1
|
James R, Faller KME, Groen EJN, Wirth B, Gillingwater TH. Altered mitochondrial function in fibroblast cell lines derived from disease carriers of spinal muscular atrophy. COMMUNICATIONS MEDICINE 2024; 4:86. [PMID: 38750213 PMCID: PMC11096342 DOI: 10.1038/s43856-024-00515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is an autosomal recessive childhood-onset neuromuscular disease with a carrier frequency of ~1:50. Mitochondrial abnormalities are widespread in patients with SMA. Disease carriers for SMA (i.e., the parents of patients with SMA) are viewed as asymptomatic for SMA disease. As far as we are aware, mitochondria have not been previously examined in SMA carriers, yet as they are maternally inherited, mitochondrial function in SMA carriers has putative implications for disease pathogenesis. METHODS Fibroblast cell lines derived from SMA carriers and controls were obtained from two different sources and cultured under standard conditions. The mitochondrial membrane potential, reactive oxygen species (ROS) production, citrate synthase activity, and bioenergetic analysis were examined as measures of mitochondrial function. The mitochondrial genome was also sequenced in a subset of the fibroblast cell lines to identify any mitochondrial DNA variants. RESULTS Here, we show a depolarized mitochondrial membrane potential, increased levels of reactive oxygen species, and reduced citrate synthase activity in SMA carriers compared with controls. A likely pathogenic variant in the MT-CO3 gene (which encodes subunit III of cytochrome c oxidase) was also identified in a paternal carrier. CONCLUSIONS This study was conducted as a preliminary investigation of mitochondrial function in SMA carriers. Our findings suggest that disease carriers of SMA show differences in mitochondrial function, indicative of a subclinical mitochondrial phenotype. Further investigation in a larger sample set is warranted.
Collapse
Affiliation(s)
- Rachel James
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | - Kiterie M E Faller
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK
| | - Ewout J N Groen
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, and Center for Rare Diseases Cologne, University Hospital of Cologne, University Cologne, 50931, Cologne, Germany
| | - Thomas H Gillingwater
- Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Dombi E, Marinaki T, Spingardi P, Millar V, Hadjichristou N, Carver J, Johnston IG, Fratter C, Poulton J. Nucleoside supplements as treatments for mitochondrial DNA depletion syndrome. Front Cell Dev Biol 2024; 12:1260496. [PMID: 38665433 PMCID: PMC11043827 DOI: 10.3389/fcell.2024.1260496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
Introduction: In mitochondrial DNA (mtDNA) depletion syndrome (MDS), patients cannot maintain sufficient mtDNA for their energy needs. MDS presentations range from infantile encephalopathy with hepatopathy (Alpers syndrome) to adult chronic progressive external ophthalmoplegia. Most are caused by nucleotide imbalance or by defects in the mtDNA replisome. There is currently no curative treatment available. Nucleoside therapy is a promising experimental treatment for TK2 deficiency, where patients are supplemented with exogenous deoxypyrimidines. We aimed to explore the benefits of nucleoside supplementation in POLG and TWNK deficient fibroblasts. Methods: We used high-content fluorescence microscopy with software-based image analysis to assay mtDNA content and membrane potential quantitatively, using vital dyes PicoGreen and MitoTracker Red CMXRos respectively. We tested the effect of 15 combinations (A, T, G, C, AT, AC, AG, CT, CG, GT, ATC, ATG, AGC, TGC, ATGC) of deoxynucleoside supplements on mtDNA content of fibroblasts derived from four patients with MDS (POLG1, POLG2, DGUOK, TWNK) in both a replicating (10% dialysed FCS) and quiescent (0.1% dialysed FCS) state. We used qPCR to measure mtDNA content of supplemented and non-supplemented fibroblasts following mtDNA depletion using 20 µM ddC and after 14- and 21-day recovery in a quiescent state. Results: Nucleoside treatments at 200 µM that significantly increased mtDNA content also significantly reduced the number of cells remaining in culture after 7 days of treatment, as well as mitochondrial membrane potential. These toxic effects were abolished by reducing the concentration of nucleosides to 50 µM. In POLG1 and TWNK cells the combination of ATGC treatment increased mtDNA content the most after 7 days in non-replicating cells. ATGC nucleoside combination significantly increased the rate of mtDNA recovery in quiescent POLG1 cells following mtDNA depletion by ddC. Conclusion: High-content imaging enabled us to link mtDNA copy number with key read-outs linked to patient wellbeing. Elevated G increased mtDNA copy number but severely impaired fibroblast growth, potentially by inhibiting purine synthesis and/or causing replication stress. Combinations of nucleosides ATGC, T, or TC, benefited growth of cells harbouring POLG mutations. These combinations, one of which reflects a commercially available preparation, could be explored further for treatment of POLG patients.
Collapse
Affiliation(s)
- Eszter Dombi
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Tony Marinaki
- Purine Research Laboratory, Department of Biochemical Sciences, Guy’s and St Thomas’ Hospitals, London, United Kingdom
| | - Paolo Spingardi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Val Millar
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Janet Carver
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| | - Carl Fratter
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Joanna Poulton
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Mehri S, Finsterer J. Caution When Using Valproate for Seizures in POLG1 Carriers. Ann Indian Acad Neurol 2023; 26:577-578. [PMID: 37970303 PMCID: PMC10645238 DOI: 10.4103/aian.aian_53_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/22/2023] [Accepted: 02/27/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
- Sounira Mehri
- Biochemistry Laboratory, LR12ES05 “Nutrition-Functional Foods and Vascular Health”, Faculty of Medicine, Monastir, Tunisia
| | | |
Collapse
|
4
|
Lyon E, Temple-Smolkin RL, Hegde M, Gastier-Foster JM, Palomaki GE, Richards CS. An Educational Assessment of Evidence Used for Variant Classification: A Report of the Association for Molecular Pathology. J Mol Diagn 2022; 24:555-565. [PMID: 35429647 DOI: 10.1016/j.jmoldx.2021.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 12/10/2021] [Indexed: 11/25/2022] Open
Abstract
The Association for Molecular Pathology Variant Interpretation Testing Among Laboratories (VITAL) Working Group convened to evaluate the Standards and Guidelines for the Interpretation of Sequence Variants implementation into clinical practice, identify problematic classification rules, and define implementation challenges. Variants and associated clinical information were provided to volunteer respondents. Participant variant classifications were compared with intended consensus-derived classifications of the Working Group. The 24 variant challenges received 1379 responses; 1119 agreed with the intended response (81%; 95% CI, 79% to 83%). Agreement ranged from 44% to 100%, with 16 challenges (67%; 47% to 82%) reaching consensus (≥80% agreement). Participant classifications were also compared to a calculated interpretation of the ACMG Guidelines using the participant-reported criteria as input. The 24 variant challenges had 1368 responses with specific evidence provided and 1121 (82%; 80% to 84%) agreed with the calculated interpretation. Agreement for challenges ranged from 63% to 98%; 15 (63%; 43% to 79%) reaching consensus. Among 81 individual participants, 32 (40%; 30% to 50%) reached agreement with at least 80% of the intended classifications and 42 (52%; 41% to 62%) with the calculated classifications. This study demonstrated that although variant classification remains challenging, published guidelines are being utilized and adapted to improve variant calling consensus. This study identified situations where clarifications are warranted and provides a model for competency assessment.
Collapse
Affiliation(s)
- Elaine Lyon
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | | | - Madhuri Hegde
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; Global Genetics Laboratory, PerkinElmer Genomics, Pittsburgh, Pennsylvania
| | - Julie M Gastier-Foster
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; Departments of Pediatrics and Pathology/Immunology, Baylor College of Medicine, Houston, Texas; Pathology Department, Texas Children's Hospital, Houston, Texas; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Glenn E Palomaki
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; Department of Pathology and Laboratory Medicine, Women & Infants Hospital and the Alpert Medical School at Brown University, Providence, Rhode Island
| | - C Sue Richards
- The Variant Interpretation Testing Among Laboratories (VITAL) Working Group of the Clinical Practice Committee, Association for Molecular Pathology (AMP), Rockville, Maryland; Department of Molecular and Medical Genetics and Knight Diagnostic Laboratories, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
5
|
Sriwattanapong K, Rojnueangnit K, Theerapanon T, Srichomthong C, Porntaveetus T, Shotelersuk V. Compound Heterozygosity for a Novel Frameshift Variant Causing Fatal Infantile Liver Failure and Genotype-Phenotype Correlation of POLG c.3286C>T Variant. Int J Neonatal Screen 2021; 7:ijns7010009. [PMID: 33562887 PMCID: PMC7930966 DOI: 10.3390/ijns7010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/24/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
A variant in the POLG gene is the leading cause of a heterogeneous group of mitochondrial disorders. No definitive treatment is currently available. Prenatal and newborn screening have the potential to improve clinical outcome of patients affected with POLG-related disorders. We reported a 4-month-old infant who presented with developmental delay, fever, and diarrhea. Within two weeks after hospital admission, the patient developed hepatic failure and died. Liver necropsy demonstrated an extensive loss of hepatocytes and bile duct proliferations. Trio-whole exome sequencing identified that the patient was compound heterozygous for a novel frameshift variant c.3102delG (p.Lys1035Serfs*59) and a common variant c.3286C>T (p.Arg1096Cys) in POLG (NM_002693.3) inherited from the mother and father, respectively. The c.3102delG (p.Lys1035Serfs*59) was a null variant and classified as pathogenic according to the American College of Medical Genetics and Genomics Standards and Guidelines. Prenatal genetic screenings using rapid whole exome sequencing successfully detected the heterozygous c.3286C>T variant in the following pregnancy and the normal alleles in the other one. Both children had been healthy. We reviewed all 34 cases identified with the POLG c.3286C>T variant and found that all 15 compound heterozygous cases had two missense variants except our patient who had the truncating variant and showed the earliest disease onset, rapid deterioration, and the youngest death. All homozygous cases had disease onset before age 2 and developed seizure. Here, we report a novel POLG variant expanding the genotypic spectrum, demonstrate the successful use of exome sequencing for prenatal and neonatal screenings of POLG-related disorders, and show the genotype-phenotype correlation of the common c.3286C>T variant.
Collapse
Affiliation(s)
- Kanokwan Sriwattanapong
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
| | - Kitiwan Rojnueangnit
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| | - Thanakorn Theerapanon
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (V.S.)
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| | - Thantrira Porntaveetus
- Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (K.S.); (T.T.)
- Correspondence: ; Tel.: +66-02218-8695
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (C.S.); (V.S.)
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Clinico-pathological and Molecular Spectrum of Mitochondrial Polymerase γ Mutations in a Cohort from India. J Mol Neurosci 2021; 71:2219-2228. [PMID: 33469851 DOI: 10.1007/s12031-020-01765-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/23/2020] [Indexed: 01/03/2023]
Abstract
Polymerase γ catalytic subunit (POLG), a nuclear gene, encodes the enzyme responsible for mitochondrial DNA (mtDNA) replication. POLG mutations are a major cause of inherited mitochondrial diseases. They present with varied phenotypes, age of onset, and severity. Reports on POLG mutations from India are limited. Hence, this study aimed to describe the clinico-pathological and molecular observations of POLG mutations. A total of 446 patients with clinical diagnosis of mitochondrial disorders were sequenced for all exons and intron-exon boundaries of POLG. Of these, 19 (4.26%) patients (M:F: 10:9) had POLG mutations. The age of onset ranged from 5 to 55 years with an overlapping phenotypic spectrum. Ptosis, peripheral neuropathy, seizures, and ataxia were the common neurological features observed. The most common clinical phenotype was chronic progressive external ophthalmoplegia (CPEO) and CPEO plus (n = 14). Muscle biopsy showed characteristic features of mitochondrial myopathy in fourteen patients (14/19) and respiratory chain enzyme deficiency in eleven patients (11/19). Multiple mtDNA deletions were seen in 47.36% (9/19) patients. Eight pathogenic POLG variations including two novel variations (p.G132R and p.V1106A) were identified. The common pathogenic mutation identified was p.L304R, being present in eight patients (42.1%) predominantly in the younger age group followed by p.W748S in four patients (21%). To the best of our knowledge, this is the first extensive study from India, highlights the clinico-pathological and molecular spectrum of POLG mutations.
Collapse
|
7
|
Roberts L, Julius S, Dawlat S, Yildiz S, Rebello G, Meldau S, Pillay K, Esterhuizen A, Vorster A, Benefeld G, da Rocha J, Beighton P, Sellars SL, Thandrayen K, Pettifor JM, Ramesar RS. Renal dysfunction, rod-cone dystrophy, and sensorineural hearing loss caused by a mutation in RRM2B. Hum Mutat 2020; 41:1871-1876. [PMID: 32827185 DOI: 10.1002/humu.24094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/29/2022]
Abstract
More than two decades ago, a recessive syndromic phenotype affecting kidneys, eyes, and ears, was first described in the endogamous Afrikaner population of South Africa. Using whole-exome sequencing of DNA from two affected siblings (and their carrier parents), we identified the novel RRM2B c.786G>T variant as a plausible disease-causing mutation. The RRM2B gene is involved in mitochondrial integrity, and the observed change was not previously reported in any genomic database. The subsequent screening revealed the variant in two newly presenting unrelated patients, as well as two patients in our registry with rod-cone dystrophy, hearing loss, and Fanconi-type renal disease. All patients with the c.786G>T variant share an identical 1.5 Mb haplotype around this gene, suggesting a founder effect in the Afrikaner population. We present ultrastructural evidence of mitochondrial impairment in one patient, to support our thesis that this RRM2B variant is associated with the renal, ophthalmological, and auditory phenotype.
Collapse
Affiliation(s)
- Lisa Roberts
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stephanie Julius
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shrinav Dawlat
- Department of Human Genetics, National Health Laboratory Servicexs, Groote Schuur Hospital, Cape Town, South Africa
| | - Safiye Yildiz
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - George Rebello
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Surita Meldau
- Department of Human Genetics, National Health Laboratory Servicexs, Groote Schuur Hospital, Cape Town, South Africa.,Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Komala Pillay
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alina Esterhuizen
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Human Genetics, National Health Laboratory Servicexs, Groote Schuur Hospital, Cape Town, South Africa
| | - Alvera Vorster
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gameda Benefeld
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jorge da Rocha
- Sydney Brenner Institute for Molecular Bioscience, Division of Human Genetics, National Health Laboratory Service, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Peter Beighton
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sean L Sellars
- Division of Otorhinolaryngology, Department of Surgery, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kebashni Thandrayen
- Department of Paediatrics, Chris Hani Baragwanath Academic Hospital and School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John M Pettifor
- Department of Paediatrics, Chris Hani Baragwanath Academic Hospital and School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raj S Ramesar
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Shi H, Waldman G, Tobochnik S, Kuo SH, Pack A. Clinical Reasoning: Refractory status epilepticus in a primigravida. Neurology 2019; 92:968-972. [PMID: 31085725 DOI: 10.1212/wnl.0000000000007507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Hang Shi
- From the Division of Movement Disorders (S.-H.K.) and Comprehensive Epilepsy Center (A.P.), Department of Neurology (H.S., G.W., S.T.), Columbia University Medical Center, New York, NY.
| | - Genna Waldman
- From the Division of Movement Disorders (S.-H.K.) and Comprehensive Epilepsy Center (A.P.), Department of Neurology (H.S., G.W., S.T.), Columbia University Medical Center, New York, NY
| | - Steven Tobochnik
- From the Division of Movement Disorders (S.-H.K.) and Comprehensive Epilepsy Center (A.P.), Department of Neurology (H.S., G.W., S.T.), Columbia University Medical Center, New York, NY
| | - Sheng-Han Kuo
- From the Division of Movement Disorders (S.-H.K.) and Comprehensive Epilepsy Center (A.P.), Department of Neurology (H.S., G.W., S.T.), Columbia University Medical Center, New York, NY
| | - Alison Pack
- From the Division of Movement Disorders (S.-H.K.) and Comprehensive Epilepsy Center (A.P.), Department of Neurology (H.S., G.W., S.T.), Columbia University Medical Center, New York, NY
| |
Collapse
|
9
|
Homozygous R627W mutations in POLG cause mitochondrial DNA depletion leading to encephalopathy, seizures and stroke-like episodes. Mitochondrion 2019; 48:78-83. [DOI: 10.1016/j.mito.2019.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 01/21/2023]
|
10
|
Piekutowska-Abramczuk D, Kaliszewska M, Sułek A, Jurkowska N, Ołtarzewski M, Jabłońska E, Trubicka J, Głowacka A, Ciara E, Kowalski P, Langiewicz-Wojciechowska K, Tesarova M, Zeman J, Kierdaszuk B, Kuczyński D, Chmielewski D, Szymańska E, Bakuła A, Łusakowska A, Lipowska M, Brodacki B, Pera J, Dorobek M, Rydzanicz M, Płoski R, Chrzanowska KH, Bartnik E, Placha G, Kamińska A, Kostera-Pruszczyk A, Krajewska-Walasek M, Tońska K, Pronicka E. The frequency of mitochondrial polymerase gamma related disorders in a large Polish population cohort. Mitochondrion 2019; 47:179-187. [DOI: 10.1016/j.mito.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/02/2018] [Accepted: 11/02/2018] [Indexed: 02/06/2023]
|
11
|
Butler MG, Hossain WA, Tessman R, Krishnamurthy PC. Preliminary observations of mitochondrial dysfunction in Prader-Willi syndrome. Am J Med Genet A 2018; 176:2587-2594. [PMID: 30289596 DOI: 10.1002/ajmg.a.40526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/02/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023]
Abstract
Prader-Willi syndrome (PWS) is a complex multisystem disorder because of errors in genomic imprinting with severe hypotonia, decreased muscle mass, poor suckling, feeding problems and failure to thrive during infancy, growth and other hormone deficiency, childhood-onset hyperphagia, and subsequent obesity. Decreased energy expenditure in PWS is thought to contribute to reduced muscle mass and physical activity but may also relate to cellular metabolism and disturbances in mitochondrial function. We established fibroblast cell lines from six children and adults with PWS and six healthy controls for mitochondrial assays. We used Agilent Seahorse XF extracellular flux technology to determine real-time measurements of several metabolic parameters including cellular substrate utilization, Adenosine Triphosphate (ATP)-linked respiration, and mitochondrial capacity in living cells. Decreased mitochondrial function was observed in the PWS patients compared to the healthy controls with significant differences in basal respiration, maximal respiratory capacity, and ATP-linked respiration. These results suggest disturbed mitochondrial bioenergetics in PWS although the low number of studied subjects will require a larger subject population before a general consensus can be reached to identify if mitochondrial dysfunction is a contributing factor in PWS.
Collapse
Affiliation(s)
- Merlin G Butler
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Waheeda A Hossain
- Departments of Psychiatry & Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, Kansas
| | - Robert Tessman
- Department of Pharmacology, Toxicology, & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Partha C Krishnamurthy
- Department of Pharmacology, Toxicology, & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
12
|
DeBalsi KL, Longley MJ, Hoff KE, Copeland WC. Synergistic Effects of the in cis T251I and P587L Mitochondrial DNA Polymerase γ Disease Mutations. J Biol Chem 2017; 292:4198-4209. [PMID: 28154168 DOI: 10.1074/jbc.m116.773341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/26/2017] [Indexed: 01/28/2023] Open
Abstract
Human mitochondrial DNA (mtDNA) polymerase γ (Pol γ) is the only polymerase known to replicate the mitochondrial genome. The Pol γ holoenzyme consists of the p140 catalytic subunit (POLG) and the p55 homodimeric accessory subunit (POLG2), which enhances binding of Pol γ to DNA and promotes processivity of the holoenzyme. Mutations within POLG impede maintenance of mtDNA and cause mitochondrial diseases. Two common POLG mutations usually found in cis in patients primarily with progressive external ophthalmoplegia generate T251I and P587L amino acid substitutions. To determine whether T251I or P587L is the primary pathogenic allele or whether both substitutions are required to cause disease, we overproduced and purified WT, T251I, P587L, and T251I + P587L double variant forms of recombinant Pol γ. Biochemical characterization of these variants revealed impaired DNA binding affinity, reduced thermostability, diminished exonuclease activity, defective catalytic activity, and compromised DNA processivity, even in the presence of the p55 accessory subunit. However, physical association with p55 was unperturbed, suggesting intersubunit affinities similar to WT. Notably, although the single mutants were similarly impaired, a dramatic synergistic effect was found for the double mutant across all parameters. In conclusion, our analyses suggest that individually both T251I and P587L substitutions functionally impair Pol γ, with greater pathogenicity predicted for the single P587L variant. Combining T251I and P587L induces extreme thermal lability and leads to synergistic nucleotide and DNA binding defects, which severely impair catalytic activity and correlate with presentation of disease in patients.
Collapse
Affiliation(s)
- Karen L DeBalsi
- From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Matthew J Longley
- From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Kirsten E Hoff
- From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - William C Copeland
- From the Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
13
|
Sonam K, Bindu PS, Srinivas Bharath MM, Govindaraj P, Gayathri N, Arvinda HR, Chiplunkar S, Nagappa M, Sinha S, Khan NA, Nunia V, Paramasivam A, Thangaraj K, Taly AB. Mitochondrial oxidative phosphorylation disorders in children: Phenotypic, genotypic and biochemical correlations in 85 patients from South India. Mitochondrion 2016; 32:42-49. [PMID: 27826120 DOI: 10.1016/j.mito.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/12/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) disorders account for a variety of neuromuscular disorders in children. In this study mitochondrial respiratory chain enzymes were assayed in muscle tissue in a large cohort of children with varied neuromuscular presentations from June 2011 to December 2013. The biochemical enzyme deficiencies were correlated with the phenotypes, magnetic resonance imaging, histopathology and genetic findings to reach a final diagnosis. There were 85 children (mean age: 6.9±4.7years, M:F:2:1) with respiratory chain enzyme deficiency which included: isolated complex I (n=50, 60%), multiple complexes (n=24, 27%), complex IV (n=8, 9%) and complex III deficiencies (n=3, 4%). The most common neurological findings were ataxia (59%), hypotonia (59%) and involuntary movements (49%). A known mitochondrial syndrome was diagnosed in 27 (29%) and non-syndromic presentations in 57 (71%). Genetic analysis included complete sequencing of mitochondrial genome, SURF1, POLG1&2. It revealed variations in mitochondrial DNA (n=8), SURF1 (n=5), and POLG1 (n=3). This study, the first of its kind from India, highlights the wide range of clinical and imaging phenotypes and genetic heterogeneity in children with mitochondrial oxidative phosphorylation disorders.
Collapse
Affiliation(s)
- Kothari Sonam
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Parayil Sankaran Bindu
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.
| | - M M Srinivas Bharath
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Periyasamy Govindaraj
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Narayanappa Gayathri
- Department of Neuropathology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Hanumanthapura R Arvinda
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shwetha Chiplunkar
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Madhu Nagappa
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjib Sinha
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | | | - Vandana Nunia
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | | | | - Arun B Taly
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India; Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
14
|
Anagnostou ME, Ng YS, Taylor RW, McFarland R. Epilepsy due to mutations in the mitochondrial polymerase gamma (POLG)
gene: A clinical and molecular genetic review. Epilepsia 2016; 57:1531-1545. [DOI: 10.1111/epi.13508] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Maria-Eleni Anagnostou
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Yi Shiau Ng
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Robert W. Taylor
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research; Institute of Neuroscience; Newcastle University; Newcastle upon Tyne United Kingdom
| |
Collapse
|
15
|
The in cis T251I and P587L POLG1 base changes: Description of a new family and literature review. Neuromuscul Disord 2015; 25:333-9. [DOI: 10.1016/j.nmd.2015.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/07/2015] [Accepted: 01/14/2015] [Indexed: 11/19/2022]
|
16
|
Zabalza R, Nurminen A, Kaguni LS, Garesse R, Gallardo ME, Bornstein B. Co-occurrence of four nucleotide changes associated with an adult mitochondrial ataxia phenotype. BMC Res Notes 2014; 7:883. [PMID: 25488682 PMCID: PMC4295309 DOI: 10.1186/1756-0500-7-883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022] Open
Abstract
Background Mitochondrial DNA maintenance disorders are an important cause of hereditary ataxia syndrome, and the majority are associated with mutations in the gene encoding the catalytic subunit of the mitochondrial DNA polymerase (DNA polymerase gamma), POLG. Mutations resulting in the amino acid substitutions A467T and W748S are the most common genetic causes of inherited cerebellar ataxia in Europe. Methods We report here a POLG mutational screening in a family with a mitochondrial ataxia phenotype. To evaluate the likely pathogenicity of each of the identified changes, a 3D structural analysis of the PolG protein was carried out, using the Alpers mutation clustering tool reported previously. Results Three novel nucleotide changes and the p.Q1236H polymorphism have been identified in the affected members of the pedigree. Computational analysis suggests that the p.K601E mutation is likely the major contributing factor to the pathogenic phenotype. Conclusions Computational analysis of the PolG protein suggests that the p.K601E mutation is likely the most significant contributing factor to a pathogenic phenotype. However, the co-occurrence of multiple POLG alleles may be necessary in the development an adult-onset mitochondrial ataxia phenotype.
Collapse
Affiliation(s)
| | | | | | | | - M Esther Gallardo
- Departamento de Bioquímica, Facultad de Medicina, Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC and Centro de Investigación Biomédica en Red (CIBERER), Madrid, Spain.
| | | |
Collapse
|
17
|
Abstract
Human mitochondria harbor an essential, high copy number, 16,569 base pair, circular DNA genome that encodes 13 gene products required for electron transport and oxidative phosphorylation. Mutation of this genome can compromise cellular respiration, ultimately resulting in a variety of progressive metabolic diseases collectively known as 'mitochondrial diseases'. Mutagenesis of mtDNA and the persistence of mtDNA mutations in cells and tissues is a complex topic, involving the interplay of DNA replication, DNA damage and repair, purifying selection, organelle dynamics, mitophagy, and aging. We briefly review these general elements that affect maintenance of mtDNA, and we focus on nuclear genes encoding the mtDNA replication machinery that can perturb the genetic integrity of the mitochondrial genome.
Collapse
Affiliation(s)
- William C Copeland
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA.
| | - Matthew J Longley
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
18
|
Saada A. Mitochondria: mitochondrial OXPHOS (dys) function ex vivo--the use of primary fibroblasts. Int J Biochem Cell Biol 2014; 48:60-5. [PMID: 24412346 DOI: 10.1016/j.biocel.2013.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/26/2013] [Accepted: 12/26/2013] [Indexed: 01/19/2023]
Abstract
Mitochondria are intracellular organelles present in all nucleated cells. They perform a number of vital metabolic processes but their main function is to generate energy in the form of ATP by oxidative phosphorylation (OXPHOS), performed by the mitochondrial respiratory chain. Mitochondrial diseases affecting oxidative phosphorylation are a common group of inherited disorders with variable clinical manifestations. They are caused by mutations either in the mitochondrial or the nuclear genome. In order to study this group of heterogeneous diseases, they are often modeled in animal and microbial systems. However, these are complex, time consuming and unavailable for each specific mutation. Conversely, skin fibroblasts derived from patients provide a feasible alternative. The usefulness of fibroblasts in culture to verify and study the pathomechanism of new mitochondrial diseases and to evaluate the efficacy of individual treatment options is summarized in this review.
Collapse
Affiliation(s)
- Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
19
|
Abstract
To highlight differences between early-onset and adult mitochondrial depletion syndromes (MDS) concerning etiology and genetic background, pathogenesis, phenotype, clinical presentation and their outcome. MDSs most frequently occur in neonates, infants, or juveniles and more rarely in adolescents or adults. Mutated genes phenotypically presenting with adult-onset MDS include POLG1, TK2, TyMP, RRM2B, or PEO1/twinkle. Adult MDS manifest similarly to early-onset MDS, as myopathy, encephalo-myopathy, hepato-cerebral syndrome, or with chronic progressive external ophthalmoplegia (CPEO), fatigue, or only minimal muscular manifestations. Diagnostic work-up or treatment is not at variance from early-onset cases. Histological examination of muscle may be normal but biochemical investigations may reveal multiple respiratory chain defects. The outcome appears to be more favorable in adult than in early-onset forms. Mitochondrial depletion syndromes is not only a condition of neonates, infants, or juveniles but rarely also occurs in adults, presenting with minimal manifestations or manifestations like in the early-onset forms. Outcome of adult-onset MDS appears more favorable than early-onset MDS.
Collapse
|
20
|
Woodbridge P, Liang C, Davis RL, Vandebona H, Sue CM. POLG mutations in Australian patients with mitochondrial disease. Intern Med J 2013; 43:150-6. [PMID: 22647225 DOI: 10.1111/j.1445-5994.2012.02847.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/05/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND/AIM The nuclear POLG gene encodes the catalytic subunit of DNA polymerase gamma (polγ), the only polymerase involved in the replication and proofreading of mitochondrial DNA. As a consequence, POLG mutations can cause disease through impaired replication of mitochondrial DNA. To date, over 150 different mutations have been identified, with a growing number of associated phenotypes described. The aim of this study was to determine the prevalence of POLG mutations in an adult population of Australian patients with mitochondrial disease, displaying symptoms commonly associated with POLG-related diseases. METHODS The clinical presentations of 322 patients from a specialist adult mitochondrial disease clinic were reviewed. Nineteen exhibited a cluster of three or more predefined clinical manifestations suggestive of POLG-related disease: progressive external ophthalmoplegia, seizures and/or an abnormal electroencephalogram, neuropathy, ataxia, liver function abnormalities, migraine or dysphagia/dysarthria. Patients were screened for mutations by direct nucleotide sequencing of the coding and exon-flanking intronic regions of POLG. RESULTS Five of the 19 patients (26%) displaying a phenotype suggestive of POLG-related disease were found to have informative POLG coding mutations (p.T851A, p.N468D, p.Y831C, p.G517V and novel p.P163S variant). Literature and analysis of these mutations revealed that two of these patients had pathogenic mutations known to cause POLG-related disease (patient #1: p.T851A and p.P163S; patient #2: p.T851A and p.N468D). CONCLUSIONS We conclude that the prevalence of pathogenic POLG mutations in our selected adult Australian cohort with suggestive clinical manifestations was 10%. A further 16% of patients had POLG variants but are unlikely to be responsible for causing their disease.
Collapse
Affiliation(s)
- P Woodbridge
- Department of Neurogenetics, Kolling Institute of Medical Research and University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
21
|
Montero R, Grazina M, López-Gallardo E, Montoya J, Briones P, Navarro-Sastre A, Land JM, Hargreaves IP, Artuch R, del Mar O'Callaghan M, Jou C, Jimenez C, Buján N, Pineda M, García-Cazorla A, Nascimento A, Perez-Dueñas B, Ruiz-Pesini E, Fratter C, Salviati L, Simões M, Mendes C, Santos MJ, Diogo L, Garcia P, Navas P. Coenzyme Q10 deficiency in mitochondrial DNA depletion syndromes. Mitochondrion 2013; 13:337-41. [DOI: 10.1016/j.mito.2013.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 10/27/2022]
|
22
|
Clinical, biochemical, cellular and molecular characterization of mitochondrial DNA depletion syndrome due to novel mutations in the MPV17 gene. Eur J Hum Genet 2013; 22:184-91. [PMID: 23714749 PMCID: PMC3895632 DOI: 10.1038/ejhg.2013.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 11/29/2022] Open
Abstract
Mitochondrial DNA (mtDNA) depletion syndromes (MDS) are severe autosomal recessive disorders associated with decreased mtDNA copy number in clinically affected tissues. The hepatocerebral form (mtDNA depletion in liver and brain) has been associated with mutations in the POLG, PEO1 (Twinkle), DGUOK and MPV17 genes, the latter encoding a mitochondrial inner membrane protein of unknown function. The aims of this study were to clarify further the clinical, biochemical, cellular and molecular genetic features associated with MDS due to MPV17 gene mutations. We identified 12 pathogenic mutations in the MPV17 gene, of which 11 are novel, in 17 patients from 12 families. All patients manifested liver disease. Poor feeding, hypoglycaemia, raised serum lactate, hypotonia and faltering growth were common presenting features. mtDNA depletion in liver was demonstrated in all seven cases where liver tissue was available. Mosaic mtDNA depletion was found in primary fibroblasts by PicoGreen staining. These results confirm that MPV17 mutations are an important cause of hepatocerebral mtDNA depletion syndrome, and provide the first demonstration of mosaic mtDNA depletion in human MPV17 mutant fibroblast cultures. We found that a severe clinical phenotype was associated with profound tissue-specific mtDNA depletion in liver, and, in some cases, mosaic mtDNA depletion in fibroblasts.
Collapse
|
23
|
Uusimaa J, Gowda V, McShane A, Smith C, Evans J, Shrier A, Narasimhan M, O'Rourke A, Rajabally Y, Hedderly T, Cowan F, Fratter C, Poulton J. Prospective study of POLG mutations presenting in children with intractable epilepsy: prevalence and clinical features. Epilepsia 2013; 54:1002-11. [PMID: 23448099 PMCID: PMC3757309 DOI: 10.1111/epi.12115] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2012] [Indexed: 11/30/2022]
Abstract
Purpose To assess the frequency and clinical features of childhood-onset intractable epilepsy caused by the most common mutations in the POLG gene, which encodes the catalytic subunit of mitochondrial DNA polymerase gamma. Methods Children presenting with nonsyndromic intractable epilepsy of unknown etiology but without documented liver dysfunction at presentation were eligible for this prospective, population-based study. Blood samples were analyzed for the three most common POLG mutations. If any of the three tested mutations were found, all the exons and the exon–intron boundaries of the POLG gene were sequenced. In addition, we retrospectively reviewed the notes of patients presenting with intractable epilepsy in which we had found POLG mutations. All available clinical data were collected by questionnaire and by reviewing the medical records. Key Findings We analyzed 213 blood DNA samples from patients fulfilling the inclusion criteria of the prospective study. Among these, five patients (2.3%) were found with one of the three common POLG mutations as homozygous or compound heterozygous states. In addition, three patients were retrospectively identified. Seven of the eight patients had either raised cerebrospinal fluid (CSF) lactate (n = 3) or brain magnetic resonance imaging (MRI) changes (n = 4) at presentation with intractable epilepsy. Three patients later developed liver dysfunction, progressing to fatal liver failure in two without previous treatment with sodium valproate (VPA). Furthermore, it is worth mentioning that one patient presented first with an autism spectrum disorder before seizures emerged. Significance Mutations in POLG are an important cause of early and juvenile onset nonsyndromic intractable epilepsy with highly variable associated manifestations including autistic features. This study emphasizes that genetic testing for POLG mutations in patients with nonsyndromic intractable epilepsies is very important for clinical diagnostics, genetic counseling, and treatment decisions because of the increased risk for VPA-induced liver failure in patients with POLG mutations. We recommend POLG gene testing for patients with intractable seizures and at least one elevated CSF lactate or suggestive brain MRI changes (predominantly abnormal T2-weighted thalamic signal) with or without status epilepticus, epilepsia partialis continua, or liver manifestations typical for Alpers disease, especially when the disease course is progressive.
Collapse
Affiliation(s)
- Johanna Uusimaa
- Nuffield Department of Obstetrics and Gynaecology, The Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Roos S, Macao B, Fusté JM, Lindberg C, Jemt E, Holme E, Moslemi AR, Oldfors A, Falkenberg M. Subnormal levels of POLγA cause inefficient initiation of light-strand DNA synthesis and lead to mitochondrial DNA deletions and progressive external ophthalmoplegia [corrected]. Hum Mol Genet 2013; 22:2411-22. [PMID: 23446635 DOI: 10.1093/hmg/ddt094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The POLG1 gene encodes the catalytic subunit of mitochondrial DNA (mtDNA) polymerase γ (POLγ). We here describe a sibling pair with adult-onset progressive external ophthalmoplegia, cognitive impairment and mitochondrial myopathy characterized by DNA depletion and multiple mtDNA deletions. The phenotype is due to compound heterozygous POLG1 mutations, T914P and the intron mutation c.3104 + 3A > T. The mutant genes produce POLγ isoforms with heterozygous phenotypes that fail to synthesize longer DNA products in vitro. However, exon skipping in the c.3104 + 3A > T mutant is not complete, and the presence of low levels of wild-type POLγ explains patient survival. To better understand the underlying pathogenic mechanisms, we characterized the effects of POLγ depletion in vitro and found that leading-strand DNA synthesis is relatively undisturbed. In contrast, initiation of lagging-strand DNA synthesis is ineffective at lower POLγ concentrations that uncouples leading strand from lagging-strand DNA synthesis. In vivo, this effect leads to prolonged exposure of the heavy strand in its single-stranded conformation that in turn can cause the mtDNA deletions observed in our patients. Our findings, thus, suggest a molecular mechanism explaining how POLγ mutations can cause mtDNA deletions in vivo.
Collapse
Affiliation(s)
- Sara Roos
- Department of Pathology, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gula Stråket 8, Gothenburg SE-413 45, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sohl CD, Kasiviswanathan R, Copeland WC, Anderson KS. Mutations in human DNA polymerase γ confer unique mechanisms of catalytic deficiency that mirror the disease severity in mitochondrial disorder patients. Hum Mol Genet 2012. [PMID: 23208208 DOI: 10.1093/hmg/dds509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human mitochondrial DNA polymerase γ (pol γ) is solely responsible for the replication and repair of the mitochondrial genome. Unsurprisingly, alterations in pol γ activity have been associated with mitochondrial diseases such as Alpers syndrome and progressive external ophthalmoplegia. Thus far, predicting the severity of mitochondrial disease based the magnitude of deficiency in pol γ activity has been difficult. In order to understand the relationship between disease severity in patients and enzymatic defects in vitro, we characterized the molecular mechanisms of four pol γ mutations, A957P, A957S, R1096C and R1096H, which have been found in patients suffering from aggressive Alpers syndrome to mild progressive external ophthalmoplegia. The A957P mutant showed the most striking deficiencies in the incorporation efficiency of a correct deoxyribonucleotide triphosphate (dNTP) relative to wild-type pol γ, with less, but still significant incorporation efficiency defects seen in R1096H and R1096C, and only a small decrease in incorporation efficiency observed for A957S. Importantly, this trend matches the disease severity observed in patients very well (approximated as A957P ≫ R1096C ≥ R1096H ≫ A957S, from most severe disease to least severe). Further, the A957P mutation conferred a two orders of magnitude loss of fidelity relative to wild-type pol γ, indicating that a buildup of mitochondrial genomic mutations may contribute to the death in infancy seen with these patients. We conclude that characterizing the unique molecular mechanisms of pol γ deficiency for physiologically important mutant enzymes is important for understanding mitochondrial disease and for predicting disease severity.
Collapse
Affiliation(s)
- Christal D Sohl
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
26
|
Vasta V, Merritt JL, Saneto RP, Hahn SH. Next-generation sequencing for mitochondrial diseases: a wide diagnostic spectrum. Pediatr Int 2012; 54:585-601. [PMID: 22494076 DOI: 10.1111/j.1442-200x.2012.03644.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The current diagnostic approach for mitochondrial disorders requires invasive procedures such as muscle biopsy and multiple biochemical testing but the results are often inconclusive. Clinical sequencing tests are available only for a limited number of genes. Recently, massively parallel sequencing has become a powerful tool for testing genetically heterogeneous conditions such as mitochondrial disorders. METHODS Targeted next-generation sequencing was performed on 26 patients with known or suspected mitochondrial disorders using in-solution capture for the exons of 908 known and candidate nuclear genes and an Illumina genome analyzer. RESULTS None of the 18 patients with various abnormal respiratory chain complex (RCC) activities had molecular defects in either subunits or assembly factors of mitochondrial RCC enzymes except a reference control sample with known mutations in SURF1. Instead, several variants in known pathogenic genes including CPT2, POLG, PDSS1, UBE3A, SDHD, and a few potentially pathogenic variants in candidate genes such as MTO1 or SCL7A13 were identified. CONCLUSIONS Sequencing only nuclear genes for RCC subunits and assembly factors may not provide the diagnostic answers for suspected patients with mitochondrial disorders. The present findings indicate that the diagnostic spectrum of mitochondrial disorders is much broader than previously thought, which could potentially lead to misdiagnosis and/or inappropriate treatment. Overall analytic sensitivity and precision appear acceptable for clinical testing. Despite the limitations in finding mutations in all patients, the present findings underscore the considerable clinical benefits of targeted next-generation sequencing and serve as a prototype for extending the clinical evaluation in this clinically heterogeneous patient group.
Collapse
Affiliation(s)
- Valeria Vasta
- University of Washington School of Medicine, Seattle Children's Research Institute, C9S, 1900 9th Avenue, Seattle, WA 98101, USA
| | | | | | | |
Collapse
|
27
|
Sofou K, Moslemi AR, Kollberg G, Bjarnadóttir I, Oldfors A, Nennesmo I, Holme E, Tulinius M, Darin N. Phenotypic and genotypic variability in Alpers syndrome. Eur J Paediatr Neurol 2012; 16:379-89. [PMID: 22237560 DOI: 10.1016/j.ejpn.2011.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/15/2011] [Accepted: 12/13/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Alpers syndrome is one of the most common phenotypes of mitochondrial disorders in early childhood and has been associated with pathogenic mutations in POLG1. AIMS To investigate the phenotypic-genotypic correlations in Alpers syndrome and to identify potential differences among patients with Alpers syndrome with or without pathogenic POLG1 mutations. METHODS Patients with the phenotype of Alpers syndrome who were referred to our pediatric hospital during 1984-2007 and were diagnosed with mitochondrial encephalomyopathy underwent further biochemical, morphological and genetic investigations. RESULTS A total of 19 patients were included in the study, of whom six had pathogenic POLG1 mutations including a novel mutation (c.907 G>A, p.Gly303Arg). Complete mtDNA sequencing in the subgroup without POLG1 mutations showed 5 novel and 5 very rare mtDNA variants considered as rare polymorphisms. Compared to POLG1(-) patients, the POLG1(+) patients more frequently had seizures at onset, which often became refractory. Ataxia and stroke-like episodes were much more common, while microcephaly and spasticity were encountered almost solely in the POLG1(-) group. Hepatic and ophthalmological involvement developed in 79% and 88% of patients, respectively. Most of the patients in both groups had predominant deficiency of complex I. In addition to the major degenerative changes in the cerebral cortex, the basal ganglia, thalamus and white matter were also involved to variable extent. CONCLUSION Alpers syndrome is a heterogeneous syndrome that should be considered in patients with early-onset progressive cortical encephalopathy regardless of liver involvement. The phenotype is different depending on the presence or absence of POLG1 mutations.
Collapse
Affiliation(s)
- Kalliopi Sofou
- Department of Pediatrics, University of Gothenburg, The Queen Silvia's Children Hospital, S-416 85 Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kurt B, Naini AB, Copeland WC, Lu J, Dimauro S, Hirano M. A novel POLG gene mutation in a patient with SANDO. ACTA ACUST UNITED AC 2012; 2. [PMID: 24265579 PMCID: PMC3832984 DOI: 10.5455/jeim.200312.cr.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human mitochondrial genome is replicated by DNA polymerase γ, which is encoded by polymerase γ gene (POLG1) on chromosome 15q25. Patients with POLG1 mutations usually present as Alpers' syndrome or progressive external ophthalmoplegia. Our patient was a 48-year old woman with sensory ataxic neuropathy, dysarthria, ophthalmoplegia, and dysphagia. Sequence analysis revealed that she has two heterozygous missense mutations in the POLG1, a c.1774C>T substitution in exon 10, which results in a p.L591F amino acid change; and a c.3286C>T substitution in exon 21, which results in a p.R1096C amino acid change. The 1774C>T substitution is a novel mutation. Previously described adult patients with one mutation in exon 10 and the other in exon 21 of POLG1 had presented with progressive external ophthalmoplegia. We now describe a patient with mutations in the same exons but suffering from the more complex clinical syndrome of sensory ataxic neuropathy, dysarthria, ophthalmoplegia.
Collapse
Affiliation(s)
- Bulent Kurt
- Department of Neurology, Columbia University Medical Center, New York, NY
| | | | | | | | | | | |
Collapse
|
29
|
Mohamed K, Fathallah W, Ahmed E. Gender variability in presentation with Alpers' syndrome: a report of eight patients from the UAE. J Inherit Metab Dis 2011; 34:439-41. [PMID: 21305355 DOI: 10.1007/s10545-011-9278-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 12/25/2010] [Accepted: 01/11/2011] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Alpers' syndrome is a progressive and often fatal cerebral and hepatic degeneration caused by a mutation in the polymerase gamma (POLG) gene involved in mitochondrial DNA replication. OBJECTIVE We report on eight successive cases from five families. METHODS Our analysis consisted of case series reports and literature search. RESULTS The eight patients were from five extended families, all with clinical manifestations of the syndrome. Seven were confirmed by POLG sequence analysis and one died before testing was possible. We observed that whereas the five females presented with advanced hepatic disease at the onset of neurological symptoms, the three males had normal hepatic function well after presentation, with progressive neurological disease. Two of the three males are distant relatives; two of the five females were sisters of two male patients. DISCUSSION Most authors report the coexistence of both hepatic and cerebral disease at the onset of Alpers' syndrome. It is unusual that all three males in our series had no signs of liver disease but had advanced neurological signs. CONCLUSION Initial manifestations in Alpers' syndrome may be gender specific. In males, the condition should be considered in patients with seizures and encephalopathy, even in the absence of hepatic disease.
Collapse
Affiliation(s)
- Khalid Mohamed
- Division of Pediatric Neurology, Pediatric Institute Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates.
| | | | | |
Collapse
|
30
|
Endurance exercise rescues progeroid aging and induces systemic mitochondrial rejuvenation in mtDNA mutator mice. Proc Natl Acad Sci U S A 2011; 108:4135-40. [PMID: 21368114 DOI: 10.1073/pnas.1019581108] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A causal role for mitochondrial DNA (mtDNA) mutagenesis in mammalian aging is supported by recent studies demonstrating that the mtDNA mutator mouse, harboring a defect in the proofreading-exonuclease activity of mitochondrial polymerase gamma, exhibits accelerated aging phenotypes characteristic of human aging, systemic mitochondrial dysfunction, multisystem pathology, and reduced lifespan. Epidemiologic studies in humans have demonstrated that endurance training reduces the risk of chronic diseases and extends life expectancy. Whether endurance exercise can attenuate the cumulative systemic decline observed in aging remains elusive. Here we show that 5 mo of endurance exercise induced systemic mitochondrial biogenesis, prevented mtDNA depletion and mutations, increased mitochondrial oxidative capacity and respiratory chain assembly, restored mitochondrial morphology, and blunted pathological levels of apoptosis in multiple tissues of mtDNA mutator mice. These adaptations conferred complete phenotypic protection, reduced multisystem pathology, and prevented premature mortality in these mice. The systemic mitochondrial rejuvenation through endurance exercise promises to be an effective therapeutic approach to mitigating mitochondrial dysfunction in aging and related comorbidities.
Collapse
|
31
|
Genetic analysis of two Japanese families with progressive external ophthalmoplegia and parkinsonism. J Neurol 2011; 258:1327-32. [PMID: 21301859 DOI: 10.1007/s00415-011-5936-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/24/2011] [Indexed: 10/18/2022]
Abstract
Mutations in the progressive external ophthalmoplegia 1 (PEO1), adenine nucleotide translocator 1 (ANT1) and DNA polymerase gamma (POLG) genes were reported in patients with progressive external ophthalmoplegia and parkinsonism. However, the genotype-phenotype correlation and pathophysiology of these syndromes are still unknown. In order to define the molecular basis of progressive external ophthalmoplegia and parkinsonism, we screened for mutations in PEO1, ANT1, POLG genes and the whole mitochondrial genome in two families. In results, we identified a compound heterozygous POLG substitutions, c.830A>T (p.H277L) and c.2827C>T (p.R943C) in one of the families. These two mutations in the coding region of POLG alter conserved amino acids in the exonuclease and polymerase domains, respectively, of the POLG protein. Neither of these substitutions was found in the 100 chromosomes of ethnically matched control subjects. In the other family, no mutations were detected in any of the three genes and the whole mitochondrial genome in the blood sample, although mitochondrial DNA deletions were observed in the muscle biopsy sample. Progressive external ophthalmoplegia and parkinsonism are genetically heterogenous disorders, and part of this syndrome may be caused by mutations in other, unknown genes.
Collapse
|
32
|
POLG mutations cause decreased mitochondrial DNA repopulation rates following induced depletion in human fibroblasts. Biochim Biophys Acta Mol Basis Dis 2010; 1812:321-5. [PMID: 21138766 DOI: 10.1016/j.bbadis.2010.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 11/09/2010] [Accepted: 11/29/2010] [Indexed: 11/22/2022]
Abstract
Disorders of mitochondrial DNA (mtDNA) maintenance have emerged as an important cause of human genetic disease, but demonstrating the functional consequences of de novo mutations remains a major challenge. We studied the rate of depletion and repopulation of mtDNA in human fibroblasts exposed to ethidium bromide in patients with heterozygous POLG mutations, POLG2 and TK2 mutations. Ethidium bromide induced mtDNA depletion occurred at the same rate in human fibroblasts from patients and healthy controls. By contrast, the restoration of mtDNA levels was markedly delayed in fibroblasts from patients with compound heterozygous POLG mutations. Specific POLG2 and TK2 mutations did not delay mtDNA repopulation rates. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation within intact cells, and provide a potential method of demonstrating the functional consequences of putative pathogenic alleles causing a defect of mtDNA synthesis.
Collapse
|
33
|
Mitochondrial DNA replication and disease: insights from DNA polymerase γ mutations. Cell Mol Life Sci 2010; 68:219-33. [PMID: 20927567 DOI: 10.1007/s00018-010-0530-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
Abstract
DNA polymerase γ (pol γ), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol γ. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol γ assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations.
Collapse
|
34
|
Szczepanowska K, Foury F. A cluster of pathogenic mutations in the 3'-5' exonuclease domain of DNA polymerase gamma defines a novel module coupling DNA synthesis and degradation. Hum Mol Genet 2010; 19:3516-29. [PMID: 20601675 DOI: 10.1093/hmg/ddq267] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in DNA polymerase gamma (pol g), the unique replicase inside mitochondria, cause a broad and complex spectrum of diseases in human. We have used Mip1, the yeast pol g, as a model enzyme to characterize six pathogenic pol g mutations. Four mutations clustered in a highly conserved 3'-5' exonuclease module are localized in the DNA-binding channel in close vicinity to the polymerase domain. They result in an increased frequency of point mutations and high instability of the mitochondrial DNA (mtDNA) in yeast cells, and unexpectedly for mutator mutations in the exonuclease domain, they favour exonucleolysis versus polymerization. This trait is associated with highly decreased DNA-binding affinity and poorly processive DNA synthesis. Our data show for the first time that a 3'-5' exonuclease module of pol g plays a crucial role in the coordination of the polymerase and exonuclease functions and they strongly suggest that in patients the disease is not caused by defective proofreading but results from poor mtDNA replication generated by a severe imbalance between DNA synthesis and degradation.
Collapse
Affiliation(s)
- Karolina Szczepanowska
- Institute of Life Sciences, Croix du Sud 4/15, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
35
|
|
36
|
Stumpf JD, Bailey CM, Spell D, Stillwagon M, Anderson KS, Copeland WC. mip1 containing mutations associated with mitochondrial disease causes mutagenesis and depletion of mtDNA in Saccharomyces cerevisiae. Hum Mol Genet 2010; 19:2123-33. [PMID: 20185557 DOI: 10.1093/hmg/ddq089] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase gamma (pol gamma) is responsible for replication and repair of mitochondrial DNA (mtDNA). Over 150 mutations in POLG (which encodes pol gamma) have been discovered in patients with mitochondrial disorders including Alpers, progressive external ophthalmoplegia and ataxia-neuropathy syndrome. However, the severity and dominance of many POLG disease-associated mutations are unclear, because they have been reported in sporadic cases. To understand the consequences of pol gamma disease-associated mutations in vivo, we identified dominant and recessive changes in mtDNA mutagenesis, depletion and mitochondrial dysfunction caused by 31 mutations in the conserved regions of the gene, MIP1, which encodes the Saccharomyces cerevisiae ortholog of human pol gamma. Twenty mip1 mutant enzymes were shown to disrupt mtDNA replication and may be sufficient to cause disease. Previously uncharacterized sporadic mutations, Q308H, R807C, G1076V, R1096H and S1104C, caused decreased polymerase activity leading to mtDNA depletion and mitochondrial dysfunction. We present evidence showing a limited role of point mutagenesis by these POLG mutations in mitochondrial dysfunction and disease progression. Instead, most mitochondrial defective mip1 mutants displayed reduced or depleted mtDNA. We also determined that the severity of the phenotype of the mip1 mutant strain correlates with the age of onset of disease associated with the human ortholog. Finally, we demonstrated that increasing nucleotide pools by overexpression of ribonucleotide reductase (RNR1) suppressed mtDNA replication defects caused by several dominant mip1 mutations, and the orthologous human mutations revealed severe nucleotide binding defects.
Collapse
Affiliation(s)
- Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes ofHealth, Research, Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
37
|
Ashley N, Poulton J. Anticancer DNA intercalators cause p53-dependent mitochondrial DNA nucleoid re-modelling. Oncogene 2009; 28:3880-91. [PMID: 19684617 PMCID: PMC4548715 DOI: 10.1038/onc.2009.242] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/07/2009] [Accepted: 07/08/2009] [Indexed: 12/13/2022]
Abstract
Many anticancer drugs, such as doxorubicin (DXR), intercalate into nuclear DNA of cancer cells, thereby inhibiting their growth. However, it is not well understood how such drugs interact with mitochondrial DNA (mtDNA). Using cell and molecular studies of cultured cells, we show that DXR and other DNA intercalators, such as ethidium bromide, can rapidly intercalate into mtDNA within living cells, causing aggregation of mtDNA nucleoids and altering the distribution of nucleoid proteins. Remodelled nucleoids excluded DXR and maintained mtDNA synthesis, whereas non-remodelled nucleoids became heavily intercalated with DXR, which inhibited their replication, thus leading to mtDNA depletion. Remodelling was accompanied by extensive mitochondrial elongation or interconnection, and was suppressed in cells lacking mitofusin 1 and optic atrophy 1 (OPA1), the key proteins for mitochondrial fusion. In contrast, remodelling was significantly increased by p53 or ataxia telangiectasia mutated inhibition (ATM), indicating a link between nucleoid dynamics and the genomic DNA damage response. Collectively, our results show that DNA intercalators can trigger a common mitochondrial response, which likely contributes to the marked clinical toxicity associated with these drugs.
Collapse
Affiliation(s)
- N Ashley
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK.
| | | |
Collapse
|
38
|
Tzoulis C, Papingji M, Fiskestrand T, Røste LS, Bindoff LA. Mitochondrial DNA depletion in progressive external ophthalmoplegia caused by POLG1 mutations. Acta Neurol Scand 2009:38-41. [PMID: 19566497 DOI: 10.1111/j.1600-0404.2009.01212.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate two patients with late onset, progressive external ophthalmoplegia (PEO) and sensory peripheral neuropathy. MATERIALS & METHODS The patients aged 86 and 50 years were investigated clinically including magnetic resonance imaging of the brain, electrophysiological studies and, in one, skeletal muscle biopsy. Molecular studies included sequencing of the whole coding region of the POLG1 gene and mitochondrial DNA (mtDNA) analysis for deletions and depletion. RESULTS Both patients were compound heterozygous for gene encoding the catalytic subunit of the DNA-polymerase gamma (POLG1) mutations. One had the p.737R and p.W748S mutations while the other carried the p.T251I, p.P587L and p.W748S mutations. While these mutations have been previously described, these combinations are novel. mtDNA studies in skeletal muscle showed evidence of multiple deletions and approximately 64% depletion of the mitochondrial genome. CONCLUSION Our findings broaden the genotypic spectrum of POLG-associated PEO and show that in addition to multiple deletions, mtDNA depletion occurs and may contribute to the pathogenesis of this disorder.
Collapse
Affiliation(s)
- C Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | | | | | | |
Collapse
|
39
|
Rötig A, Poulton J. Genetic causes of mitochondrial DNA depletion in humans. Biochim Biophys Acta Mol Basis Dis 2009; 1792:1103-8. [PMID: 19596444 DOI: 10.1016/j.bbadis.2009.06.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 06/19/2009] [Accepted: 06/24/2009] [Indexed: 11/16/2022]
Abstract
Mitochondrial DNA (mtDNA) depletion is characterized by a profound reduction of mtDNA copy number. The maintenance of mtDNA copy number requires several nuclear-encoded factors involved in replication and in dNTP supply. In the past decade mutations in several of these factors have been reported in a growing number of syndromes. This article reviews the current knowledge of genes causing mitochondrial DNA depletion syndromes.
Collapse
Affiliation(s)
- Agnès Rötig
- INSERM U781, Hôpital Necker-Enfants Malades, Université René Descartes Paris V, 149 rue de Sèvres, 75015 Paris, France.
| | | |
Collapse
|
40
|
Chan SSL, Naviaux RK, Basinger AA, Casas KA, Copeland WC. De novo mutation in POLG leads to haplotype insufficiency and Alpers syndrome. Mitochondrion 2009; 9:340-5. [PMID: 19501198 DOI: 10.1016/j.mito.2009.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/06/2009] [Accepted: 05/26/2009] [Indexed: 11/28/2022]
Abstract
Mutations in POLG are a major contributor to pediatric and adult mitochondrial diseases. However, the consequences of many POLG mutations are not well understood. We investigated the molecular cause of Alpers syndome in a patient harboring the POLG mutations A467T in trans with c.2157+5_+6 gc-->ag in intron 12. Analysis of transcripts arising from the c.2157+5_+6 gc-->ag allele revealed alternative splicing with an insertion of 30 intronic nucleotides leading to a premature termination codon. These transcripts were subsequently removed through nonsense-mediated decay, leading to haplotype insufficiency due to expression of the A467T allele and decreased expression of the c.2157+5_+6 gc-->ag allele, which is likely responsible for the Alpers syndrome phenotype.
Collapse
Affiliation(s)
- Sherine S L Chan
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
41
|
Kasiviswanathan R, Longley MJ, Chan SSL, Copeland WC. Disease mutations in the human mitochondrial DNA polymerase thumb subdomain impart severe defects in mitochondrial DNA replication. J Biol Chem 2009; 284:19501-10. [PMID: 19478085 DOI: 10.1074/jbc.m109.011940] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Forty-five different point mutations in POLG, the gene encoding the catalytic subunit of the human mitochondrial DNA polymerase (pol gamma), cause the early onset mitochondrial DNA depletion disorder, Alpers syndrome. Sequence analysis of the C-terminal polymerase region of pol gamma revealed a cluster of four Alpers mutations at highly conserved residues in the thumb subdomain (G848S, c.2542g-->a; T851A, c.2551a-->g; R852C, c.2554c-->t; R853Q, c.2558g-->a) and two Alpers mutations at less conserved positions in the adjacent palm subdomain (Q879H, c.2637g-->t and T885S, c.2653a-->t). Biochemical characterization of purified, recombinant forms of pol gamma revealed that Alpers mutations in the thumb subdomain reduced polymerase activity more than 99% relative to the wild-type enzyme, whereas the palm subdomain mutations retained 50-70% wild-type polymerase activity. All six mutant enzymes retained physical and functional interaction with the pol gamma accessory subunit (p55), and none of the six mutants exhibited defects in misinsertion fidelity in vitro. However, differential DNA binding by these mutants suggests a possible orientation of the DNA with respect to the polymerase during catalysis. To our knowledge this study represents the first structure-function analysis of the thumb subdomain in pol gamma and examines the consequences of mitochondrial disease mutations in this region.
Collapse
Affiliation(s)
- Rajesh Kasiviswanathan
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
42
|
163rd ENMC International Workshop: nucleoid and nucleotide biology in syndromes of mitochondrial DNA depletion myopathy 12-14 December 2008, Naarden, The Netherlands. Neuromuscul Disord 2009; 19:439-43. [PMID: 19464176 DOI: 10.1016/j.nmd.2009.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Indexed: 11/23/2022]
|
43
|
Bulst S, Abicht A, Holinski-Feder E, Müller-Ziermann S, Koehler U, Thirion C, Walter MC, Stewart JD, Chinnery PF, Lochmüller H, Horvath R. In vitro supplementation with dAMP/dGMP leads to partial restoration of mtDNA levels in mitochondrial depletion syndromes. Hum Mol Genet 2009; 18:1590-9. [PMID: 19221117 DOI: 10.1093/hmg/ddp074] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial DNA depletion syndrome, a frequent cause of childhood (hepato)encephalomyopathies, is defined as a reduction of mitochondrial DNA copy number related to nuclear DNA. It was previously shown that mtDNA depletion can be prevented by dAMP/dGMP supplementation in deoxyguanosine kinase-deficient fibroblasts. We investigated myotubes of patients diagnosed with mtDNA depletion carrying pathogenic mutations in DGUOK, POLG1 (Alpers syndrome) and TYMP. Differentiating myotubes of all patients and controls were supplemented with different doses of dAMP/dGMP or dAMP/dGMP/dCMP in TYMP deficiency, and analysed for mtDNA/nDNA ratio and for cytochrome c oxidase (COX) activity. Serum deprivation and myotube formation triggered a decrease in mtDNA copy number in DGUOK or POLG1 deficient myotubes, but not in TYMP deficiency and healthy controls. Supplementation with dAMP/dGMP leads to a significant and reproducible rescue of mtDNA depletion in DGUOK deficiency. POLG1 deficient myotubes also showed a mild, not significant increase in mtDNA copy number. MtDNA depletion did not result in deficient COX staining in DGUOK and POLG1-deficient myotubes. Treatment with ethidium bromide resulted in very severe depletion and absence of COX staining in all cell types, and no recovery was observed after supplementation with dAMP/dGMP. We show that supplementation with dAMP/dGMP increases mtDNA copy number significantly in DGUOK deficient myotubes and, leads to a mild, non-significant improvement of mtDNA depletion in POLG1 deficiency. No adverse effect on mtDNA copy number was observed on high-dose supplementation in vitro. Further studies are needed to determine possible therapeutic implications of dAMP/dGMP supplementation for DGUOK deficiency in vivo.
Collapse
Affiliation(s)
- Stefanie Bulst
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University of Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ashley N, Poulton J. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs. Biochem Biophys Res Commun 2009; 378:450-5. [DOI: 10.1016/j.bbrc.2008.11.059] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/14/2008] [Indexed: 10/21/2022]
|
45
|
Naess K, Freyer C, Bruhn H, Wibom R, Malm G, Nennesmo I, von Döbeln U, Larsson NG. MtDNA mutations are a common cause of severe disease phenotypes in children with Leigh syndrome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:484-90. [PMID: 19103152 DOI: 10.1016/j.bbabio.2008.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
Abstract
Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.
Collapse
Affiliation(s)
- Karin Naess
- Department of Clinical Sciences, Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|