1
|
Narayan P, Richter F, Morton S. Genetics and etiology of congenital heart disease. Curr Top Dev Biol 2024; 156:297-331. [PMID: 38556426 DOI: 10.1016/bs.ctdb.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common severe birth anomaly, affecting almost 1% of infants. Most CHD is genetic, but only 40% of patients have an identifiable genetic risk factor for CHD. Chromosomal variation contributes significantly to CHD but is not readily amenable to biological follow-up due to the number of affected genes and lack of evolutionary synteny. The first CHD genes were implicated in extended families with syndromic CHD based on the segregation of risk alleles in affected family members. These have been complemented by more CHD gene discoveries in large-scale cohort studies. However, fewer than half of the 440 estimated human CHD risk genes have been identified, and the molecular mechanisms underlying CHD genetics remains incompletely understood. Therefore, model organisms and cell-based models are essential tools for improving our understanding of cardiac development and CHD genetic risk. Recent advances in genome editing, cell-specific genetic manipulation of model organisms, and differentiation of human induced pluripotent stem cells have recently enabled the characterization of developmental stages. In this chapter, we will summarize the latest studies in CHD genetics and the strengths of various study methodologies. We identify opportunities for future work that will continue to further CHD knowledge and ultimately enable better diagnosis, prognosis, treatment, and prevention of CHD.
Collapse
Affiliation(s)
| | - Felix Richter
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Morton
- Boston Children's Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
2
|
Ding Y, Lang D, Yan J, Bu H, Li H, Jiao K, Yang J, Ni H, Morotti S, Le T, Clark KJ, Port J, Ekker SC, Cao H, Zhang Y, Wang J, Grandi E, Li Z, Shi Y, Li Y, Glukhov AV, Xu X. A phenotype-based forward genetic screen identifies Dnajb6 as a sick sinus syndrome gene. eLife 2022; 11:e77327. [PMID: 36255053 PMCID: PMC9642998 DOI: 10.7554/elife.77327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
Previously we showed the generation of a protein trap library made with the gene-break transposon (GBT) in zebrafish (Danio rerio) that could be used to facilitate novel functional genome annotation towards understanding molecular underpinnings of human diseases (Ichino et al, 2020). Here, we report a significant application of this library for discovering essential genes for heart rhythm disorders such as sick sinus syndrome (SSS). SSS is a group of heart rhythm disorders caused by malfunction of the sinus node, the heart's primary pacemaker. Partially owing to its aging-associated phenotypic manifestation and low expressivity, molecular mechanisms of SSS remain difficult to decipher. From 609 GBT lines screened, we generated a collection of 35 zebrafish insertional cardiac (ZIC) mutants in which each mutant traps a gene with cardiac expression. We further employed electrocardiographic measurements to screen these 35 ZIC lines and identified three GBT mutants with SSS-like phenotypes. More detailed functional studies on one of the arrhythmogenic mutants, GBT411, in both zebrafish and mouse models unveiled Dnajb6 as a novel SSS causative gene with a unique expression pattern within the subpopulation of sinus node pacemaker cells that partially overlaps with the expression of hyperpolarization activated cyclic nucleotide gated channel 4 (HCN4), supporting heterogeneity of the cardiac pacemaker cells.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Di Lang
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
- Department of Medicine, University of California, San FranciscoSan FranciscoUnited States
| | - Jianhua Yan
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiothoracic Surgery, Xiangya Hospital, Central South UniversityChangshaChina
| | - Hongsong Li
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Department of Cardiovascular Medicine, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health ScienceShanghaiChina
| | - Kunli Jiao
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Haibo Ni
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Stefano Morotti
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Tai Le
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
| | - Karl J Clark
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Jenna Port
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Stephen C Ekker
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| | - Hung Cao
- Department of Biomedical Engineering, University of California, IrvineIrvineUnited States
- Department of Electrical Engineering and Computer Science, University of California, IrvineIrvineUnited States
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of MedicineBaltimoreUnited States
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at HoustonHoustonUnited States
| | - Eleonora Grandi
- Department of Pharmacology, University of California, DavisDavisUnited States
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University & The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao UniversityQingdaoChina
| | - Yigang Li
- Division of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School Of MedicineShanghaiChina
| | - Alexey V Glukhov
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-MadisonMadisonUnited States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo ClinicRochesterUnited States
| |
Collapse
|
3
|
Jamet S, Ha S, Ho TH, Houghtaling S, Timms A, Yu K, Paquette A, Maga AM, Greene NDE, Beier DR. The arginine methyltransferase Carm1 is necessary for heart development. G3 GENES|GENOMES|GENETICS 2022; 12:6613934. [PMID: 35736367 PMCID: PMC9339313 DOI: 10.1093/g3journal/jkac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
To discover genes implicated in human congenital disorders, we performed ENU mutagenesis in the mouse and screened for mutations affecting embryonic development. In this work, we report defects of heart development in mice homozygous for a mutation of coactivator-associated arginine methyltransferase 1 (Carm1). While Carm1 has been extensively studied, it has never been previously associated with a role in heart development. Phenotype analysis combining histology and microcomputed tomography imaging shows a range of cardiac defects. Most notably, many affected midgestation embryos appear to have cardiac rupture and hemorrhaging in the thorax. Mice that survive to late gestation show a variety of cardiac defects, including ventricular septal defects, double outlet right ventricle, and persistent truncus arteriosus. Transcriptome analyses of the mutant embryos by mRNA-seq reveal the perturbation of several genes involved in cardiac morphogenesis and muscle development and function. In addition, we observe the mislocalization of cardiac neural crest cells at E12.5 in the outflow tract. The cardiac phenotype of Carm1 mutant embryos is similar to that of Pax3 null mutants, and PAX3 is a putative target of CARM1. However, our analysis does not support the hypothesis that developmental defects in Carm1 mutant embryos are primarily due to a functional defect of PAX3.
Collapse
Affiliation(s)
- Sophie Jamet
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Seungshin Ha
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Tzu-Hua Ho
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Andrew Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
| | - Kai Yu
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Alison Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Ali Murat Maga
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| | - Nicholas D E Greene
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH, UK
| | - David R Beier
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute , Seattle, WA 98101, USA
- Department of Pediatrics, University of Washington School of Medicine , Seattle, WA 98195, USA
| |
Collapse
|
4
|
In vivo identification and validation of novel potential predictors for human cardiovascular diseases. PLoS One 2021; 16:e0261572. [PMID: 34919578 PMCID: PMC8682894 DOI: 10.1371/journal.pone.0261572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 12/30/2022] Open
Abstract
Genetics crucially contributes to cardiovascular diseases (CVDs), the global leading cause of death. Since the majority of CVDs can be prevented by early intervention there is a high demand for the identification of predictive causative genes. While genome wide association studies (GWAS) correlate genes and CVDs after diagnosis and provide a valuable resource for such causative candidate genes, often preferentially those with previously known or suspected function are addressed further. To tackle the unaddressed blind spot of understudied genes, we particularly focused on the validation of human heart phenotype-associated GWAS candidates with little or no apparent connection to cardiac function. Building on the conservation of basic heart function and underlying genetics from fish to human we combined CRISPR/Cas9 genome editing of the orthologs of human GWAS candidates in isogenic medaka with automated high-throughput heart rate analysis. Our functional analyses of understudied human candidates uncovered a prominent fraction of heart rate associated genes from adult human patients impacting on the heart rate in embryonic medaka already in the injected generation. Following this pipeline, we identified 16 GWAS candidates with potential diagnostic and predictive power for human CVDs.
Collapse
|
5
|
Wang S, Larina IV. Live mechanistic assessment of localized cardiac pumping in mammalian tubular embryonic heart. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-19. [PMID: 32762173 PMCID: PMC7403774 DOI: 10.1117/1.jbo.25.8.086001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/23/2020] [Indexed: 06/01/2023]
Abstract
SIGNIFICANCE Understanding how the valveless embryonic heart pumps blood is essential to elucidate biomechanical cues regulating cardiogenesis, which is important for the advancement of congenital heart defects research. However, methods capable of embryonic cardiac pumping analysis remain limited, and assessing this highly dynamic process in mammalian embryos is challenging. New approaches are critically needed to address this hurdle. AIM We report an imaging-based approach for functional assessment of localized pumping dynamics in the early tubular embryonic mouse heart. APPROACH Four-dimensional optical coherence tomography was used to obtain structural and Doppler hemodynamic imaging of the beating heart in live mouse embryos at embryonic day 9.25. The pumping assessment was performed based on the volumetric blood flow rate, flow resistance within the heart tube, and pressure gradient induced by heart wall movements. The relation between the blood flow, the pressure gradient, and the resistance to flow were evaluated through temporal analyses and Granger causality test. RESULTS In the ventricles, our method revealed connections between the temporal profiles of pressure gradient and volumetric blood flow rate. Statistically significant causal relation from the pressure gradient to the blood flow was demonstrated. Our analysis also suggests that cardiac pumping in the early ventricles is a combination of suction and pushing. In contrast, in the outflow tract, where the conduction wave is slower than the blood flow, we did not find significant causal relation from pressure to flow, suggesting that, different from ventricular regions, the local active contraction of the outflow tract is unlikely to drive the flow in that region. CONCLUSIONS We present an imaging-based approach that enables localized assessment of pumping dynamics in the mouse tubular embryonic heart. This method creates a new opportunity for functional analysis of the pumping mechanism underlying the developing mammalian heart at early stages and could be useful for studying biomechanical changes in mutant embryonic hearts that model congenital heart defects.
Collapse
Affiliation(s)
- Shang Wang
- Stevens Institute of Technology, Department of Biomedical Engineering, Hoboken, New Jersey, USA
| | - Irina V. Larina
- Baylor College of Medicine, Department of Molecular Physiology and Biophysics, Houston, Texas, USA
| |
Collapse
|
6
|
Versacci P, Pugnaloni F, Digilio MC, Putotto C, Unolt M, Calcagni G, Baban A, Marino B. Some Isolated Cardiac Malformations Can Be Related to Laterality Defects. J Cardiovasc Dev Dis 2018; 5:jcdd5020024. [PMID: 29724030 PMCID: PMC6023464 DOI: 10.3390/jcdd5020024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/21/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Human beings are characterized by a left–right asymmetric arrangement of their internal organs, and the heart is the first organ to break symmetry in the developing embryo. Aberrations in normal left–right axis determination during embryogenesis lead to a wide spectrum of abnormal internal laterality phenotypes, including situs inversus and heterotaxy. In more than 90% of instances, the latter condition is accompanied by complex and severe cardiovascular malformations. Atrioventricular canal defect and transposition of the great arteries—which are particularly frequent in the setting of heterotaxy—are commonly found in situs solitus with or without genetic syndromes. Here, we review current data on morphogenesis of the heart in human beings and animal models, familial recurrence, and upstream genetic pathways of left–right determination in order to highlight how some isolated congenital heart diseases, very common in heterotaxy, even in the setting of situs solitus, may actually be considered in the pathogenetic field of laterality defects.
Collapse
Affiliation(s)
- Paolo Versacci
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Flaminia Pugnaloni
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Carolina Putotto
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marta Unolt
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giulio Calcagni
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Anwar Baban
- Department of Pediatric Cardiology and Cardiac Surgery, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy.
| | - Bruno Marino
- Department of Pediatrics, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
7
|
Bourke L, del Monte-Nieto G, Outhwaite J, Bharti V, Pollock P, Simmons D, Adam A, Hur S, Maghzal G, Whitelaw E, Stocker R, Suter C, Harvey R, Harten S. Loss of Rearranged L-Myc Fusion (RLF) results in defects in heart development in the mouse. Differentiation 2017; 94:8-20. [DOI: 10.1016/j.diff.2016.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 01/22/2023]
|
8
|
Burnicka-Turek O, Steimle JD, Huang W, Felker L, Kamp A, Kweon J, Peterson M, Reeves RH, Maslen CL, Gruber PJ, Yang XH, Shendure J, Moskowitz IP. Cilia gene mutations cause atrioventricular septal defects by multiple mechanisms. Hum Mol Genet 2016; 25:3011-3028. [PMID: 27340223 DOI: 10.1093/hmg/ddw155] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 01/13/2023] Open
Abstract
Atrioventricular septal defects (AVSDs) are a common severe form of congenital heart disease (CHD). In this study we identified deleterious non-synonymous mutations in two cilia genes, Dnah11 and Mks1, in independent N-ethyl-N-nitrosourea-induced mouse mutant lines with heritable recessive AVSDs by whole-exome sequencing. Cilia are required for left/right body axis determination and second heart field (SHF) Hedgehog (Hh) signaling, and we find that cilia mutations affect these requirements differentially. Dnah11avc4 did not disrupt SHF Hh signaling and caused AVSDs only concurrently with heterotaxy, a left/right axis abnormality. In contrast, Mks1avc6 disrupted SHF Hh signaling and caused AVSDs without heterotaxy. We performed unbiased whole-genome SHF transcriptional profiling and found that cilia motility genes were not expressed in the SHF whereas cilia structural and signaling genes were highly expressed. SHF cilia gene expression predicted the phenotypic concordance between AVSDs and heterotaxy in mice and humans with cilia gene mutations. A two-step model of cilia action accurately predicted the AVSD/heterotaxyu phenotypic expression pattern caused by cilia gene mutations. We speculate that cilia gene mutations contribute to both syndromic and non-syndromic AVSDs in humans and provide a model that predicts the phenotypic consequences of specific cilia gene mutations.
Collapse
Affiliation(s)
- Ozanna Burnicka-Turek
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA,
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Wenhui Huang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Lindsay Felker
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anna Kamp
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Michael Peterson
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Roger H Reeves
- Department of Physiology and Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Cheryl L Maslen
- Knight Cardiovascular Institute and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA and
| | - Peter J Gruber
- Department of Cardiothoracic Surgery, University of Iowa, Iowa City, IA 52245, USA
| | - Xinan H Yang
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, The University of Chicago, Chicago, IL 60637, USA,
| |
Collapse
|
9
|
Priest JR, Osoegawa K, Mohammed N, Nanda V, Kundu R, Schultz K, Lammer EJ, Girirajan S, Scheetz T, Waggott D, Haddad F, Reddy S, Bernstein D, Burns T, Steimle JD, Yang XH, Moskowitz IP, Hurles M, Lifton RP, Nickerson D, Bamshad M, Eichler EE, Mital S, Sheffield V, Quertermous T, Gelb BD, Portman M, Ashley EA. De Novo and Rare Variants at Multiple Loci Support the Oligogenic Origins of Atrioventricular Septal Heart Defects. PLoS Genet 2016; 12:e1005963. [PMID: 27058611 PMCID: PMC4825975 DOI: 10.1371/journal.pgen.1005963] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 03/07/2016] [Indexed: 12/15/2022] Open
Abstract
Congenital heart disease (CHD) has a complex genetic etiology, and recent studies suggest that high penetrance de novo mutations may account for only a small fraction of disease. In a multi-institutional cohort surveyed by exome sequencing, combining analysis of 987 individuals (discovery cohort of 59 affected trios and 59 control trios, and a replication cohort of 100 affected singletons and 533 unaffected singletons) we observe variation at novel and known loci related to a specific cardiac malformation the atrioventricular septal defect (AVSD). In a primary analysis, by combining developmental coexpression networks with inheritance modeling, we identify a de novo mutation in the DNA binding domain of NR1D2 (p.R175W). We show that p.R175W changes the transcriptional activity of Nr1d2 using an in vitro transactivation model in HUVEC cells. Finally, we demonstrate previously unrecognized cardiovascular malformations in the Nr1d2tm1-Dgen knockout mouse. In secondary analyses we map genetic variation to protein-interaction networks suggesting a role for two collagen genes in AVSD, which we corroborate by burden testing in a second replication cohort of 100 AVSDs and 533 controls (p = 8.37e-08). Finally, we apply a rare-disease inheritance model to identify variation in genes previously associated with CHD (ZFPM2, NSD1, NOTCH1, VCAN, and MYH6), cardiac malformations in mouse models (ADAM17, CHRD, IFT140, PTPRJ, RYR1 and ATE1), and hypomorphic alleles of genes causing syndromic CHD (EHMT1, SRCAP, BBS2, NOTCH2, and KMT2D) in 14 of 59 trios, greatly exceeding variation in control trios without CHD (p = 9.60e-06). In total, 32% of trios carried at least one putatively disease-associated variant across 19 loci,suggesting that inherited and de novo variation across a heterogeneous group of loci may contribute to disease risk.
Collapse
Affiliation(s)
- James R. Priest
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Kazutoyo Osoegawa
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Nebil Mohammed
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Vivek Nanda
- Department of Vascular Surgery, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Ramendra Kundu
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Kathleen Schultz
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Edward J. Lammer
- University of California San Francisco Benioff Children’s Hospital Oakland, University of California San Francisco, San Francisco, California, United States of America
| | - Santhosh Girirajan
- Departments of Biochemistry, Molecular Biology, and Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Todd Scheetz
- College of Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Daryl Waggott
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Francois Haddad
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Sushma Reddy
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Daniel Bernstein
- Division of Pediatric Cardiology, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Trudy Burns
- College of Public Health, University of Iowa, Iowa City, Iowa, United States of America
| | - Jeffrey D. Steimle
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Xinan H. Yang
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Ivan P. Moskowitz
- Department of Pathology, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Hurles
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Richard P. Lifton
- Department of Genetics, Yale University, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Debbie Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Evan E. Eichler
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Seema Mital
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Val Sheffield
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- Division of Medical Genetics, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Thomas Quertermous
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mt. Sinai, New York, New York, United States of America
| | - Michael Portman
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Euan A. Ashley
- Cardiovascular Institute, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
10
|
Cionni M, Menke C, Stottmann RW. The mouse MC13 mutant is a novel ENU mutation in collagen type II, alpha 1. PLoS One 2014; 9:e116104. [PMID: 25541700 PMCID: PMC4277458 DOI: 10.1371/journal.pone.0116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 12/04/2014] [Indexed: 11/19/2022] Open
Abstract
Phenotype-driven mutagenesis experiments are a powerful approach to identifying novel alleles in a variety of contexts. The traditional disadvantage of this approach has been the subsequent task of identifying the affected locus in the mutants of interest. Recent advances in bioinformatics and sequencing have reduced the burden of cloning these ENU mutants. Here we report our experience with an ENU mutagenesis experiment and the rapid identification of a mutation in a previously known gene. A combination of mapping the mutation with a high-density SNP panel and a candidate gene approach has identified a mutation in collagen type II, alpha I (Col2a1). Col2a1 has previously been studied in the mouse and our mutant phenotype closely resembles mutations made in the Col2a1 locus.
Collapse
Affiliation(s)
- Megan Cionni
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
| | - Chelsea Menke
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
| | - Rolf W. Stottmann
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, United States of America
- * E-mail:
| |
Collapse
|
11
|
Abstract
Congenital heart disease (CHD) is the most common birth defect. Despite considerable advances in care, CHD remains a major contributor to newborn mortality and is associated with substantial morbidities and premature death. Genetic abnormalities appear to be the primary cause of CHD, but identifying precise defects has proven challenging, principally because CHD is a complex genetic trait. Mainly because of recent advances in genomic technology such as next-generation DNA sequencing, scientists have begun to identify the genetic variants underlying CHD. In this article, the roles of modifier genes, de novo mutations, copy number variants, common variants, and noncoding mutations in the pathogenesis of CHD are reviewed.
Collapse
Affiliation(s)
- Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
12
|
Liu X, Francis R, Kim AJ, Ramirez R, Chen G, Subramanian R, Anderton S, Kim Y, Wong L, Morgan J, Pratt HC, Reinholdt L, Devine W, Leatherbury L, Tobita K, Lo CW. Interrogating congenital heart defects with noninvasive fetal echocardiography in a mouse forward genetic screen. Circ Cardiovasc Imaging 2013; 7:31-42. [PMID: 24319090 DOI: 10.1161/circimaging.113.000451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Congenital heart disease (CHD) has a multifactorial pathogenesis, but a genetic contribution is indicated by heritability studies. To investigate the spectrum of CHD with a genetic pathogenesis, we conducted a forward genetic screen in inbred mice using fetal echocardiography to recover mutants with CHD. Mice are ideally suited for these studies given that they have the same four-chamber cardiac anatomy that is the substrate for CHD. METHODS AND RESULTS Ethylnitrosourea mutagenized mice were ultrasound-interrogated by fetal echocardiography using a clinical ultrasound system, and fetuses suspected to have cardiac abnormalities were further interrogated with an ultrahigh-frequency ultrasound biomicroscopy. Scanning of 46 270 fetuses revealed 1722 with cardiac anomalies, with 27.9% dying prenatally. Most of the structural heart defects can be diagnosed using ultrasound biomicroscopy but not with the clinical ultrasound system. Confirmation with analysis by necropsy and histopathology showed excellent diagnostic capability of ultrasound biomicroscopy for most CHDs. Ventricular septal defect was the most common CHD observed, whereas outflow tract and atrioventricular septal defects were the most prevalent complex CHD. Cardiac/visceral organ situs defects were observed at surprisingly high incidence. The rarest CHD found was hypoplastic left heart syndrome, a phenotype never seen in mice previously. CONCLUSIONS We developed a high-throughput, 2-tier ultrasound phenotyping strategy for efficient recovery of even rare CHD phenotypes, including the first mouse models of hypoplastic left heart syndrome. Our findings support a genetic pathogenesis for a wide spectrum of CHDs and suggest that the disruption of left-right patterning may play an important role in CHD.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Echocardiography, Doppler
- Echocardiography, Doppler, Color
- Ethylnitrosourea/toxicity
- Female
- Fetal Heart/abnormalities
- Fetal Heart/diagnostic imaging
- Genetic Predisposition to Disease
- Genetic Testing
- Heart Defects, Congenital/diagnostic imaging
- Heart Defects, Congenital/embryology
- Heart Defects, Congenital/genetics
- Heredity
- High-Throughput Screening Assays
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Acoustic
- Mutation
- Pedigree
- Phenotype
- Ultrasonography, Prenatal/methods
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Genome-wide ENU mutagenesis in combination with high density SNP analysis and exome sequencing provides rapid identification of novel mouse models of developmental disease. PLoS One 2013; 8:e55429. [PMID: 23469164 PMCID: PMC3585849 DOI: 10.1371/journal.pone.0055429] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/22/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mice harbouring gene mutations that cause phenotypic abnormalities during organogenesis are invaluable tools for linking gene function to normal development and human disorders. To generate mouse models harbouring novel alleles that are involved in organogenesis we conducted a phenotype-driven, genome-wide mutagenesis screen in mice using the mutagen N-ethyl-N-nitrosourea (ENU). METHODOLOGY/PRINCIPAL FINDINGS ENU was injected into male C57BL/6 mice and the mutations transmitted through the germ-line. ENU-induced mutations were bred to homozygosity and G3 embryos screened at embryonic day (E) 13.5 and E18.5 for abnormalities in limb and craniofacial structures, skin, blood, vasculature, lungs, gut, kidneys, ureters and gonads. From 52 pedigrees screened 15 were detected with anomalies in one or more of the structures/organs screened. Using single nucleotide polymorphism (SNP)-based linkage analysis in conjunction with candidate gene or next-generation sequencing (NGS) we identified novel recessive alleles for Fras1, Ift140 and Lig1. CONCLUSIONS/SIGNIFICANCE In this study we have generated mouse models in which the anomalies closely mimic those seen in human disorders. The association between novel mutant alleles and phenotypes will lead to a better understanding of gene function in normal development and establish how their dysfunction causes human anomalies and disease.
Collapse
|
14
|
Lin CJ, Lin CY, Chen CH, Zhou B, Chang CP. Partitioning the heart: mechanisms of cardiac septation and valve development. Development 2012; 139:3277-99. [PMID: 22912411 DOI: 10.1242/dev.063495] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heart malformations are common congenital defects in humans. Many congenital heart defects involve anomalies in cardiac septation or valve development, and understanding the developmental mechanisms that underlie the formation of cardiac septal and valvular tissues thus has important implications for the diagnosis, prevention and treatment of congenital heart disease. The development of heart septa and valves involves multiple types of progenitor cells that arise either within or outside the heart. Here, we review the morphogenetic events and genetic networks that regulate spatiotemporal interactions between the cells that give rise to septal and valvular tissues and hence partition the heart.
Collapse
Affiliation(s)
- Chien-Jung Lin
- Division of Cardiovascular Medicine, Department of Medicine, Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
15
|
Friedland-Little JM, Hoffmann AD, Ocbina PJR, Peterson MA, Bosman JD, Chen Y, Cheng SY, Anderson KV, Moskowitz IP. A novel murine allele of Intraflagellar Transport Protein 172 causes a syndrome including VACTERL-like features with hydrocephalus. Hum Mol Genet 2011; 20:3725-37. [PMID: 21653639 DOI: 10.1093/hmg/ddr241] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The primary cilium is emerging as a crucial regulator of signaling pathways central to vertebrate development and human disease. We identified atrioventricular canal 1 (avc1), a mouse mutation that caused VACTERL association with hydrocephalus, or VACTERL-H. We showed that avc1 is a hypomorphic mutation of intraflagellar transport protein 172 (Ift172), required for ciliogenesis and Hedgehog (Hh) signaling. Phenotypically, avc1 caused VACTERL-H but not abnormalities in left-right (L-R) axis formation. Avc1 resulted in structural cilia defects, including truncated cilia in vivo and in vitro. We observed a dose-dependent requirement for Ift172 in ciliogenesis using an allelic series generated with Ift172(avc1) and Ift172(wim), an Ift172 null allele: cilia were present on 42% of avc1 mouse embryonic fibroblast (MEF) and 28% of avc1/wim MEFs, in contrast to >90% of wild-type MEFs. Furthermore, quantitative cilium length analysis identified two specific cilium populations in mutant MEFS: a normal population with normal IFT and a truncated population, 50% of normal length, with disrupted IFT. Cells from wild-type embryos had predominantly full-length cilia, avc1 embryos, with Hh signaling abnormalities but not L-R abnormalities, had cilia equally divided between full-length and truncated, and avc1/wim embryos, with both Hh signaling and L-R abnormalities, were primarily truncated. Truncated Ift172 mutant cilia showed defects of the distal ciliary axoneme, including disrupted IFT88 localization and Hh-dependent Gli2 localization. We propose a model in which mutation of Ift172 results in a specific class of abnormal cilia, causing disrupted Hh signaling while maintaining L-R axis determination, and resulting in the VACTERL-H phenotype.
Collapse
|
16
|
Complex interactions between genes controlling trafficking in primary cilia. Nat Genet 2011; 43:547-53. [PMID: 21552265 PMCID: PMC3132150 DOI: 10.1038/ng.832] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 04/13/2011] [Indexed: 12/27/2022]
Abstract
Cilia-associated human genetic disorders are striking in the diversity of their abnormalities and their complex inheritance. Inactivation of the retrograde ciliary motor by mutations in DYNC2H1 causes skeletal dysplasias that have strongly variable expressivity. Here we define previously unknown genetic relationships between Dync2h1 and other genes required for ciliary trafficking. Mutations in mouse Dync2h1 disrupt cilia structure, block Sonic hedgehog signaling and cause midgestation lethality. Heterozygosity for Ift172, a gene required for anterograde ciliary trafficking, suppresses cilia phenotypes, Sonic hedgehog signaling defects and early lethality of Dync2h1 homozygotes. Ift122, like Dync2h1, is required for retrograde ciliary trafficking, but reduction of Ift122 gene dosage also suppresses the Dync2h1 phenotype. These genetic interactions illustrate the cell biology underlying ciliopathies and argue that mutations in intraflagellar transport genes cause their phenotypes because of their roles in cilia architecture rather than direct roles in signaling.
Collapse
|