapse
Affiliation(s)
- Dawn Teschendorf
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, 80309, USA.
| | | |
Collapse
|
50
|
Guthrie CR, Schellenberg GD, Kraemer BC. SUT-2 potentiates tau-induced neurotoxicity in Caenorhabditis elegans. Hum Mol Genet 2009; 18:1825-38. [PMID: 19273536 DOI: 10.1093/hmg/ddp099] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of human tau in Caenorhabditis elegans neurons causes accumulation of aggregated tau leading to neurodegeneration and uncoordinated movement. We used this model of human tauopathy disorders to screen for genes required for tau neurotoxicity. Recessive loss-of-function mutations in the sut-2 locus suppress the Unc phenotype, tau aggregation and neurodegenerative changes caused by human tau. We cloned the sut-2 gene and found it encodes a novel sub-type of CCCH zinc finger protein conserved across animal phyla. SUT-2 shares significant identity with the mammalian SUT-2 (MSUT-2). To identify SUT-2 interacting proteins, we conducted a yeast two hybrid screen and found SUT-2 binds to ZYG-12, the sole C. elegans HOOK protein family member. Likewise, SUT-2 binds ZYG-12 in in vitro protein binding assays. Furthermore, loss of ZYG-12 leads to a marked upregulation of SUT-2 protein supporting the connection between SUT-2 and ZYG-12. The human genome encodes three homologs of ZYG-12: HOOK1, HOOK2 and HOOK3. Of these, the human ortholog of SUT-2 (MSUT-2) binds only to HOOK2 suggesting the interaction between SUT-2 and HOOK family proteins is conserved across animal phyla. The identification of sut-2 as a gene required for tau neurotoxicity in C. elegans may suggest new neuroprotective strategies capable of arresting tau pathogenesis in tauopathy disorders.
Collapse
Affiliation(s)
- Chris R Guthrie
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | | | | |
Collapse
|