1
|
Shah S, Yu S, Zhang C, Ali I, Wang X, Qian Y, Xiao T. Retrotransposon SINEs in age-related diseases: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 101:102539. [PMID: 39395576 DOI: 10.1016/j.arr.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Retrotransposons are self-replicating genomic elements that move from one genomic location to another using a "copy-and-paste" method involving RNA intermediaries. One family of retrotransposon that has garnered considerable attention for its association with age-related diseases and anti-aging interventions is the short interspersed nuclear elements (SINEs). This review summarizes current knowledge on the roles of SINEs in aging processes and therapies. To underscore the significant research on the involvement of SINEs in aging-related diseases, we commence by outlining compelling evidence on the classification and mechanism, highlighting implications in age-related phenomena. The intricate relationship between SINEs and diseases such as neurodegenerative disorders, heart failure, high blood pressure, atherosclerosis, type 2 diabetes mellitus, osteoporosis, visual system dysfunctions, and cancer is explored, emphasizing their roles in various age-related diseases. Recent investigations into the anti-aging potential of SINE-targeted treatments are examined, with particular attention to how SINE antisense RNA mitigate age-related alterations at the cellular and molecular levels, offering insights into potential therapeutic targets for age-related pathologies. This review aims to compile the most recent advances on the multifaceted roles of SINE retrotransposons in age-related diseases and anti-aging interventions, providing valuable insights into underlying mechanisms and therapeutic avenues for promoting healthy aging.
Collapse
Affiliation(s)
- Suleman Shah
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Siyi Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chen Zhang
- Department of Thoracic Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Ilyas Ali
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518055, China
| | - Xiufang Wang
- Department of Genetics, Hebei Medical University, Hebei Key Lab of Laboratory Animal, Shijiazhuang 050017, China
| | - Youhui Qian
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Tian Xiao
- Thoracic Surgery Department of the First Affiliated Hospital, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Genetics, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
2
|
Demidov G, Yaldiz B, Garcia-Pelaez J, de Boer E, Schuermans N, Van de Vondel L, Paramonov I, Johansson LF, Musacchia F, Benetti E, Bullich G, Sablauskas K, Beltran S, Gilissen C, Hoischen A, Ossowski S, de Voer R, Lohmann K, Oliveira C, Topf A, Vissers LELM, Laurie S. Comprehensive reanalysis for CNVs in ES data from unsolved rare disease cases results in new diagnoses. NPJ Genom Med 2024; 9:49. [PMID: 39461972 PMCID: PMC11513043 DOI: 10.1038/s41525-024-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
We report the results of a comprehensive copy number variant (CNV) reanalysis of 9171 exome sequencing datasets from 5757 families affected by a rare disease (RD). The data reanalysed was extremely heterogeneous, having been generated using 28 different enrichment kits by 42 different research groups across Europe partnering in the Solve-RD project. Each research group had previously undertaken their own analysis of the data but failed to identify disease-causing variants. We applied three CNV calling algorithms to maximise sensitivity, and rare CNVs overlapping genes of interest, provided by four partner European Reference Networks, were taken forward for interpretation by clinical experts. This reanalysis has resulted in a molecular diagnosis being provided to 51 families in this sample, with ClinCNV performing the best of the three algorithms. We also identified partially explanatory pathogenic CNVs in a further 34 individuals. This work illustrates the value of reanalysing ES cold cases for CNVs.
Collapse
Affiliation(s)
- German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
| | - Burcu Yaldiz
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - José Garcia-Pelaez
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nika Schuermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Lennart F Johansson
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Francesco Musacchia
- Center for Human Technologies, Italian Institute of Technology (IIT), Genova, Italy
- Telethon Institute for Genetics and Medicine, 80078, Pozzuoli (Napoli), Italy
| | - Elisa Benetti
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
| | - Gemma Bullich
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Karolis Sablauskas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Richarda de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
3
|
Kővári B, Carneiro F, Lauwers GY. Epithelial tumours of the stomach. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:227-286. [DOI: 10.1002/9781119423195.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Wang ZY, Ge LP, Ouyang Y, Jin X, Jiang YZ. Targeting transposable elements in cancer: developments and opportunities. Biochim Biophys Acta Rev Cancer 2024; 1879:189143. [PMID: 38936517 DOI: 10.1016/j.bbcan.2024.189143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Transposable elements (TEs), comprising nearly 50% of the human genome, have transitioned from being perceived as "genomic junk" to key players in cancer progression. Contemporary research links TE regulatory disruptions with cancer development, underscoring their therapeutic potential. Advances in long-read sequencing, computational analytics, single-cell sequencing, proteomics, and CRISPR-Cas9 technologies have enriched our understanding of TEs' clinical implications, notably their impact on genome architecture, gene regulation, and evolutionary processes. In cancer, TEs, including long interspersed element-1 (LINE-1), Alus, and long terminal repeat (LTR) elements, demonstrate altered patterns, influencing both tumorigenic and tumor-suppressive mechanisms. TE-derived nucleic acids and tumor antigens play critical roles in tumor immunity, bridging innate and adaptive responses. Given their central role in oncology, TE-targeted therapies, particularly through reverse transcriptase inhibitors and epigenetic modulators, represent a novel avenue in cancer treatment. Combining these TE-focused strategies with existing chemotherapy or immunotherapy regimens could enhance efficacy and offer a new dimension in cancer treatment. This review delves into recent TE detection advancements, explores their multifaceted roles in tumorigenesis and immune regulation, discusses emerging diagnostic and therapeutic approaches centered on TEs, and anticipates future directions in cancer research.
Collapse
Affiliation(s)
- Zi-Yu Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li-Ping Ge
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Ouyang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xi Jin
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Wang J, Gao G, Wang D. Developing AAV-delivered nonsense suppressor tRNAs for neurological disorders. Neurotherapeutics 2024; 21:e00391. [PMID: 38959711 PMCID: PMC11269797 DOI: 10.1016/j.neurot.2024.e00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024] Open
Abstract
Adeno-associated virus (AAV)-based gene therapy is a clinical stage therapeutic modality for neurological disorders. A common genetic defect in myriad monogenic neurological disorders is nonsense mutations that account for about 11% of all human pathogenic mutations. Stop codon readthrough by suppressor transfer RNA (sup-tRNA) has long been sought as a potential gene therapy approach to target nonsense mutations, but hindered by inefficient in vivo delivery. The rapid advances in AAV delivery technology have not only powered gene therapy development but also enabled in vivo preclinical assessment of a range of nucleic acid therapeutics, such as sup-tRNA. Compared with conventional AAV gene therapy that delivers a transgene to produce therapeutic proteins, AAV-delivered sup-tRNA has several advantages, such as small gene sizes and operating within the endogenous gene expression regulation, which are important considerations for treating some neurological disorders. This review will first examine sup-tRNA designs and delivery by AAV vectors. We will then analyze how AAV-delivered sup-tRNA can potentially address some neurological disorders that are challenging to conventional gene therapy, followed by discussing available mouse models of neurological diseases for in vivo preclinical testing. Potential challenges for AAV-delivered sup-tRNA to achieve therapeutic efficacy and safety will also be discussed.
Collapse
Affiliation(s)
- Jiaming Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Dan Wang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Zeng Z, Li Y, Zhou H, Li M, Ye J, Li D, Zhu Y, Zhang Y, Zhang X, Deng Y, Li J, Gu L, Wu J. System-wide identification of novel de-ubiquitination targets for USP10 in gastric cancer metastasis through multi-omics screening. BMC Cancer 2024; 24:773. [PMID: 38937694 PMCID: PMC11209979 DOI: 10.1186/s12885-024-12549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024] Open
Abstract
OBJECTIVE Ubiquitin-specific peptidase 10 (USP10), a typical de-ubiquitinase, has been found to play a double-edged role in human cancers. Previously, we reported that the expression of USP10 was negatively correlated with the depth of gastric wall invasion, lymph node metastasis, and prognosis in gastric cancer (GC) patients. However, it remains unclear whether USP10 can regulate the metastasis of GC cells through its de-ubiquitination function. METHODS In this study, proteome, ubiquitinome, and transcriptome analyses were conducted to comprehensively identify novel de-ubiquitination targets for USP10 in GC cells. Subsequently, a series of validation experiments, including in vitro cell culture studies, in vivo metastatic tumor models, and clinical sample analyses, were performed to elucidate the regulatory mechanism of USP10 and its de-ubiquitination targets in GC metastasis. RESULTS After overexpression of USP10 in GC cells, 146 proteins, 489 ubiquitin sites, and 61 mRNAs exhibited differential expression. By integrating the results of multi-omics, we ultimately screened 9 potential substrates of USP10, including TNFRSF10B, SLC2A3, CD44, CSTF2, RPS27, TPD52, GPS1, RNF185, and MED16. Among them, TNFRSF10B was further verified as a direct de-ubiquitination target for USP10 by Co-IP and protein stabilization assays. The dysregulation of USP10 or TNFRSF10B affected the migration and invasion of GC cells in vitro and in vivo models. Molecular mechanism studies showed that USP10 inhibited the epithelial-mesenchymal transition (EMT) process by increasing the stability of TNFRSF10B protein, thereby regulating the migration and invasion of GC cells. Finally, the retrospective clinical sample studies demonstrated that the downregulation of TNFRSF10B expression was associated with poor survival among 4 of 7 GC cohorts, and the expression of TNFRSF10B protein was significantly negatively correlated with the incidence of distant metastasis, diffuse type, and poorly cohesive carcinoma. CONCLUSIONS Our study established a high-throughput strategy for screening de-ubiquitination targets for USP10 and further confirmed that inhibiting the ubiquitination of TNFRSF10B might be a promising therapeutic strategy for GC metastasis.
Collapse
Affiliation(s)
- Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yina Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Heng Zhou
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mingyang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Ye
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, Hubei, China
| | - Dan Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Zhu
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Juan Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lijuan Gu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jie Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Harrold EC, Stadler ZK. Upper Gastrointestinal Cancers and the Role of Genetic Testing. Hematol Oncol Clin North Am 2024; 38:677-691. [PMID: 38458854 DOI: 10.1016/j.hoc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Beyond the few established hereditary cancer syndromes with an upper gastrointestinal cancer component, there is increasing recognition of the contribution of novel pathogenic germline variants (gPVs) to upper gastrointestinal carcinogenesis. The detection of gPVs has potential implications for novel treatment approaches of the index cancer patient as well as long-term implications for surveillance and risk-reducing measures for cancer survivors and far-reaching implications for the patients' family. With widespread availability of multigene panel testing, new associations may be identified with germline-somatic integration being critical to determining true causality of novel gPVs. Comprehensive cancer care should incorporate both somatic and germline testing.
Collapse
Affiliation(s)
- Emily C Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland. https://twitter.com/EmilyHarrold6
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
8
|
Taieb J, Bennouna J, Penault-Llorca F, Basile D, Samalin E, Zaanan A. Treatment of gastric adenocarcinoma: A rapidly evolving landscape. Eur J Cancer 2023; 195:113370. [PMID: 37948843 DOI: 10.1016/j.ejca.2023.113370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023]
Abstract
Gastric adenocarcinoma (GC) and gastroesophageal junction adenocarcinoma represent frequent and severe diseases whose management has radically changed over the last 10 years. With the advent of second- and third-line standard therapies for metastatic GC patients in the 2010s, the molecular dismemberment of the disease and positive trials with immunotherapy and targeted agents will mark the 2020s. New treatment options have emerged in the neoadjuvant, adjuvant, and metastatic setting. In addition to improved multimodal treatment in operable patients, new subgroups have emerged depending on molecular alterations (HER2, Microsatellite instability) or expression of specific proteins in the tumour (PDL1, Claudin 18.2) making immunohistochemistry central in profiling the tumour for an optimal individualised management. The aim of this review is to describe the current standards of management of early and late stage GC and the molecular markers needed today to optimally manage our patients together with future perspectives on this disease.
Collapse
Affiliation(s)
- Julien Taieb
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Institut du Cancer Paris CARPEM, Université Paris Cité, Paris, Hôpital Européen Georges Pompidou, Department of Tumor and Cancer Genomic Medicine, Paris, France.
| | - Jaafar Bennouna
- Department of Medical Oncology, Hopital Foch, Suresnes, France
| | | | - Debora Basile
- Department of Medical Oncology, San Giovanni di Dio Hospital, Crotone, Italy
| | - Emmanuelle Samalin
- Department of Medical Oncology, Institut du Cancer de Montpellier, Univ. Montpellier (ICM), Montpellier, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Institut du Cancer Paris CARPEM, Université Paris Cité, Paris, Hôpital Européen Georges Pompidou, Department of Tumor and Cancer Genomic Medicine, Paris, France
| |
Collapse
|
9
|
Fillman C, Anantharajah A, Marmelstein B, Dillon M, Horton C, Peterson C, Lopez J, Tondon R, Brannan T, Katona BW. Combining clinical and molecular characterization of CDH1: a multidisciplinary approach to reclassification of a splicing variant. Fam Cancer 2023; 22:521-526. [PMID: 37540482 DOI: 10.1007/s10689-023-00346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
Pathogenic germline variants (PGVs) in the CDH1 gene are associated with diffuse gastric and lobular breast cancer syndrome (DGLBC) and can increase the lifetime risk for both diffuse gastric cancer and lobular breast cancer. Given the risk for diffuse gastric cancer among individuals with CDH1 PGVs is up to 30-40%, prophylactic total gastrectomy is often recommended to affected individuals. Therefore, accurate interpretation of CDH1 variants is of the utmost importance for proper clinical decision-making. Herein we present a 45-year-old female, with lobular breast cancer and a father with gastric cancer of unknown pathology at age 48, who was identified to have an intronic variant of uncertain significance in the CDH1 gene, specifically c.833-9 C > G. Although the proband did not meet the International Gastric Cancer Linkage Consortium (IGCLC) criteria for gastric surveillance, she elected to pursue an upper endoscopy where non-targeted gastric biopsies identified a focus of signet ring cell carcinoma (SRCC). The proband then underwent a total gastrectomy, revealing numerous SRCC foci, but no invasive diffuse gastric cancer. Simultaneously, a genetic testing laboratory performed RNA sequencing to further analyze the CDH1 intronic variant, identifying an abnormal transcript from a novel acceptor splice site. The RNA analysis in conjunction with the patient's gastric foci of SRCC and family history was sufficient evidence for reclassification of the variant from uncertain significance to likely pathogenic. In conclusion, we report the first case of the CDH1 c.833-9 C > G intronic variant being associated with DGLBC and illustrate how collaboration among clinicians, laboratory personnel, and patients is crucial for variant resolution.
Collapse
Affiliation(s)
- Corrine Fillman
- Cancer Risk and Genetics Program, St. Luke's University Health Network, Bethlehem, PA, USA
| | | | - Briana Marmelstein
- Cancer Risk and Genetics Program, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Monica Dillon
- Cancer Risk and Genetics Program, St. Luke's University Health Network, Bethlehem, PA, USA
| | | | | | - Joseph Lopez
- Cancer Risk and Genetics Program, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Rashmi Tondon
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Bryson W Katona
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd. 751 South Pavilion, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
São José C, Garcia-Pelaez J, Ferreira M, Arrieta O, André A, Martins N, Solís S, Martínez-Benítez B, Ordóñez-Sánchez ML, Rodríguez-Torres M, Sommer AK, Te Paske IBAW, Caldas C, Tischkowitz M, Tusié MT, Hoogerbrugge N, Demidov G, de Voer RM, Laurie S, Oliveira C. Combined loss of CDH1 and downstream regulatory sequences drive early-onset diffuse gastric cancer and increase penetrance of hereditary diffuse gastric cancer. Gastric Cancer 2023; 26:653-666. [PMID: 37249750 PMCID: PMC10361908 DOI: 10.1007/s10120-023-01395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/30/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Germline CDH1 pathogenic or likely pathogenic variants cause hereditary diffuse gastric cancer (HDGC). Once a genetic cause is identified, stomachs' and breasts' surveillance and/or prophylactic surgery is offered to asymptomatic CDH1 carriers, which is life-saving. Herein, we characterized an inherited mechanism responsible for extremely early-onset gastric cancer and atypical HDGC high penetrance. METHODS Whole-exome sequencing (WES) re-analysis was performed in an unsolved HDGC family. Accessible chromatin and CDH1 promoter interactors were evaluated in normal stomach by ATAC-seq and 4C-seq, and functional analysis was performed using CRISPR-Cas9, RNA-seq and pathway analysis. RESULTS We identified a germline heterozygous 23 Kb CDH1-TANGO6 deletion in a family with eight diffuse gastric cancers, six before age 30. Atypical HDGC high penetrance and young cancer-onset argued towards a role for the deleted region downstream of CDH1, which we proved to present accessible chromatin, and CDH1 promoter interactors in normal stomach. CRISPR-Cas9 edited cells mimicking the CDH1-TANGO6 deletion display the strongest CDH1 mRNA downregulation, more impacted adhesion-associated, type-I interferon immune-associated and oncogenic signalling pathways, compared to wild-type or CDH1-deleted cells. This finding solved an 18-year family odyssey and engaged carrier family members in a cancer prevention pathway of care. CONCLUSION In this work, we demonstrated that regulatory elements lying down-stream of CDH1 are part of a chromatin network that control CDH1 expression and influence cell transcriptome and associated signalling pathways, likely explaining high disease penetrance and very young cancer-onset. This study highlights the importance of incorporating scientific-technological updates and clinical guidelines in routine diagnosis, given their impact in timely genetic diagnosis and disease prevention.
Collapse
Affiliation(s)
- Celina São José
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Garcia-Pelaez
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Department Computer Science Faculty of Science, University of Porto, Porto, Portugal
| | - Oscar Arrieta
- Thoracic Oncology Unit, Department of Thoracic Oncology, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Ana André
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Nelson Martins
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
- Master Programme in Molecular Medicine and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Samantha Solís
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Braulio Martínez-Benítez
- Pathology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, INCMNSZ Mexico City, Mexico
| | - María Luisa Ordóñez-Sánchez
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Maribel Rodríguez-Torres
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Anna K Sommer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cambridge Experimental Cancer Medicine Centre (ECMC), CRUK Cambridge Centre, NIHR Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Maria Teresa Tusié
- INCMNSZ/Instituto de Investigaciones Biomédicas, Unidad de Biología Molecular y Medicina Genómica Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, UNAM Mexico City, Mexico
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Steve Laurie
- The Barcelona Institute of Science and Technology, CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona, Spain
| | - Carla Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal.
- FMUP-Faculty of Medicine of the University of Porto, Porto, Portugal.
| |
Collapse
|
11
|
Xiao J, Li H, Xue F, Luo Z, Pang Y. Prenatal diagnosis of hereditary diffuse gastric cancer: a case report. BMC Pregnancy Childbirth 2023; 23:488. [PMID: 37393258 PMCID: PMC10314645 DOI: 10.1186/s12884-023-05772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/09/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Hereditary diffuse gastric cancer(HDGC) is a kind of malignant gastric cancer that is difficult to find in the early stage. However, this late onset and incomplete penetrance hereditary cancer, and its prenatal diagnosis have rarely been reported previously. CASE PRESENTATION A 26-year-old woman was referred to genetic counseling for an ultrasonography of fetal choroid plexus cyst at 17 weeks of gestation. The ultrasonographic evaluation showed bilateral choroid plexus cysts(CPC) in the lateral ventricles, and the women showed a family history of gastric cancer and breast cancer. Trio copy number sequencing identified a pathogenic CDH1 deletion in the fetus and unaffected mother. The CDH1 deletion was found in three of the five family members tested, segregation among affected family members. The couple finally decided to terminate the pregnancy after genetic counseling by hospital geneticists due to the uncertainty of the occurrence of HDGC in the future. CONCLUSIONS In prenatal diagnosis, a family history of cancer should be widely concerned, and prenatal diagnosis of hereditary tumors requires extensive cooperation between the prenatal diagnosis structure and the pathology department.
Collapse
Affiliation(s)
- Jun Xiao
- College of Traditional Chinese Medicine, Hainan Medical University; Department of Pathology, The First Affiliated Hospital of Hainan Medical University, 570100 Haikou, China
| | - Hui Li
- Prenatal Diagnosis Center, Hainan Maternity and Child Health Hospital, 570100 Haikou, China
| | - Fenggui Xue
- College of Traditional Chinese Medicine, Hainan Medical University; Department of Pathology, The First Affiliated Hospital of Hainan Medical University, 570100 Haikou, China
| | - Zhifei Luo
- College of Traditional Chinese Medicine, Hainan Medical University, 570100 Haikou, China
| | - Yanyang Pang
- College of Traditional Chinese Medicine, Hainan Medical University; Department of Pathology, The First Affiliated Hospital of Hainan Medical University, 570100 Haikou, China
| |
Collapse
|
12
|
Danishevich AM, Lisitsa TS, Nikolaev SE, Abramov IS, Filippova MG, Pospekhova NI, Stroganova AM, Nikulin MP, Kalinin AE, Stilidi IS, Lyubchenko LN. Hereditary diffuse gastric cancer associated with a novel germline variant c.1596G>A in the <i>CDH1</i> gene. ADVANCES IN MOLECULAR ONCOLOGY 2023. [DOI: 10.17650/2313-805x-2023-10-1-87-93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Gastric cancer is one of the most common malignancies worldwide. Approximately 10 % of patients with gastric cancer are characterized by accumulation of gastric cancer cases in their family. The hereditary forms of gastric cancer account for 1–3 % of all gastric cancer cases. Hereditary diffuse GC syndrome is caused by germline mutations in CDH1 gene and determines a high risk of developing diffuse GC and lobular breast cancer. In this article, we present a clinical case of a 41-year-old patient with diffuse gastric cancer, who was found to be a carrier of novel germline mutation in the CDH1 gene. Next-generation sequencing (NGS) has facilitated an identification of CDH1 c.1596G>A genetic variant, thus enabling an accurate clinical diagnosis hereditary diffuse gastric cancer.
Collapse
Affiliation(s)
- A. M. Danishevich
- A.S. Loginov Moscow Clinical Scientific Center, Moscow Healthcare Department
| | - T. S. Lisitsa
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - S. E. Nikolaev
- A.S. Loginov Moscow Clinical Scientific Center, Moscow Healthcare Department
| | - I. S. Abramov
- Centre for Strategic Planning and Management of Biomedical Health Risks, Federal Medical Biological Agency
| | - M. G. Filippova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - N. I. Pospekhova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. M. Stroganova
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - M. P. Nikulin
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - A. E. Kalinin
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - I. S. Stilidi
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - L. N. Lyubchenko
- National Medical Research Center for Radiology, Ministry of Health of Russia; 5
N.A. Lopatkin Research Center for Urology and Interventional Radiology – branch of the National Medical Research Center for Radiology, Ministry of Health of Russia
| |
Collapse
|
13
|
Lim HJ, Zhuang L, Fitzgerald RC. Current advances in understanding the molecular profile of hereditary diffuse gastric cancer and its clinical implications. J Exp Clin Cancer Res 2023; 42:57. [PMID: 36869400 PMCID: PMC9985294 DOI: 10.1186/s13046-023-02622-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is an autosomal dominant cancer syndrome attributed to germline CDH1 mutations that carries a high risk for early onset DGC. HDGC raises a significant health issue due to its high penetrance and mortality unless diagnosed early. The definitive treatment is to undergo prophylactic total gastrectomy which is associated with significant morbidity., highlighting the urgent need for alternative treatment methods. However, there is limited literature examining potential therapeutic strategies building on emerging insights into the molecular basis of progressive lesions in the context of HDGC. The aim of this review is to summarise the current understanding of HDGC in the context of CDH1 pathogenic variants followed by a review of the proposed mechanisms for progression. In addition, we discuss the development of novel therapeutic approaches and highlight pertinent areas for further research. A literature search was therefore performed for relevant studies examining CDH1 germline variants, second-hit mechanisms of CDH1, pathogenesis of HDGC and potential therapeutic strategies in databases, including PubMed, ScienceDirect and Scopus. Germline mutations are mostly truncating CDH1 variants affecting extracellular domains of E-cadherin, generally due to frameshift, single nucleotide variants or splice site mutations. A second somatic hit of CDH1 most commonly occurs via promoter methylation as shown in 3 studies, but studies are limited with a small sample size. The multi-focal development of indolent lesions in HDGC provide a unique opportunity to understand genetic events that drive the transition to the invasive phenotype. To date, a few signalling pathways have been shown to facilitate the progression of HDGC, including Notch and Wnt. In in-vitro studies, the ability to inhibit Notch signalling was lost in cells transfected with mutant forms of E-cadherin, and increased Notch-1 activity correlated with apoptosis resistance. Furthermore, in patient samples, overexpression of Wnt-2 was associated with cytoplasmic and nuclear β-catenin accumulation and increased metastatic potential. As loss-of-function mutations are challenging to target therapeutically, these findings pave the way towards a synthetic lethal approach in CDH1-deficient cells with some promising results in-vitro. In future, if we could better understand the molecular vulnerabilities in HDGC, there may be opportunities to offer alternative treatment pathways to avoid gastrectomy.
Collapse
Affiliation(s)
- Hui Jun Lim
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK.
- Department of Sarcoma, Peritoneal and Rare Tumors (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.
| | - Lizhe Zhuang
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK
| | - Rebecca C Fitzgerald
- Department of Oncology, Early Cancer Institute, University of Cambridge, Box 197, Cambridge Biomedical Campus, CB2 0XZ, Cambridge, UK
| |
Collapse
|
14
|
Garcia-Pelaez J, Barbosa-Matos R, Lobo S, Dias A, Garrido L, Castedo S, Sousa S, Pinheiro H, Sousa L, Monteiro R, Maqueda JJ, Fernandes S, Carneiro F, Pinto N, Lemos C, Pinto C, Teixeira MR, Aretz S, Bajalica-Lagercrantz S, Balmaña J, Blatnik A, Benusiglio PR, Blanluet M, Bours V, Brems H, Brunet J, Calistri D, Capellá G, Carrera S, Colas C, Dahan K, de Putter R, Desseignés C, Domínguez-Garrido E, Egas C, Evans DG, Feret D, Fewings E, Fitzgerald RC, Coulet F, Garcia-Barcina M, Genuardi M, Golmard L, Hackmann K, Hanson H, Holinski-Feder E, Hüneburg R, Krajc M, Lagerstedt-Robinson K, Lázaro C, Ligtenberg MJL, Martínez-Bouzas C, Merino S, Michils G, Novaković S, Patiño-García A, Ranzani GN, Schröck E, Silva I, Silveira C, Soto JL, Spier I, Steinke-Lange V, Tedaldi G, Tejada MI, Woodward ER, Tischkowitz M, Hoogerbrugge N, Oliveira C. Genotype-first approach to identify associations between CDH1 germline variants and cancer phenotypes: a multicentre study by the European Reference Network on Genetic Tumour Risk Syndromes. Lancet Oncol 2023; 24:91-106. [PMID: 36436516 PMCID: PMC9810541 DOI: 10.1016/s1470-2045(22)00643-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Truncating pathogenic or likely pathogenic variants of CDH1 cause hereditary diffuse gastric cancer (HDGC), a tumour risk syndrome that predisposes carrier individuals to diffuse gastric and lobular breast cancer. Rare CDH1 missense variants are often classified as variants of unknown significance. We conducted a genotype-phenotype analysis in families carrying rare CDH1 variants, comparing cancer spectrum in carriers of pathogenic or likely pathogenic variants (PV/LPV; analysed jointly) or missense variants of unknown significance, assessing the frequency of families with lobular breast cancer among PV/LPV carrier families, and testing the performance of lobular breast cancer-expanded criteria for CDH1 testing. METHODS This genotype-first study used retrospective diagnostic and clinical data from 854 carriers of 398 rare CDH1 variants and 1021 relatives, irrespective of HDGC clinical criteria, from 29 institutions in ten member-countries of the European Reference Network on Tumour Risk Syndromes (ERN GENTURIS). Data were collected from Oct 1, 2018, to Sept 20, 2022. Variants were classified by molecular type and clinical actionability with the American College of Medical Genetics and Association for Molecular Pathology CDH1 guidelines (version 2). Families were categorised by whether they fulfilled the 2015 and 2020 HDGC clinical criteria. Genotype-phenotype associations were analysed by Student's t test, Kruskal-Wallis, χ2, and multivariable logistic regression models. Performance of HDGC clinical criteria sets were assessed with an equivalence test and Youden index, and the areas under the receiver operating characteristic curves were compared by Z test. FINDINGS From 1971 phenotypes (contributed by 854 probands and 1021 relatives aged 1-93 years), 460 had gastric and breast cancer histology available. CDH1 truncating PV/LPVs occurred in 176 (21%) of 854 families and missense variants of unknown significance in 169 (20%) families. Multivariable logistic regression comparing phenotypes occurring in families carrying PV/LPVs or missense variants of unknown significance showed that lobular breast cancer had the greatest positive association with the presence of PV/LPVs (odds ratio 12·39 [95% CI 2·66-57·74], p=0·0014), followed by diffuse gastric cancer (8·00 [2·18-29·39], p=0·0017) and gastric cancer (7·81 [2·03-29·96], p=0·0027). 136 (77%) of 176 families carrying PV/LPVs fulfilled the 2015 HDGC criteria. Of the remaining 40 (23%) families, who did not fulfil the 2015 criteria, 11 fulfilled the 2020 HDGC criteria, and 18 had lobular breast cancer only or lobular breast cancer and gastric cancer, but did not meet the 2020 criteria. No specific CDH1 variant was found to predispose individuals specifically to lobular breast cancer, although 12 (7%) of 176 PV/LPV carrier families had lobular breast cancer only. Addition of three new lobular breast cancer-centred criteria improved testing sensitivity while retaining high specificity. The probability of finding CDH1 PV/LPVs in patients fulfilling the lobular breast cancer-expanded criteria, compared with the 2020 criteria, increased significantly (AUC 0·92 vs 0·88; Z score 3·54; p=0·0004). INTERPRETATION CDH1 PV/LPVs were positively associated with HDGC-related phenotypes (lobular breast cancer, diffuse gastric cancer, and gastric cancer), and no evidence for a positive association with these phenotypes was found for CDH1 missense variants of unknown significance. CDH1 PV/LPVs occurred often in families with lobular breast cancer who did not fulfil the 2020 HDGC criteria, supporting the expansion of lobular breast cancer-centred criteria. FUNDING European Reference Network on Genetic Tumour Risk Syndromes, European Regional Development Fund, Fundação para a Ciência e a Tecnologia (Portugal), Cancer Research UK, and European Union's Horizon 2020 research and innovation programme.
Collapse
Affiliation(s)
- José Garcia-Pelaez
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Faculty of Medicine, University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Rita Barbosa-Matos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Silvana Lobo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Alexandre Dias
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Luzia Garrido
- Centro Hospitalar Universitário São João, Porto, Portugal
| | - Sérgio Castedo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Faculty of Medicine, University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Centro Hospitalar Universitário São João, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal,European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Porto, Portugal
| | - Sónia Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Hugo Pinheiro
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Serviço de Medicina Interna, Centro Hospitalar Tâmega e Sousa, Penafiel, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Liliana Sousa
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Escola de Economia e Gestão, Universidade do Minho, Braga, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Rita Monteiro
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Joaquin J Maqueda
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Bioinf2Bio, Porto, Portugal
| | - Susana Fernandes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Faculty of Medicine, University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Centro Hospitalar Universitário São João, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal,European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Porto, Portugal
| | - Nádia Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Center of Mathematics, University of Porto, Porto, Portugal,Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Carolina Lemos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal,Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Carla Pinto
- Department of Laboratory Genetics, Portuguese Oncology Institute of Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal
| | - Manuel R Teixeira
- Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal,Department of Laboratory Genetics, Portuguese Oncology Institute of Porto, Porto, Portugal,Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal,European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Porto, Portugal
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany,ERN GENTURIS, Bonn, Germany
| | - Svetlana Bajalica-Lagercrantz
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden,Department of Clinical Genetics, Cancer Genetic Unit, Karolinska University Hospital Solna, Stockholm, Sweden,Cancer Theme, Karolinska University Hospital Solna, Stockholm, Sweden,ERN GENTURIS, Stockholm, Sweden
| | - Judith Balmaña
- Hospital Vall d'Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain,ERN GENTURIS, Barcelona, Spain
| | - Ana Blatnik
- Department of Clinical Cancer Genetics, Institute of Oncology Ljubljana, Ljubljana, Slovenia,ERN GENTURIS, Ljubljana, Slovenia
| | - Patrick R Benusiglio
- Medical Genetics Department, Pitié-Salpêtrière Hospital, AP-HP and Sorbonne University, Paris, France
| | - Maud Blanluet
- Service de Génétique Oncologique, Institut Curie, Paris, France
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Institute, University of Liège, Liège, Belgium,Center of Genetics, University Hospital, Liège, Belgium,ERN GENTURIS, Liège, Belgium
| | - Hilde Brems
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Joan Brunet
- Hereditary Cancer Programme, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research and Girona Biomedical Research Institute, Barcelona-Girona, Spain,ERN GENTURIS, Barcelona, Spain
| | - Daniele Calistri
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Barcelona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain,ERN GENTURIS, Barcelona, Spain
| | - Sergio Carrera
- Oncology Service, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain
| | - Chrystelle Colas
- Service de Génétique Oncologique, Institut Curie, Paris, France,ERN GENTURIS, Paris, France
| | - Karin Dahan
- Center of Human Genetics, IPG, Gosselies, Belgium
| | - Robin de Putter
- Clinical Genetics Department, University Hospital of Ghent, Ghent, Belgium,ERN GENTURIS, Ghent, Belgium
| | - Camille Desseignés
- Medical Genetics Department, Pitié-Salpêtrière Hospital, AP-HP and Sorbonne University, Paris, France
| | | | - Conceição Egas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK,Manchester Centre for Genomic Medicine, Manchester, UK
| | - Damien Feret
- Center of Human Genetics, IPG, Gosselies, Belgium
| | - Eleanor Fewings
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | | | - Florence Coulet
- Medical Genetics Department, Pitié-Salpêtrière Hospital, AP-HP and Sorbonne University, Paris, France
| | - María Garcia-Barcina
- Genetics Unit, Biocruces Bizkaia Health Research Institute, Basurto University Hospital, Bilbao, Bizkaia, Spain
| | - Maurizio Genuardi
- Sezione di Medicina Genomica, Dipartimento di Scienze della Vita e Salute Pubblica, Università Cattolica del Sacro Cuore, Rome, Italy,UOC Genetica Medica, Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A Gemelli IRCCS, Rome, Italy,ERN GENTURIS, Rome, Italy
| | - Lisa Golmard
- Service de Génétique Oncologique, Institut Curie, Paris, France
| | - Karl Hackmann
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Dresden, Germany: German Cancer Research Center, Heidelberg, Germany,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany,German Cancer Consortium, Dresden, Germany
| | - Helen Hanson
- SouthWest Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Elke Holinski-Feder
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany,Medizinisch Genetisches Zentrum, Munich, Germany,ERN GENTURIS, Munich, Germany
| | - Robert Hüneburg
- Department of Internal Medicine I, University Hospital Bonn, Bonn, Germany,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany,ERN GENTURIS, Bonn, Germany
| | - Mateja Krajc
- Department of Clinical Cancer Genetics, Institute of Oncology Ljubljana, Ljubljana, Slovenia,ERN GENTURIS, Ljubljana, Slovenia
| | - Kristina Lagerstedt-Robinson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden,Department of Clinical Genetics, Cancer Genetic Unit, Karolinska University Hospital Solna, Stockholm, Sweden,ERN GENTURIS, Stockholm, Sweden
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research, Barcelona, Spain,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain,ERN GENTURIS, Barcelona, Spain
| | - Marjolijn J L Ligtenberg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands,Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,ERN GENTURIS, Nijmegen, Netherlands
| | - Cristina Martínez-Bouzas
- Genetics Service, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain
| | - Sonia Merino
- Genetics Unit, Biocruces Bizkaia Health Research Institute, Basurto University Hospital, Bilbao, Bizkaia, Spain
| | | | - Srdjan Novaković
- Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ana Patiño-García
- Unidad de Medicina Genómica y Pediatría, Clínica Universidad de Navarra, Programa de Tumores Sólidos, Centro de Investigación Médica Aplicada, Instituto de Investigación Sanitaria de Navarra, Pamplona, Navarra, Spain
| | | | - Evelin Schröck
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Dresden, Germany: German Cancer Research Center, Heidelberg, Germany,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany,German Cancer Consortium, Dresden, Germany,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,ERN GENTURIS, Dresden, Germany
| | - Inês Silva
- GenoMed—Diagnósticos de Medicina Molecular, Lisbon, Portugal
| | | | - José L Soto
- Molecular Genetics Laboratory, Elche University Hospital, Elche, Spain
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany,National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany,ERN GENTURIS, Bonn, Germany
| | - Verena Steinke-Lange
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany,Medizinisch Genetisches Zentrum, Munich, Germany,ERN GENTURIS, Munich, Germany
| | - Gianluca Tedaldi
- Laboratorio di Bioscienze, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - María-Isabel Tejada
- Genetics Service, Biocruces Bizkaia Health Research Institute, Cruces University Hospital, Cruces-Barakaldo, Bizkaia, Spain
| | - Emma R Woodward
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK,Manchester Centre for Genomic Medicine, Manchester, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands,Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands,ERN GENTURIS, Nijmegen, Netherlands
| | - Carla Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Porto Comprehensive Cancer Center Raquel Seruca, Porto, Portugal; European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS), Porto, Portugal.
| |
Collapse
|
15
|
Hereditary Diffuse Gastric Cancer: A 2022 Update. J Pers Med 2022; 12:jpm12122032. [PMID: 36556253 PMCID: PMC9783673 DOI: 10.3390/jpm12122032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is ranked fifth among the most commonly diagnosed cancers, and is the fourth leading cause of cancer-related deaths worldwide. The majority of gastric cancers are sporadic, while only a small percentage, less than 1%, are hereditary. Hereditary diffuse gastric cancer (HDGC) is a rare malignancy, characterized by early-onset, highly-penetrant autosomal dominant inheritance mainly of the germline alterations in the E-cadherin gene (CDH1) and β-catenin (CTNNA1). In the present study, we provide an overview on the molecular basis of HDGC and outline the essential elements of genetic counseling and surveillance. We further provide a practical summary of current guidelines on clinical management and treatment of individuals at risk and patients with early disease.
Collapse
|
16
|
The Identification of Large Rearrangements Involving Intron 2 of the CDH1 Gene in BRCA1/2 Negative and Breast Cancer Susceptibility. Genes (Basel) 2022; 13:genes13122213. [PMID: 36553480 PMCID: PMC9778491 DOI: 10.3390/genes13122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
E-cadherin, a CDH1 gene product, is a calcium-dependent cell-cell adhesion molecule playing a critical role in the establishment of epithelial architecture, maintenance of cell polarity, and differentiation. Germline pathogenic variants in the CDH1 gene are associated with hereditary diffuse gastric cancer (HDGC), and large rearrangements in the CDH1 gene are now being reported as well. Because CDH1 pathogenic variants could be associated with breast cancer (BC) susceptibility, CDH1 rearrangements could also impact it. The aim of our study is to identify rearrangements in the CDH1 gene in 148 BC cases with no BRCA1 and BRCA2 pathogenic variants. To do so, a zoom-in CGH array, covering the exonic, intronic, and flanking regions of the CDH1 gene, was used to screen our cohort. Intron 2 of the CDH1 gene was specifically targeted because it is largely reported to include several regulatory regions. As results, we detected one large rearrangement causing a premature stop in exon 3 of the CDH1 gene in a proband with a bilateral lobular breast carcinoma and a gastric carcinoma (GC). Two large rearrangements in the intron 2, a deletion and a duplication, were also reported only with BC cases without any familial history of GC. No germline rearrangements in the CDH1 coding region were detected in those families without GC and with a broad range of BC susceptibility. This study confirms the diversity of large rearrangements in the CDH1 gene. The rearrangements identified in intron 2 highlight the putative role of this intron in CDH1 regulation and alternative transcripts. Recurrent duplication copy number variations (CNV) are found in this region, and the deletion encompasses an alternative CDH1 transcript. Screening for large rearrangements in the CDH1 gene could be important for genetic testing of BC.
Collapse
|
17
|
Schölzchen J, Treese C, Thuss-Patience P, Mrózek A, Rau B, Seeliger H, Hartmann D, Estevéz-Schwarz L, Siegmund B, Horn D, Nassir M, Daum S. Frequency of Positive Familial Criteria in Patients with Adenocarcinoma of the Esophageal-Gastric Junction and Stomach: First Prospective Data in a Caucasian Cohort. Cancers (Basel) 2022; 14:cancers14153590. [PMID: 35892851 PMCID: PMC9330468 DOI: 10.3390/cancers14153590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary It is well known for gastric cancer patients with subtype of diffuse histology that a proportion of patients harbour an increased familial risk. Some patients and relatives even may be detected through a genetic testing. More precise studies about the frequency of hereditary criteria in a poplation with only European ancestries for adenocarcinoma of the esophagogastric junction and stomach are missing. In current guidelines regarding genetic testing criteria not all types of stomach cancer are considered as for example patients not with subtype of diffuse histology mostly have no detectable responsible gene. The aim of the current study was to register stomach cancer patients of all different types in a certain region (Berlin, Germany) and to estimate the frequency of positive familial criteria. Patients with esophageal cancer served as comparison group as familial or hereditary background, respectively, is not significant in these patients according to current knowledge. In our study, we identified positive familial criteria in about 15% of stomach cancer patients. In regard to all different types of stomach cancer, this number almost doubled. Furthermore, one third of all registered patients in this study might have a familial or hereditary background of their disease. We therefore conclude that guidelines regarding genetic testing criteria and screening examinations should be adjusted in future. Abstract Objectives: Current prospective studies investigating the frequency of hereditary criteria in a Caucasian population for adenocarcinoma of the esophagogastric junction (AEG) and stomach (GC) are missing. Genetic testing criteria (screening criteria) for hereditary diffuse gastric cancer (HDGC) were updated in 2020, but do not address patients with intestinal histology (familial intestinal gastric cancer FIGC). Thus, we prospectively screened patients residing in Berlin newly diagnosed with AEG or GC for hereditary criteria to gain insights into the frequency of HDGC. Methods: Prospective documentation of familial/clinical parameters in patients residing in Berlin with AEG or GC over three years was conducted. Besides HDGC criteria from 2015 and revised 2020, we also documented patients fulfilling these criteria but with intestinal type gastric cancer (FIGC). Statistical analysis was performed using X2-test. Results: One hundred fifty-three patients were finally included (92 GC; male: 50 (n.s.); 61 AEG; male: 47; p = 0.007). Hereditary criteria for HDGC were detected in 9/92 (9.8%) (2015 criteria) and in 14/92 (15.2%) (2020 criteria) of GC patients (AEG: 2015 criteria 3/61 (4.9%) versus 4/61 according to 2020 criteria (6.5%)). Patients fulfilling hereditary criteria but with intestinal histology (FIGC) increased from 8.7% (2015) to 14.1%, respectively (2020) (AEG: 3.2% (2015) versus 6.6% (2020)). Hereditary criteria including intestinal histology were found in 29.3% (GC) and 13.1% (AEG) (p = 0.03) according to the 2020 criteria. Conclusions: HDGC criteria were found in 15.2% of GC patients according to the 2020 criteria. Percentage increased to 29.3% including patients with intestinal histology among the GC group, and was 13.1% in cases with AEG. These data indicate that family history seems to be of utmost importance in GC to further detect potential hereditary genetic risks. This equally applies for patients with intestinal subtype GC.
Collapse
Affiliation(s)
- Jan Schölzchen
- Department for Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (J.S.); (C.T.); (B.S.)
| | - Christoph Treese
- Department for Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (J.S.); (C.T.); (B.S.)
| | - Peter Thuss-Patience
- Medizinische Klinik m.S. Hämatologie—Onkologie und Tumorimmunologie, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (P.T.-P.); (M.N.)
| | - Alicja Mrózek
- Onkologisches Zentrum Prenzlauer Berg, Onkologische Schwerpunktpraxis, 13189 Berlin, Germany;
| | - Beate Rau
- Chirurgische Klinik, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Hendrik Seeliger
- Klinik für Allgemein- Viszeral- und Gefäßchirurgie, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Dirk Hartmann
- Katholisches Klinikum Mainz, Klinik für Innere Medizin II, 55131 Mainz, Germany;
| | - Lope Estevéz-Schwarz
- St. Havelland Kliniken GmbH Ketziner Str. 19, Allgemein- und Viszeralchirurgie, 14641 Nauen, Germany;
| | - Britta Siegmund
- Department for Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (J.S.); (C.T.); (B.S.)
| | - Denise Horn
- Institut für Medizinische Genetik und Humangenetik, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Mani Nassir
- Medizinische Klinik m.S. Hämatologie—Onkologie und Tumorimmunologie, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 13353 Berlin, Germany; (P.T.-P.); (M.N.)
| | - Severin Daum
- Department for Medicine (Gastroenterology, Infectious Diseases, Rheumatology), Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany; (J.S.); (C.T.); (B.S.)
- Correspondence: ; Tel.: +49-304-5051-4322; Fax: +49-304-5051-4990
| |
Collapse
|
18
|
Hereditary Diffuse Gastric Cancer: Molecular Genetics, Biological Mechanisms and Current Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23147821. [PMID: 35887173 PMCID: PMC9319245 DOI: 10.3390/ijms23147821] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022] Open
Abstract
Hereditary diffuse gastric cancer is an autosomal dominant syndrome characterized by a high prevalence of diffuse gastric cancer and lobular breast cancer. It is caused by inactivating mutations in the tumor suppressor gene CDH1. Genetic testing technologies have become more efficient over the years, also enabling the discovery of other susceptibility genes for gastric cancer, such as CTNNA1 among the most important genes. The diagnosis of pathogenic variant carriers with an increased risk of developing gastric cancer is a selection process involving a multidisciplinary team. To achieve optimal long-term results, it requires shared decision-making in risk management. In this review, we present a synopsis of the molecular changes and current therapeutic approaches in HDGC based on the current literature.
Collapse
|
19
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
20
|
Ben Aissa-Haj J, Kabbage M, Othmen H, Saulnier P, Kettiti HT, Jaballah-Gabteni A, Ferah A, Medhioub M, Khsiba A, Mahmoudi M, Maaloul A, Ben Nasr S, Chelbi E, Abdelhak S, Boubaker MS, Azzouz MM, Rouleau E. CDH1 Germline Variants in a Tunisian Cohort with Hereditary Diffuse Gastric Carcinoma. Genes (Basel) 2022; 13:genes13030400. [PMID: 35327954 PMCID: PMC8950196 DOI: 10.3390/genes13030400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Mutational screening of the CDH1 gene is a standard treatment for patients who fulfill Hereditary Diffuse Gastric Cancer (HDGC) testing criteria. In this framework, the classification of variants found in this gene is a crucial step for the clinical management of patients at high risk for HDGC. The aim of our study was to identify CDH1 as well as CTNNA1 mutational profiles predisposing to HDGC in Tunisia. Thirty-four cases were included for this purpose. We performed Sanger sequencing for the entire coding region of both genes and MLPA (Multiplex Ligation Probe Amplification) assays to investigate large rearrangements of the CDH1 gene. As a result, three cases, all with the HDGC inclusion criteria (8.82% of the entire cohort), carried pathogenic and likely pathogenic variants of the CDH1 gene. These variants involve a novel splicing alteration, a missense c.2281G > A detected by Sanger sequencing, and a large rearrangement detected by MLPA. No pathogenic CTNNA1 variants were found. The large rearrangement is clearly pathogenic, implicating a large deletion of two exons. The novel splicing variant creates a cryptic site. The missense variant is a VUS (Variant with Uncertain Significance). With ACMG (American College of Medical Genetics and Genomics) classification and the evidence available, we thus suggest a revision of its status to likely pathogenic. Further functional studies or cosegregation analysis should be performed to confirm its pathogenicity. In addition, molecular exploration will be needed to understand the etiology of the other CDH1- and CTNNA1-negative cases fulfilling the HDGC inclusion criteria.
Collapse
Affiliation(s)
- Jihenne Ben Aissa-Haj
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
- Correspondence:
| | - Maria Kabbage
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Houcemeddine Othmen
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Patrick Saulnier
- Genomic Platform Molecular Biopathology Unit, URA3655 Inserm, US23 CNRS, Gustave Roussy, 94805 Villejuif, France;
| | - Haifa Tounsi Kettiti
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Amira Jaballah-Gabteni
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Azer Ferah
- Laboratory of Venoms and Therapeutic Biomolecules, LR16IPT08 Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Mouna Medhioub
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia; (M.M.); (A.K.); (M.M.); (M.M.A.)
- Faculty of Medicine Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Amal Khsiba
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia; (M.M.); (A.K.); (M.M.); (M.M.A.)
- Faculty of Medicine Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Moufida Mahmoudi
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia; (M.M.); (A.K.); (M.M.); (M.M.A.)
- Faculty of Medicine Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Afifa Maaloul
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
| | - Sonia Ben Nasr
- Oncology Department, Military Hospital of Tunis, Tunis 1008, Tunisia;
| | - Emna Chelbi
- Department of Pathology, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia;
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - M. Samir Boubaker
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (M.K.); (H.T.K.); (A.J.-G.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Mohamed Mousaddak Azzouz
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia; (M.M.); (A.K.); (M.M.); (M.M.A.)
- Faculty of Medicine Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | - Etienne Rouleau
- Department of Biology and Pathology-Cancer Genetics Laboratory-Gustave Roussy, 94805 Villejuif, France;
| |
Collapse
|
21
|
Zacharouli K, Vageli DP, Koukoulis GK, Ioannou M. Patient with prostatic adenocarcinoma with plasmacytoid features and an aberrant immunohistochemical phenotype diagnosed by biopsy and a mini-review of plasmacytoid features in the genitourinary system: A case report. Mol Clin Oncol 2022; 16:67. [PMID: 35154707 DOI: 10.3892/mco.2022.2500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022] Open
Abstract
Prostate cancer is one of the most commonly diagnosed malignancies in men. Most of these tumors are adenocarcinomas. Plasmacytoid is a rare variant of adenocarcinoma described by previous studies in the genitourinary system and is characterized by the plasmacytoid appearance of tumor cells with abundant cytoplasm and abnormally placed hyperchromatic nuclei. However, to the best of our knowledge, plasmacytoid adenocarcinoma has rarely been described in the prostate. This report describes a new case of plasmacytoid adenocarcinoma of the prostate diagnosed by biopsy and summarizes the known literature on plasmacytoid features in the genitourinary system. A 62-year-old male patient presented to the hospital with urinary retention, hematuria, weakness and weight loss. The digital rectal examination revealed an irregular enlargement. Laboratory findings showed elevated levels of prostate specific antigen (PSA; 43.6 ng/ml). Transrectal ultrasound showed invasion of the right seminal vesicle. Prostate tumor core biopsies were collected and sent for diagnosis. Histological examination revealed a high-grade prostatic adenocarcinoma Gleason score of 5+5 (total score 10). The tumor cells had a plasmacytoid appearance with abundant cytoplasm and abnormally placed hyperchromatic nuclei. The immunohistochemical phenotype was characterized by abundant positivity for cytokeratin (CK)AE1/AE3 and PSA. By contrast, tumor cells were negative for p63, CK 34BE12 and GATA binding protein 3 (urothelial markers), synaptophysin (neuroendocrine marker). Tumor cells were also negative for E-cadherin, which is particularly indicative of CDH1 alterations. To the best of our knowledge, this is the first description of a plasmacytoid adenocarcinoma of the prostate diagnosed by biopsy, showing an irregular immunophenotype that may indicate somatic CDH1 alterations. The presentation of a novel rare variant of prostatic carcinoma that differs from other neoplasms of the genitourinary system may contribute to an improved understanding of this uncommonly found histological pattern that may also be mandatory due to the clinical and prognostic implications of this diagnosis.
Collapse
Affiliation(s)
- Konstantina Zacharouli
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Dimitra P Vageli
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - George K Koukoulis
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
22
|
Garcia-Pelaez J, Barbosa-Matos R, São José C, Sousa S, Gullo I, Hoogerbrugge N, Carneiro F, Oliveira C. Gastric cancer genetic predisposition and clinical presentations: Established heritable causes and potential candidate genes. Eur J Med Genet 2021; 65:104401. [PMID: 34871783 DOI: 10.1016/j.ejmg.2021.104401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/10/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Tumour risk syndromes (TRS) are characterized by an increased risk of early-onset cancers in a familial context. High cancer risk is mostly driven by loss-of-function variants in a single cancer-associated gene. Presently, predisposition to diffuse gastric cancer (DGC) is explained by CDH1 and CTNNA1 pathogenic and likely pathogenic variants (P/LP), causing Hereditary Diffuse Gastric Cancer (HDGC); while APC promoter 1B single nucleotide variants predispose to Gastric Adenocarcinoma and Proximal Polyposis of the Stomach (GAPPS). Familial Intestinal Gastric Cancer (FIGC), recognized as a GC-predisposing disease, remains understudied and genetically unsolved. GC can also occur in the spectrum of other TRS. Identification of heritable causes allows defining diagnostic testing criteria, helps to clinically classify GC families into the appropriate TRS, and allows performing pre-symptomatic testing identifying at-risk individuals for downstream surveillance, risk reduction and/or treatment. However, most of HDGC, some GAPPS, and most FIGC patients/families remain unsolved, expecting a heritable factor to be discovered. The missing heritability in GC-associated tumour risk syndromes (GC-TRS) is likely explained not by a single major gene, but by a diversity of genes, some, predisposing to other TRS. This would gain support if GC-enriched small families or apparently isolated early-onset GC cases were hiding a family history compatible with another TRS. Herein, we revisited current knowledge on GC-TRS, and searched in the literature for individuals/families bearing P/LP variants predisposing for other TRS, but whose probands display a clinical presentation and/or family history also fitting GC-TRS criteria. We found 27 families with family history compatible with HDGC or FIGC, harbouring 28 P/LP variants in 16 TRS-associated genes, mainly associated with DNA repair. PALB2 or BRCA2 were the most frequently mutated candidate genes in individuals with family history compatible with HDGC and FIGC, respectively. Consolidation of PALB2 and BRCA2 as HDGC- or FIGC-associated genes, respectively, holds promise and worth additional research. This analysis further highlighted the influence, that proband's choice and small or unreported family history have, for a correct TRS diagnosis, genetic screening, and disease management. In this review, we provide a rational for identification of particularly relevant candidate genes in GC-TRS.
Collapse
Affiliation(s)
- José Garcia-Pelaez
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rita Barbosa-Matos
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; International Doctoral Programme in Molecular and Cellular Biotechnology Applied to Health Sciences from Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Celina São José
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Doctoral Programme in Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sónia Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Irene Gullo
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; FMUP - Faculty of Medicine of the University of Porto, Porto, Portugal; Centro Hospitalar e Universitário S. João, Porto, Portugal
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Fátima Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; FMUP - Faculty of Medicine of the University of Porto, Porto, Portugal; Centro Hospitalar e Universitário S. João, Porto, Portugal
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; FMUP - Faculty of Medicine of the University of Porto, Porto, Portugal.
| |
Collapse
|
23
|
The CDH1 c.1901C>T Variant: A Founder Variant in the Portuguese Population with Severe Impact in mRNA Splicing. Cancers (Basel) 2021; 13:cancers13174464. [PMID: 34503274 PMCID: PMC8430675 DOI: 10.3390/cancers13174464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary An unexpectedly high number of early-onset diffuse gastric and lobular breast cancer in apparently unrelated families carrying the same CDH1 c.1901C>T variant (formerly known as missense p.A634V) in Northern Portugal suggested a founder effect in this region. We demonstrated that c.1901C>T is a truncating variant triggered by cryptic splicing, calculated its mutational age, and characterized the tumour spectrum and age of onset in affected families. Abstract Hereditary diffuse gastric cancer (HDGC) caused by CDH1 variants predisposes to early-onset diffuse gastric (DGC) and lobular breast cancer (LBC). In Northern Portugal, the unusually high number of HDGC cases in unrelated families carrying the c.1901C>T variant (formerly known as p.A634V) suggested this as a CDH1-founder variant. We aimed to demonstrate that c.1901C>T is a bona fide truncating variant inducing cryptic splicing, to calculate the timing of a potential founder effect, and to characterize tumour spectrum and age of onset in carrying families. The impact in splicing was proven by using carriers’ RNA for PCR-cloning sequencing and allelic expression imbalance analysis with SNaPshot. Carriers and noncarriers were haplotyped for 12 polymorphic markers, and the decay of haplotype sharing (DHS) method was used to estimate the time to the most common ancestor of c.1901C>T. Clinical information from 58 carriers was collected and analysed. We validated the cryptic splice site within CDH1-exon 12, which was preferred over the canonical one in 100% of sequenced clones. Cryptic splicing induced an out-of-frame 37bp deletion in exon 12, premature truncation (p.Ala634ProfsTer7), and consequently RNA mediated decay. The haplotypes carrying the c.1901C>T variant were found to share a common ancestral estimated at 490 years (95% Confidence Interval 445–10,900). Among 58 carriers (27 males (M)–31 females (F); 13–83 years), DGC occurred in 11 (18.9%; 4M–7F; average age 33 ± 12) and LBC in 6 females (19.4%; average age 50 ± 8). Herein, we demonstrated that the c.1901C>T variant is a loss-of-function splice-site variant that underlies the first CDH1-founder effect in Portugal. Knowledge on this founder effect will drive genetic testing of this specific variant in HDGC families in this geographical region and allow intrafamilial penetrance analysis and better estimation of variant-associated tumour risks, disease age of onset, and spectrum.
Collapse
|
24
|
Te Paske IBAW, Garcia-Pelaez J, Sommer AK, Matalonga L, Starzynska T, Jakubowska A, van der Post RS, Lubinski J, Oliveira C, Hoogerbrugge N, de Voer RM. A mosaic PIK3CA variant in a young adult with diffuse gastric cancer: case report. Eur J Hum Genet 2021; 29:1354-1358. [PMID: 34075207 PMCID: PMC8440670 DOI: 10.1038/s41431-021-00853-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Hereditary diffuse gastric cancer (HDGC) is associated with germline deleterious variants in CDH1 and CTNNA1. The majority of HDGC-suspected patients are still genetically unresolved, raising the need for identification of novel HDGC predisposing genes. Under the collaborative environment of the SOLVE-RD consortium, re-analysis of whole-exome sequencing data from unresolved gastric cancer cases (n = 83) identified a mosaic missense variant in PIK3CA in a 25-year-old female with diffuse gastric cancer (DGC) without familial history for cancer. The variant, c.3140A>G p.(His1047Arg), a known cancer-related somatic hotspot, was present at a low variant allele frequency (18%) in leukocyte-derived DNA. Somatic variants in PIK3CA are usually associated with overgrowth, a phenotype that was not observed in this patient. This report highlights mosaicism as a potential, and understudied, mechanism in the etiology of DGC.
Collapse
Grants
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Data was reanalysed using the RD‐Connect Genome‐Phenome Analysis Platform, which received funding from EU projects RD‐Connect, Solve-RD and EJP-RD (grant numbers FP7 305444, H2020 779257, H2020 825575), Instituto de Salud Carlos III (grant numbers PT13/0001/0044, PT17/0009/0019; Instituto Nacional de Bioinformática, INB) and ELIXIR Implementation Studies.
- the European Regional Development Fund (ERDF) through COMPETE 2020 - Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT/ Ministério da Ciência, Tecnologia e Inovação in the framework of the project "Institute for Research and Innovation in Health Sciences" (POCI-01-0145-FEDER-007274) and Project Ref. POCI-01-0145-FEDER-030164
Collapse
Affiliation(s)
- Iris B A W Te Paske
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - José Garcia-Pelaez
- i3S, Institute for Research and Innovation in Health of the University of Porto, Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Anna K Sommer
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Leslie Matalonga
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Teresa Starzynska
- Department of Gastroenterology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, Szczecin, Poland
| | - Rachel S van der Post
- Department of Pathology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Carla Oliveira
- i3S, Institute for Research and Innovation in Health of the University of Porto, Porto, Portugal
- Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- FMUP, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Richarda M de Voer
- Department of Human Genetics, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands.
| |
Collapse
|
25
|
Cancer predisposition and germline CTNNA1 variants. Eur J Med Genet 2021; 64:104316. [PMID: 34425242 DOI: 10.1016/j.ejmg.2021.104316] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022]
Abstract
Hereditary Diffuse Gastric Cancer (HDGC) is a cancer predisposing syndrome mainly caused by germline inactivating variants in CDH1, encoding E-cadherin. Early-onset diffuse gastric cancer (DGC) and/or invasive lobular breast cancer (LBC) are the main phenotypes in CDH1-associated HDGC. CTNNA1, encoding for α-E-catenin, and E-cadherin-partner in the adherens junction complex, has been recently classified as a HDGC predisposing gene. Nevertheless, little is known about CTNNA1 tumor spectrum in variant carriers and variant-type associated causality. Herein, we systematically reviewed the literature searching for CTNNA1 germline variants carriers, further categorized them according to HDGC clinical criteria (HDGC vs non-HDGC), collected phenotypes, classified variants molecularly and according to CDH1 ACMG/AMP guidelines and performed genotype-phenotype analysis. We found 41 families carrying CTNNA1 germline variants encompassing in total 105 probands and relatives. All probands from 13 HDGC families presented DGC and their average age of onset was 40 ± 17 years; 10/13 (77%) HDGC families carried a pathogenic (P) variant. Most probands from 28 non-HDGC families developed unspecified-BC, as well as most of their relatives; 4/28 (14%) carried a P variant, 16/28 (57%) carried a likely pathogenic (LP) variant, 7/28 (25%) carried variants of unknown significance (VUS) and 1/28 (4%) carried a likely benign variant. Regardless of clinical criteria, 97% (32/33) of probands and relatives from P variant-carrier families had DGC/unspecified-GC. In LP variant-carrier families, 82% (28/34) of probands and relatives had unspecified-BC. Only 2/105 individuals had LBC. A cluster of frameshift and nonsense variants was found in CTNNA1 last exon of non-HDGC families and classified as VUS. In conclusion, current available data confirms an association of CTNNA1 P variants with early-onset DGC, but not with LBC. We demonstrate that in ascertained cohorts, CTNNA1 P variants explain <2% of HDGC families and support the use of ACMG/AMP CDH1 specific variant curation guidelines, while no specific guidelines are developed for CTNNA1 variant classification. Moreover, we demonstrated that truncating variants at the CTNNA1 NMD-incompetent last exon have limited deleteriousness, and that CTNNA1 LP variants have lower actionability than CDH1 LP variants. Current knowledge supports considering only CTNNA1 P variants as clinically actionable in HDGC carrying families.
Collapse
|
26
|
Zhang YJ, Yang Y, Wei Q, Xu T, Zhang XT, Gao J, Tan SY, Liu BR, Zhang JD, Chen XB, Wang ZJ, Qiu M, Wang X, Shen L, Wang XC. A multicenter study assessing the prevalence of germline genetic alterations in Chinese gastric-cancer patients. Gastroenterol Rep (Oxf) 2021; 9:339-349. [PMID: 34567566 PMCID: PMC8460096 DOI: 10.1093/gastro/goab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Approximately 10% of patients with gastric cancer (GC) have a genetic predisposition toward the disease. However, there is scant knowledge regarding germline mutations in predisposing genes in the Chinese GC population. This study aimed to determine the spectrum and distribution of predisposing gene mutations among Chinese GC patients known to have hereditary high-risk factors for cancer. METHODS A total of 40 GC patients from 40 families were recruited from seven medical institutions in China. Next-generation sequencing was performed on 171 genes associated with cancer predisposition. For probands carrying pathogenic/likely pathogenic germline variants, Sanger sequencing was applied to validate the variants in the probands as well as their relatives. RESULTS According to sequencing results, 25.0% (10/40) of the patients carried a combined total of 10 pathogenic or likely pathogenic germline variants involving nine different genes: CDH1 (n = 1), MLH1 (n = 1), MSH2 (n = 1), CHEK2 (n = 1), BLM (n = 1), EXT2 (n = 1), PALB2 (n = 1), ERCC2 (n = 1), and SPINK1 (n = 2). In addition, 129 variants of uncertain significance were identified in 27 patients. CONCLUSIONS This study indicates that approximately one in every four Chinese GC patients with hereditary high risk factors may harbor pathogenic/likely pathogenic germline alterations in cancer-susceptibility genes. The results further indicate a unique genetic background for GC among Chinese patients.
Collapse
Affiliation(s)
- Yin-Jie Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, P. R. China
| | - Yang Yang
- Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Qing Wei
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, P. R. China
| | - Ting Xu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xiao-Tian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Jing Gao
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Si-Yi Tan
- Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Bao-Rui Liu
- Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, P. R. China
| | - Jing-Dong Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, P. R. China
| | - Xiao-Bing Chen
- Department of Gastroenterology and Medical Oncology, Henan Cancer Hospital (Affiliated Cancer Hospital of Zhengzhou University), Zhengzhou, Henan, P. R. China
| | - Zhao-Jie Wang
- Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou, Henan, P. R. China
| | - Meng Qiu
- Department of Medical Oncology, Cancer Center, the State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Xin Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Disease, Fourth Military Medical University, Xi’an, Shaanxi, P. R. China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| | - Xi-Cheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, P. R. China
| |
Collapse
|
27
|
Vidal AF, Ferraz RS, El-Husny A, Silva CS, Vinasco-Sandoval T, Magalhães L, Raiol-Moraes M, Barra WF, Pereira CLBL, de Assumpção PP, de Brito LM, Vialle RA, Santos S, Ribeiro-Dos-Santos Â, Ribeiro-Dos-Santos AM. Comprehensive analysis of germline mutations in northern Brazil: a panel of 16 genes for hereditary cancer-predisposing syndrome investigation. BMC Cancer 2021; 21:363. [PMID: 33827469 PMCID: PMC8028728 DOI: 10.1186/s12885-021-08089-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/23/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Next generation sequencing (NGS) has been a handy tool in clinical practice, mainly due to its efficiency and cost-effectiveness. It has been widely used in genetic diagnosis of several inherited diseases, and, in clinical oncology, it may enhance the discovery of new susceptibility genes and enable individualized care of cancer patients. In this context, we explored a pan-cancer panel in the investigation of germline variants in Brazilian patients presenting clinical criteria for hereditary cancer syndromes or familial history. METHODS Seventy-one individuals diagnosed or with familial history of hereditary cancer syndromes were submitted to custom pan-cancer panel including 16 high and moderate penetrance genes previously associated with hereditary cancer syndromes (APC, BRCA1, BRCA2, CDH1, CDKN2A, CHEK2, MSH2, MSH6, MUTYH, PTEN, RB1, RET, TP53, VHL, XPA and XPC). All pathogenic variants were validated by Sanger sequencing. RESULTS We identified a total of eight pathogenic variants among 12 of 71 individuals (16.9%). Among the mutation-positive subjects, 50% were diagnosed with breast cancer and had mutations in BRCA1, CDH1 and MUTYH. Notably, 33.3% were individuals diagnosed with polyposis or who had family cases and harbored pathogenic mutations in APC and MUTYH. The remaining individuals (16.7%) were gastric cancer patients with pathogenic variants in CDH1 and MSH2. Overall, 54 (76.05%) individuals presented at least one variant uncertain significance (VUS), totalizing 81 VUS. Of these, seven were predicted to have disease-causing potential. CONCLUSION Overall, analysis of all these genes in NGS-panel allowed the identification not only of pathogenic variants related to hereditary cancer syndromes but also of some VUS that need further clinical and molecular investigations. The results obtained in this study had a significant impact on patients and their relatives since it allowed genetic counselling and personalized management decisions.
Collapse
Affiliation(s)
- Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Rafaella Sousa Ferraz
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Antonette El-Husny
- Bettina Ferro de Souza University Hospital, Federal University of Pará, Belém, Pará, Brazil
| | - Caio Santos Silva
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Tatiana Vinasco-Sandoval
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Leandro Magalhães
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Milene Raiol-Moraes
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Williams Fernandes Barra
- João de Barros Barreto University Hospital, Federal University of Pará, Belém, Pará, Brazil
- Center of Oncology Research, Federal University of Pará, Belém, Pará, Brazil
| | - Cynthia Lara Brito Lins Pereira
- João de Barros Barreto University Hospital, Federal University of Pará, Belém, Pará, Brazil
- Center of Oncology Research, Federal University of Pará, Belém, Pará, Brazil
| | | | - Leonardo Miranda de Brito
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Ricardo Assunção Vialle
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
| | - Sidney Santos
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
- Center of Oncology Research, Federal University of Pará, Belém, Pará, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil
- Center of Oncology Research, Federal University of Pará, Belém, Pará, Brazil
| | - André M Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics, Graduate Program Genetics and Molecular Biology, Federal University of Pará, Belém, Pará, Brazil.
| |
Collapse
|
28
|
Geographical Distribution of E-cadherin Germline Mutations in the Context of Diffuse Gastric Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13061269. [PMID: 33809393 PMCID: PMC8001745 DOI: 10.3390/cancers13061269] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary E-cadherin (CDH1 gene) germline mutations are associated with the development of the autosomal cancer syndrome known as hereditary diffuse gastric cancer. About 30% of families fulfilling the clinical criteria established by the International Gastric Cancer Linkage Consortium have constitutional alterations of the CDH1 gene. Different patterns of CDH1 germline mutations have described as truncating, deletion, insertion, splice site, non sense, silence, and at last, missense alterations. The frequency of the different E-cadherin germline mutations in countries with different incidence rates for gastric carcinoma has reported extremely variable. In this study we aimed to assess the worldwide frequency of CDH1 germline mutations in gastric cancers coming from different geographical areas, using a systematic approach. Abstract Hereditary diffuse gastric cancer (HDGC) is a complex and multifactorial inherited cancer predisposition syndrome caused by CDH1 germline mutations. Nevertheless, current CDH1 genetic screening recommendations disregard an unbalanced worldwide distribution of CDH1 variants, impacting testing efficacy and patient management. In this systematic review, we collected and analyzed all studies describing CDH1 variants in gastric cancer patients originating from both high- and low-prevalence countries. Selected studies were categorized as family study, series study, and unknown study, according to the implementation of HDGC clinical criteria for genetic testing. Our results indicate that CDH1 mutations are more frequently identified in gastric cancer low-incidence countries, and in the family study group that encompasses cases fulfilling criteria. Considering the type of CDH1 alterations, we verified that the relative frequency of mutation types varies within study groups and geographical areas. In the series study, the missense variant frequency is higher in high-incidence areas of gastric cancer, when compared with non-missense mutations. However, application of variant scoring for putative relevance led to a strong reduction of CDH1 variants conferring increased risk of gastric cancer. Herein, we demonstrate that criteria for CDH1 genetic screening are critical for identification of individuals carrying mutations with clinical significance. Further, we propose that future guidelines for testing should consider GC incidence across geographical regions for improved surveillance programs and early diagnosis of disease.
Collapse
|
29
|
Clinicopathologic Study of Gleason Pattern 5 Prostatic Adenocarcinoma With "Single-cell" Growth Reveals 2 Distinct Types, One With "Plasmacytoid" Features. Am J Surg Pathol 2021; 44:1635-1642. [PMID: 32991340 DOI: 10.1097/pas.0000000000001550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Each Gleason score category of prostatic adenocarcinoma (or Grade Group) may encompass a diverse group of architectural patterns such as well-formed glands, poorly formed glands, cribriform structures, single cells, and/or solid sheets. We have noted heterogeneity within the single-cell subtype of Gleason pattern 5 prostatic adenocarcinoma that has not been fully addressed. Therefore, we retrospectively reviewed a series of radical prostatectomies with high-grade prostatic adenocarcinoma (Grade Group 4 or 5), identifying tumors with a component of single-cell infiltration. Additional cases identified prospectively were also included. TNM status, association with other histologic patterns, and clinical follow-up status were determined. Immunohistochemistry for NKX3.1, E-cadherin, p120 catenin, and prostate-specific antigen (PSA) were performed in each case. Eighteen cases with a component of well-developed Gleason pattern 5 characterized by single infiltrative cells that comprised ≥5% of the tumor were identified (15/202 retrospective radical prostatectomies with the high-grade disease [7.5%]). The single-cell pattern ranged from 5% to 50% of the tumor volume, with 5 cases containing ≥40%, and variable secondary architecture included diffuse infiltrating single cells with targetoid growth pattern around benign glands, solid expansive nests of noncohesive cells, and corded/single file growth pattern. Further morphologic analysis demonstrated 2 distinct histologic subtypes: (1) (subtype 1; n=9) monomorphic "plasmacytoid" tumor cells with eccentrically placed nuclei and variable intracytoplasmic vacuoles with bland cytology and discohesion and (2) (subtype 2; n=9) more cohesive tumor cells with greater cytologic atypia characterized by prominent nucleoli, greater variability in nuclear size/shape, occasional mitotic figures, and more irregular infiltration. By immunohistochemistry, NKX3.1 nuclear expression and PSA cytoplasmic expression was retained in all cases. Concomitant membranous E-cadherin loss and strong cytoplasmic p120 catenin expression were present in 5 of the 18 (28%) cases, all in subtype 1 (5/9, 56%). Overall, 56% (10/18) of patients had advanced-stage disease (≥pT3b), and 70% (7/10) of these patients had associated lymphovascular invasion. All patients had concomitant cribriform patterns of carcinoma. The outcome was available for 14 patients: 4 died of unknown cause; 6 had biochemical recurrence with distant bone metastasis in 5 of the 6; and 4 patients with <3 years of follow-up currently have undetectable serum PSA levels (2 patients received salvage radiotherapy with androgen deprivation and 2 remain on routine follow-up). In summary, the single-cell pattern of Gleason pattern 5 prostatic adenocarcinoma is uniformly associated with other high-risk histologic patterns (eg, cribriform growth), and high-stage disease with distant metastasis is not uncommon. Our data suggest that the "single-cell" Gleason pattern 5 prostatic adenocarcinoma contains 2 distinct subtypes. Somatic CDH1 alterations may play a role in the development of the "plasmacytoid" pattern characterized by monomorphic cytology with concomitant E-cadherin loss and aberrant p120 catenin expression.
Collapse
|
30
|
Blair VR, McLeod M, Carneiro F, Coit DG, D'Addario JL, van Dieren JM, Harris KL, Hoogerbrugge N, Oliveira C, van der Post RS, Arnold J, Benusiglio PR, Bisseling TM, Boussioutas A, Cats A, Charlton A, Schreiber KEC, Davis JL, Pietro MD, Fitzgerald RC, Ford JM, Gamet K, Gullo I, Hardwick RH, Huntsman DG, Kaurah P, Kupfer SS, Latchford A, Mansfield PF, Nakajima T, Parry S, Rossaak J, Sugimura H, Svrcek M, Tischkowitz M, Ushijima T, Yamada H, Yang HK, Claydon A, Figueiredo J, Paringatai K, Seruca R, Bougen-Zhukov N, Brew T, Busija S, Carneiro P, DeGregorio L, Fisher H, Gardner E, Godwin TD, Holm KN, Humar B, Lintott CJ, Monroe EC, Muller MD, Norero E, Nouri Y, Paredes J, Sanches JM, Schulpen E, Ribeiro AS, Sporle A, Whitworth J, Zhang L, Reeve AE, Guilford P. Hereditary diffuse gastric cancer: updated clinical practice guidelines. Lancet Oncol 2020; 21:e386-e397. [PMID: 32758476 DOI: 10.1016/s1470-2045(20)30219-9] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
Abstract
Hereditary diffuse gastric cancer (HDGC) is an autosomal dominant cancer syndrome that is characterised by a high prevalence of diffuse gastric cancer and lobular breast cancer. It is largely caused by inactivating germline mutations in the tumour suppressor gene CDH1, although pathogenic variants in CTNNA1 occur in a minority of families with HDGC. In this Policy Review, we present updated clinical practice guidelines for HDGC from the International Gastric Cancer Linkage Consortium (IGCLC), which recognise the emerging evidence of variability in gastric cancer risk between families with HDGC, the growing capability of endoscopic and histological surveillance in HDGC, and increased experience of managing long-term sequelae of total gastrectomy in young patients. To redress the balance between the accessibility, cost, and acceptance of genetic testing and the increased identification of pathogenic variant carriers, the HDGC genetic testing criteria have been relaxed, mainly through less restrictive age limits. Prophylactic total gastrectomy remains the recommended option for gastric cancer risk management in pathogenic CDH1 variant carriers. However, there is increasing confidence from the IGCLC that endoscopic surveillance in expert centres can be safely offered to patients who wish to postpone surgery, or to those whose risk of developing gastric cancer is not well defined.
Collapse
Affiliation(s)
- Vanessa R Blair
- Department of Surgery, University of Auckland, Auckland, New Zealand; St Marks Breast Centre, Auckland, New Zealand
| | - Maybelle McLeod
- Kimihauora Health and Research Clinic, Mt Maunganui, New Zealand
| | - Fátima Carneiro
- Instituto de Investigação e Inovação em Saúde & Institute of Molecular Pathology and Immunology of the University of Porto, Department of Pathology, University of Porto, Porto, Portugal
| | - Daniel G Coit
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical School, New York, NY, USA
| | | | - Jolanda M van Dieren
- Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | | | - Nicoline Hoogerbrugge
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Carla Oliveira
- Instituto de Investigação e Inovação em Saúde & Institute of Molecular Pathology and Immunology of the University of Porto, Department of Pathology, University of Porto, Porto, Portugal
| | | | - Julie Arnold
- New Zealand Familial Gastrointestinal Cancer Service, Auckland Hospital, Auckland, New Zealand
| | - Patrick R Benusiglio
- Consultation d'Oncogénétique, Unité Fonctionnelle d'Oncogénétique, Département de Génétique, DMU BioGeM, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Tanya M Bisseling
- Department of Gastroenterology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Alex Boussioutas
- Department of Medicine, Royal Melbourne Hospital and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Annemieke Cats
- Department of Gastrointestinal Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Amanda Charlton
- Department of Histopathology, Auckland Hospital, Auckland, New Zealand
| | | | - Jeremy L Davis
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - James M Ford
- Division of Oncology, Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Kimberley Gamet
- Genetic Health Service New Zealand Northern Hub, Auckland Hospital, Auckland, New Zealand
| | - Irene Gullo
- Instituto de Investigação e Inovação em Saúde & Institute of Molecular Pathology and Immunology of the University of Porto, Department of Pathology, University of Porto, Porto, Portugal
| | - Richard H Hardwick
- Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Pardeep Kaurah
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; Hereditary Cancer Program, British Columbia Cancer, Vancouver, BC, Canada
| | - Sonia S Kupfer
- Section of Gastroenterology, Nutrition and Hepatology, University of Chicago, Chicago, IL, USA
| | - Andrew Latchford
- St Mark's Hospital, London, UK; Department of Cancer and Surgery, Imperial College, London, UK
| | | | - Takeshi Nakajima
- Department of Clinical Genetic Oncology, Cancer Institute Hospital, Tokyo, Japan
| | - Susan Parry
- New Zealand Familial Gastrointestinal Cancer Service, Auckland Hospital, Auckland, New Zealand
| | - Jeremy Rossaak
- Department of Surgery, Tauranga Hospital, Tauranga, New Zealand
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Magali Svrcek
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Department of Pathology, Hôpital Saint-Antoine, Paris, France
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Centre Research Institute, Tokyo, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | - Adrian Claydon
- Department of Gastroenterology, Tauranga Hospital, Tauranga, New Zealand
| | - Joana Figueiredo
- Instituto de Investigação e Inovação em Saúde & Institute of Molecular Pathology and Immunology of the University of Porto, Department of Pathology, University of Porto, Porto, Portugal
| | - Karyn Paringatai
- Te Tumu School of Māori, Pacific and Indigenous Studies, University of Otago, Dunedin, New Zealand
| | - Raquel Seruca
- Instituto de Investigação e Inovação em Saúde & Institute of Molecular Pathology and Immunology of the University of Porto, Department of Pathology, University of Porto, Porto, Portugal
| | - Nicola Bougen-Zhukov
- Cancer Genetics Laboratory, Te Aho Matatū, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Tom Brew
- Cancer Genetics Laboratory, Te Aho Matatū, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Patricia Carneiro
- Instituto de Investigação e Inovação em Saúde & Institute of Molecular Pathology and Immunology of the University of Porto, Department of Pathology, University of Porto, Porto, Portugal
| | | | | | - Erin Gardner
- Kimihauora Health and Research Clinic, Mt Maunganui, New Zealand
| | - Tanis D Godwin
- Cancer Genetics Laboratory, Te Aho Matatū, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Katharine N Holm
- Department of Biochemistry and Molecular Medicine, University of California Davis School Of Medicine, Davis, CA, USA
| | - Bostjan Humar
- Laboratory of the Swiss Hepato-Pancreato-Biliary and Transplantation Centre, Department of Surgery, University Hospital Zürich, Zurich, Switzerland
| | - Caroline J Lintott
- Genetic Health Service New Zealand South Island Hub, Christchurch Hospital, Christchurch, New Zealand
| | | | | | - Enrique Norero
- Esophagogastric Surgery Unit, Digestive Surgery Department, Hospital Dr Sotero del Rio, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Yasmin Nouri
- Cancer Genetics Laboratory, Te Aho Matatū, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde & Institute of Molecular Pathology and Immunology of the University of Porto, Department of Pathology, University of Porto, Porto, Portugal
| | - João M Sanches
- Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal
| | - Emily Schulpen
- Cancer Genetics Laboratory, Te Aho Matatū, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Ana S Ribeiro
- Instituto de Investigação e Inovação em Saúde & Institute of Molecular Pathology and Immunology of the University of Porto, Department of Pathology, University of Porto, Porto, Portugal
| | - Andrew Sporle
- Healthier Lives National Science Challenge, University of Otago, Dunedin, New Zealand
| | - James Whitworth
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Anthony E Reeve
- Cancer Genetics Laboratory, Te Aho Matatū, Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Parry Guilford
- Cancer Genetics Laboratory, Te Aho Matatū, Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
31
|
Hu MN, Hu SH, Zhang XW, Xiong SM, Deng H. Overview on new progress of hereditary diffuse gastric cancer with CDH1 variants. TUMORI JOURNAL 2020; 106:346-355. [PMID: 32811340 DOI: 10.1177/0300891620949668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hereditary diffuse gastric cancer (HDGC), comprising 1%-3% of gastric malignances, has been associated with CDH1 variants. Accumulating evidence has demonstrated more than 100 germline CDH1 variant types. E-cadherin encoded by the CDH1 gene serves as a tumor suppressor protein. CDH1 promoter hypermethylation and other molecular mechanisms resulting in E-cadherin dysfunction are involved in the tumorigenesis of HDGC. Histopathology exhibits characteristic signet ring cells, and immunohistochemical staining may show negativity for E-cadherin and other signaling proteins. Early HDGC is difficult to detect by endoscopy due to the development of lesions beneath the mucosa. Prophylactic gastrectomy is the most recommended treatment for pathogenic CDH1 variant carriers. Recent studies have promoted the progression of promising molecular-targeted therapies and management strategies. This review summarizes recent advances in CDH1 variant types, tumorigenesis mechanisms, diagnosis, and therapy, as well as clinical implications for future gene therapies.
Collapse
Affiliation(s)
- Mu-Ni Hu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Hui Hu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xing-Wei Zhang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Min Xiong
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Molecular Medicine and Genetics Center, the Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Renmin Institute of Forensic Medicine in Jiangxi, Nanchang, Jiangxi Province, China
| |
Collapse
|
32
|
Corso G, Montagna G, Figueiredo J, La Vecchia C, Fumagalli Romario U, Fernandes MS, Seixas S, Roviello F, Trovato C, Guerini-Rocco E, Fusco N, Pravettoni G, Petrocchi S, Rotili A, Massari G, Magnoni F, De Lorenzi F, Bottoni M, Galimberti V, Sanches JM, Calvello M, Seruca R, Bonanni B. Hereditary Gastric and Breast Cancer Syndromes Related to CDH1 Germline Mutation: A Multidisciplinary Clinical Review. Cancers (Basel) 2020; 12:E1598. [PMID: 32560361 PMCID: PMC7352390 DOI: 10.3390/cancers12061598] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
E-cadherin (CDH1 gene) germline mutations are associated with the development of diffuse gastric cancer in the context of the so-called hereditary diffuse gastric syndrome, and with an inherited predisposition of lobular breast carcinoma. In 2019, the international gastric cancer linkage consortium revised the clinical criteria and established guidelines for the genetic screening of CDH1 germline syndromes. Nevertheless, the introduction of multigene panel testing in clinical practice has led to an increased identification of E-cadherin mutations in individuals without a positive family history of gastric or breast cancers. This observation motivated us to review and present a novel multidisciplinary clinical approach (nutritional, surgical, and image screening) for single subjects who present germline CDH1 mutations but do not fulfil the classic clinical criteria, namely those identified as-(1) incidental finding and (2) individuals with lobular breast cancer without family history of gastric cancer (GC).
Collapse
Affiliation(s)
- Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (G.M.); (F.M.); (V.G.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.G.-R.); (N.F.); (G.P.)
| | - Giacomo Montagna
- Breast Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Joana Figueiredo
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (J.F.); (M.S.F.); (S.S.); (R.S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Carlo La Vecchia
- Department of Clinical Sciences and Community Health, University of Milan, 20133 Milan, Italy;
| | - Uberto Fumagalli Romario
- Department of Digestive Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Maria Sofia Fernandes
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (J.F.); (M.S.F.); (S.S.); (R.S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Susana Seixas
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (J.F.); (M.S.F.); (S.S.); (R.S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Franco Roviello
- Departments of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy;
| | - Cristina Trovato
- Division of Endoscopy, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Elena Guerini-Rocco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.G.-R.); (N.F.); (G.P.)
- Division of Pathology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.G.-R.); (N.F.); (G.P.)
- Division of Pathology, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (E.G.-R.); (N.F.); (G.P.)
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Serena Petrocchi
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Anna Rotili
- Division of Breast Imaging, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Giulia Massari
- Division of Breast Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (G.M.); (F.M.); (V.G.)
| | - Francesca Magnoni
- Division of Breast Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (G.M.); (F.M.); (V.G.)
| | - Francesca De Lorenzi
- Division of Plastic Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (F.D.L.); (M.B.)
| | - Manuela Bottoni
- Division of Plastic Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (F.D.L.); (M.B.)
| | - Viviana Galimberti
- Division of Breast Surgery, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (G.M.); (F.M.); (V.G.)
| | - João Miguel Sanches
- Institute for Systems and Robotics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Mariarosaria Calvello
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (M.C.); (B.B.)
| | - Raquel Seruca
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (J.F.); (M.S.F.); (S.S.); (R.S.)
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
- Medical Faculty, University of Porto, 4099-002 Porto, Portugal
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy; (M.C.); (B.B.)
| |
Collapse
|
33
|
Carvalho J, Oliveira P, Senz J, São José C, Hansford S, Teles SP, Ferreira M, Corso G, Pinheiro H, Lemos D, Pascale V, Roviello F, Huntsman D, Oliveira C. Redefinition of familial intestinal gastric cancer: clinical and genetic perspectives. J Med Genet 2020; 58:1-11. [PMID: 32066632 DOI: 10.1136/jmedgenet-2019-106346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Familial intestinal gastric cancer (FIGC) remains genetically unexplained and without testing/clinical criteria. Herein, we characterised the age of onset and disease spectrum of 50 FIGC families and searched for genetic causes potentially underlying a monogenic or an oligogenic/polygenic inheritance pattern. METHODS Normal and tumour DNA from 50 FIGC probands were sequenced using Illumina custom panels on MiSeq, and their respective germline and somatic landscapes were compared with corresponding landscapes from sporadic intestinal gastric cancer (SIGC) and hereditary diffuse gastric cancer cohorts. RESULTS The most prevalent phenotype in FIGC families was gastric cancer, detected in 138 of 208 patients (50 intestinal gastric cancer probands and 88 unknown gastric cancer histology relatives), followed by colorectal and breast cancers. After excluding benign and intronic variants lacking impact in splicing, 12 rare high-quality variants were found exclusively in 11 FIGC probands. Only two probands carried potentially deleterious variants, but lacked somatic second-hits, weakly supporting the monogenic hypothesis for FIGC. However, FIGC probands developed gastric cancer at least 10 years earlier and carried more TP53 germline common variants than SIGC (p=4.5E-03); FIGC and SIGC could be distinguished by specific germline and somatic variant profiles; there was an excess of FIGC tumours presenting microsatellite instability (38%); and FIGC tumours displayed significantly more somatic common variants than SIGC tumours (p=4.2E-06). CONCLUSION This study proposed the first data-driven testing criteria for FIGC families, and supported FIGC as a genetically determined, likely polygenic, gastric cancer-predisposing disease, with earlier onset and distinct from patients with SIGC at the germline and somatic levels.
Collapse
Affiliation(s)
- Joana Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Patricia Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Janine Senz
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Celina São José
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Samantha Hansford
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara Pinto Teles
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Marta Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Onco-Hematology, University of Milan Faculty of Medicine and Surgery, Milan, Italy
| | - Hugo Pinheiro
- Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Internal Medicine, Tâmega e Sousa Hospital Center, Penafiel, Portugal
| | - Diana Lemos
- European Bioinformatics Institute, Cambridge, Cambridgeshire, UK
| | - Valeria Pascale
- Department of Medical, Surgical Sciences and Neurosciences Section of General Surgery and Surgical Oncology, University of Siena, Siena, Toscana, Italy
| | - Franco Roviello
- Department of Medical, Surgical Sciences and Neurosciences Section of General Surgery and Surgical Oncology, University of Siena, Siena, Toscana, Italy.,Istituto Toscano Tumori, University of Siena, Siena, Toscana, Italy
| | - David Huntsman
- Centre for Translational and Applied Genomics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Genetic Pathology Evaluation Centre, University of British Columbia and Vancouver General, Vancouver, British Columbia, Canada
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal .,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
34
|
Moridnia A, Tabatabaiefar MA, Zeinalian M, Minakari M, Kheirollahi M, Moghaddam NA. Novel Variants and Copy Number Variation in CDH1 Gene in Iranian Patients with Sporadic Diffuse Gastric Cancer. J Gastrointest Cancer 2020; 50:420-427. [PMID: 29577179 DOI: 10.1007/s12029-018-0082-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The aim of this study was to survey the nucleotide changes and copy number variations (CNV) in the CDH1 gene in Iranian patients with sporadic diffuse gastric cancer (SDGC). MATERIALS AND METHODS In this study, 28 patients were examined who upon gastrectomy had been diagnosed with SDGC according to the familial history and histopathological criteria which was confirmed by the pathologist. DNA extraction was performed from formalin-fixed paraffin-embedded tissues using a phenol-chloroform method following xylene deparaffinization. Determination of DNA sequence by Sanger was performed using PCR amplification of 16 exons and boundaries of intron/exon of CDH1 gene. Multiplex ligation-dependent probe amplification (MLPA) was performed on patients with pathogenic disorders in the sequence. RESULTS In total, patients included 20 males and 8 females. Of all patients, 12 patients were under 45 years old (early onset gastric cancer, EODC) and 16 patients were older. The tumor was diagnosed in the early TNM stage (I, II) in six patients and in late stages (III, IV) in 19 cases. Altogether, 16 variants (three exonic with one new variant and 13 intronic with nine new variants) were found in DNA sequencing of the CDH1 gene in five samples. Also, using MLPA, a new duplication in exon 9 and one deletion in exon 2 were detected in two other patients. Altogether, CDH1 variants were identified in seven out of 28 patients (25%). CONCLUSION Our study revealed several novel somatic variants in the CDH1 gene in Iranian patients with sporadic diffuse GC. Our data supports the hypothesis that mutations in CDH1 gene, and particularly the mutations we describe, should be considered, even in sporadic cases of gastric cancer. The presence of these mutations in patients raises important issues regarding genetic counseling and diagnostic test in DGC patients.
Collapse
Affiliation(s)
- Abbas Moridnia
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O.Box: 81746-73461, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O.Box: 81746-73461, Isfahan, Iran
| | - Mehrdad Zeinalian
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O.Box: 81746-73461, Isfahan, Iran
| | - Mohammad Minakari
- Internal medicine department, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable disease and Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P.O.Box: 81746-73461, Isfahan, Iran.
| | - Noushin Afshar Moghaddam
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
35
|
van der Post RS, Oliveira C, Guilford P, Carneiro F. Hereditary gastric cancer: what's new? Update 2013-2018. Fam Cancer 2019; 18:363-367. [PMID: 30989426 DOI: 10.1007/s10689-019-00127-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Around 10-20% of gastric cancer patients have relatives with a diagnosis of GC and in 1-3% of patients a genetic cause can be confirmed. Histopathologically, GC is classified into intestinal-type, with glandular growth, and diffuse-type with poorly cohesive growth pattern often with signet ring cells. Familial or hereditary GC is classified into hereditary diffuse GC (HDGC), familial intestinal GC (FIGC) and polyposis forms. This review focuses on recent research findings and new concepts of hereditary GC.
Collapse
Affiliation(s)
- Rachel S van der Post
- Department of Pathology, Radboud university medical centre, Nijmegen, The Netherlands
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Parry Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, Centre for Translational Cancer Research, Te Aho Matatū, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Fátima Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal. .,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
36
|
Identification of c.1531C>T Pathogenic Variant in the CDH1 Gene as a Novel Germline Mutation of Hereditary Diffuse Gastric Cancer. Int J Mol Sci 2019; 20:ijms20204980. [PMID: 31600923 PMCID: PMC6829381 DOI: 10.3390/ijms20204980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
Germline pathogenic variants in the CDH1 gene are a well-established cause of hereditary diffuse gastric cancer (HDGC) syndrome. The aim of this study was to characterize CDH1 mutations associated with HDGC from Chile, a country with one of the highest incidence and mortality rates in the world for gastric cancer (GC). Here, we prospectively include probands with family history/early onset of diffuse-type of GC. The whole coding sequence of the CDH1 gene was sequenced from genomic DNA in all patients, and a multidisciplinary team managed each family member with a pathogenic sequence variant. Thirty-six cases were included (median age 44 years/male 50%). Twenty-seven (75%) patients had diffuse-type GC at ≤50 years of age and 19 (53%) had first or second-degree family members with a history of HDGC. Two cases (5.5%) carried a non-synonymous germline sequence variant in the CDH1 gene: (a) The c.88C>A missense variant was found in a family with three diffuse-type GC cases; and (b) c.1531C>T a nonsense pathogenic variant was identified in a 22-year-old proband with no previous family history of HDGC. Of note, six family members carry the same nonsense pathogenic variant. Prophylactic gastrectomy in the proband's sister revealed stage I signet-ring cell carcinoma. The finding of 1531C>T pathogenic variant in the CDH1 in proband with no previous family history of HDGC warrants further study to uncover familial clustering of disease in CDH1 negative patients. This finding may be particularly relevant in high incidence countries, such as the case in this report.
Collapse
|
37
|
Multigene Panel Testing Increases the Number of Loci Associated with Gastric Cancer Predisposition. Cancers (Basel) 2019; 11:cancers11091340. [PMID: 31514334 PMCID: PMC6769562 DOI: 10.3390/cancers11091340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/02/2019] [Accepted: 09/08/2019] [Indexed: 12/24/2022] Open
Abstract
The main gene involved in gastric cancer (GC) predisposition is CDH1, the pathogenic variants of which are associated with diffuse-type gastric cancer (DGC) and lobular breast cancer (LBC). CDH1 only explains a fraction (10–50%) of patients suspected of DGC/LBC genetic predisposition. To identify novel susceptibility genes, thus improving the management of families at risk, we performed a multigene panel testing on selected patients. We searched for germline pathogenic variants in 94 cancer-related genes in 96 GC or LBC Italian patients with early-onset and/or family history of GC. We found CDH1 pathogenic variants in 10.4% of patients. In 11.5% of cases, we identified loss-of-function variants in BRCA1, BRCA2, PALB2, and ATM breast/ovarian cancer susceptibility genes, as well as in MSH2, PMS2, BMPR1A, PRF1, and BLM genes. In 78.1% of patients, we did not find any variants with clear-cut clinical significance; however, 37.3% of these cases harbored rare missense variants predicted to be damaging by bioinformatics tools. Multigene panel testing decreased the number of patients that would have otherwise remained genetically unexplained. Besides CDH1, our results demonstrated that GC pathogenic variants are distributed across a number of susceptibility genes and reinforced the emerging link between gastric and breast cancer predisposition.
Collapse
|
38
|
Piccinin C, Panchal S, Watkins N, Kim RH. An update on genetic risk assessment and prevention: the role of genetic testing panels in breast cancer. Expert Rev Anticancer Ther 2019; 19:787-801. [PMID: 31469018 DOI: 10.1080/14737140.2019.1659730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: In the past 5 years, multi-gene panels have replaced the practice of BRCA1 and BRCA2 genetic testing in cases of suspected inherited breast cancer susceptibility. A variety of genes have been included on these panels without certainty of their clinical utility. Pertinent current and historical literature was reviewed to provide an up-to-date snapshot of the changing landscape of the use of gene panel tests in the context of breast cancer. Areas covered: Following a recent review of the evidence, 10 genes have been found to have definitive evidence of increased breast cancer risk with variable penetrance. Here, we review the recent changes to the practice of multi-gene panel use in breast cancer diagnoses, including an update on next generation sequencing, alternative models of genetic testing, considerations when ordering these panel tests, and recommendations for management in identified carriers for a variety of genes. A comparison of screening recommendations and carrier frequencies from recent studies is also explored. Lastly, we consider what the future of hereditary oncologic genetic testing holds. Expert opinion: The transition to multi-gene panels in breast cancer patients has improved the likelihood of capturing a rare variant in a well-established gene associated with hereditary breast cancer (e.g. BRCA1 and BRCA2, TP53). There is also an increase in the likelihood of uncovering an uncertain result. This could be in the form of a variant of uncertain significance, or a pathogenic variant in a gene with questionable breast cancer risk-association. Concurrently, a changing landscape of who orders genetic tests will improve access to genetic testing. This pervasiveness of genetic testing must be accompanied with increased genetic literacy in all health-care providers, and access to support from genetics professionals for management of patients and at-risk family members.
Collapse
Affiliation(s)
- Carolyn Piccinin
- Familial Breast Cancer Clinic, Mount Sinai Hospital , Toronto , ON , Canada
| | - Seema Panchal
- Familial Breast Cancer Clinic, Mount Sinai Hospital , Toronto , ON , Canada
| | - Nicholas Watkins
- Department of Molecular Genetics, University of Toronto , Toronto , Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital , Toronto , Canada
| | - Raymond H Kim
- Familial Cancer Clinic, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto , Toronto , Canada
| |
Collapse
|
39
|
Slavin TP, Weitzel JN, Neuhausen SL, Schrader KA, Oliveira C, Karam R. Genetics of gastric cancer: what do we know about the genetic risks? Transl Gastroenterol Hepatol 2019; 4:55. [PMID: 31463414 DOI: 10.21037/tgh.2019.07.02] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/11/2019] [Indexed: 01/11/2023] Open
Abstract
An appreciable number of patients with gastric cancer have an underlying hereditary cancer susceptibility syndrome as the cause of their gastric cancer, particularly those with early onset gastric cancer or a family history of gastric or other cancers. Pathogenic germline variants in specific genes account for the known gastric cancer predisposition syndromes. Germline genetic testing can identify individuals and their family members who carry inherited pathogenic gene variants, and thus have increased risk of developing gastric or other cancers. Ideally, germline pathogenic variants can be identified in family members before the onset of disease, when early detection or prevention strategies can be implemented most effectively to decrease gastric cancer- related morbidity and mortality. This article reviews some of the currently known gastric cancer predisposition syndromes and their associated cancer risks. We also discuss current research and advances in the field of genetic gastric cancer susceptibility.
Collapse
Affiliation(s)
- Thomas Paul Slavin
- Division of Clinical Cancer Genomics, Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA.,Department of Population Sciences, City of Hope, Duarte, CA, USA.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jeffrey N Weitzel
- Division of Clinical Cancer Genomics, Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, CA, USA.,Department of Population Sciences, City of Hope, Duarte, CA, USA.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Susan L Neuhausen
- Department of Population Sciences, City of Hope, Duarte, CA, USA.,Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Kasmintan A Schrader
- Department of Molecular Oncology, BC Cancer, Vancouver, BC, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.,Ambry Genetics Laboratories, Aliso Viejo, CA, USA
| | - Carla Oliveira
- i3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Rachid Karam
- Ambry Genetics Laboratories, Aliso Viejo, CA, USA
| |
Collapse
|
40
|
Xicola RM, Li S, Rodriguez N, Reinecke P, Karam R, Speare V, Black MH, LaDuca H, Llor X. Clinical features and cancer risk in families with pathogenic CDH1 variants irrespective of clinical criteria. J Med Genet 2019; 56:838-843. [DOI: 10.1136/jmedgenet-2019-105991] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Abstract
BackgroundThe clinical phenotype of CDH1 pathogenic variant carriers has mostly been studied in families that fulfil criteria of hereditary diffuse gastric cancer (HDGC). We aimed at determining cancer phenotype and cancer risk estimation among families with CDH1 pathogenic variants not selected by HDGC clinical criteria.MethodsPatients were all consecutively identified CDH1 pathogenic variant carriers from a clinical laboratory tested with multigene panel testing and from an academic cancer genetics programme. Clinical and demographic features, cancer phenotypes and genotype–phenotype correlations were determined among CDH1 families. Age-specific cumulative cancer risks (penetrance) were calculated based on 38 families with available pedigrees.ResultsWithin the 113 CDH1 pathogenic variant probands and 476 relatives, 113 had gastric cancer, 177 breast cancer and 196 other cancers. Mean age at diagnosis was 47 for gastric and 54 for breast cancer. Forty-six per cent fulfilled criteria of HDGC. While 36% of families had both gastric and breast cancers, 36% had breast but no gastric cancers and 16% had gastric but not breast cancers. Cumulative risk of cancer by age 80 was 37.2% for gastric and 42.9% for breast cancer.ConclusionIn unselected CDH1 pathogenic variant carrier families, gastric cancer risks were lower and age at diagnosis higher than previously reported in families pre-selected for HDGC criteria. A substantial proportion of families did not present with any gastric cancers and their cancers were limited to breast. Thus, clinical criteria for CDH1 testing should be widened, including breast cancer families only, and a consideration for delayed prophylactic gastrectomy/surveillance should be evaluated.
Collapse
|
41
|
De Scalzi AM, Bonanni B, Galimberti V, Veronesi P, Pravettoni G, Corso G. E-cadherin germline mutations in Māori population. Future Oncol 2019; 15:1291-1294. [PMID: 30977389 DOI: 10.2217/fon-2018-0834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - Bernardo Bonanni
- Division of Cancer Prevention & Genetics, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Viviana Galimberti
- Division of Breast Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Paolo Veronesi
- Division of Breast Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Faculty of Medicine, University of Milan, Italy
| | - Gabriella Pravettoni
- Faculty of Medicine, University of Milan, Italy
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology, 20141 Milan, Italy
| | - Giovanni Corso
- Division of Breast Surgery, European Institute of Oncology IRCCS, 20141 Milan, Italy
- Faculty of Medicine, University of Milan, Italy
| |
Collapse
|
42
|
Jiang Y, Zong W, Ju S, Jing R, Cui M. Promising member of the short interspersed nuclear elements ( Alu elements): mechanisms and clinical applications in human cancers. J Med Genet 2019; 56:639-645. [PMID: 30852527 DOI: 10.1136/jmedgenet-2018-105761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/13/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
Alu elements are one of most ubiquitous repetitive sequences in human genome, which were considered as the junk DNA in the past. Alu elements have been found to be associated with human diseases including cancers via events such as amplification, insertion, recombination or RNA editing, which provide a new perspective of oncogenesis at both DNA and RNA levels. Due to the prevalent distribution, Alu elements are widely used as target molecule of liquid biopsy. Alu-based cell-free DNA shows feasible application value in tumour diagnosis, postoperative monitoring and adjuvant therapy. In this review, the special tumourigenesis mechanism of Alu elements in human cancers is discussed, and the application of Alu elements in various tumour liquid biopsy is summarised.
Collapse
Affiliation(s)
- Yun Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Wei Zong
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Medical college, Nantong University, Nantong, Jiangsu, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ming Cui
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
43
|
Donida BM, Tomasello G, Ghidini M, Buffoli F, Grassi M, Liguigli W, Maglietta G, Pergola L, Ratti M, Sabadini G, Toppo L, Ungari M, Passalacqua R. Epidemiological, clinical and pathological characteristics of gastric neoplasms in the province of Cremona: the experience of the first population-based specialized gastric cancer registry in Italy. BMC Cancer 2019; 19:212. [PMID: 30849945 PMCID: PMC6408835 DOI: 10.1186/s12885-019-5366-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The gastric cancer incidence rate differs widely across geographical areas. In Italy, in the province of Cremona the incidence is high, compared to the national situation. For this reason a specialized population-based registry was set up. METHODS The collection encompasses all gastric cancers diagnosed in the three districts of the province since January 1, 2010. The main data sources were the pathological and Hospital Discharge Records and patient clinical charts. Only diagnoses of primary gastric cancer were considered. For each case the following variables were registered: personal data, medical history and symptoms at diagnosis; imaging assessments performed, details on surgery and other treatments received; genetic background and biomolecular characteristics; social and environmental factors. RESULTS As of November 2017, 1087 cases were collected; of which 876, diagnosed up to December 2015, were analyzed. Male/female ratio was 1.4. The European Age-standardized Incidence Rate was 41.4 for males and 28.3 for females as compared to a national average of 33.3 and 17.0 respectively. Median age at diagnosis was 73 for male and 78 for female. Helicobacter Pylori infection was present in fewer than 20% of cases. HER-2 gene was amplified in about 25% of cases. Primary tumour location was the gastro-esophageal junction or cardia in 17.5% in males and 8.3% in females. The majority of cases (58.3%) were diagnosed at an advanced stage and overall only 41.2% underwent surgery. Median overall survival was 14.8 months for men and 18.5 for women. Age standardized 5-year relative survival was 31.4% for men and 40.5% for females. Neoadjuvant treatment was performed in fewer than 10% of patients who underwent surgery, and the rate of postoperative therapy adherence was low. DISCUSSION This study shows a high gastric cancer incidence in the province of Cremona, with a geographical spread across different districts. Moreover, a high percentage of gastric cancers were detected at an advanced stage of disease and a low rate of 5-year relative survival was registered. Based on these findings, effective preventive interventional health strategies and screening procedures need to be implemented to reduce the impact of this pathology in this geographical area.
Collapse
Affiliation(s)
- B M Donida
- ASST of Cremona, Viale Concordia 1, 26100, Cremona, CR, Italy.
| | - G Tomasello
- ASST of Cremona, Viale Concordia 1, 26100, Cremona, CR, Italy
| | - M Ghidini
- ASST of Cremona, Viale Concordia 1, 26100, Cremona, CR, Italy
| | - F Buffoli
- ASST of Cremona, Viale Concordia 1, 26100, Cremona, CR, Italy
| | - M Grassi
- ASST of Crema, Largo Ugo Dossena 2, 26013, Crema, CR, Italy
| | - W Liguigli
- Hospital of Suzzara, Via General Cantore 14/b, 46029, Suzzara, MN, Italy
| | - G Maglietta
- University Hospital of Parma, Via Gramsci 14, 43126, Parma, PR, Italy.,University of Florence, 50121, Parma, FI, Italy
| | - L Pergola
- ASST of Crema, Largo Ugo Dossena 2, 26013, Crema, CR, Italy
| | - M Ratti
- ASST of Cremona, Viale Concordia 1, 26100, Cremona, CR, Italy
| | - G Sabadini
- Istituto Figlie San Camillo of Cremona, Via Fabio Filzi 56, 26100, Cremona, CR, Italy
| | - L Toppo
- Civil Hospital of Voghera, ASST of Pavia, Via Indipendenza 34, 27100, Pavia, PV, Italy
| | - M Ungari
- ASST of Cremona, Viale Concordia 1, 26100, Cremona, CR, Italy
| | - R Passalacqua
- ASST of Cremona, Viale Concordia 1, 26100, Cremona, CR, Italy
| |
Collapse
|
44
|
Ansari S, Gantuya B, Tuan VP, Yamaoka Y. Diffuse Gastric Cancer: A Summary of Analogous Contributing Factors for Its Molecular Pathogenicity. Int J Mol Sci 2018; 19:ijms19082424. [PMID: 30115886 PMCID: PMC6121269 DOI: 10.3390/ijms19082424] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the third leading cause of cancer-related deaths and ranks as the fifth most common cancer worldwide. Incidence and mortality differ depending on the geographical region and gastric cancer ranks first in East Asian countries. Although genetic factors, gastric environment, and Helicobacter pylori infection have been associated with the pathogenicity and development of intestinal-type gastric cancer that follows the Correa’s cascade, the pathogenicity of diffuse-type gastric cancer remains mostly unknown and undefined. However, genetic abnormalities in the cell adherence factors, such as E-cadherin and cellular activities that cause impaired cell integrity and physiology, have been documented as contributing factors. In recent years, H. pylori infection has been also associated with the development of diffuse-type gastric cancer. Therefore, in this report, we discuss the host factors as well as the bacterial factors that have been reported as associated factors contributing to the development of diffuse-type gastric cancer.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
| | - Boldbaatar Gantuya
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Internal Medicine, Gastroenterology unit, Mongolian National University of Medical Sciences, Ulaanbaatar-14210, Mongolia.
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Vietnam.
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu-City, Oita 879-5593, Japan.
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
45
|
Woo HD, Fernandez-Jimenez N, Ghantous A, Degli Esposti D, Cuenin C, Cahais V, Choi IJ, Kim YI, Kim J, Herceg Z. Genome-wide profiling of normal gastric mucosa identifies Helicobacter pylori- and cancer-associated DNA methylome changes. Int J Cancer 2018; 143:597-609. [PMID: 29574700 DOI: 10.1002/ijc.31381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/12/2018] [Accepted: 03/02/2018] [Indexed: 12/11/2022]
Abstract
The large geographic variations in the incidence of gastric cancer (GC) are likely due to differential environmental exposures, in particular to Helicobacter pylori (H. pylori) infection. We aimed to investigate the impact of H. pylori on the epigenome in normal gastric mucosa and methylation changes associated with cancer risk independent of H. pylori. A discovery set of normal gastric mucosa from GC cases (n = 42) and controls (n = 42), nested in a large case-control study and stratified by H. pylori status, were subjected to genome-wide methylation profiling. Single-nucleotide polymorphism arrays from peripheral blood leukocytes were used to conduct methylation quantitative trait loci (mQTL) analysis. A validation set of gastric mucosa samples (n = 180) was used in the replication phase. We found 1,924 differentially methylated positions (DMPs) and 438 differentially methylated regions (DMRs) associated with H. pylori infection, most of which were hypermethylated. Significant methylation alterations identified in the initial set were successfully replicated. Furthermore, the H. pylori-associated DMP/Rs showed marked stability ('epigenetic memory') after H. pylori clearance. Interestingly, we found 152 DMRs associated with cancer risk independent of the H. pylori status in normal gastric mucosa. The methylation score derived from three biomarkers was a strong predictor of GC. Finally, the mQTL analysis indicated that the H. pylori- and cancer-specific methylation signatures were minimally affected by genetic variation. The comprehensively characterized methylome changes associated with H. pylori infection and GC risk in our study might serve as potential biomarkers for early cancer progression in tumour-free gastric mucosa.
Collapse
Affiliation(s)
- Hae Dong Woo
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, 69372, France
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Nora Fernandez-Jimenez
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, 69372, France
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, 69372, France
| | - Davide Degli Esposti
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, 69372, France
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, 69372, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, 69372, France
| | - Il Ju Choi
- Center for Gastric Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Young-Il Kim
- Center for Gastric Cancer, National Cancer Center Hospital, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, Republic of Korea
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon, 69372, France
| |
Collapse
|
46
|
Abbas M, Faggian A, Sintali DN, Khan GJ, Naeem S, Shi M, Dingding C. Current and future biomarkers in gastric cancer. Biomed Pharmacother 2018; 103:1688-1700. [DOI: 10.1016/j.biopha.2018.04.178] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023] Open
|
47
|
Spoto CP, Gullo I, Carneiro F, Montgomery EA, Brosens LA. Hereditary gastrointestinal carcinomas and their precursors: An algorithm for genetic testing. Semin Diagn Pathol 2018; 35:170-183. [DOI: 10.1053/j.semdp.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular Signaling in Tumorigenesis of Gastric Cancer. IRANIAN BIOMEDICAL JOURNAL 2018; 22:217-30. [PMID: 29706061 PMCID: PMC5949124 DOI: 10.22034/ibj.22.4.217] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) is regarded as the fifth most common cancer and the third cause of cancer-related deaths worldwide. Mechanism of GC pathogenesis is still unclear and relies on multiple factors, including environmental and genetic characteristics. One of the most important environmental factors of GC occurrence is infection with Helicobacter pylori that is classified as class one carcinogens. Dysregulation of several genes and pathways play an essential role during gastric carcinogenesis. Dysregulation of developmental pathways such as Wnt/β-catenin signaling, Hedgehog signaling, Hippo pathway, Notch signaling, nuclear factor-kB, and epidermal growth factor receptor have been found in GC. Epithelial-mesenchymal transition, as an important process during embryogenesis and tumorigenesis, is supposed to play a role in initiation, invasion, metastasis, and progression of GC. Although surgery is the main therapeutic modality of the disease, the understanding of biological processes of cell signaling pathways may help to develop new therapeutic targets for GC.
Collapse
Affiliation(s)
- Fatemeh Molaei
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Yasaman Fahim
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
49
|
Zhang H, Feng M, Feng Y, Bu Z, Li Z, Jia S, Ji J. Germline mutations in hereditary diffuse gastric cancer. Chin J Cancer Res 2018; 30:122-130. [PMID: 29545726 DOI: 10.21147/j.issn.1000-9604.2018.01.13] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer is one of the leading causes of cancer-related deaths worldwide. Among which, about 1%-3% of gastric cancer patients were characterized by inherited gastric cancer predisposition syndromes, knowing as hereditary diffuse gastric cancer (HDGC). Studies reported that CDH1 germline mutations are the main cause of HDGC. With the help of rapid development of genetic testing technologies and data analysis tools, more and more researchers focus on seeking candidate susceptibility genes for hereditary cancer syndromes. In addition, National Comprehensive Cancer Network (NCCN) guidelines recommend that the patients of HDGC carrying CDH1 mutations should undergo prophylactic gastrectomy or routine endoscopic surveillances. Therefore, genetic counseling plays a key role in helping individuals with pathogenic mutations make appropriate risk management plans. Moreover, experienced and professional genetic counselors as well as a systematic multidisciplinary team (MDT) are also required to facilitate the development of genetic counseling and benefit pathogenic mutation carriers who are in need of regular and standardized risk management solutions. In this review, we provided an overview about the germline mutations of several genes identified in HDGC, suggesting that these genes may potentially act as susceptibility genes for this malignant cancer syndrome. Furthermore, we introduced information for prevention, diagnosis and risk management of HDGC. Investigations on key factors that may have effect on risk management decision-making and genetic data collection of more cancer syndrome family pedigrees are required for the development of HDGC therapeutic strategies.
Collapse
Affiliation(s)
- Hao Zhang
- Surgery Laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Molecular Diagnostics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Mengmeng Feng
- Surgery Laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Yi Feng
- Surgery Laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Zhaode Bu
- Surgery Laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Ziyu Li
- Surgery Laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Shuqin Jia
- Surgery Laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Molecular Diagnostics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiafu Ji
- Surgery Laboratory, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| |
Collapse
|
50
|
Lowstuter K, Espenschied CR, Sturgeon D, Ricker C, Karam R, LaDuca H, Culver JO, Dolinsky JS, Chao E, Sturgeon J, Speare V, Ma Y, Kingham K, Melas M, Idos GE, McDonnell KJ, Gruber SB. Unexpected CDH1 Mutations Identified on Multigene Panels Pose Clinical Management Challenges. JCO Precis Oncol 2017; 1:1-12. [DOI: 10.1200/po.16.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Mutations in the CDH1 gene confer up to an 80% lifetime risk of diffuse gastric cancer and up to a 60% lifetime risk of lobular breast cancer. Testing for CDH1 mutations is recommended for individuals who meet the International Gastric Cancer Linkage Consortium (IGCLC) guidelines. However, the interpretation of unexpected CDH1 mutations identified in patients who do not meet IGCLC criteria or do not have phenotypes suggestive of hereditary diffuse gastric cancer is clinically challenging. This study aims to describe phenotypes of CDH1 mutation carriers identified through multigene panel testing (MGPT) and to offer informed recommendations for medical management. Patients and Methods This cross-sectional prevalence study included all patients who underwent MGPT between March 2012 and September 2014 from a commercial laboratory (n = 26,936) and an academic medical center cancer genetics clinic (n = 318) to estimate CDH1 mutation prevalence and associated clinical phenotypes. CDH1 mutation carriers were classified as IGCLC positive (met criteria), IGCLC partial phenotype, and IGCLC negative. Results In the laboratory cohort, 16 (0.06%) of 26,936 patients were identified as having a pathogenic CDH1 mutation. In the clinic cohort, four (1.26%) of 318 had a pathogenic CDH1 mutation. Overall, 65% of mutation carriers did not meet the revised testing criteria published in 2015. All three CDH1 mutation carriers who had risk-reducing gastrectomy had pathologic evidence of diffuse gastric cancer despite not having met IGCLC criteria. Conclusion The majority of CDH1 mutations identified on MGPT are unexpected and found in individuals who do not fit the accepted diagnostic testing criteria. These test results alter the medical management of CDH1-positive patients and families and provide opportunities for early detection and risk reduction.
Collapse
Affiliation(s)
- Katrina Lowstuter
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Carin R. Espenschied
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Duveen Sturgeon
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Charité Ricker
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Rachid Karam
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Holly LaDuca
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Julie O. Culver
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Jill S. Dolinsky
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth Chao
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Julia Sturgeon
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Virginia Speare
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Yanling Ma
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Kerry Kingham
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Marilena Melas
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Gregory E. Idos
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Kevin J. McDonnell
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| | - Stephen B. Gruber
- Katrina Lowstuter, Duveen Sturgeon, Charité Ricker, Julie O. Culver, Julia Sturgeon, Yanling Ma, Marilena Melas, Gregory E. Idos, Kevin J. McDonnell, and Stephen B. Gruber, University of Southern California, Los Angeles; Carin R. Espenschied, Rachid Karam, Holly LaDuca, Jill S. Dolinsky, Elizabeth Chao, and Virginia Speare, Ambry Genetics, Aliso Viejo; and Kerry Kingham, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|