1
|
Yasmeen F, Pirzada RH, Ahmad B, Choi B, Choi S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. Int J Mol Sci 2024; 25:7666. [PMID: 39062908 PMCID: PMC11277571 DOI: 10.3390/ijms25147666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Autoimmunity refers to an organism's immune response against its own healthy cells, tissues, or components, potentially leading to irreversible damage to vital organs. Central and peripheral tolerance mechanisms play crucial roles in preventing autoimmunity by eliminating self-reactive T and B cells. The disruption of immunological tolerance, characterized by the failure of these mechanisms, results in the aberrant activation of autoreactive lymphocytes that target self-tissues, culminating in the pathogenesis of autoimmune disorders. Genetic predispositions, environmental exposures, and immunoregulatory disturbances synergistically contribute to the susceptibility and initiation of autoimmune pathologies. Within the realm of immune therapies for autoimmune diseases, cytokine therapies have emerged as a specialized strategy, targeting cytokine-mediated regulatory pathways to rectify immunological imbalances. Proinflammatory cytokines are key players in inducing and propagating autoimmune inflammation, highlighting the potential of cytokine therapies in managing autoimmune conditions. This review discusses the etiology of autoimmune diseases, current therapeutic approaches, and prospects for future drug design.
Collapse
Affiliation(s)
- Farzana Yasmeen
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Rameez Hassan Pirzada
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bilal Ahmad
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Bogeum Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (F.Y.); (B.C.)
- S&K Therapeutics, Ajou University Campus Plaza 418, Worldcup-ro 199, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
2
|
Zulfiqar S, Fiaz A, Khan WA, Hussain M, Ali A, Ahmed N, Ali B, Masood MA. Association of LPP and ZMIZ1 Gene Polymorphism with Celiac Disease in Subjects from Punjab, Pakistan. Genes (Basel) 2024; 15:852. [PMID: 39062631 PMCID: PMC11275600 DOI: 10.3390/genes15070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 12/23/2023] [Indexed: 07/28/2024] Open
Abstract
Celiac disease (CD) is a complicated autoimmune disease that is caused by gluten sensitivity. It was commonly believed that CD only affected white Europeans, but recent findings show that it is also prevailing in some other racial groups, like South Asians, Caucasians, Africans, and Arabs. Genetics plays a profound role in increasing the risk of developing CD. Genetic Variations in non-HLA genes such as LPP, ZMIZ1, CCR3, and many more influence the risk of CD in various populations. This study aimed to explore the association between LPP rs1464510 and ZMIZ1 rs1250552 and CD in the Punjabi Pakistani population. For this, a total of 70 human subjects were selected and divided into healthy controls and patients. Genotyping was performed using an in-house-developed tetra-amplification refractory mutation system polymerase chain reaction. Statistical analysis revealed a significant association between LPP rs1464510 (χ2 = 4.421, p = 0.035) and ZMIZ1 rs1250552 (χ2 = 3.867, p = 0.049) and CD. Multinomial regression analysis showed that LPP rs1464510 A allele reduces the risk of CD by ~52% (OR 0.48, CI: 0.24-0.96, 0.037), while C allele-carrying subjects are at ~2.6 fold increased risk of CD (OR 3.65, CI: 1.25-10.63, 0.017). Similarly, the ZMIZ1 rs1250552 AG genotype significantly reduces the risk of CD by 73% (OR 0.26, CI: 0.077-0.867, p = 0.028). In summary, Genetic Variations in the LPP and ZMIZ1 genes influence the risk of CD in Punjabi Pakistani subjects. LPP rs1464510 A allele and ZMIZ1 AG genotype play a protective role and reduce the risk of CD.
Collapse
Affiliation(s)
- Sumaira Zulfiqar
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Amna Fiaz
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Waqas Ahmed Khan
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Misbah Hussain
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Ansar Ali
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 42000, Pakistan
| | - Basharat Ali
- Department of Family Medicine, University of Health Sciences, Lahore 42000, Pakistan
| | - Muhammad Adnan Masood
- Department of Medicine, Niazi Medical & Dental College Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
3
|
Liu R, Shang X, Fu Y, Wang Y, Wang P, Yan S. Shared genetic architecture between hypothyroidism and rheumatoid arthritis: A large-scale cross-trait analysis. Mol Immunol 2024; 168:17-24. [PMID: 38368726 DOI: 10.1016/j.molimm.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND In recent years, mounting evidence has indicated a co-morbid relationship between hypothyroidism and rheumatoid arthritis (RA), however, the shared genetic factors underlying this association remain unclear. This study aims to investigate the common genetic architecture between hypothyroidism and RA. METHODS Genome-wide association study (GWAS) summary statistics from recently published studies were utilized to examine the genetic correlation, shared genetic loci, and potential causal relationship between hypothyroidism and RA. Statistical methods included linkage disequilibrium score regression (LDSC), high-definition likelihood (HDL), cross-trait meta-analyses, colocalization analysis, multi-marker analysis of genomic annotation (MAGMA), tissue-specific enrichment analysis (TSEA), functional enrichment analysis, and latent causal variable method (LCV). RESULTS Our study demonstrated a significant genetic correlation between hypothyroidism and RA(LDSC:rg=0.3803,p=7.23e-11;HDL:rg=0.3849,p=1.02e-21). Through cross-trait meta-analysis, we identified 1035 loci, including 43 novel genetic loci. By integrating colocalization analysis and the MAGMA algorithm, we found a substantial number of genes, such as PTPN22, TYK2, and CTLA-4, shared between the two diseases, which showed significant enrichment across 14 tissues. These genes were primarily associated with the regulation of alpha-beta T cell proliferation, positive regulation of T cell activation, positive regulation of leukocyte cell-cell adhesion, T cell receptor signaling pathway, and JAK-STAT signaling pathway. However, our study did not reveal a significant causal association between the two diseases using the LCV approach. CONCLUSION Based on these findings, there is a significant genetic correlation between hypothyroidism and RA, suggesting a shared genetic basis for these conditions.
Collapse
Affiliation(s)
- Ruiyan Liu
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xin Shang
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu Fu
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Wang
- Department of Geriatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ping Wang
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Shuxun Yan
- Endocrine Ward II, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
4
|
Stubbs A, Clauw DJ. Nutrients and Nocioception: Diet in the management of pain. Best Pract Res Clin Rheumatol 2024; 38:101963. [PMID: 38918099 DOI: 10.1016/j.berh.2024.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024]
Abstract
Nutrition can play a pivotal role in the management of pain associated with chronic rheumatic diseases. There is a growing body of research linking certain nutrients from the diet to inflammation. Certain nutrients have been shown to improve pain associated with inflammation. Furthermore, certain dietary patterns have been shown to improve pain across multiple rheumatic conditions. Finally, maintaining a low body mass is associated with improved pain associated with chronic rheumatic diseases.
Collapse
Affiliation(s)
- Aaron Stubbs
- Department of Rheumatology, Michigan Medicine, United States.
| | - Daniel J Clauw
- Chronic Pain and Fatigue Research Center, Department of Anesthesiology, Michigan Medicine, United States
| |
Collapse
|
5
|
Wen YP, Yu ZG. Identifying shared genetic loci and common risk genes of rheumatoid arthritis associated with three autoimmune diseases based on large-scale cross-trait genome-wide association studies. Front Immunol 2023; 14:1160397. [PMID: 37377963 PMCID: PMC10291128 DOI: 10.3389/fimmu.2023.1160397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Substantial links between autoimmune diseases have been shown by an increasing number of studies, and one hypothesis for this comorbidity is that there is a common genetic cause. Methods In this paper, a large-scale cross-trait Genome-wide Association Studies (GWAS) was conducted to investigate the genetic overlap among rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and type 1 diabetes. Results and discussion Through the local genetic correlation analysis, 2 regions with locally significant genetic associations between rheumatoid arthritis and multiple sclerosis, and 4 regions with locally significant genetic associations between rheumatoid arthritis and type 1 diabetes were discovered. By cross-trait meta-analysis, 58 independent loci associated with rheumatoid arthritis and multiple sclerosis, 86 independent loci associated with rheumatoid arthritis and inflammatory bowel disease, and 107 independent loci associated with rheumatoid arthritis and type 1 diabetes were identified with genome-wide significance. In addition, 82 common risk genes were found through genetic identification. Based on gene set enrichment analysis, it was found that shared genes are enriched in exposed dermal system, calf, musculoskeletal, subcutaneous fat, thyroid and other tissues, and are also significantly enriched in 35 biological pathways. To verify the association between diseases, Mendelian randomized analysis was performed, which shows possible causal associations between rheumatoid arthritis and multiple sclerosis, and between rheumatoid arthritis and type 1 diabetes. The common genetic structure of rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and type 1 diabetes was explored by these studies, and it is believed that this important discovery will lead to new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ya-Ping Wen
- National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| | - Zu-Guo Yu
- National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| |
Collapse
|
6
|
Esmaeilzadeh H, Chavoshzadeh Z, Nabavizadeh SH, Alyasin S, Amanati A, Askarisarvestani A. Systemic aspergillosis in a patient with interferon gamma receptor 1 deficiency; a case report. BMC Pediatr 2023; 23:278. [PMID: 37277724 DOI: 10.1186/s12887-023-04093-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Interferon-gamma receptor deficiency is a heterogeneous spectrum of disease which involves mutations in IFNGR1, IFNGR2 genes, and the downstream signaling proteins such as STAT1. These mutations are associated with immunodeficiency 27 A and 27B, making the patient prone to mycobacterial infections. Patients with this condition are also at increased risk for affliction with viral and bacterial infections, such as with the Herpesviridae family, Listeria, and Salmonella. Moreover, SH2B3 mutation is associated with autoimmune and lymphoproliferative conditions. CASE PRESENTATION the patient was a 19-month-old infant girl who presented with a two-week history of fever. She had near-normal flowcytometry with high IgM and IgE. She had pneumonic infiltration in her chest and right hilar and para-aortic lymphadenopathy. PCR of whole blood for Aspergillus fumigatus came back positive. In her Whole Exome Sequencing she had IFNGR1 and SH2B3 mutations. CONCLUSION systemic fungal infections such as Aspergillosis can occur in patients with interferon-gamma receptor one deficiency. This type of immunodeficiency should be considered in treating patients with systemic Aspergillosis.
Collapse
Affiliation(s)
- Hossein Esmaeilzadeh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Chavoshzadeh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Mofid Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Hesamedin Nabavizadeh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Alyasin
- Division of Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Allergy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Amanati
- Division of Infectious Diseases, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Askarisarvestani
- Division of Allergy and Clinical Immunology, Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Blombery P, Pazhakh V, Albuquerque AS, Maimaris J, Tu L, Briones Miranda B, Evans F, Thompson ER, Carpenter B, Proctor I, Curtin JA, Lambert J, Burns SO, Lieschke GJ. Biallelic deleterious germline SH2B3 variants cause a novel syndrome of myeloproliferation and multi-organ autoimmunity. EJHAEM 2023; 4:463-469. [PMID: 37206266 PMCID: PMC10188477 DOI: 10.1002/jha2.698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
SH2B3 is a negative regulator of multiple cytokine receptor signalling pathways in haematopoietic tissue. To date, a single kindred has been described with germline biallelic loss-of-function SH2B3 variants characterized by early onset developmental delay, hepatosplenomegaly and autoimmune thyroiditis/hepatitis. Herein, we described two further unrelated kindreds with germline biallelic loss-of-function SH2B3 variants that show striking phenotypic similarity to each other as well as to the previous kindred of myeloproliferation and multi-organ autoimmunity. One proband also suffered severe thrombotic complications. CRISPR-Cas9 gene editing of zebrafish sh2b3 created assorted deleterious variants in F0 crispants, which manifest significantly increased number of macrophages and thrombocytes, partially replicating the human phenotype. Treatment of the sh2b3 crispant fish with ruxolitinib intercepted this myeloproliferative phenotype. Skin-derived fibroblasts from one patient demonstrated increased phosphorylation of JAK2 and STAT5 after stimulation with IL-3, GH, GM-CSF and EPO compared to healthy controls. In conclusion, these additional probands and functional data in combination with the previous kindred provide sufficient evidence for biallelic homozygous deleterious variants in SH2B3 to be considered a valid gene-disease association for a clinical syndrome of bone marrow myeloproliferation and multi-organ autoimmune manifestations.
Collapse
Affiliation(s)
- Piers Blombery
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Vahid Pazhakh
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Jesmeen Maimaris
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Department of ImmunologyRoyal Free London NHS Foundation TrustLondonUK
| | - Lingge Tu
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| | | | - Florence Evans
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
| | - Ella R. Thompson
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- University of MelbourneMelbourneVictoriaAustralia
| | - Ben Carpenter
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Ian Proctor
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Julie A. Curtin
- Haematology DepartmentChildren's Hospital at WestmeadWestmeadNew South WalesAustralia
| | - Jonathan Lambert
- Department of HaematologyUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of HaematologyUCL Cancer InstituteUniversity College LondonLondonUK
| | - Siobhan O. Burns
- Institute of Immunity and TransplantationUniversity College LondonLondonUK
- Department of ImmunologyRoyal Free London NHS Foundation TrustLondonUK
| | - Graham J. Lieschke
- Clinical HaematologyPeter MacCallum Cancer Centre/Royal Melbourne HospitalMelbourneVictoriaAustralia
- Australian Regenerative Medicine InstituteMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
8
|
Howarth S, Sneddon G, Allinson KR, Razvi S, Mitchell AL, Pearce SHS. Replication of association at the LPP and UBASH3A loci in a UK autoimmune Addison's disease cohort. Eur J Endocrinol 2023; 188:lvac010. [PMID: 36651163 DOI: 10.1093/ejendo/lvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023]
Abstract
Autoimmune Addison's disease (AAD) arises from a complex interplay between multiple genetic susceptibility polymorphisms and environmental factors. The first genome wide association study (GWAS) with patients from Scandinavian Addison's registries has identified association signals at four novel loci in the genes LPP, SH2B3, SIGLEC5, and UBASH3A. To verify these novel risk loci, we performed a case-control association study in our independent cohort of 420 patients with AAD from the across the UK. We report significant association of alleles of the LPP and UBASH3A genes [odds ratio (95% confidence intervals), 1.46 (1.21-1.75)and 1.40 (1.16-1.68), respectively] with AAD in our UK cohort. In addition, we report nominal association of AAD with SH2B3 [OR 1.18 (1.02-1.35)]. We confirm that variants at the LPP and UBASH3A loci confer susceptibility to AAD in a UK population. Further studies with larger patient cohorts are required to robustly confirm the association of SH2B3 and SIGLEC5/SPACA6 alleles.
Collapse
Affiliation(s)
- Sophie Howarth
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Georgina Sneddon
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Kathleen R Allinson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Salman Razvi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Anna L Mitchell
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Simon H S Pearce
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| |
Collapse
|
9
|
Evaluation of Gluten Exclusion for the Improvement of Rheumatoid Arthritis in Adults. Nutrients 2022; 14:nu14245396. [PMID: 36558555 PMCID: PMC9783934 DOI: 10.3390/nu14245396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
There is currently a growing anti-gluten trend which, except for individuals with coeliac disease and non-coeliac gluten sensitivity (NCGS) for whom its intake is contraindicated, results in gluten (the main protein in wheat and other cereals) being considered harmful to health and excluded from diets, largely due to information distributed through social networks. However, in many cases the recommendation to exclude gluten from the diet goes beyond personal choice and is promoted by health professionals. This choice and/or recommendation is especially important to individuals with chronic inflammatory diseases such as rheumatoid arthritis (RA), for which this exclusion is justified to reduce the symptoms of the disease. The aim of this literature review is to assess whether there is scientific evidence to justify the elimination of gluten in patients with RA, neither coeliac nor with NCGS, to improve their symptoms and quality of life. The results of the search on gluten and RA carried out in the Embase database and the extraction of data from 16 articles included in the review are presented. No scientific evidence was found to recommend the exclusion of gluten in patients with RA.
Collapse
|
10
|
Seviiri M, Law MH, Ong JS, Gharahkhani P, Fontanillas P, Olsen CM, Whiteman DC, MacGregor S. A multi-phenotype analysis reveals 19 susceptibility loci for basal cell carcinoma and 15 for squamous cell carcinoma. Nat Commun 2022; 13:7650. [PMID: 36496446 PMCID: PMC9741635 DOI: 10.1038/s41467-022-35345-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Basal cell carcinoma and squamous cell carcinoma are the most common skin cancers, and have genetic overlap with melanoma, pigmentation traits, autoimmune diseases, and blood biochemistry biomarkers. In this multi-trait genetic analysis of over 300,000 participants from Europe, Australia and the United States, we reveal 78 risk loci for basal cell carcinoma (19 previously unknown and replicated) and 69 for squamous cell carcinoma (15 previously unknown and replicated). The previously unknown risk loci are implicated in cancer development and progression (e.g. CDKL1), pigmentation (e.g. TPCN2), cardiometabolic (e.g. FADS2), and immune-regulatory pathways for innate immunity (e.g. IFIH1), and HIV-1 viral load modulation (e.g. CCR5). We also report an optimised polygenic risk score for effective risk stratification for keratinocyte cancer in the Canadian Longitudinal Study of Aging (794 cases and 18139 controls), which could facilitate skin cancer surveillance e.g. in high risk subpopulations such as transplantees.
Collapse
Affiliation(s)
- Mathias Seviiri
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Center for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Matthew H Law
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jue-Sheng Ong
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Puya Gharahkhani
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | | | - Catherine M Olsen
- Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - David C Whiteman
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Stuart MacGregor
- Statistical Genetics Lab, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Frazzei G, van Vollenhoven RF, de Jong BA, Siegelaar SE, van Schaardenburg D. Preclinical Autoimmune Disease: a Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Front Immunol 2022; 13:899372. [PMID: 35844538 PMCID: PMC9281565 DOI: 10.3389/fimmu.2022.899372] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
The preclinical phase of autoimmune disorders is characterized by an initial asymptomatic phase of varying length followed by nonspecific signs and symptoms. A variety of autoimmune and inflammatory manifestations can be present and tend to increase in the last months to years before a clinical diagnosis can be made. The phenotype of an autoimmune disease depends on the involved organs, the underlying genetic susceptibility and pathophysiological processes. There are different as well as shared genetic or environmental risk factors and pathophysiological mechanisms between separate diseases. To shed more light on this, in this narrative review we compare the preclinical disease course of four important autoimmune diseases with distinct phenotypes: rheumatoid arthritis (RA), Systemic Lupus Erythematosus (SLE), multiple sclerosis (MS) and type 1 diabetes (T1D). In general, we observed some notable similarities such as a North-South gradient of decreasing prevalence, a female preponderance (except for T1D), major genetic risk factors at the HLA level, partly overlapping cytokine profiles and lifestyle risk factors such as obesity, smoking and stress. The latter risk factors are known to produce a state of chronic systemic low grade inflammation. A central characteristic of all four diseases is an on average lengthy prodromal phase with no or minor symptoms which can last many years, suggesting a gradually evolving interaction between the genetic profile and the environment. Part of the abnormalities may be present in unaffected family members, and autoimmune diseases can also cluster in families. In conclusion, a promising strategy for prevention of autoimmune diseases might be to address adverse life style factors by public health measures at the population level.
Collapse
Affiliation(s)
- Giulia Frazzei
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- *Correspondence: Giulia Frazzei,
| | - Ronald F. van Vollenhoven
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology Center, Amsterdam, Netherlands
| | - Brigit A. de Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Sarah E. Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Dirkjan van Schaardenburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Centre, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, Netherlands
| |
Collapse
|
12
|
Wojciechowicz K, Spodzieja M, Lisowska KA, Wardowska A. The role of the BTLA-HVEM complex in the pathogenesis of autoimmune diseases. Cell Immunol 2022; 376:104532. [DOI: 10.1016/j.cellimm.2022.104532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022]
|
13
|
Schaschl H, Göllner T, Morris DL. Positive selection acts on regulatory genetic variants in populations of European ancestry that affect ALDH2 gene expression. Sci Rep 2022; 12:4563. [PMID: 35296751 PMCID: PMC8927298 DOI: 10.1038/s41598-022-08588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
ALDH2 is a key enzyme in alcohol metabolism that protects cells from acetaldehyde toxicity. Using iHS, iSAFE and FST statistics, we identified regulatory acting variants affecting ALDH2 gene expression under positive selection in populations of European ancestry. Several SNPs (rs3184504, rs4766578, rs10774625, rs597808, rs653178, rs847892, rs2013002) that function as eQTLs for ALDH2 in various tissues showed evidence of strong positive selection. Very large pairwise FST values indicated high genetic differentiation at these loci between populations of European ancestry and populations of other global ancestries. Estimating the timing of positive selection on the beneficial alleles suggests that these variants were recently adapted approximately 3000-3700 years ago. The derived beneficial alleles are in complete linkage disequilibrium with the derived ALDH2 promoter variant rs886205, which is associated with higher transcriptional activity. The SNPs rs4766578 and rs847892 are located in binding sequences for the transcription factor HNF4A, which is an important regulatory element of ALDH2 gene expression. In contrast to the missense variant ALDH2 rs671 (ALDH2*2), which is common only in East Asian populations and is associated with greatly reduced enzyme activity and alcohol intolerance, the beneficial alleles of the regulatory variants identified in this study are associated with increased expression of ALDH2. This suggests adaptation of Europeans to higher alcohol consumption.
Collapse
Affiliation(s)
- Helmut Schaschl
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Tobias Göllner
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - David L Morris
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|
14
|
Ghozzi M, Melayah S, Adaily N, Ghedira I. Frequency of serological markers of rheumatoid arthritis in adult patients with active celiac disease. J Clin Lab Anal 2022; 36:e24249. [PMID: 35060192 DOI: 10.1002/jcla.24249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Celiac disease (CD) and rheumatoid arthritis (RA) are multisystem autoimmune diseases affecting 1% of general populationa. Both diseases share genetic and immunological features. AIM In this retrospective study, we aim to determine the frequency of auto-antibodies of RA in adult patients with CD. MATERIALS AND METHODS Seventy seven adult patients with active CD were included in the present study. Ninety healthy blood donors (HBD) served as control group. Anti-cyclic citrullinated peptides antibodies (CCP-Ab) and rheumatoid factors (RF; IgA, IgG and IgM) were determined by enzyme linked immunosorbent assay (ELISA) for patients and control group. For statistical analysis, we used Chi-square or Fisher's exact test. RESULTS Our study included 77 adult patients with active celiac disease (57 female, 20 male). Twenty-four (31.2%) active celiac patients and 7 (7.8%) blood donors had CCP-Ab or RF (31.2% vs 7.8%, p < 10-4). Only two patients (2.6%) had both CCP-Ab and RF. IgA was the predominant isotype of RF in celiac patients (n = 18; 23.4%) while none of healthy blood donors had RF-IgA (23.4% vs 0.0%, p < 10-4). CONCLUSION The current study has shown that CD is associated with a high frequency of RF-IgA suggesting that celiac patients could be at a higher risk of developing RA.
Collapse
Affiliation(s)
- Mariam Ghozzi
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia.,Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia.,Research Laboratory for "Epidemiology and Immunogenetics of Viral Infections" (LR14SP02), Sahloul University Hospital, University of Sousse, Sousse, Tunisia
| | - Sarra Melayah
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia.,Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
| | - Najeh Adaily
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Ibtissem Ghedira
- Laboratory of Immunology, Farhat Hached University Hospital, Sousse, Tunisia.,Faculty of Pharmacy, Department of Immunology, University of Monastir, Monastir, Tunisia
| |
Collapse
|
15
|
Effect of Anti-Inflammatory Diets on Pain in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13124221. [PMID: 34959772 PMCID: PMC8706441 DOI: 10.3390/nu13124221] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Various nutritional therapies have been proposed in rheumatoid arthritis, particularly diets rich in ω-3 fatty acids, which may lead to eicosanoid reduction. Our aim was to investigate the effect of potentially anti-inflammatory diets (Mediterranean, vegetarian, vegan, ketogenic) on pain. The primary outcome was pain on a 10 cm visual analogue scale. Secondary outcomes were C-reactive protein levels, erythrocyte sedimentation rate, health assessment questionnaire, disease activity score 28, tender/swollen joint counts, weight, and body mass index. We searched MEDLINE (OVID), Embase (Elsevier), and CINAHL for studies published from database inception to 12 November 2021. Two authors independently assessed studies for inclusion, extracted study data, and assessed the risk of bias. We performed a meta-analysis with all eligible randomized controlled trials using RevMan 5. We used mean differences or standardized mean differences and the inverse variance method of pooling using a random-effects model. The search retrieved 564 unique publications, of which we included 12 in the systematic review and 7 in the meta-analysis. All studies had a high risk of bias and the evidence was very low. The main conclusion is that anti-inflammatory diets resulted in significantly lower pain than ordinary diets (-9.22 mm; 95% CI -14.15 to -4.29; p = 0.0002; 7 RCTs, 326 participants).
Collapse
|
16
|
Shrestha R, Garrett-Thomson S, Liu W, Almo SC, Fiser A. Allosteric regulation of binding specificity of HVEM for CD160 and BTLA ligands upon G89F mutation. Curr Res Struct Biol 2021; 3:337-345. [PMID: 34917954 PMCID: PMC8666650 DOI: 10.1016/j.crstbi.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/08/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
Molecular interactions mediated by engagement of the Herpes virus entry mediator (HVEM) with members of TNF and Ig superfamily generate distinct signals in T cell activation pathways that modulate inflammatory and inhibitory responses. HVEM interacts with CD160 and B and T lymphocyte attenuator (BTLA), both members of the immunoglobulin (Ig) superfamily, which share a common binding site that is unique from that of LIGHT, a TNF ligand. BTLA or CD160 engagement with HVEM deliver inhibitory or stimulatory signals to the host immune response in a context dependent fashion, whereas HVEM engagement with LIGHT results in pro-inflammatory responses. We identified a mutation in human HVEM, G89F, which directly interferes with the human LIGHT interaction, but interestingly, also differentially modulates the binding of human BTLA and CD160 via an apparent allosteric mechanism involving recognition surfaces remote from the site of the mutation. Specifically, the G89F mutation enhances binding of CD160, while decreasing that of BTLA to HVEM in cell-based assays. Molecular dynamics simulations for wild-type and G89F mutant HVEM, bound to different sets of ligands, were performed to define the molecular basis of this unexpected allosteric effect. These results were leveraged to design additional human HVEM mutants with altered binding specificities.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Sarah Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, USA
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
17
|
García-Santisteban I, Romero-Garmendia I, Cilleros-Portet A, Bilbao JR, Fernandez-Jimenez N. Celiac disease susceptibility: The genome and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:1-45. [PMID: 33707051 DOI: 10.1016/bs.ircmb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Celiac Disease (CeD) is an immune-mediated complex disease that is triggered by the ingestion of gluten and develops in genetically susceptible individuals. It has been known for a long time that the Human Leucocyte Antigen (HLA) molecules DQ2 and DQ8 are necessary, although not sufficient, for the disease development, and therefore other susceptibility genes and (epi)genetic events must participate in CeD pathogenesis. The advances in Genomics during the last 15 years have made CeD one of the immune-related disorders with the best-characterized genetic component. In the present work, we will first review the main Genome-Wide Association Studies (GWAS) carried out in the disorder, and emphasize post-GWAS discoveries, including diverse integrative strategies, SNP prioritization approaches, and insights into the Microbiome through the host Genomics. Second, we will explore CeD-related Epigenetics and Epigenomics, mostly focusing on the emerging knowledge of the celiac methylome, and the vast but yet under-explored non-coding RNA (ncRNA) landscape. We conclude that much has been done in the field although there are still completely unvisited areas in the post-Genomics of CeD. Chromatin conformation and accessibility, and Epitranscriptomics are promising domains that need to be unveiled to complete the big picture of the celiac Genome.
Collapse
Affiliation(s)
- Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain; Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders, CIBERDEM, Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain.
| |
Collapse
|
18
|
Shrestha R, Garrett-Thomson SC, Liu W, Almo SC, Fiser A. Redesigning HVEM Interface for Selective Binding to LIGHT, BTLA, and CD160. Structure 2020; 28:1197-1205.e2. [PMID: 32795404 DOI: 10.1016/j.str.2020.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
Herpes virus entry mediator (HVEM) regulates positive and negative signals for T cell activation through co-signaling pathways. Dysfunction of the HVEM co-signaling network is associated with multiple pathologies related to autoimmunity, infectious disease, and cancer, making the associated molecules biologically and therapeutically attractive targets. HVEM interacts with three ligands from two different superfamilies using two different binding interfaces. The engagement with ligands CD160 and B- and T-lymphocyte attenuator (BTLA), members of immunoglobulin superfamily, is associated with inhibitory signals, whereas inflammatory responses are regulated through the interaction with LIGHT from the TNF superfamily. We computationally redesigned the HVEM recognition interfaces using a residue-specific pharmacophore approach, ProtLID, to achieve switchable-binding specificity. In subsequent cell-based binding assays the new interfaces, designed with only single or double mutations, exhibited selective binding to only one or two out of the three cognate ligands.
Collapse
Affiliation(s)
- Rojan Shrestha
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sarah C Garrett-Thomson
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Weifeng Liu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
19
|
Zwiers A, van Wanrooij RL, Dieckman T, Nijeboer P, Kraal G, Bouma G. Celiac disease associated SNP rs17810546 is located in a gene silencing region. Gene 2020; 726:144165. [DOI: 10.1016/j.gene.2019.144165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
|
20
|
Lnk/Sh2b3 Regulates Adipose Inflammation and Glucose Tolerance through Group 1 ILCs. Cell Rep 2019; 24:1830-1841. [PMID: 30110639 DOI: 10.1016/j.celrep.2018.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lnk/Sh2b3 is an adaptor protein that negatively regulates cytokine signaling in lymphohematopoiesis. A missense variant within the LNK/SH2B3 gene has been reported to be a risk variant for several autoimmune diseases, including diabetes. We found that glucose tolerance and insulin responses were impaired in Lnk-/- mice. Moreover, immune cells such as group 1 innate lymphoid cells (G1-ILCs), CD8+ T cells, and M1 macrophages accumulated in adipose tissue. When Lnk-/- mice were crossed with Il15-/- mice or depleted of G1-ILCs but not CD8+ T cells, glucose intolerance and adipose inflammation were ameliorated. Lnk-/- G1-ILCs showed activated phenotypes as well as enhanced reactivity for IL-15, and administration of a JAK inhibitor improved glucose tolerance. Accordingly, a high-fat diet greatly worsened glucose intolerance in Lnk-/- mice. Thus, Lnk/Sh2b3 controls homeostasis in adipose tissue and reduces the risk of onset of diabetes by regulating the expansion and activation of IL-15-dependent adipose G1-ILCs.
Collapse
|
21
|
Ghorban K, Ezzeddini R, Eslami M, Yousefi B, Sadighi Moghaddam B, Tahoori MT, Dadmanesh M, Salek Farrokhi A. PTPN22 1858 C/T polymorphism is associated with alteration of cytokine profiles as a potential pathogenic mechanism in rheumatoid arthritis. Immunol Lett 2019; 216:106-113. [PMID: 31669381 DOI: 10.1016/j.imlet.2019.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/12/2019] [Accepted: 10/20/2019] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is one of the most common prevalent autoimmune diseases. The 1858 C/T (rs2476601) single nucleotide polymorphism (SNP) within the PTPN22 gene has been associated with susceptibility to inflammatory based diseases in several populations. It is implicated that altered cytokine production has a potential pathogenic role in the development of RA. The aim of this work was to analyze the association of 1858 C/T PTPN22 polymorphism in RA patients with cytokine profiles. MATERIALS AND METHODS This study was performed on 120 RA patients who were referred to the Rheumatology Research Centre, Shariati Hospital (Tehran, Iran), and 120 healthy controls. Genomic DNA was extracted and genotyped for 1858 C/T PTPN22 gene SNP using the PCR-RFLP technique. Serum levels of IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ as well as Anti-CCP and RF was measured by ELISA method. RESULTS Results showed that 1858 C/T PTPN22 SNP significantly (P = 0.007, OR = 2.321, 95% CI = 1.063-5.067) associated with RA. The 1858 T allele frequency was also significantly increased in RA patients in comparison to the controls (P = 0.008, OR = 3.583, 95% CI = 1.3-9.878). Our data demonstrated a significant reduction of IL-4 and IL-10 in PTPN22 1858C/T compared to 1858C/C RA patients. In addition, upregulation of IL-6, IFN-γ, and TNF-α was observed in PTPN22 1858C/T vs. 1858C/C RA patients. DISCUSSION Our findings implicate altered cytokine profiles as a possible pathogenic mechanism by which the 1858 T allele may contribute to the progress of RA.
Collapse
Affiliation(s)
- Khodayar Ghorban
- Department of Immunology, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Rana Ezzeddini
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, School of Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Bizhan Sadighi Moghaddam
- Department of Immunology, School of Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammad-Taher Tahoori
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Dadmanesh
- Department of Infectious Diseases, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran
| | - Amir Salek Farrokhi
- Department of Immunology, School of Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
22
|
Acosta-Herrera M, González-Serna D, Martín J. The Potential Role of Genomic Medicine in the Therapeutic Management of Rheumatoid Arthritis. J Clin Med 2019; 8:jcm8060826. [PMID: 31185701 PMCID: PMC6617101 DOI: 10.3390/jcm8060826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 01/14/2023] Open
Abstract
During the last decade, important advances have occurred regarding understanding of the pathogenesis and treatment of rheumatoid arthritis (RA). Nevertheless, response to treatment is not universal, and choosing among different therapies is currently based on a trial and error approach. The specific patient’s genetic background influences the response to therapy for many drugs: In this sense, genomic studies on RA have produced promising insights that could help us find an effective therapy for each patient. On the other hand, despite the great knowledge generated regarding the genetics of RA, most of the investigations performed to date have focused on identifying common variants associated with RA, which cannot explain the complete heritability of the disease. In this regard, rare variants could also contribute to this missing heritability as well as act as biomarkers that help in choosing the right therapy. In the present article, different aspects of genetics in the pathogenesis and treatment of RA are reviewed, from large-scale genomic studies to specific rare variant analyses. We also discuss the shared genetic architecture existing among autoimmune diseases and its implications for RA therapy, such as drug repositioning.
Collapse
Affiliation(s)
- Marialbert Acosta-Herrera
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Av. del Conocimiento 17. Armilla, 18016 Granada, Spain.
| | - David González-Serna
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Av. del Conocimiento 17. Armilla, 18016 Granada, Spain.
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra, CSIC, Av. del Conocimiento 17. Armilla, 18016 Granada, Spain.
| |
Collapse
|
23
|
Castellanos-Rubio A, Ghosh S. Disease-Associated SNPs in Inflammation-Related lncRNAs. Front Immunol 2019; 10:420. [PMID: 30906297 PMCID: PMC6418042 DOI: 10.3389/fimmu.2019.00420] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Immune-mediated diseases, such as celiac disease, type 1 diabetes or multiple sclerosis, are a clinically heterogeneous group of diseases that share many key genetic triggers. Although the pathogenic mechanisms responsible for the development of immune mediated disorders is not totally understood, high-throughput genomic studies, such as GWAS and Immunochip, performed in the past few years have provided intriguing hints about underlying mechanisms and pathways that lead to disease. More than a hundred gene variants associated with disease susceptibility have been identified through such studies, but the progress toward understanding the underlying mechanisms has been slow. The majority of the identified risk variants are located in non-coding regions of the genome making it difficult to assign a molecular function to the SNPs. However, recent studies have revealed that many of the non-coding regions bearing disease-associated SNPs generate long non-coding RNAs (lncRNAs). LncRNAs have been implicated in several inflammatory diseases, and many of them have been shown to function as regulators of gene expression. Many of the disease associated SNPs located in lncRNAs modify their secondary structure, or influence expression levels, thereby affecting their regulatory function, hence contributing to the development of disease.
Collapse
Affiliation(s)
- Ainara Castellanos-Rubio
- Immunogenetics Research Laboratory, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Leioa, Spain.,Functional Studies in Celiac Disease Group, BioCruces Health Research Institute, Barakaldo, Spain
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, United States
| |
Collapse
|
24
|
Reiner AP, Johnson AD. Platelet Genomics. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Acosta-Herrera M, Kerick M, González-Serna D, Wijmenga C, Franke A, Gregersen PK, Padyukov L, Worthington J, Vyse TJ, Alarcón-Riquelme ME, Mayes MD, Martin J. Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases. Ann Rheum Dis 2018; 78:311-319. [PMID: 30573655 DOI: 10.1136/annrheumdis-2018-214127] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests the existence of a shared genetic component. In order to identify this genetic background in a systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, namely, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic inflammatory myopathies. METHODS We meta-analysed ~6.5 million single nucleotide polymorphisms in 11 678 cases and 19 704 non-affected controls of European descent populations. The functional roles of the associated variants were interrogated using publicly available databases. RESULTS Our analysis revealed five shared genome-wide significant independent loci that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, DGQK, LIMK1 and PRR12. All of these loci are related with immune processes such as interferon and epidermal growth factor signalling, response to methotrexate, cytoskeleton dynamics and coagulation cascade. Remarkably, several of the associated loci are known key players in autoimmunity, which supports the validity of our results. All the associated variants showed significant functional enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant immune cells, including shared expression quantitative trait loci. Additionally, our results were significantly enriched in drugs that are being tested for the treatment of the diseases under study. CONCLUSIONS We have identified shared new risk loci with functional value across diseases and pinpoint new potential candidate loci that could be further investigated. Our results highlight the potential of drug repositioning among related systemic seropositive rheumatic IMIDs.
Collapse
Affiliation(s)
| | - Martin Kerick
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS Granada, Granada, Spain
| | - David González-Serna
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS Granada, Granada, Spain
| | | | | | - Cisca Wijmenga
- Department of Genetics, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Peter K Gregersen
- Robert S Boas Center for Genomics and Human Genetics, Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Leonid Padyukov
- Rheumatology Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jane Worthington
- Manchester NIHR Biomedical Research Centre, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Timothy James Vyse
- Division of Genetics and Molecular Medicine, King's College London, London, UK.,Division of Immunology, Infection and Inflammatory Disease, King's College London, London, UK
| | - Marta Eugenia Alarcón-Riquelme
- Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Maureen D Mayes
- Department of Internal Medicine, Division of Rheumatology, The University of Texas Health Science Center-Houston, Houston, Texas, USA
| | - Javier Martin
- Institute of Parasitology and Biomedicine López-Neyra, IPBLN-CSIC, PTS Granada, Granada, Spain
| |
Collapse
|
26
|
Hashemi V, Farrokhi AS, Tanomand A, Babaloo Z, Hojjat-Farsangi M, Anvari E, Tahoori MT, Ezzeddini R, Hosseini A, Gharibi T, Ghalamfarsa G, Jadidi-Niaragh F. Polymorphism of Foxp3 gene affects the frequency of regulatory T cells and disease activity in patients with rheumatoid arthritis in Iranian population. Immunol Lett 2018; 204:16-22. [DOI: 10.1016/j.imlet.2018.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022]
|
27
|
Medrano LM, Pascual V, Bodas A, López-Palacios N, Salazar I, Espino-Paisán L, González-Pérez B, Urcelay E, Mendoza JL, Núñez C. Expression patterns common and unique to ulcerative colitis and celiac disease. Ann Hum Genet 2018; 83:86-94. [PMID: 30402962 DOI: 10.1111/ahg.12293] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Autoimmune diseases like celiac disease (CeD) and ulcerative colitis (UC) show a common genetic background defined by the existence of shared susceptibility loci. We aimed to go deeper into this common genetic background through performing a cross-disease study based on gene expression. We measured the expression of 21 genes located in 13 CeD-UC susceptibility regions, and 10 genes in five CeD risk regions. Determinations were carried out in colon/rectum samples from 13 UC patients (inflamed and uninflamed tissue) and four colon samples from controls. Duodenal samples from 19 CeD patients and 12 controls were used for comparisons. Differences were analyzed using the Bayesian method. The shared chromosomal regions containing TNFAIP3, PTPN2, ICOSLG, C1orf106, and IL21 showed similar results in both diseases. FASLG, PLEK, CCR4, and TAGAP, all located in CeD risk loci, were up-regulated in both CeD and UC patients. Finally, ZFP36L1, ZMIZ1, PUS10, UBE2L3, and BACH2 showed opposite results in CeD and UC. A high complexity underlies autoimmune common susceptibility loci, as the expression pattern of the studied genes does not always correlate with the one expected attending to the apparent genetic background. Differentially expressed genes such as ZFP36L1, ZMIZ1, PUS10, and BACH2 deserve further research in autoimmune diseases.
Collapse
Affiliation(s)
- Luz María Medrano
- Servicio de Inmunología Clínica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Virginia Pascual
- Servicio de Inmunología Clínica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Andrés Bodas
- Servicio de Pediatría, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Natalia López-Palacios
- Servicio de Aparato Digestivo, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Isabel Salazar
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Espino-Paisán
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Beatriz González-Pérez
- Departamento de Estadística e Investigación Operativa I, Facultad de Matemáticas, Universidad Complutense de Madrid, Madrid, Spain
| | - Elena Urcelay
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Juan Luis Mendoza
- Servicio de Aparato Digestivo, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Concepción Núñez
- Laboratorio de Investigación en Genética de Enfermedades Complejas, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| |
Collapse
|
28
|
Genetic variants upstream of TNFAIP3 in the 6q23 region are associated with liver disease severity in HIV/HCV-coinfected patients: A cross-sectional study. INFECTION GENETICS AND EVOLUTION 2018; 67:112-120. [PMID: 30336268 DOI: 10.1016/j.meegid.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND TNFAIP3 is a crucial hepatoprotective factor due to its anti-inflammatory, anti-apoptotic, anti-oxidant and pro-regenerative functions. The aim of this study was to analyze the associations between genetic variants upstream of TNFAIP3 (rs675520, rs9376293 and rs6920220) and liver fibrosis severity and inflammation in HIV/HCV-coinfected patients. METHODS A cross-sectional study was carried out in 215 HIV/HCV-coinfected patients, who underwent a liver biopsy. TNFAIP3 polymorphisms were genotyped using GoldenGate® assay. Outcome variables were: a) liver fibrosis (Metavir score) [fibrosis stage (F0, F1, F2, F3 and F4) and advanced fibrosis and cirrhosis (F ≥ 3 and F4, respectively)]; b) non-invasive indexes [FIB-4, APRI, and their cut-offs (FIB-4 ≥ 3.25 and APRI≥1.5)]; c) inflammation-related biomarkers (leptin, HGF, NGF, sFasL, sFas, MIF, HA, Ang-2, TIMP1, MMP1 and MMP2). RESULTS Patients with rs675520 AG/GG genotypes had decreased odds of having cirrhosis (F4) and advanced fibrosis (FIB-4 ≥ 3.25 and APRI≥1.5) [adjusted Odd Ratio (aOR) = 0.30 (p = 0.025), aOR = 0.20 (p = 0.014), and aOR = 0.34 (p = 0.017), respectively] and lower levels of FIB-4 and APRI [adjusted arithmetic mean ratio (aAMR) = 0.76 (p = 0.003) and aAMR = 0.72 (p = 0.006), respectively]. Patients with rs9376293 CT/CC genotypes had decreased odds of APRI≥1.5 [aOR = 0.39 (p = 0.030)] and lower levels of APRI [aAMR = 0.77 (p = 0.018)]. Patients with rs6920220 AG/AA genotypes had higher odds of having FIB-4 ≥ 3.25 [aOR = 3.72 (p = 0.043)]. Moreover, rs675520 AG/GG genotypes, compared to AA genotype, were associated with lower levels of leptin and NGF (p = 0.002 and p = 0.001, respectively) and higher levels of sFas, MIF, TIMP1 and MMP2 (p = 0.004, p = 0.007, p = 0.020 and p = 0.036, respectively). Also, rs9376293 CT/CC genotypes were related to lower leptin levels (p = 0.026) and higher sFas, MIF, TIMP1 and MMP2 levels (p = 0.029, p = 0.040, p = 0.022 and p = 0.024, respectively). CONCLUSIONS Genetic variants upstream of TNFAIP3 were associated with the liver fibrosis severity and inflammation in HIV/HCV-coinfected patients.
Collapse
|
29
|
Genetic Polymorphisms Associated with the Neutrophil⁻Lymphocyte Ratio and Their Clinical Implications for Metabolic Risk Factors. J Clin Med 2018; 7:jcm7080204. [PMID: 30096757 PMCID: PMC6111840 DOI: 10.3390/jcm7080204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/04/2018] [Accepted: 08/06/2018] [Indexed: 11/26/2022] Open
Abstract
Background: The neutrophil–lymphocyte ratio (NLR) is a valuable prognostic or predictive biomarker in various diseases, but the genetic factors that underlie the NLR have not been studied. We attempted to investigate polymorphisms related to NLR phenotype and analyze their ability to predict metabolic risks. Methods: A genome-wide association study was performed with log-transformed NLR using an Affymetrix Axiom™ KORV1.1-96 Array. Regression models for metabolic risk status were designed using the identified significant single-nucleotide polymorphisms (SNPs). Results: We identified four SNPs near the TMEM116, NAA25, and PTPN11 genes that were associated with the NLR. The top SNP associated with the log-transformed NLR was rs76181728 in TMEM116. A case–control study was performed to analyze the metabolic risks associated with each SNP after adjusting for age, sex, and body mass index (BMI). Three SNPs displayed significant odds ratios (ORs) for increased blood pressure and increased waist circumference. In the regression model for metabolic syndrome, rs76181728 showed a significant association (OR = 1.465, 95% confidence interval (CI) = 1.091–1.969, P = 0.011) after adjustment for the NLR phenotype. Conclusions: We identified four novel SNPs that are associated with the NLR in healthy Koreans. SNPs in relevant genes might therefore serve as biomarkers for metabolic risks.
Collapse
|
30
|
Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets 2018; 22:659-674. [PMID: 29985086 DOI: 10.1080/14728222.2018.1498082] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION It has been known for over half a century that tumors exhibit an increased demand for nutrients to fuel their rapid proliferation. Interest in targeting cancer metabolism to treat the disease has been renewed in recent years with the discovery that many cancer-related pathways have a profound effect on metabolism. Considering the recent increase in our understanding of cancer metabolism and the enzymes and pathways involved, the question arises as to whether metabolism is cancer's Achilles heel. Areas covered: This review summarizes the role of 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in glycolysis, cell proliferation, and tumor growth, discussing PFKFB3 gene and isoenzyme regulation and the changes that occur in cancer and inflammatory diseases. Pharmacological options currently available for selective PFKFB3 inhibition are also reviewed. Expert opinion: PFKFB3 plays an important role in sustaining the development and progression of cancer and might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials are needed to follow up on the promising results from preclinical studies with PFKFB3 inhibitors. Combination therapies with PFKFB3 inhibitors, chemotherapeutic drugs, or radiotherapy might improve the efficacy of cancer treatments targeting PFKFB3.
Collapse
Affiliation(s)
- Ramon Bartrons
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Ana Rodríguez-García
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Helga Simon-Molas
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Esther Castaño
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Anna Manzano
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Àurea Navarro-Sabaté
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| |
Collapse
|
31
|
Härtner F, Andrade-Navarro MA, Alanis-Lobato G. Geometric characterisation of disease modules. APPLIED NETWORK SCIENCE 2018; 3:10. [PMID: 30839777 PMCID: PMC6214295 DOI: 10.1007/s41109-018-0066-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/28/2018] [Indexed: 05/07/2023]
Abstract
There is an increasing accumulation of evidence supporting the existence of a hyperbolic geometry underlying the network representation of complex systems. In particular, it has been shown that the latent geometry of the human protein network (hPIN) captures biologically relevant information, leading to a meaningful visual representation of protein-protein interactions and translating challenging systems biology problems into measuring distances between proteins. Moreover, proteins can efficiently communicate with each other, without global knowledge of the hPIN structure, via a greedy routing (GR) process in which hyperbolic distances guide biological signals from source to target proteins. It is thanks to this effective information routing throughout the hPIN that the cell operates, communicates with other cells and reacts to environmental changes. As a result, the malfunction of one or a few members of this intricate system can disturb its dynamics and derive in disease phenotypes. In fact, it is known that the proteins associated with a single disease agglomerate non-randomly in the same region of the hPIN, forming one or several connected components known as the disease module (DM). Here, we present a geometric characterisation of DMs. First, we found that DM positions on the two-dimensional hyperbolic plane reflect their fragmentation and functional heterogeneity, rendering an informative picture of the cellular processes that the disease is affecting. Second, we used a distance-based dissimilarity measure to cluster DMs with shared clinical features. Finally, we took advantage of the GR strategy to study how defective proteins affect the transduction of signals throughout the hPIN.
Collapse
Affiliation(s)
- Franziska Härtner
- Faculty for Physics, Mathematics and Computer Science, Johannes Gutenberg Universität, Institute of Computer Science, Staudingerweg 7, Mainz, 55128 Germany
| | - Miguel A. Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg Universität, Institute of Molecular Biology, Ackermannweg 4, Mainz, 55128 Germany
| | - Gregorio Alanis-Lobato
- Faculty of Biology, Johannes Gutenberg Universität, Institute of Molecular Biology, Ackermannweg 4, Mainz, 55128 Germany
| |
Collapse
|
32
|
Huang H, Huang SC, Hua DJ, Sun QQ, Cen H, Xin XF. Interaction analysis between BLK rs13277113 polymorphism and BANK1 rs3733197 polymorphism, MMEL1/TNFRSF14 rs3890745 polymorphism in determining susceptibility to rheumatoid arthritis. Autoimmunity 2017; 50:403-408. [PMID: 28925718 DOI: 10.1080/08916934.2017.1377191] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two pairwise genetic interactions (B cell lymphocyte kinase (BLK) rs13277113,B cell scaffold protein with ankyrin repeats 1 (BANK1) rs3733197and BLK rs13277113 membrane metalloendopeptidase like 1 (MMEL1)/ tumor necrosis factor receptor superfamily member 14 (TNFRSF14) rs3890745) have been demonstrated in determining susceptibility to rheumatoid arthritis (RA) without replication, thus this study was performed to examine whether abovementioned genetic polymorphisms were associated with RA and further tests were performed to see whether aforementioned genetic interactions existed in RA among Chinese population. A total of 328 patients with RA and 449 healthy control subjects were included in the current study. The polymorphisms were genotyped using the ligase detection reaction-polymerase chain reaction (LDR-PCR) technology. The association of RA with each polymorphism was analyzed by multivariate logistic regression model. Interaction analysis was done by multiple methods. Significant difference in genotype distribution of BLK rs13277113 polymorphism between RA patients and healthy controls was found (p = 1.01 × 10-2). The major allele A of BLK rs13277113 polymorphism was significantly increased in RA patients compared with controls (OR = 1.36, 95% CI = 1.08-1.71, p = 9.27 × 10-3). Significant association of RA with the major allele A of BLK rs13277113 polymorphism under dominant model was also detected (OR = 2.74, 95% CI = 1.42-5.29, p = 2.73 × 10-3). However, we did not find significant association between neither BANK1 rs3733197 polymorphism nor MMEL1/TNFRSF14 rs3890745 polymorphism and RA. Non-significant evidence was found for neither additive nor multiplicative interaction for these two pairwise genetic polymorphisms (BLK rs13277113-BANK1 rs3733197; BLK rs13277113-MMEL1/TNFRSF14 rs3890745). Significant association of RA with G allele of BANK1 rs3733197 polymorphism was only found among individuals carrying A/A genotype of the BLK rs13277113 polymorphism (OR = 1.49, 95% CI = 1.01-2.18, p = .04). In summary, our results indicated that the BLK rs13277113 polymorphism was involved in the genetic background of RA in Chinese population and the association of BANK1 rs3733197 polymorphism with RA was dependent on the genotype of BLK rs13277113 polymorphism, highlighting B-cell response implicated in the pathogenesis of RA.
Collapse
Affiliation(s)
- Hua Huang
- a Department of Rheumatology , Ningbo First Hospital, Ningbo Hospital of Zhejiang University , Ningbo , Zhejiang , PR China
| | - Si-Chao Huang
- b Department of Preventive Medicine , Medical School of Ningbo University , Ningbo , Zhejiang , PR China.,c Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine , Ningbo University , Ningbo , Zhejiang , PR China
| | - Dong-Jin Hua
- b Department of Preventive Medicine , Medical School of Ningbo University , Ningbo , Zhejiang , PR China.,c Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine , Ningbo University , Ningbo , Zhejiang , PR China
| | - Qing-Qing Sun
- b Department of Preventive Medicine , Medical School of Ningbo University , Ningbo , Zhejiang , PR China.,c Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine , Ningbo University , Ningbo , Zhejiang , PR China
| | - Han Cen
- b Department of Preventive Medicine , Medical School of Ningbo University , Ningbo , Zhejiang , PR China.,c Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine , Ningbo University , Ningbo , Zhejiang , PR China
| | - Xia-Fei Xin
- a Department of Rheumatology , Ningbo First Hospital, Ningbo Hospital of Zhejiang University , Ningbo , Zhejiang , PR China
| |
Collapse
|
33
|
Ward-Kavanagh LK, Lin WW, Šedý JR, Ware CF. The TNF Receptor Superfamily in Co-stimulating and Co-inhibitory Responses. Immunity 2017; 44:1005-19. [PMID: 27192566 DOI: 10.1016/j.immuni.2016.04.019] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Indexed: 02/08/2023]
Abstract
Cytokines related to tumor necrosis factor (TNF) provide a communication network essential for coordinating multiple cell types into an effective host defense system against pathogens and malignant cells. The pathways controlled by the TNF superfamily differentiate both innate and adaptive immune cells and modulate stromal cells into microenvironments conducive to host defenses. Members of the TNF receptor superfamily activate diverse cellular functions from the production of type 1 interferons to the modulation of survival of antigen-activated T cells. Here, we focus attention on the subset of TNF superfamily receptors encoded in the immune response locus in chromosomal region 1p36. Recent studies have revealed that these receptors use diverse mechanisms to either co-stimulate or restrict immune responses. Translation of the fundamental mechanisms of TNF superfamily is leading to the design of therapeutics that can alter pathogenic processes in several autoimmune diseases or promote immunity to tumors.
Collapse
Affiliation(s)
- Lindsay K Ward-Kavanagh
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wai Wai Lin
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - John R Šedý
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carl F Ware
- Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Christiansen MK, Larsen SB, Nyegaard M, Neergaard-Petersen S, Würtz M, Grove EL, Hvas AM, Jensen HK, Kristensen SD. The SH2B3 and KCNK5 loci may be implicated in regulation of platelet count, volume, and maturity. Thromb Res 2017; 158:86-92. [PMID: 28865245 DOI: 10.1016/j.thromres.2017.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 08/17/2017] [Indexed: 01/11/2023]
Abstract
INTRODUCTION In recent genome-wide association studies, coronary artery disease (CAD) and myocardial infarction (MI) have been linked to a number of genetic variants, but their role in thrombopoiesis is largely unknown. AIM We investigated the association between CAD and MI-associated genetic variants and five thrombopoiesis-related indices: platelet count (PC), mean platelet volume (MPV), immature platelet count (IPC), immature platelet fraction (IPF), and serum thrombopoietin (TPO). METHODS We genotyped 45 genome-wide significant CAD/MI-markers in 879 stable CAD patients. A genetic risk score was calculated to assess the combined risk associated with all the genetic variants. Platelet indices were analysed using the Sysmex XE-2100 haematology analyser. TPO was measured by ELISA. RESULTS Two variants were nominally associated with several indices; for rs10947789 (KCNK5), the adjusted geometric mean was 2% higher for MPV (95% confidence interval: 1-2%, p=0.002), 6% for IPC (0-12%, p=0.033), and 9% for IPF (3-16%, p=0.004) per CAD risk allele. Moreover, an 11% lower TPO (3-19%, p=0.010) was observed. Rs3184504 (SH2B3) was associated with a higher adjusted geometric mean of 3% (1-6%, p=0.003) per CAD risk allele for PC, and an 11% (5-17%, p<0.001) lower TPO. Furthermore, the adjusted IPC was 5% (0-9%, p=0.037) lower per CAD risk allele for PC, whereas IPF levels did not vary across genotypes. CONCLUSION As a novel finding, our study suggests a role for KCNK5 in the regulation of platelet size and maturity. Furthermore, our findings confirm an association between the SH2B3-locus and platelet count.
Collapse
Affiliation(s)
- Morten K Christiansen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sanne B Larsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Morten Würtz
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Erik L Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne-Mette Hvas
- Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik K Jensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steen D Kristensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark; Faculty of Health, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Skrabl-Baumgartner A, Christine Hauer A, Erwa W, Jahnel J. HLA genotyping as first-line screening tool for coeliac disease in children with juvenile idiopathic arthritis. Arch Dis Child 2017; 102:607-611. [PMID: 28232458 DOI: 10.1136/archdischild-2016-311544] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Coeliac disease (CD) and juvenile idiopathic arthritis (JIA) often coexist. This association warrants assessment for CD in patients with JIA. We evaluated the clinical relevance and cost-effectiveness of human leucocyte antigen (HLA) genotyping in first-line screening for development of CD in children with JIA. PATIENTS AND INTERVENTIONS 95 patients with JIA were screened for CD using CD-specific antibodies. In case of positivity, a small intestinal biopsy was performed to confirm diagnosis. In addition, HLA genotyping was performed. 110 age-matched and sex-matched Caucasian children from the same geographical area served as controls. RESULTS CD was diagnosed in 4 of 95 patients with JIA (4.2%), a rate significantly higher compared with controls (p<0.02) and 14 times higher than in the general population. Twenty-six patients (27.4%) had one of the variants of the risk genotypes. All four patients diagnosed with CD had a HLA-DQ2.5 genotype: one was homozygote, the remainder heterozygote. Twenty-two patients are, judging by their HLA genotypes, at risk of developing CD and require repeated serological screening. None of the 69 patients without HLA-DQ2/DQ8 genotypes had CD-specific antibodies. Screening with HLA genotyping becomes cheaper than screening without after the second determination. CONCLUSIONS In our cohort of patients with JIA, lack of HLA-DQ2/DQ8 genotypes identified a majority not at risk of CD in whom repeated serological testing is unnecessary. Genotyping is nowadays the most efficient and cost-effective way to screen for CD risk in JIA.
Collapse
Affiliation(s)
| | | | - Wolfgang Erwa
- Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Jörg Jahnel
- Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| |
Collapse
|
36
|
Huang SQ, Zhang N, Zhou ZX, Huang CC, Zeng CL, Xiao D, Guo CC, Han YJ, Ye XH, Ye XG, Ou ML, Zhang BH, Liu Y, Zeng EY, Yang G, Jing CX. Association of LPP and TAGAP Polymorphisms with Celiac Disease Risk: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020171. [PMID: 28208589 PMCID: PMC5334725 DOI: 10.3390/ijerph14020171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Abstract
Background: Lipoma preferred partner (LPP) and T-cell activation Rho GTPase activating protein (TAGAP) polymorphisms might influence the susceptibility to celiac disease. Therefore, we performed a meta-analysis by identifying relevant studies to estimate the risks of these polymorphisms on celiac disease. Methods: The PubMed, Web of Science and Embase databases were searched (up to October 2016) for LPP rs1464510 and TAGAP rs1738074 polymorphisms. Results: This meta-analysis included the same 7 studies for LPP rs1464510 and TAGAP rs1738074. The minor risk A allele at both rs1464510 and rs1738074 carried risks (odds ratios) of 1.26 (95% CI: 1.22-1.30) and 1.17 (95% CI: 1.14-1.21), respectively, which contributed to increased risks in all celiac disease patients by 10.72% and 6.59%, respectively. The estimated lambdas were 0.512 and 0.496, respectively, suggesting that a co-dominant model would be suitable for both gene effects. Conclusions: This meta-analysis provides robust estimates that polymorphisms in LPP and TAGAP genes are potential risk factors for celiac disease in European and American. Prospective studies and more genome-wide association studies (GWAS) are needed to confirm these findings, and some corresponding molecular biology experiments should be carried out to clarify the pathogenic mechanisms of celiac disease.
Collapse
Affiliation(s)
- Shi-Qi Huang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Na Zhang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
- Department of Preventive Medicine, Zunyi Medical College, Zhuhai Campus, Zhuhai 519041, Guangdong, China.
| | - Zi-Xing Zhou
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Chui-Can Huang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Cheng-Li Zeng
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Di Xiao
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Cong-Cong Guo
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Ya-Jing Han
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Xiao-Hong Ye
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Xing-Guang Ye
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Mei-Ling Ou
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Bao-Huan Zhang
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Yang Liu
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Guang Yang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
- Department of Parasitology, School of Basic Medical Sciences, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Chun-Xia Jing
- Department of Epidemiology, School of Basic Medical Sciences, Jinan University, No.601 Huangpu Road West, Guangzhou 510632, Guangdong, China.
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
37
|
Wang MJ, Yang HY, Zhang H, Zhou X, Liu RP, Mi YY. TNFAIP3 gene rs10499194, rs13207033 polymorphisms decrease the risk of rheumatoid arthritis. Oncotarget 2016; 7:82933-82942. [PMID: 27779104 PMCID: PMC5347742 DOI: 10.18632/oncotarget.12638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidences suggested that tumor necrosis factor alpha inducible protein 3 (TNFAIP3) gene rs10499194, rs13207033 polymorphisms may be associated with the risk of rheumatoid arthritis (RA). However, these studies yielded contradictory findings. To clarify convincing associations, we conducted a comprehensive meta-analysis by searching in PubMed, Embase, and the China Knowledge Resource Integrated Database. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated by using fixed-effect or random-effect models. A total of 13 case-control studies for rs10499194 polymorphism and 6 studies for rs13207033 polymorphism were included. Our data indicated that TNFAIP3 gene rs10499194, rs13207033 polymorphisms were associated with the decreased risk of RA. Stratification analyses of ethnicity indicated rs10499194, rs13207033 polymorphisms decreased the risk of RA among Caucasian populations, but not among Asian populations. In conclusion, this meta-analysis indicates that TNFAIP3 gene rs10499194, rs13207033 polymorphisms decrease the risk of RA, especially among Caucasian populations.
Collapse
Affiliation(s)
- Ming-Jie Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, China
| | - Hao-Yu Yang
- Department of Orthopedics, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, China
| | - Hui Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, China
| | - Xindie Zhou
- Department of Orthopedics, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, China
| | - Rui-Ping Liu
- Department of Orthopedics, Affiliated Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou, China
| | - Yuan-Yuan Mi
- Department of Urology, The Third Affiliated Hospital of Nantong University, Wuxi, PR China
| |
Collapse
|
38
|
Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23. Genome Biol 2016; 17:212. [PMID: 27799070 PMCID: PMC5088679 DOI: 10.1186/s13059-016-1078-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/05/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The identification of causal genes from genome-wide association studies (GWAS) is the next important step for the translation of genetic findings into biologically meaningful mechanisms of disease and potential therapeutic targets. Using novel chromatin interaction detection techniques and allele specific assays in T and B cell lines, we provide compelling evidence that redefines causal genes at the 6q23 locus, one of the most important loci that confers autoimmunity risk. RESULTS Although the function of disease-associated non-coding single nucleotide polymorphisms (SNPs) at 6q23 is unknown, the association is generally assigned to TNFAIP3, the closest gene. However, the DNA fragment containing the associated SNPs interacts through chromatin looping not only with TNFAIP3, but also with IL20RA, located 680 kb upstream. The risk allele of the most likely causal SNP, rs6927172, is correlated with both a higher frequency of interactions and increased expression of IL20RA, along with a stronger binding of both the NFκB transcription factor and chromatin marks characteristic of active enhancers in T-cells. CONCLUSIONS Our results highlight the importance of gene assignment for translating GWAS findings into biologically meaningful mechanisms of disease and potential therapeutic targets; indeed, monoclonal antibody therapy targeting IL-20 is effective in the treatment of rheumatoid arthritis and psoriasis, both with strong GWAS associations to this region.
Collapse
|
39
|
Chang HH, Liu GY, Dwivedi N, Sun B, Okamoto Y, Kinslow JD, Deane KD, Demoruelle MK, Norris JM, Thompson PR, Sparks JA, Rao DA, Karlson EW, Hung HC, Holers VM, Ho IC. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight 2016; 1:e90045. [PMID: 27777982 DOI: 10.1172/jci.insight.90045] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A unique feature of rheumatoid arthritis (RA) is the presence of anti-citrullinated protein antibodies (ACPA). Several risk factors for RA are known to increase the expression or activity of peptidyl arginine deiminases (PADs), which catalyze citrullination and, when dysregulated, can result in hypercitrullination. However, the consequence of hypercitrullination is unknown and the function of each PAD has yet to be defined. Th cells of RA patients are hypoglycolytic and hyperproliferative due to impaired expression of PFKFB3 and ATM, respectively. Here, we report that these features are also observed in peripheral blood mononuclear cells (PBMCs) from healthy at-risk individuals (ARIs). PBMCs of ARIs are also hypercitrullinated and produce more IL-2 and Th17 cytokines but fewer Th2 cytokines. These abnormal features are due to impaired induction of PTPN22, a phosphatase that also suppresses citrullination independently of its phosphatase activity. Attenuated phosphatase activity of PTPN22 results in aberrant expression of IL-2, ATM, and PFKFB3, whereas diminished nonphosphatase activity of PTPN22 leads to hypercitrullination mediated by PADs. PAD2- or PAD4-mediated hypercitrullination reduces the expression of Th2 cytokines. By contrast, only PAD2-mediated hypercitrullination can increase the expression of Th17 cytokines. Taken together, our data depict a molecular signature of preclinical RA that is triggered by impaired induction of PTPN22.
Collapse
Affiliation(s)
- Hui-Hsin Chang
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Guang-Yaw Liu
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Nishant Dwivedi
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Bo Sun
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Yuko Okamoto
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jennifer D Kinslow
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kevin D Deane
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - M Kristen Demoruelle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jeffrey A Sparks
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Deepak A Rao
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth W Karlson
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Hui-Chih Hung
- Department of Life Sciences and.,Agricultural Biotechnology Center and Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - I-Cheng Ho
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Chahal HS, Wu W, Ransohoff KJ, Yang L, Hedlin H, Desai M, Lin Y, Dai HJ, Qureshi AA, Li WQ, Kraft P, Hinds DA, Tang JY, Han J, Sarin KY. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma. Nat Commun 2016; 7:12510. [PMID: 27539887 PMCID: PMC4992160 DOI: 10.1038/ncomms12510] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022] Open
Abstract
Basal cell carcinoma (BCC) is the most common cancer worldwide with an annual incidence of 2.8 million cases in the United States alone. Previous studies have demonstrated an association between 21 distinct genetic loci and BCC risk. Here, we report the results of a two-stage genome-wide association study of BCC, totalling 17,187 cases and 287,054 controls. We confirm 17 previously reported loci and identify 14 new susceptibility loci reaching genome-wide significance (P<5 × 10(-8), logistic regression). These newly associated SNPs lie within predicted keratinocyte regulatory elements and in expression quantitative trait loci; furthermore, we identify candidate genes and non-coding RNAs involved in telomere maintenance, immune regulation and tumour progression, providing deeper insight into the pathogenesis of BCC.
Collapse
Affiliation(s)
- Harvind S. Chahal
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Wenting Wu
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| | - Katherine J. Ransohoff
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Lingyao Yang
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Haley Hedlin
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Manisha Desai
- Department of Medicine (Quantitative Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yuan Lin
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| | - Hong-Ji Dai
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, National Clinical Research Center for Cancer, Tianjin & Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Abrar A. Qureshi
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02903, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, USA
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island 02903, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | | | - Jean Y. Tang
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jiali Han
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Hospital and Institute, National Clinical Research Center for Cancer, Tianjin & Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Kavita Y. Sarin
- Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
41
|
Yang G, Zhang B, Huang W, Zhang N, Dong F, Jing L, Wang M, Liu Y, Guo C, Pan H, Wei X, Jing C. Systematic review and meta-analysis of the association between IL18RAP rs917997 and CCR3 rs6441961 polymorphisms with celiac disease risks. Expert Rev Gastroenterol Hepatol 2016; 9:1327-38. [PMID: 26289103 DOI: 10.1586/17474124.2015.1075880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We performed a systematic review and meta-analysis to estimate the polymorphism effects of IL18RAP and CCR3 on celiac disease susceptibility. METHODS PubMed and Web of Science databases were searched (to June 2015) on IL18RAP rs917997 and CCR3 rs6441961 polymorphisms. RESULTS The meta-analysis included 16 and 7 studies for rs917997 and rs6441961, respectively. The minor risk A allele at both rs917997 and rs6441961 carried risks (odds ratios) of 1.24 (95% CI 1.18-1.31) and 1.21 (95% CI 1.12-1.31), respectively. These alleles contributed to increase risks in all celiac disease patients by 5.04 and 6.35%. The estimated lambdas were 0.73 and 0.51, suggesting that an additive model would be the best choice for both gene effects. CONCLUSIONS This meta-analysis provides robust estimates that IL18RAP rs917997 and CCR3 rs6441961 are potential risk factors for celiac disease in European populations. Studies are needed to confirm these findings in different ethnicities.
Collapse
Affiliation(s)
- Guang Yang
- a 1 Department of Parasitology, School of Medicine, Jinan University, Guangzhou, China
| | - Baohuan Zhang
- a 1 Department of Parasitology, School of Medicine, Jinan University, Guangzhou, China
| | - Weihuang Huang
- b 2 Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Na Zhang
- b 2 Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Fang Dong
- b 2 Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Lipeng Jing
- b 2 Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Man Wang
- b 2 Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yang Liu
- b 2 Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Congcong Guo
- b 2 Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| | - Hongwei Pan
- c 3 Department of Ophthalmology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiangcai Wei
- d 4 Family Planning Research Institute of Guangdong, Guangzhou, China
| | - Chunxia Jing
- b 2 Department of Epidemiology, School of Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
42
|
Abbasi Z, Kazemi Nezhad SR, Pourmahdi-Broojeni M, Rajaei E. Association of PTPN22 rs2476601 Polymorphism with Rheumatoid Arthritis and Celiac Disease in Khuzestan Province, Southwestern Iran. IRANIAN BIOMEDICAL JOURNAL 2016; 21:61-6. [PMID: 27215233 PMCID: PMC5141256 DOI: 10.6091/.21.1.61] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Single-nucleotide polymorphism (SNP) rs2476601 within protein tyrosine phosphatase non-receptor type 22 gene (PTPN22) has been shown to be a risk factor for different autoimmune diseases. This study explored the association of 1858 C/T SNP with rheumatoid arthritis (RA) and celiac disease (CD) in a region covering south-west of Iran. Methods: Totally, 52 patients with CD, 120 patients with RA, and 120 healthy subjects were selected. The samples were genotyped for the rs2476601 in PTPN22 gene using the tetra-amplification refractory mutation system polymerase chain reaction. Results: The frequency of +1858T risk allele was significantly increased in both RA (P=0.021, OR=2.56, 95%CI=1.19-5.47) and CD (P=0.002, OR=3.87, 95%CI=1.68-8.95) patients, as compared to the control group. However, no association was found between the +1858C/T PTPN22 gene SNP and the anti-cyclic citrullinated peptide and rheumatoid factor positivity in RA patients. Conclusions: PTPN22 gene could play a crucial role in people’s susceptibility to certain autoimmune diseases.
Collapse
Affiliation(s)
- Zahra Abbasi
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Mahdi Pourmahdi-Broojeni
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Iran
| | - Elham Rajaei
- Department of Internal Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
43
|
Meta-Analysis on Associations of RGS1 and IL12A Polymorphisms with Celiac Disease Risk. Int J Mol Sci 2016; 17:457. [PMID: 27043536 PMCID: PMC4848913 DOI: 10.3390/ijms17040457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
The pathogenesis of celiac disease (CD) has been related to polymorphisms in the regulator of G-protein signaling 1 (RGS1) and interleukin-12 A (IL12A) genes, but the existing findings are inconsistent. Our aim is to investigate the associations of two single-nucleotide polymorphisms (SNPs) (rs2816316 in RGS1 and rs17810546 in IL12A) with CD risk using meta-analysis. We searched PubMed and Web of Science on RGS1 rs2816316 and IL12A rs17810546 with CD risk. Odds ratio (OR) and 95% confidence interval (CI) of each SNP were estimated. All statistical analyses were performed on Stata 12.0. A total of seven studies were retrieved and analyzed. The available data indicated the minor allele C of rs2816316 was negatively associated with CD (C vs. A: OR = 0.77, 95% CI = 0.74-0.80), and a positive association was found for the minor allele G of rs17810546 (G vs. A: OR = 1.37, 95% CI = 1.31-1.43). The co-dominant model of genotype effect confirmed the significant associations between RGS1 rs2816316/IL12A rs17810546 and CD. No evidence of publication bias was observed. Our meta-analysis supports the associations of RGS1 and IL12A with CD and strongly calls for further studies to better understand the roles of RGS1 and IL12A in the pathogenesis of CD.
Collapse
|
44
|
Sharma A, Liu X, Hadley D, Hagopian W, Liu E, Chen WM, Onengut-Gumuscu S, Simell V, Rewers M, Ziegler AG, Lernmark Å, Simell O, Toppari J, Krischer JP, Akolkar B, Rich SS, Agardh D, She JX. Identification of Non-HLA Genes Associated with Celiac Disease and Country-Specific Differences in a Large, International Pediatric Cohort. PLoS One 2016; 11:e0152476. [PMID: 27015091 PMCID: PMC4807782 DOI: 10.1371/journal.pone.0152476] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/15/2016] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES There are significant geographical differences in the prevalence and incidence of celiac disease that cannot be explained by HLA alone. More than 40 loci outside of the HLA region have been associated with celiac disease. We investigated the roles of these non-HLA genes in the development of tissue transglutaminase autoantibodies (tTGA) and celiac disease in a large international prospective cohort study. METHODS A total of 424,788 newborns from the US and European general populations and first-degree relatives with type 1 diabetes were screened for specific HLA genotypes. Of these, 21,589 carried 1 of the 9 HLA genotypes associated with increased risk for type 1 diabetes and celiac disease; we followed 8676 of the children in a 15 y prospective follow-up study. Genotype analyses were performed on 6010 children using the Illumina ImmunoChip. Levels of tTGA were measured in serum samples using radio-ligand binding assays; diagnoses of celiac disease were made based on persistent detection of tTGA and biopsy analysis. Data were analyzed using Cox proportional hazards analyses. RESULTS We found 54 single-nucleotide polymorphisms (SNPs) in 5 genes associated with celiac disease (TAGAP, IL18R1, RGS21, PLEK, and CCR9) in time to celiac disease analyses (10-4>P>5.8x10-6). The hazard ratios (HR) for the SNPs with the smallest P values in each region were 1.59, 1.45, 2.23, 2.64, and 1.40, respectively. Outside of regions previously associated with celiac disease, we identified 10 SNPs in 8 regions that could also be associated with the disease (P<10-4). A SNP near PKIA (rs117128341, P = 6.5x10-8, HR = 2.8) and a SNP near PFKFB3 (rs117139146, P<2.8x10-7, HR = 4.9) reached the genome-wide association threshold in subjects from Sweden. Analyses of time to detection of tTGA identified 29 SNPs in 2 regions previously associated with celiac disease (CTLA4, P = 1.3x10-6, HR = 0.76 and LPP, P = 2.8x10-5, HR = .80) and 6 SNPs in 5 regions not previously associated with celiac disease (P<10-4); non-HLA genes are therefore involved in development of tTGA. CONCLUSIONS In conclusion, using a genetic analysis of a large international cohort of children, we associated celiac disease development with 5 non-HLA regions previously associated with the disease and 8 regions not previously associated with celiac disease. We identified 5 regions associated with development of tTGA. Two loci associated with celiac disease progression reached a genome-wide association threshold in subjects from Sweden.
Collapse
Affiliation(s)
- Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA, United States of America
| | - Xiang Liu
- Pediatric Epidemiology Center, Department of Pediatrics, University of South Florida, Tampa, FL, United States of America
| | - David Hadley
- Pediatric Epidemiology Center, Department of Pediatrics, University of South Florida, Tampa, FL, United States of America
- Division of Population Health Sciences and Education, St George's University of London, London, United Kingdom
| | - William Hagopian
- Pacific Northwest Diabetes Research Institute, Seattle, WA, United States of America
| | - Edwin Liu
- Digestive Health Institute, Children’s Hospital Colorado, University of Colorado Denver, Aurora, CO, United States of America
| | - Wei-Min Chen
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
| | - Ville Simell
- Department of Pediatrics, University of Turku, Turku, Finland
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, United States of America
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V., Munich-Neuherberg, Germany
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Malmö, Sweden
| | - Olli Simell
- Department of Pediatrics, University of Turku, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, University of Turku, Turku, Finland
| | - Jeffrey P. Krischer
- Pediatric Epidemiology Center, Department of Pediatrics, University of South Florida, Tampa, FL, United States of America
| | - Beena Akolkar
- National Institutes of Diabetes and Digestive and Kidney Disorders, National Institutes of Health, Bethesda, MD, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States of America
| | - Daniel Agardh
- Diabetes and Celiac Disease Unit, Lund University, Malmo, Sweden
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA, United States of America
| | | |
Collapse
|
45
|
Shen C, Gao J, Sheng Y, Dou J, Zhou F, Zheng X, Ko R, Tang X, Zhu C, Yin X, Sun L, Cui Y, Zhang X. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci. Front Genet 2016; 7:3. [PMID: 26870082 PMCID: PMC4740779 DOI: 10.3389/fgene.2016.00003] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/11/2016] [Indexed: 01/15/2023] Open
Abstract
Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo.
Collapse
Affiliation(s)
- Changbing Shen
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Jing Gao
- Department of Dermatology, The Second Affiliated Hospital, Anhui Medical University Hefei, China
| | - Yujun Sheng
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Jinfa Dou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Fusheng Zhou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Xiaodong Zheng
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Randy Ko
- Department of Biochemistry, University of New Mexico Albuquerque, NM, USA
| | - Xianfa Tang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Caihong Zhu
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Xianyong Yin
- Department of Genetics and Renaissance Computing Institute, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Liangdan Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University Hefei, China
| | - Yong Cui
- Department of Dermatology, China-Japan Friendship Hospital Beijing, China
| | - Xuejun Zhang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical UniversityHefei, China; Department of Dermatology, The Second Affiliated Hospital, Anhui Medical UniversityHefei, China
| |
Collapse
|
46
|
Replication of GWAS Coding SNPs Implicates MMEL1 as a Potential Susceptibility Locus among Saudi Arabian Celiac Disease Patients. DISEASE MARKERS 2015; 2015:351673. [PMID: 26843707 PMCID: PMC4710944 DOI: 10.1155/2015/351673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/16/2015] [Indexed: 01/01/2023]
Abstract
Celiac disease (CD), a gluten intolerance disorder, was implicated to have 57 genetic susceptibility loci for Europeans but not for culturally and geographically distinct ethnic populations like Saudi Arabian CD patients. Therefore, we genotyped Saudi CD patients and healthy controls for three polymorphisms, that is, Phe196Ser in IRAK1, Trp262Arg in SH2B3, and Met518Thr in MMEL1 genes. Single locus analysis identified that carriers of the 518 Thr/Thr (MMEL1) genotype conferred a 1.6-fold increased disease risk compared to the noncarriers (OR = 2.6; 95% CI: 1.22-5.54; P < 0.01). This significance persisted even under allelic (OR = 1.55; 95% CI: 1.05-2.28; P = 0.02) and additive (OR = 0.35; 95% CI: 0.17-0.71; P = 0.03) genetic models. However, frequencies for Trp262Arg (SH2B3) and Phe196Ser (IRAK1) polymorphisms were not significantly different between patients and controls. The overall best MDR model included Met518Thr and Trp262Arg polymorphisms, with a maximal testing accuracy of 64.1% and a maximal cross-validation consistency of 10 out of 10 (P = 0.0156). Allelic distribution of the 518 Thr/Thr polymorphism in MMEL1 primarily suggests its independent and synergistic contribution towards CD susceptibility among Saudi patients. Lack of significant association of IRAK and SH2B3 gene polymorphisms in Saudi patients but their association in European groups suggests the genetic heterogeneity of CD.
Collapse
|
47
|
Ghadban T, Schmidt-Yang M, Uzunoglu FG, Perez DR, El Gammal AT, Miro JT, Wellner U, Pantel K, Izbicki JR, Vashist YK. Evaluation of the germline single nucleotide polymorphism rs583522 in the TNFAIP3 gene as a prognostic marker in esophageal cancer. Cancer Genet 2015; 208:595-601. [PMID: 26598072 DOI: 10.1016/j.cancergen.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Most esophageal cancer patients die because of disease relapse, hence an accurate prognosis of disease relapse and survival is essential. Genetic variations in cancer patients may serve as important indicators. Three genotypes (GG, AG, and AA) are displayed by the single nucleotide polymorphism (SNP) rs583522, which maps to the TNFAIP3 gene on chromosome 6. Evaluation of the potential prognostic value of the TNFAIP3-SNP in esophageal cancer (EC) was the aim of this study. A total of 158 patients underwent complete surgical resection of the esophagus for EC. None of them received any neoadjuvant or adjuvant treatment. Peripheral blood was sampled, and genomic DNA was extracted from leukocytes before each operation. Clinicopathologic parameters, tumor cell dissemination in bone marrow, and clinical outcome were correlated with the TNFAIP3-SNP. A-allele carriers showed advanced tumor stages compared with those of homozygous G-allele carriers (P<0.001). Patients with an A-allele genotype (AA or AG) were significantly more likely to experience a relapse (P=0.003). Survival analysis (log-rank test) revealed a significant difference in overall survival between the three groups (P=0.039); however, none of the genotypes was identified as a disease stage-independent prognostic marker. In conclusion, TNFAIP3-SNP stratifies patients into different risk groups; however, it could not be identified as an independent prognostic marker.
Collapse
Affiliation(s)
- Tarik Ghadban
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Magdalena Schmidt-Yang
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Faik G Uzunoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel R Perez
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander T El Gammal
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jameel T Miro
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Wellner
- Clinic for Surgery, University Clinic of Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh K Vashist
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
48
|
Flister MJ, Hoffman MJ, Lemke A, Prisco SZ, Rudemiller N, O'Meara CC, Tsaih SW, Moreno C, Geurts AM, Lazar J, Adhikari N, Hall JL, Jacob HJ. SH2B3 Is a Genetic Determinant of Cardiac Inflammation and Fibrosis. ACTA ACUST UNITED AC 2015; 8:294-304. [PMID: 25628389 DOI: 10.1161/circgenetics.114.000527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/14/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Genome-wide association studies are powerful tools for nominating pathogenic variants, but offer little insight as to how candidate genes affect disease outcome. Such is the case for SH2B adaptor protein 3 (SH2B3), which is a negative regulator of multiple cytokine signaling pathways and is associated with increased risk of myocardial infarction (MI), but its role in post-MI inflammation and fibrosis is completely unknown. METHODS AND RESULTS Using an experimental model of MI (left anterior descending artery occlusion/reperfusion injury) in wild-type and Sh2b3 knockout rats (Sh2b3(em2Mcwi)), we assessed the role of Sh2b3 in post-MI fibrosis, leukocyte infiltration, angiogenesis, left ventricle contractility, and inflammatory gene expression. Compared with wild-type, Sh2b3(em2Mcwi) rats had significantly increased fibrosis (2.2-fold; P<0.05) and elevated leukocyte infiltration (>2-fold; P<0.05), which coincided with decreased left ventricle fractional shortening (-Δ11%; P<0.05) at 7 days post left anterior descending artery occlusion/reperfusion injury. Despite an increased angiogenic potential in Sh2b3(em2Mcwi) rats (1.7-fold; P<0.05), we observed no significant differences in left ventricle capillary density between wild-type and Sh2b3(em2Mcwi) rats. In total, 12 genes were significantly elevated in the post left anterior descending artery occluded/reperfused hearts of Sh2b3(em2Mcwi) rats relative to wild-type, of which 3 (NLRP12, CCR2, and IFNγ) were significantly elevated in the left ventricle of heart failure patients carrying the MI-associated rs3184504 [T] SH2B3 risk allele. CONCLUSIONS These data demonstrate for the first time that SH2B3 is a crucial mediator of post-MI inflammation and fibrosis.
Collapse
Affiliation(s)
- Michael J Flister
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Matthew J Hoffman
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Angela Lemke
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Sasha Z Prisco
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Nathan Rudemiller
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Caitlin C O'Meara
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Shirng-Wern Tsaih
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Carol Moreno
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Aron M Geurts
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Jozef Lazar
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Neeta Adhikari
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Jennifer L Hall
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.)
| | - Howard J Jacob
- From the Human and Molecular Genetics Center (M.J.F., M.J.H., A.L., S.Z.P., S.-W.T., A.M.G., J.L., H.J.J.), Departments of Physiology (M.J.F., M.J.H., A.L., S.Z.P., N.R., A.M.G., H.J.J.), Dermatology (J.L.), and Pediatrics (H.J.J.), Medical College of Wisconsin, Milwaukee; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.C.O'M.); Department of Cardiovascular and Metabolic Disease at MedImmune, Cambridge, United Kingdom (C.M.); and Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis (N.A., J.L.H.).
| |
Collapse
|
49
|
Zayeni H, Shafaghi A, Gharib Pour A, Naghi Pour MR, Jafari Nezhad A, Hassankhani A, Amir Maafi A, Geranmayeh S. Celiac disease in rheumatoid arthritis: A cross-sectional study in Iran. INDIAN JOURNAL OF RHEUMATOLOGY 2014. [DOI: 10.1016/j.injr.2014.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
50
|
Zhang Z, Xiang LF. Genetic susceptibility to vitiligo: Recent progress from genome-wide association studies. DERMATOL SIN 2014. [DOI: 10.1016/j.dsi.2014.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|