1
|
Rivera JP, Kuo YJ, Hang JF. DEK::AFF2 Carcinoma of the Sinonasal Tract and Skull Base: A Comprehensive Review. Surg Pathol Clin 2024; 17:587-597. [PMID: 39489551 DOI: 10.1016/j.path.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
DEK::AFF2 carcinoma is an emerging entity of the sinonasal tract and skull base, commonly exhibiting exophytic and endophytic papillary growth, complex anastomosing trabeculae, monotonous cytomorphology, acantholytic change, and tumor-infiltrating neutrophils. A subset displays overt infiltration and high-grade features akin to non-keratinizing squamous cell carcinoma. Glandular differentiation may also be rarely present. The tumor shows frequent local recurrence and occasional distant metastasis. An accurate diagnosis requires the recognition of these key histologic features, followed by molecular confirmation. Recently, AFF2 immunohistochemistry has been demonstrated to be a sensitive and specific ancillary marker. This comprehensive review summarizes the current understanding of DEK::AFF2 carcinoma.
Collapse
Affiliation(s)
- Jonathan P Rivera
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Taipei City 112201, Taiwan; Department of Laboratories, Philippine General Hospital, Taft Avenue, Ermita, Manila, 1000 Metro Manila, Philippines
| | - Ying-Ju Kuo
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Taipei City 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Road, Taipei City 112304, Taiwan
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Road, Taipei City 112201, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Road, Taipei City 112304, Taiwan; Institute of Clinical Medicine, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Road, Taipei City 112304, Taiwan.
| |
Collapse
|
2
|
Amin SE, Lewis JS, Bridge JA, Hang JF, Naik U, Bishop JA, Saluja K. DEK::AFF2 Fusion-Associated Squamous Cell Carcinoma: A Case Series with Literature Review on an Emerging and Challenging Entity. Head Neck Pathol 2024; 18:86. [PMID: 39312022 PMCID: PMC11420419 DOI: 10.1007/s12105-024-01690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
PURPOSE DEK::AFF2 fusion-associated squamous cell carcinoma (DEK::AFF2 SCC), also reported in the literature as low-grade papillary sinonasal (Schneiderian) carcinoma (LGPSC), is a rare, primarily bland-appearing, but locally aggressive neoplasm. Morphologically, these tumors can closely resemble sinonasal papilloma (SP), especially on small or limited biopsy, often leading to misdiagnosis. DEK::AFF2 SCC is devoid of the underlying mutually exclusive EGFR or KRAS driver mutations of SP, suggesting it may represent a distinct unique entity. METHODS In this study, we conducted a retrospective search of "unusual" SP reported either as atypical, dysplastic, or suspicious for malignant transformation at our institution in the last 13 years (2010-2023), to identify potential cases of DEK::AFF2 SCC. RESULTS Of the 201 SP cases during this time period, 30 "unusual" SP cases were identified. On morphologic review of these 30 cases, 6 were worrisome for DEK::AFF2 SCC and were selected for AFF2 immunohistochemical stain (IHC), of which 3 cases were positive. All 3 AFF2 IHC positive cases were also positive for DEK::AFF2 fusion by fluorescence in situ hybridization (FISH), thereby, confirming IHC results. CONCLUSIONS This study highlights that AFF2 IHC can be an invaluable surrogate marker to FISH in identifying DEK::AFF2 SCC in challenging cases to avoid misdiagnosis. Detailed clinical and pathologic data were collected to gain a better understanding of this emerging challenging entity. A literature review was performed to enrich our knowledge of DEK::AFF2 SCC.
Collapse
Affiliation(s)
- Sara E Amin
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - James S Lewis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Julia A Bridge
- Division of Molecular Pathology, ProPath, Dallas, TX, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Udit Naik
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Justin A Bishop
- Department of Pathology and Laboratory Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karan Saluja
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Sun D, Du X, Su P. Molecular evolution of transcription factors AF4/FMR2 family member (AFF) gene family and the role of lamprey AFF3 in cell proliferation. Dev Genes Evol 2024; 234:45-53. [PMID: 38733410 DOI: 10.1007/s00427-024-00717-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
AF4/FMR2 family member (AFF) proteins are a group of transcriptional regulators that can regulate gene transcription and play an important role in cellular physiological processes such as proliferation and differentiation. The transcriptome data of the lamprey spinal cord injury were analyzed in previous research. We then identified a hub gene, Lr-AFF3, from this dataset. Phylogenetic tree analysis determined the evolutionary relationships of the AFF gene family across different species. In addition, analysis of motifs, domains, and 3D structures further confirmed the conservatism of the AFF gene family. In particular, the gene structure of the AFF3 gene was not conserved, possibly because of intron insertion. It was also found that the neighboring genes of the Lr-AFF3 gene had a higher diversity than that in jawed vertebrates through synteny analysis. The results of the MTT and EdU experiments showed that the C-terminal homology domain (CHD) and N-terminal homology domain (NHD) of Lr-AFF3 promoted cell proliferation. In summary, our research will not only provide new insights into the origin and evolution of the AFF gene family in different species, but also provide new clues for the functions of Lr_AFF3.
Collapse
Affiliation(s)
- Difan Sun
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Xinyu Du
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
4
|
Zhang Z, Xu J, Liu J, Wang J, Lei L. SEC: A core hub during cell fate alteration. FASEB J 2024; 38:e23680. [PMID: 38758186 DOI: 10.1096/fj.202400514r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Pol II pause release is a rate-limiting step in gene transcription, influencing various cell fate alterations. Numerous proteins orchestrate Pol II pause release, thereby playing pivotal roles in the intricate process of cellular fate modulation. Super elongation complex (SEC), a large assembly comprising diverse protein components, has garnered attention due to its emerging significance in orchestrating physiological and pathological cellular identity changes by regulating the transcription of crucial genes. Consequently, SEC emerges as a noteworthy functional complex capable of modulating cell fate alterations. Therefore, a comprehensive review is warranted to systematically summarize the core roles of SEC in different types of cell fate alterations. This review focuses on elucidating the current understanding of the structural and functional basis of SEC. Additionally, we discuss the intricate regulatory mechanisms governing SEC in various models of cell fate alteration, encompassing both physiological and pathological contexts. Furthermore, leveraging the existing knowledge of SEC, we propose some insightful directions for future research, aiming to enhance our mechanistic and functional comprehension of SEC within the diverse landscape of cell fate alterations.
Collapse
Affiliation(s)
- Zhijing Zhang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingyi Xu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiqiang Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
5
|
Bassani S, Chrast J, Ambrosini G, Voisin N, Schütz F, Brusco A, Sirchia F, Turban L, Schubert S, Abou Jamra R, Schlump JU, DeMille D, Bayrak-Toydemir P, Nelson GR, Wong KN, Duncan L, Mosera M, Gilissen C, Vissers LELM, Pfundt R, Kersseboom R, Yttervik H, Hansen GÅM, Smeland MF, Butler KM, Lyons MJ, Carvalho CMB, Zhang C, Lupski JR, Potocki L, Flores-Gallegos L, Morales-Toquero R, Petit F, Yalcin B, Tuttle A, Elloumi HZ, McCormick L, Kukolich M, Klaas O, Horvath J, Scala M, Iacomino M, Operto F, Zara F, Writzl K, Maver A, Haanpää MK, Pohjola P, Arikka H, Kievit AJA, Calandrini C, Iseli C, Guex N, Reymond A. Variant-specific pathophysiological mechanisms of AFF3 differently influence transcriptome profiles. Genome Med 2024; 16:72. [PMID: 38811945 PMCID: PMC11137988 DOI: 10.1186/s13073-024-01339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.
Collapse
Affiliation(s)
- Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland
- Present address: Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland
- Present address: Sophia Genetics, St Sulpice, Switzerland
| | - Frédéric Schütz
- Biostatistics Platform, University of Lausanne, Lausanne, Switzerland
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Medical Genetics Unit, Città Della Salute E Della Scienza University Hospital, 10126, Turin, Italy
| | - Fabio Sirchia
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Medical Genetics Unit, Città Della Salute E Della Scienza University Hospital, 10126, Turin, Italy
- Present address: Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Present address: Medical Genetics Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lydia Turban
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan-Ulrich Schlump
- Department of Pediatrics, Centre for Neuromedicine, Gemeinschaftskrankenhaus Herdecke Gerhard-Kienle-Weg, Herdecke, Germany
| | - Desiree DeMille
- Genomics Analysis 396, ARUP Laboratories, Salt Lake City, UT, USA
| | | | - Gary Rex Nelson
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kristen Nicole Wong
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Laura Duncan
- Department of Pediatrics, Medical Center North, Vanderbilt University Medical Center, Nashville, TN, USA
- Present address: Mayo Clinic, Rochester, MN, USA
| | - Mackenzie Mosera
- Department of Pediatrics, Medical Center North, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Gilissen
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rogier Kersseboom
- Center for Genetic Developmental Disorders Southwest, Zuidwester, Middelharnis, The Netherlands
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | | | | | | | | | - Claudia M B Carvalho
- Pacific Northwest Research Institute (PNRI), Broadway, Seattle, WA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chaofan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | | | | | | | - Binnaz Yalcin
- Inserm UMR1231, University of Burgundy, 21000, Dijon, France
| | | | | | - Lane McCormick
- Department of Genetics, Cook Children's Medical Center, Cook Children's Health Care System, Fort Worth, TX, USA
| | - Mary Kukolich
- Department of Genetics, Cook Children's Medical Center, Cook Children's Health Care System, Fort Worth, TX, USA
| | - Oliver Klaas
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Judit Horvath
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Marcello Scala
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, 16132, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Operto
- Department of Medicine, Child and Adolescent Neuropsychiatry Unit, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Federico Zara
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, 16132, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maria K Haanpää
- Department of Genomics, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Pia Pohjola
- Department of Genomics, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Harri Arikka
- Department of Pediatric Neurology, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Camilla Calandrini
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland.
| |
Collapse
|
6
|
Negrón-Piñeiro LJ, Wu Y, Popsuj S, José-Edwards DS, Stolfi A, Di Gregorio A. Cis-regulatory interfaces reveal the molecular mechanisms underlying the notochord gene regulatory network of Ciona. Nat Commun 2024; 15:3025. [PMID: 38589372 PMCID: PMC11001920 DOI: 10.1038/s41467-024-46850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Tissue-specific gene expression is fundamental in development and evolution, and is mediated by transcription factors and by the cis-regulatory regions (enhancers) that they control. Transcription factors and their respective tissue-specific enhancers are essential components of gene regulatory networks responsible for the development of tissues and organs. Although numerous transcription factors have been characterized from different organisms, the knowledge of the enhancers responsible for their tissue-specific expression remains fragmentary. Here we use Ciona to study the enhancers associated with ten transcription factors expressed in the notochord, an evolutionary hallmark of the chordate phylum. Our results illustrate how two evolutionarily conserved transcription factors, Brachyury and Foxa2, coordinate the deployment of other notochord transcription factors. The results of these detailed cis-regulatory analyses delineate a high-resolution view of the essential notochord gene regulatory network of Ciona, and provide a reference for studies of transcription factors, enhancers, and their roles in development, disease, and evolution.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Diana S José-Edwards
- Post-Baccalaureate Premedical Program, Washington University, St. Louis, MO, 63130, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
7
|
Szakats S, McAtamney A, Wilson MJ. Identification of novel microRNAs in the embryonic mouse brain using deep sequencing. Mol Cell Biochem 2024; 479:297-311. [PMID: 37059894 PMCID: PMC10890980 DOI: 10.1007/s11010-023-04730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Many advances in small RNA-seq technology and bioinformatics pipelines have been made recently, permitting the discovery of novel miRNAs in the embryonic day 15.5 (E15.5) mouse brain. We aimed to improve miRNA discovery in this tissue to expand our knowledge of the regulatory networks that underpin normal neurodevelopment, find new candidates for neurodevelopmental disorder aetiology, and deepen our understanding of non-coding RNA evolution. A high-quality small RNA-seq dataset of 458 M reads was generated. An unbiased miRNA discovery pipeline identified fifty putative novel miRNAs, six of which were selected for further validation. A combination of conservation analysis and target functional prediction was used to determine the authenticity of novel miRNA candidates. These findings demonstrate that miRNAs remain to be discovered, particularly if they have the features of other small RNA species.
Collapse
Affiliation(s)
- Susanna Szakats
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Alice McAtamney
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
8
|
Bassani S, Chrast J, Ambrosini G, Voisin N, Schütz F, Brusco A, Sirchia F, Turban L, Schubert S, Jamra RA, Schlump JU, DeMille D, Bayrak-Toydemir P, Nelson GR, Wong KN, Duncan L, Mosera M, Gilissen C, Vissers LE, Pfundt R, Kersseboom R, Yttervik H, Hansen GÅM, Falkenberg Smeland M, Butler KM, Lyons MJ, Carvalho CM, Zhang C, Lupski JR, Potocki L, Flores-Gallegos L, Morales-Toquero R, Petit F, Yalcin B, Tuttle A, Elloumi HZ, Mccormick L, Kukolich M, Klaas O, Horvath J, Scala M, Iacomino M, Operto F, Zara F, Writzl K, Maver A, Haanpää MK, Pohjola P, Arikka H, Iseli C, Guex N, Reymond A. Variant-specific pathophysiological mechanisms of AFF3 differently influence transcriptome profiles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.14.24301100. [PMID: 38293053 PMCID: PMC10827271 DOI: 10.1101/2024.01.14.24301100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.
Collapse
Affiliation(s)
- Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Biostatistics platform, University of Lausanne, Lausanne, Switzerland
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Fabio Sirchia
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Lydia Turban
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan-Ulrich Schlump
- Department of Pediatrics, Centre for Neuromedicine, Gemeinschaftskrankenhaus Herdecke Gerhard-Kienle-Weg, Herdecke, Germany
| | - Desiree DeMille
- Genomics Analysis 396, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Pinar Bayrak-Toydemir
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Gary Rex Nelson
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kristen Nicole Wong
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laura Duncan
- Department of Pediatrics, Medical Center North, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mackenzie Mosera
- Department of Pediatrics, Medical Center North, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christian Gilissen
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rogier Kersseboom
- Center for genetic developmental disorders southwest, Zuidwester, Middelharnis, The Netherlands
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | | | | | | | | | - Claudia M.B. Carvalho
- Pacific Northwest Research Institute (PNRI), Broadway, Seattle, Washington, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chaofan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | | | | | | | - Binnaz Yalcin
- Inserm UMR1231, University of Burgundy, 21000 Dijon, France
| | | | | | - Lane Mccormick
- Department of Genetics, Cook Children’s Medical Center, Cook Children’s Health Care System, Fort Worth, Texas, USA
| | - Mary Kukolich
- Department of Genetics, Cook Children’s Medical Center, Cook Children’s Health Care System, Fort Worth, Texas, USA
| | - Oliver Klaas
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Judit Horvath
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ales Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maria K. Haanpää
- Department of Genomics, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Pia Pohjola
- Department of Genomics, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Harri Arikka
- Department of Pediatric Neurology, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Su L, Han J. Non-coding RNAs in hypertrophic scars and keloids: Current research and clinical relevance: A review. Int J Biol Macromol 2024; 256:128334. [PMID: 38007032 DOI: 10.1016/j.ijbiomac.2023.128334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/28/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
Hypertrophic scars (HS) and keloids (KD) are lesions that develop as a result of excessive fibroblast proliferation and collagen deposition in response to dermal injury, leading to dysregulation of the inflammatory, proliferative, and remodeling phases during wound healing. HS and KD affect up to 90 % of the population and are associated with lower quality of life, physical health, and mental status in patients. Efficient targeted treatment represents a significant challenge, primarily due to our limited understanding of their underlying pathogenesis. Non-coding RNAs (ncRNAs), which constitute a significant portion of the human transcriptome with minimal or no protein-coding capacity, have been implicated in various cellular physiologies and pathologies and may serve as diagnostic indicators or therapeutic targets. NcRNAs have been found to be aberrantly expressed and regulated in HS and KD. This review provides a summary of the expression profiles and molecular mechanisms of three common ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in HS and KD. It also discusses their potential as biomarkers for the diagnosis and treatment of these diseases and provides novel insights into epigenetic-based diagnosis and treatment strategies for HS and KD.
Collapse
Affiliation(s)
- Linlin Su
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
11
|
Long Q, Xiang M, Xiao L, Wang J, Guan X, Liu J, Liao C. The Biological Significance of AFF4: Promoting Transcription Elongation, Osteogenic Differentiation and Tumor Progression. Comb Chem High Throughput Screen 2024; 27:1403-1412. [PMID: 37815186 DOI: 10.2174/0113862073241079230920082056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 10/11/2023]
Abstract
As a member of the AF4/FMR2 (AFF) family, AFF4 is a scaffold protein in the superelongation complex (SEC). In this mini-view, we discuss the role of AFF4 as a transcription elongation factor that mediates HIV activation and replication and stem cell osteogenic differentiation. AFF4 also promotes the progression of head and neck squamous cell carcinoma, leukemia, breast cancer, bladder cancer and other malignant tumors. The biological function of AFF4 is largely achieved through SEC assembly, regulates SRY-box transcription factor 2 (SOX2), MYC, estrogen receptor alpha (ESR1), inhibitor of differentiation 1 (ID1), c-Jun and noncanonical nuclear factor-κB (NF-κB) transcription and combines with fusion in sarcoma (FUS), unique regulatory cyclins (CycT1), or mixed lineage leukemia (MLL). We explore the prospects of using AFF4 as a therapeutic in Acquired immunodeficiency syndrome (AIDS) and malignant tumors and its potential as a stemness regulator.
Collapse
Affiliation(s)
- Qian Long
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Mingli Xiang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Linlin Xiao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Jiajia Wang
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaoyan Guan
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Jianguo Liu
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| | - Chengcheng Liao
- Department of Orthodontics II, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, 563000, China
- Oral Disease Research Key Laboratory of Guizhou Tertiary Institution, School of Stomatology, Zunyi Medical University, Zunyi, 563006, China
| |
Collapse
|
12
|
Annear DJ, Kooy RF. Unravelling the link between neurodevelopmental disorders and short tandem CGG-repeat expansions. Emerg Top Life Sci 2023; 7:265-275. [PMID: 37768318 PMCID: PMC10754333 DOI: 10.1042/etls20230021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders characterised by impaired cognitive abilities and developmental challenges. Short tandem repeats (STRs), repetitive DNA sequences found throughout the human genome, have emerged as potential contributors to NDDs. Specifically, the CGG trinucleotide repeat has been implicated in a wide range of NDDs, including Fragile X Syndrome (FXS), the most common inherited form of intellectual disability and autism. This review focuses on CGG STR expansions associated with NDDs and their impact on gene expression through repeat expansion-mediated epigenetic silencing. We explore the molecular mechanisms underlying CGG-repeat expansion and the resulting epigenetic modifications, such as DNA hypermethylation and gene silencing. Additionally, we discuss the involvement of other CGG STRs in neurodevelopmental diseases. Several examples, including FMR1, AFF2, AFF3, XYLT1, FRA10AC1, CBL, and DIP2B, highlight the complex relationship between CGG STR expansions and NDDs. Furthermore, recent advancements in this field are highlighted, shedding light on potential future research directions. Understanding the role of STRs, particularly CGG-repeats, in NDDs has the potential to uncover novel diagnostic and therapeutic strategies for these challenging disorders.
Collapse
Affiliation(s)
- Dale J Annear
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
13
|
Takeo M, Toyoshima KE, Fujimoto R, Iga T, Takase M, Ogawa M, Tsuji T. Cyclical dermal micro-niche switching governs the morphological infradian rhythm of mouse zigzag hair. Nat Commun 2023; 14:4478. [PMID: 37542032 PMCID: PMC10403492 DOI: 10.1038/s41467-023-39605-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 06/21/2023] [Indexed: 08/06/2023] Open
Abstract
Biological rhythms are involved in almost all types of biological processes, not only physiological processes but also morphogenesis. Currently, how periodic morphological patterns of tissues/organs in multicellular organisms form is not fully understood. Here, using mouse zigzag hair, which has 3 bends, we found that a change in the combination of hair progenitors and their micro-niche and subsequent bend formation occur every three days. Chimeric loss-of-function and gain-of-function of Ptn and Aff3, which are upregulated immediately before bend formation, resulted in defects in the downward movement of the micro-niche and the rhythm of bend formation in an in vivo hair reconstitution assay. Our study demonstrates the periodic change in the combination between progenitors and micro-niche, which is vital for the unique infradian rhythm.
Collapse
Affiliation(s)
- Makoto Takeo
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Koh-Ei Toyoshima
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
- OrganTech Inc., Tokyo, 104-0028, Japan
| | - Riho Fujimoto
- Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Hyogo, 669-1337, Japan
| | - Tomoyo Iga
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | - Miki Takase
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan
| | | | - Takashi Tsuji
- Laboratory for Organ Regeneration, RIKEN Center for Developmental Biology (CDB) and RIKEN Center for Biosystems Dynamics Research (BDR), Hyogo, 650-0047, Japan.
- OrganTech Inc., Tokyo, 104-0028, Japan.
| |
Collapse
|
14
|
Abstract
A novel DEK::AFF2 fusion carcinoma was recently described in 29 patients who originally presented with non-viral-associated nonkeratinizing squamous cell carcinoma. The tumors occurred at multiple sites in the head and neck including in the sinonasal tract, middle ear, and temporal bone. This tumor behaves aggressively involving adjacent vital structures, frequently recurs, and is inclined to develop lymph node and distant metastasis. This review aims to summarize the demographic, clinical, pathologic, immunophenotypic features, and pattern of molecular alterations as well as to discuss the differential diagnosis of DEK::AFF2 fusion carcinoma.
Collapse
Affiliation(s)
| | - Ann Sandison
- Department of Head and Neck/Oral Pathology, Guy's and St Thomas' NHS Trust, London, UK
| |
Collapse
|
15
|
Khan H, Koh G, Chong AEQ, Zahid M, Hussain S, Ali H, Ahmad W, Xue S. A novel variant in AFF3 underlying isolated syndactyly. Clin Genet 2023; 103:341-345. [PMID: 36273379 DOI: 10.1111/cge.14254] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023]
Abstract
Isolated syndactyly is a common limb malformation with limited known genetic etiology. We used exome sequencing to discover a novel heterozygous missense variant c.2915G > C: p.Arg972Pro in AFF3 on chromosome 2q11.2 in a family with isolated syndactyly in hands and feet. AFF3 belongs to a family of nuclear transcription activating factors and is involved in limb dorsoventral patterning. The variant Arg972Pro is located near the C terminus, a region that is yet to be associated with human disorders. Functional studies did not show a difference in the stability or subcellular localization of the mutant and wild type proteins. Instead, overexpression in zebrafish embryos suggests that Arg972Pro is a loss-of-function allele. These results suggest that variants in the C terminus of AFF3 may cause a phenotype distinct from previously characterized AFF3 variants.
Collapse
Affiliation(s)
- Hammal Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Glenn Koh
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Angie En Qi Chong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Muhammad Zahid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Shabir Hussain
- Clinical and Molecular Metabolism (CAMM) Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| |
Collapse
|
16
|
Apostolidi M, Stamatopoulou V. Aberrant splicing in human cancer: An RNA structural code point of view. Front Pharmacol 2023; 14:1137154. [PMID: 36909167 PMCID: PMC9995731 DOI: 10.3389/fphar.2023.1137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Alternative splicing represents an essential process that occurs widely in eukaryotes. In humans, most genes undergo alternative splicing to ensure transcriptome and proteome diversity reflecting their functional complexity. Over the last decade, aberrantly spliced transcripts due to mutations in cis- or trans-acting splicing regulators have been tightly associated with cancer development, largely drawing scientific attention. Although a plethora of single proteins, ribonucleoproteins, complexed RNAs, and short RNA sequences have emerged as nodal contributors to the splicing cascade, the role of RNA secondary structures in warranting splicing fidelity has been underestimated. Recent studies have leveraged the establishment of novel high-throughput methodologies and bioinformatic tools to shed light on an additional layer of splicing regulation in the context of RNA structural elements. This short review focuses on the most recent available data on splicing mechanism regulation on the basis of RNA secondary structure, emphasizing the importance of the complex RNA G-quadruplex structures (rG4s), and other specific RNA motifs identified as splicing silencers or enhancers. Moreover, it intends to provide knowledge on newly established techniques that allow the identification of RNA structural elements and highlight the potential to develop new RNA-oriented therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Agilent Laboratories, Agilent Technologies, Santa Clara, CA, United States
| | | |
Collapse
|
17
|
Miller DL, Palsgrove DN, Rijal A, Hathuc V, Chernock R, Gagan J, Bishop JA. Unclassified Neuroendocrine Tumor with a Novel CHD4::AFF2 Fusion: Expanding the Family of AFF2-Rearranged Head and Neck Malignancies. Head Neck Pathol 2022; 16:928-933. [PMID: 35218513 PMCID: PMC9424404 DOI: 10.1007/s12105-022-01432-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
The past decade has seen a dramatic increase in the number of new head and neck tumor entities, most of which are genetically defined. DEK::AFF2 carcinoma is one of the most recently defined neoplasms; it shows a non-keratinizing squamous morphology and occurs in the sinonasal region. We present an unusual neoplasm that was found to harbor a novel fusion involving AFF2. The case was encountered in our clinical practice. Immunohistochemistry was performed along with targeted next generation sequencing (NGS). The case presented as a metastasis to a cervical lymph node from an unknown primary, in a 49-year-old man. The tumor consisted of sheets of primitive round cells which were strongly positive for synaptophysin and chromogranin but negative for cytokeratins, S-100 protein, WT-1, desmin, and many other markers. NGS uncovered CHD4::AFF2. We found a CHD4::AFF2 fusion in a high-grade neuroendocrine tumor. Although it is just a single case, the presence of a novel fusion in a neoplasm that is otherwise not classifiable suggests that it could be a distinct entity within a possible family of AFF2-rearranged tumors. Molecular analysis should be considered for any unclassified round cell tumor in the head and neck, as additional cases will be needed to further elucidate this area.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Doreen N Palsgrove
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX, USA
| | - Anu Rijal
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Vivan Hathuc
- Department of Pathology, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Rebecca Chernock
- Department of Pathology and Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX, USA
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, 6201 Harry Hines Blvd, Dallas, TX, USA.
| |
Collapse
|
18
|
Tsukumo SI, Subramani PG, Seija N, Tabata M, Maekawa Y, Mori Y, Ishifune C, Itoh Y, Ota M, Fujio K, Di Noia JM, Yasutomo K. AFF3, a susceptibility factor for autoimmune diseases, is a molecular facilitator of immunoglobulin class switch recombination. SCIENCE ADVANCES 2022; 8:eabq0008. [PMID: 36001653 PMCID: PMC9401627 DOI: 10.1126/sciadv.abq0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Immunoglobulin class switch recombination (CSR) plays critical roles in controlling infections and inflammatory tissue injuries. Here, we show that AFF3, a candidate gene for both rheumatoid arthritis and type 1 diabetes, is a molecular facilitator of CSR with an isotype preference. Aff3-deficient mice exhibit low serum levels of immunoglobulins, predominantly immunoglobulin G2c (IgG2c) followed by IgG1 and IgG3 but not IgM. Furthermore, Aff3-deficient mice show weak resistance to Plasmodium yoelii infection, confirming that Aff3 modulates immunity to this pathogen. Mechanistically, the AFF3 protein binds to the IgM and IgG1 switch regions via a C-terminal domain, and Aff3 deficiency reduces the binding of AID to the switch regions less efficiently. One AFF3 risk allele for rheumatoid arthritis is associated with high mRNA expression of AFF3, IGHG2, and IGHA2 in human B cells. These findings demonstrate that AFF3 directly regulates CSR by facilitating the recruitment of AID to the switch regions.
Collapse
Affiliation(s)
- Shin-ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine and Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Noé Seija
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Mizuho Tabata
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoichi Maekawa
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuya Mori
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Chieko Ishifune
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine and Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
19
|
Haas M, Hansen EE, Lewis JS, Faden DL. Is it Time for a Molecular-based Classification System for Sinonasal Squamous Cell Carcinoma? Am J Surg Pathol 2022; 46:873-877. [PMID: 35131987 DOI: 10.1097/pas.0000000000001871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Markus Haas
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear
| | - Elisabeth E Hansen
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear
- Harvard Medical School, Boston, MA
| | - James S Lewis
- Departments of Pathology, Microbiology, and Immunology
- Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Daniel L Faden
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear
- Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Gao H, Hu Z, Zhang X. Circular RNA hsa_circ_0057452 facilitates keloid progression by targeting the microRNA-1225-3p/AF4/FMR2 family member 4 axis. Bioengineered 2022; 13:13815-13828. [PMID: 35706403 PMCID: PMC9275943 DOI: 10.1080/21655979.2022.2084460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circular RNA, hsa_circ_0057452, is highly expressed in keloids, but its specific mechanism of action remains unknown. The levels of hsa_circ_0057452, microRNA (miR)-1225-3p, and AF4/FMR2 family member 4 (AFF4) in keloid tissues and keloid fibroblasts (KFs) were determined using quantitative reverse transcription-polymerase chain reaction. Changes in KFs viability, proliferation, apoptosis, and migration were investigated using the cell counting kit-8, bromodeoxyuridine, flow cytometry, and Transwell assays. Luciferase, RNA immunoprecipitation, and RNA pull-down assays were performed to identify the binding relationship among hsa_circ_0057452, miR-1225-3p, and AFF4. We found that hsa_circ_0057452 and AFF4 expression levels were upregulated, whereas miR-1225-3p expression levels were downregulated in keloids. Knockdown of hsa_circ_0057452 or AFF4 suppressed the viability, proliferation, and migration of KFs and induced apoptosis, whereas hsa_circ_0057452 overexpression and miR-1225-3p knockdown showed the opposite trend. Furthermore, hsa_circ_0057452 affected the biological behavior of KFs by releasing AFF4 via sponging of miR-1225-3p. Therefore, our results show that hsa_circ_0057452 promotes keloid progression by targeting miR-1225-3p and regulating AFF4 levels.
Collapse
Affiliation(s)
- Hu Gao
- Wound Repair & Rehabilitation Centre, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| | - Zhen Hu
- Department of Dermatology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| | - Xiangming Zhang
- Wound Repair & Rehabilitation Centre, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, China
| |
Collapse
|
21
|
Fang Y, Cao H, Gong X, Chen Y, Zhuang Y, Zhou S, Chen Y, Jiang Y, Ji X, Peng H, Jing X. AFF4 Predicts the Prognosis of Colorectal Cancer Patients and Suppresses Colorectal Cancer Metastasis via Promoting CDH1 Expression. Front Oncol 2022; 12:797392. [PMID: 35223479 PMCID: PMC8865618 DOI: 10.3389/fonc.2022.797392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION AF4/FMR2 family member 4 (AFF4) is a core component of super elongation complex (SEC) and regulates the transcription elongation of many genes. AFF4 depletion or amplification is associated with multiple cancers, but its role in colorectal cancer (CRC) has not been investigated so far. METHODS qRT-PCR and Western blot analyzed AFF4 expression in the paired clinical CRC tissues. The patients' overall survival curve was determined using the Kaplan-Meier plotter. In vitro experiments, such as cell proliferation, migration, and invasion, were used to preliminarily ascertain the role of AFF4 in CRC. A CRC cell liver metastasis animal model was well established. Livers were harvested and examined histologically by a series of indicators, such as tumor nodules, liver weight, ALT/AST activity, and tumor cell identification by hematoxylin-eosin (HE) staining. RESULTS We firstly examined the expression of AFF4 in colorectal cancer and normal tissues by collecting paired CRC tissues and adjacent normal tissues, revealing that AFF4 was significantly downregulated in CRC patients and lower expression of AFF4 was correlated with poor prognosis. Next, we observed that presence or absence of AFF4 in CRC cells had no effect on cancer cell proliferation, while AFF4 depletion significantly promoted the migration or invasion of CRC cells in vitro. Furthermore, we confirmed that AFF4 deficiency enhanced the metastatic capacity of CRC cells in vivo. Mechanistically, we found that AFF4 upregulated the transcription of CDH1 gene, which encodes E-cadherin and suppresses the epithelial-mesenchymal transition (EMT). Knockdown of AFF4 interfered with CDH1 transcription, resulting in downregulation of E-cadherin expression and the progression of CRC. Moreover, restored CDH1 expression could rescue the phenotype of CRC cells without AFF4. CONCLUSIONS Collectively, our data demonstrated that AFF4 served as a significant novel regulator of CRC via CDH1 transcriptional regulation and a potential effective therapy target for patients with CRC.
Collapse
Affiliation(s)
- Yi Fang
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Hua Cao
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiaoyong Gong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqing Chen
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yugang Zhuang
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Shuqin Zhou
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yuanzhuo Chen
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Yimei Jiang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaopin Ji
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hu Peng
- Emergency Department, Shanghai Tenth People's Hospital, Shanghai, China
| | - Xiaoqian Jing
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Enli L, Moronuki Y, Yamada T, Kose H. Examination of Niddm20 candidate genes of OLETF rats in Drosophila melanogaster using inducible GeneSwitch GAL4 system. J Genet 2022. [DOI: 10.1007/s12041-021-01356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Rooper LM, Agaimy A, Dickson BC, Dueber JC, Eberhart CG, Gagan J, Hartmann A, Khararjian A, London NR, MacMillan CM, Palsgrove DN, Nix JS, Sandison A, Stoehr R, Truong T, Weinreb I, Bishop JA. DEK-AFF2 Carcinoma of the Sinonasal Region and Skull Base: Detailed Clinicopathologic Characterization of a Distinctive Entity. Am J Surg Pathol 2021; 45:1682-1693. [PMID: 34049316 DOI: 10.1097/pas.0000000000001741] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A novel DEK-AFF2 fusion was recently reported in 4 nonkeratinizing squamous cell carcinomas of the sinonasal region and skull base, including 1 with exceptional response to immunotherapy, but it is not yet clear if this rearrangement defines a unique clinicopathologic category or represents a rare event. This study aims to characterize a larger cohort of carcinomas with DEK-AFF2 fusions to assess whether they truly constitute a distinctive entity. Among 27 sinonasal and skull base nonkeratinizing squamous cell carcinoma that were negative for human papillomavirus and Epstein-Barr virus, RNA sequencing identified DEK-AFF2 fusions in 13 cases (48%). Nine were centered in the nasal cavity, 2 in the middle ear/temporal bone, 1 in the nasopharynx, and 1 in the orbit. These tumors displayed recurrent histologic features including (1) complex endophytic and exophytic, frequently papilloma-like growth, (2) transitional epithelium with eosinophilic to amphophilic cytoplasm, (3) absent or minimal keratinization with occasional compact keratin pearls, (4) monotonous nuclei, and (5) prominent tumor-infiltrating neutrophils or stromal lymphocytes. This appearance not only overlaps with high-grade basaloid sinonasal carcinomas but also with benign papillomas and tumors reported as low-grade papillary Schneiderian carcinoma. However, DEK-AFF2 carcinomas showed frequent local recurrence, cervical lymph node metastases, and distant metastasis with 2 deaths from disease, confirming they are aggressive malignancies despite relatively bland histology. Overall, the distinctive molecular, histologic, and clinical features of DEK-AFF2 carcinomas suggest they represent a unique entity in the sinonasal region. This tumor merits increased pathologic recognition to better understand its prognostic and therapeutic implications.
Collapse
Affiliation(s)
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital
| | - Julie C Dueber
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY
| | | | - Jeffrey Gagan
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Armen Khararjian
- Department of Pathology, Kaiser Permanente Walnut Creek Medical Center, Walnut Creek, CA
| | - Nyall R London
- Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christina M MacMillan
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital
| | - Doreen N Palsgrove
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Ann Sandison
- Department of Head and Neck Pathology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Robert Stoehr
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg, University Hospital, Erlangen, Germany
| | - Tra Truong
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology, Sunnybrook Health Sciences Centre
| | - Ilan Weinreb
- Department of Laboratory Medicine and Pathobiology, University of Toronto
- Department of Pathology, University Health Network, Toronto, ON
| | - Justin A Bishop
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Aubrey C, Mal H, Köbel M, Lee CH, Turashvili G, Yip S, Lum A, Nelson G. Protracted clinical course of an AFF1 fusion positive uterine smooth muscle tumor causing diagnostic confusion over a course of 15 years. Gynecol Oncol Rep 2021; 38:100890. [PMID: 34926770 PMCID: PMC8651790 DOI: 10.1016/j.gore.2021.100890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 12/04/2022] Open
Abstract
Histologic diagnostic criteria alone for uterine smooth muscle tumors lacks robust prognostication. Molecular/genetic techniques should be advocated to further investigate unusual case presentations. Novel identification of a PTP4A2-AFF1 genetic fusion was identified. The novel PTP4A2-AFF1 genetic fusion may have further diagnostic prognostic, and therapeutic implications.
Collapse
|
26
|
Chen Y, Qiang R, Zhang Y, Cao W, Wu L, Jiang P, Ai J, Ma X, Dong Y, Gao X, Li H, Lu L, Zhang S, Chai R. The Expression and Roles of the Super Elongation Complex in Mouse Cochlear Lgr5+ Progenitor Cells. Front Cell Neurosci 2021; 15:735723. [PMID: 34658793 PMCID: PMC8519586 DOI: 10.3389/fncel.2021.735723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
The super elongation complex (SEC) has been reported to play a key role in the proliferation and differentiation of mouse embryonic stem cells. However, the expression pattern and function of the SEC in the inner ear has not been investigated. Here, we studied the inner ear expression pattern of three key SEC components, AFF1, AFF4, and ELL3, and found that these three proteins are all expressed in both cochlear hair cells (HCs)and supporting cells (SCs). We also cultured Lgr5+ inner ear progenitors in vitro for sphere-forming assays and differentiation assays in the presence of the SEC inhibitor flavopiridol. We found that flavopiridol treatment decreased the proliferation ability of Lgr5+ progenitors, while the differentiation ability of Lgr5+ progenitors was not affected. Our results suggest that the SEC might play important roles in regulating inner ear progenitors and thus regulating HC regeneration. Therefore, it will be very meaningful to further investigate the detailed roles of the SEC signaling pathway in the inner ear in vivo in order to develop effective treatments for sensorineural hearing loss.
Collapse
Affiliation(s)
- Yin Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Wei Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Kuo YJ, Lewis JS, Zhai C, Chen YA, Chernock RD, Hsieh MS, Lan MY, Lee CK, Weinreb I, Hang JF. DEK-AFF2 fusion-associated papillary squamous cell carcinoma of the sinonasal tract: clinicopathologic characterization of seven cases with deceptively bland morphology. Mod Pathol 2021; 34:1820-1830. [PMID: 34108636 DOI: 10.1038/s41379-021-00846-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022]
Abstract
A novel DEK-AFF2 fusion has been recently identified in four cases of basaloid to nonkeratinizing squamous cell carcinoma (SCC) in the sinonasal tract and middle ear with high-grade morphology. The exceptional response to immune checkpoint inhibitor in the first reported case highlights the potential clinical importance of identifying tumors with DEK-AFF2 fusions. We herein reported the first series of seven cases of DEK-AFF2 fusion-associated sinonasal SCC with deceptively bland morphology, including four cases of low-grade papillary Schneiderian carcinoma, which is a recently described tumor type with unknown molecular underpinnings. The DEK gene rearrangement was confirmed by DEK break-apart fluorescence in situ hybridization and DEK-AFF2 fusion transcripts were detected by reverse transcription polymerase chain reaction. In contrast to the previously reported DEK-AFF2 fusion-positive high-grade carcinomas, these tumors had a monotonous and bland morphology and were all initially diagnosed as sinonasal papilloma (SP) of various types, with or without dysplasia or carcinoma in situ. The tumor was characterized by mixed exophytic and inverted patterns, broad papillary fronds, acantholytic change, cellular monotony, dense neutrophilic infiltrates, and peripheral palisading. All tumors were diffusely positive for p40 or p63 and negative for NUT and p16. Molecular drivers associated with SP, including EGFR and KRAS mutations and both high and low-risk human papillomavirus infection, were negative in all cases. Although there was no overt stromal invasion or desmoplastic reaction in the initial specimens, these tumors tended to progress locoregionally through a prolonged clinical course and occasionally develop lymph node metastases, high-grade transformation, or extensively local destruction eventually leading to death. These justify more aggressive clinical management. Therefore, we propose the new terminology "DEK-AFF2 fusion-associated papillary SCC of the sinonasal tract" to better describe this clinicopathologically and molecularly distinct entity.
Collapse
Affiliation(s)
- Ying-Ju Kuo
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - James S Lewis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Otolaryngology - Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Changwen Zhai
- Department of Pathology, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yun-An Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Rebecca D Chernock
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ming-Ying Lan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-Kuan Lee
- Department of Pathology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Ilan Weinreb
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
28
|
Silva C, Maia N, Santos F, Rodrigues B, Marques I, Santos R, Jorge P. Development and validation in 500 female samples of a TP-PCR assay to identify AFF2 GCC expansions. Sci Rep 2021; 11:14676. [PMID: 34282157 PMCID: PMC8289994 DOI: 10.1038/s41598-021-93473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Over 100 X-linked intellectual disability genes have been identified, with triplet repeat expansions at the FMR1 (FRAXA) and AFF2 (FRAXE) genes being the causative agent in two of them. The absence of FRAXE pathognomonic features hampers early recognition, delaying testing and molecular confirmation. Hence, our laboratory uses a multiplex PCR-based strategy to genotype both FRAXA and FRAXE. However, AFF2 expansions are missed giving rise to an uninformative result in around 20% of female samples. To rule out undetected expansions and confirm homozygosity Southern blot analysis is performed being labour- and resource-intensive. The aim of this study is to develop a timely and economic triplet-primed amplification (TP-PCR) screening strategy to size the AFF2 GCC repeat and accurately assess homozygosity as well as pinpoint multiplex-PCR false negatives in female samples. In order to achieve this, validation was performed in a cohort of 500 females with a previous uninformative FRAXE PCR result. Interestingly, the presence of a T > C SNP (rs868949662), contiguous to the GCC repetitive tract, allows triplet primer binding in two additional repeats, increasing the discrimination power of the TP-PCR assay in heterozygous and homozygous samples. Twelve alleles outside the normal range were recognized: eight intermediate and four premutated, which seems relevant considering the rarity of the AFF2 expansions. All genotypes are concordant with that obtained by Southern blotting, confirming this as a strict, reproducible and low-cost homozygosity screening strategy that enables the identification of small expanded alleles missed by the routine multiplex-PCR due to allele dropout. Overall, this assay is capable of spotting multiplex-PCR false negatives besides identifying alleles up to > 80 GCC repeats. Furthermore, the occurrence of intermediate repeat sizes with unexpected frequency, introduces new areas of clinical research in this cohort in understanding these less explored AFF2 repeat sizes and newly associated phenotypes.
Collapse
Affiliation(s)
- Cecília Silva
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Laboratory for Integrative and Translational Research in Population Health (ITR) Universidade do Porto (UP), Porto, Portugal
| | - Nuno Maia
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Laboratory for Integrative and Translational Research in Population Health (ITR) Universidade do Porto (UP), Porto, Portugal
| | - Flávia Santos
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Laboratory for Integrative and Translational Research in Population Health (ITR) Universidade do Porto (UP), Porto, Portugal
| | - Bárbara Rodrigues
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Laboratory for Integrative and Translational Research in Population Health (ITR) Universidade do Porto (UP), Porto, Portugal
| | - Isabel Marques
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Laboratory for Integrative and Translational Research in Population Health (ITR) Universidade do Porto (UP), Porto, Portugal
| | - Rosário Santos
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Laboratory for Integrative and Translational Research in Population Health (ITR) Universidade do Porto (UP), Porto, Portugal
| | - Paula Jorge
- Unidade de Genética Molecular, Centro de Genética Médica Jacinto de Magalhães (CGM), Centro Hospitalar Universitário do Porto (CHUPorto), Porto, Portugal.
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Laboratory for Integrative and Translational Research in Population Health (ITR) Universidade do Porto (UP), Porto, Portugal.
| |
Collapse
|
29
|
Simultaneous Screening of the FRAXA and FRAXE Loci for Rapid Detection of FMR1 CGG and/or AFF2 CCG Repeat Expansions by Triplet-Primed PCR. J Mol Diagn 2021; 23:941-951. [PMID: 34111553 DOI: 10.1016/j.jmoldx.2021.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022] Open
Abstract
Moderate to hyper-expansion of trinucleotide repeats at the FRAXA and FRAXE fragile sites, with or without concurrent hypermethylation, has been associated with intellectual disability and other conditions. Unlike molecular diagnosis of FMR1 CGG repeat expansions in FRAXA, current detection of AFF2 CCG repeat expansions in FRAXE relies on low-throughput and otherwise inefficient techniques combining Southern blot analysis and PCR. A novel triplet-primed PCR assay was developed for simultaneous screening for trinucleotide repeat expansions at the FRAXA and FRAXE fragile sites, and was validated using archived clinical samples of known FMR1 and AFF2 genotypes. Population samples and FRAXE-affected samples were sequenced for the evaluation of variations in the AFF2 CCG repeat structure. The duplex assay accurately identified expansions at the FMR1 and AFF2 trinucleotide repeat loci. On Sanger sequencing of the AFF2 CCG repeat, the single-nucleotide polymorphism variant rs868914124(C) that effectively adds two CCG repeats at the 5'-end, was enriched in the Malay population and with short repeats (<11 CCGs), and was present in all six expanded AFF2 alleles of this study. All expanded AFF2 alleles contained multiple non-CCG interruptions toward the 5'-end of the repeat. A sensitive, robust, and rapid assay has been developed for the simultaneous detection of expansion mutations at the FMR1 and AFF2 trinucleotide repeat loci, simplifying screening for FRAXA- and FRAXE-associated disorders.
Collapse
|
30
|
Ali Y, Khan S, Chen Y, Farooqi N, Islam ZU, Akhtar M, Aamir, Aman A, Shah AA, Jamal M, Jalil F. Association of AFF3 Gene Polymorphism rs10865035 with Rheumatoid Arthritis: A Population-Based Case-Control Study on a Pakistani Cohort. Genet Res (Camb) 2021; 2021:5544198. [PMID: 34104118 PMCID: PMC8147531 DOI: 10.1155/2021/5544198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the complex diseases with the involvement of the genetic as well as environmental factors in its onset and severity. Different genome-wide association and candidate gene studies have shown the role of several genetic variants in multiple loci/genes with ethnical and geographical variations. This study was designed to detect the association of a single-nucleotide polymorphism (SNP) rs10865035 in the AFF3 gene with the genetic background of rheumatoid arthritis (RA) in the Pakistani cohort. A total of 703 individuals, including 409 RA patients and 294 healthy controls, were genotyped using TaqMan assay and Tri primer ARMS-PCR (amplification-refractory mutation system-polymerase chain reaction) methods. The association of rs10865035 with the RA was statistically determined using different models. Interestingly, besides the homozygous recessive model (G/G vs. A/G + A/A) (OR = 1.693(1.06-2.648); P = 0.025), all other models, which included the codominant (χ 2 = 5.169; P = 0.075), homozygous dominant (A/A vs. G/G + A/G) (OR = 0.867 (0.636-1.187); P = 0.41), heterozygous (A/G vs. A/A + GG) (OR = 0.491 (0.667-1.215); P = 0.49), and additive model (OR = 0.826 (0.665-1.027); P = 0.08) showed insignificant distribution of the genotypes among the cases and controls. These findings suggest that the AFF3 gene (rs10865035) has no significant role in the onset of RA in the Pakistani population.
Collapse
Affiliation(s)
- Yasir Ali
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Suleman Khan
- Lady Ready Hospital, MTI Peshawar, Peshawar, Pakistan
| | - Yangchao Chen
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Pakistan
| | - Nadia Farooqi
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Zia-Ul Islam
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mehran Akhtar
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Aamir
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aisha Aman
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Aftab Ali Shah
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Fazal Jalil
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| |
Collapse
|
31
|
Voisin N, Schnur RE, Douzgou S, Hiatt SM, Rustad CF, Brown NJ, Earl DL, Keren B, Levchenko O, Geuer S, Verheyen S, Johnson D, Zarate YA, Hančárová M, Amor DJ, Bebin EM, Blatterer J, Brusco A, Cappuccio G, Charrow J, Chatron N, Cooper GM, Courtin T, Dadali E, Delafontaine J, Del Giudice E, Doco M, Douglas G, Eisenkölbl A, Funari T, Giannuzzi G, Gruber-Sedlmayr U, Guex N, Heron D, Holla ØL, Hurst ACE, Juusola J, Kronn D, Lavrov A, Lee C, Lorrain S, Merckoll E, Mikhaleva A, Norman J, Pradervand S, Prchalová D, Rhodes L, Sanders VR, Sedláček Z, Seebacher HA, Sellars EA, Sirchia F, Takenouchi T, Tanaka AJ, Taska-Tench H, Tønne E, Tveten K, Vitiello G, Vlčková M, Uehara T, Nava C, Yalcin B, Kosaki K, Donnai D, Mundlos S, Brunetti-Pierri N, Chung WK, Reymond A. Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy. Am J Hum Genet 2021; 108:857-873. [PMID: 33961779 DOI: 10.1016/j.ajhg.2021.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
Collapse
Affiliation(s)
- Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Rhonda E Schnur
- GeneDx, Gaithersburg, MD 20877, USA; Cooper Medical School of Rowan University, Division of Genetics, Camden, NJ 08103, USA
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Olga Levchenko
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Sinje Geuer
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Sarah Verheyen
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield S10 2TQ, UK
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Miroslava Hančárová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - David J Amor
- Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jasmin Blatterer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino 10126, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Joel Charrow
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Genetics Department, Lyon University Hospital, Lyon 69007, France
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Courtin
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Elena Dadali
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | - Ennio Del Giudice
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Martine Doco
- Secteur Génétique, CHU Reims, EA3801, SFR CAPSANTE, 51092 Reims, France
| | | | - Astrid Eisenkölbl
- Department of Pediatrics and Adolescent Medicine, Johannes Kepler University, Kepler University Hospital Linz, Krankenhausstraße 26-30, 4020 Linz, Austria
| | | | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Ursula Gruber-Sedlmayr
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Nicolas Guex
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne 1015, Switzerland
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - David Kronn
- New York Medical College, Valhalla, NY 10595, USA
| | | | - Crystle Lee
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia
| | - Séverine Lorrain
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Protein Analysis Facility, University of Lausanne, Lausanne 1015, Switzerland
| | - Else Merckoll
- Department of Radiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Darina Prchalová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | | | - Victoria R Sanders
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Zdeněk Sedláček
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Heidelis A Seebacher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Elizabeth A Sellars
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Fabio Sirchia
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Toshiki Takenouchi
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Akemi J Tanaka
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Heidi Taska-Tench
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elin Tønne
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Giuseppina Vitiello
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Markéta Vlčková
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Tomoko Uehara
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Caroline Nava
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Binnaz Yalcin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Kenjiro Kosaki
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
32
|
Hu H, Zhang Y, Zhao L, Zhao W, Wang X, Ye E, Dong Y, Zhang L, Ran F, Zhou Y, Huang Y. AFF4 facilitates melanoma cell progression by regulating c-Jun activity. Exp Cell Res 2021; 399:112445. [PMID: 33417923 DOI: 10.1016/j.yexcr.2020.112445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 01/15/2023]
Abstract
Melanoma is characterized by high mortality and poor prognosis due to metastasis. AFF4 (AF4/FMR2 family member 4), as a scaffold protein, is a component of the super elongation complex (SEC), and is involved in the progression of tumors, e.g., leukemia, head and neck squamous cell carcinoma (HNSCC). However, few studies on AFF4 have focused on melanoma. Here, AFF4 expression levels and clinicopathological features were evaluated in melanoma tissue samples. Then, we performed cell proliferation, migration and invasion assays in A375 and A2058 cells lines in vitro to evaluate the role of AFF4 in melanoma. The effects of AFF4 knockdown in vivo were characterized via a xenograft mouse model. Finally, the correlation between c-Jun and AFF4 protein levels in melanoma was analyzed by rescue assay and immunohistochemistry (IHC). We found that AFF4 expression was upregulated in melanoma tumor tissues and that AFF4 protein expression was also closely related to the prognosis of patients with cutaneous melanoma. Moreover, AFF4 could promote the invasion and migration of melanoma cells by mediating epithelial to mesenchymal transition (EMT). AFF4 might regulate c-Jun activity to promote the invasion and migration of melanoma cells. Importantly, c-Jun was regulated by the AFF4 promoted melanoma tumorigenesis in vivo. Taken together, AFF4 may be a novel oncogene that promotes melanoma progression through regulation of c-Jun activity.
Collapse
Affiliation(s)
- Hongyan Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Yi Zhang
- Department of Gynecology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Liufang Zhao
- Department of Head and Neck Cancer, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Wentao Zhao
- Department of Medical Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Xiaoxiong Wang
- International Joint Laboratory on High Altitude Regional Cancer, Kunming, China; Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - En Ye
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Yan Dong
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Lijuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Fengming Ran
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Center), Kunming, China
| | - Yongchun Zhou
- International Joint Laboratory on High Altitude Regional Cancer, Kunming, China; Yunnan Key Laboratory of Lung Cancer Research, Kunming, China
| | - Yunchao Huang
- Yunnan Key Laboratory of Lung Cancer Research, Kunming, China.
| |
Collapse
|
33
|
Chen ZH, Chen TQ, Zeng ZC, Wang D, Han C, Sun YM, Huang W, Sun LY, Fang K, Chen YQ, Luo XQ, Wang WT. Nuclear export of chimeric mRNAs depends on an lncRNA-triggered autoregulatory loop in blood malignancies. Cell Death Dis 2020; 11:566. [PMID: 32703936 PMCID: PMC7378249 DOI: 10.1038/s41419-020-02795-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/05/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Aberrant chromosomal translocations leading to tumorigenesis have been ascribed to the heterogeneously oncogenic functions. However, how fusion transcripts exporting remains to be declared. Here, we showed that the nuclear speckle-specific long noncoding RNA MALAT1 controls chimeric mRNA export processes and regulates myeloid progenitor cell differentiation in malignant hematopoiesis. We demonstrated that MALAT1 regulates chimeric mRNAs export in an m6A-dependent manner and thus controls hematopoietic cell differentiation. Specifically, reducing MALAT1 or m6A methyltransferases and the 'reader' YTHDC1 result in the universal retention of distinct oncogenic gene mRNAs in nucleus. Mechanically, MALAT1 hijacks both the chimeric mRNAs and fusion proteins in nuclear speckles during chromosomal translocations and mediates the colocalization of oncogenic fusion proteins with METTL14. MALAT1 and fusion protein complexes serve as a functional loading bridge for the interaction of chimeric mRNA and METTL14. This study demonstrated a universal mechanism of chimeric mRNA transport that involves lncRNA-fusion protein-m6A autoregulatory loop for controlling myeloid cell differentiation. Targeting the lncRNA-triggered autoregulatory loop to disrupt chimeric mRNA transport might represent a new common paradigm for treating blood malignancies.
Collapse
Affiliation(s)
- Zhen-Hua Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Tian-Qi Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zhan-Cheng Zeng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Dan Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, 510060, Guangzhou, Guangdong, China
| | - Cai Han
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yu-Meng Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wei Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Lin-Yu Sun
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Ke Fang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yue-Qin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China
| | - Xue-Qun Luo
- The First Affiliated Hospital, Sun Yat-sen University, 510080, Guangzhou, China
| | - Wen-Tao Wang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
34
|
Identification of RNA-Binding Proteins as Targetable Putative Oncogenes in Neuroblastoma. Int J Mol Sci 2020; 21:ijms21145098. [PMID: 32707690 PMCID: PMC7403987 DOI: 10.3390/ijms21145098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Neuroblastoma is a common childhood cancer with almost a third of those affected still dying, thus new therapeutic strategies need to be explored. Current experimental therapies focus mostly on inhibiting oncogenic transcription factor signalling. Although LIN28B, DICER and other RNA-binding proteins (RBPs) have reported roles in neuroblastoma development and patient outcome, the role of RBPs in neuroblastoma is relatively unstudied. In order to elucidate novel RBPs involved in MYCN-amplified and other high-risk neuroblastoma subtypes, we performed differential mRNA expression analysis of RBPs in a large primary tumour cohort (n = 498). Additionally, we found via Kaplan–Meier scanning analysis that 685 of the 1483 tested RBPs have prognostic value in neuroblastoma. For the top putative oncogenic candidates, we analysed their expression in neuroblastoma cell lines, as well as summarised their characteristics and existence of chemical inhibitors. Moreover, to help explain their association with neuroblastoma subtypes, we reviewed candidate RBPs’ potential as biomarkers, and their mechanistic roles in neuronal and cancer contexts. We found several highly significant RBPs including RPL22L1, RNASEH2A, PTRH2, MRPL11 and AFF2, which remain uncharacterised in neuroblastoma. Although not all RBPs appear suitable for drug design, or carry prognostic significance, we show that several RBPs have strong rationale for inhibition and mechanistic studies, representing an alternative, but nonetheless promising therapeutic strategy in neuroblastoma treatment.
Collapse
|
35
|
AFF4 regulates osteogenic differentiation of human dental follicle cells. Int J Oral Sci 2020; 12:20. [PMID: 32606293 PMCID: PMC7327054 DOI: 10.1038/s41368-020-0083-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/05/2023] Open
Abstract
As a member of the AFF (AF4/FMR2) family, AFF4 is a transcription elongation factor that is a component of the super elongation complex. AFF4 serves as a scaffolding protein that connects transcription factors and promotes gene transcription through elongation and chromatin remodelling. Here, we investigated the effect of AFF4 on human dental follicle cells (DFCs) in osteogenic differentiation. In this study, we found that small interfering RNA-mediated depletion of AFF4 resulted in decreased alkaline phosphatase (ALP) activity and impaired mineralization. In addition, the expression of osteogenic-related genes (DLX5, SP7, RUNX2 and BGLAP) was significantly downregulated. In contrast, lentivirus-mediated overexpression of AFF4 significantly enhanced the osteogenic potential of human DFCs. Mechanistically, we found that both the mRNA and protein levels of ALKBH1, a critical regulator of epigenetics, changed in accordance with AFF4 expression levels. Overexpression of ALKBH1 in AFF4-depleted DFCs partially rescued the impairment of osteogenic differentiation. Our data indicated that AFF4 promoted the osteogenic differentiation of DFCs by upregulating the transcription of ALKBH1.
Collapse
|
36
|
Chen Y, Cramer P. Structure of the super-elongation complex subunit AFF4 C-terminal homology domain reveals requirements for AFF homo- and heterodimerization. J Biol Chem 2019; 294:10663-10673. [PMID: 31147444 PMCID: PMC6615702 DOI: 10.1074/jbc.ra119.008577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Indexed: 12/12/2022] Open
Abstract
AF4/FMR2 family member 4 (AFF4) is the scaffold protein of the multisubunit super-elongation complex, which plays key roles in the release of RNA polymerase II from promoter-proximal pausing and in the transactivation of HIV-1 transcription. AFF4 consists of an intrinsically disordered N-terminal region that interacts with other super-elongation complex subunits and a C-terminal homology domain (CHD) that is conserved among AF4/FMR2 family proteins, including AFF1, AFF2, AFF3, and AFF4. Here, we solved the X-ray crystal structure of the CHD in human AFF4 (AFF4-CHD) to 2.2 Å resolution and characterized its biochemical properties. The structure disclosed that AFF4-CHD folds into a novel domain that consists of eight helices and is distantly related to tetratrico peptide repeat motifs. Our analyses further revealed that AFF4-CHD mediates the formation of an AFF4 homodimer or an AFF1-AFF4 heterodimer. Results from fluorescence anisotropy experiments suggested that AFF4-CHD interacts with both RNA and DNA in vitro Furthermore, we identified a surface loop region in AFF4-CHD as a substrate for the P-TEFb kinase cyclin-dependent kinase 9, which triggers release of polymerase II from promoter-proximal pausing sites. In conclusion, the AFF-CHD structure and biochemical analyses reported here reveal the molecular basis for the homo- and heterodimerization of AFF proteins and implicate the AFF4-CHD in nucleic acid interactions. The high conservation of the CHD among several other proteins suggests that our results are also relevant for understanding other CHD-containing proteins and their dimerization behavior.
Collapse
Affiliation(s)
- Ying Chen
- From the Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Patrick Cramer
- From the Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
37
|
Krasnopolsky S, Marom L, Victor RA, Kuzmina A, Schwartz JC, Fujinaga K, Taube R. Fused in sarcoma silences HIV gene transcription and maintains viral latency through suppressing AFF4 gene activation. Retrovirology 2019; 16:16. [PMID: 31238957 PMCID: PMC6593535 DOI: 10.1186/s12977-019-0478-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background The human immunodeficiency virus (HIV) cell reservoir is currently a main obstacle towards complete eradication of the virus. This infected pool is refractory to anti-viral therapy and harbors integrated proviruses that are transcriptionally repressed but replication competent. As transcription silencing is key for establishing the HIV reservoir, significant efforts have been made to understand the mechanism that regulate HIV gene transcription, and the role of the elongation machinery in promoting this step. However, while the role of the super elongation complex (SEC) in enhancing transcription activation of HIV is well established, the function of SEC in modulating viral latency is less defined and its cell partners are yet to be identified. Results In this study we identify fused in sarcoma (FUS) as a partner of AFF4 in cells. FUS inhibits the activation of HIV transcription by AFF4 and ELL2, and silences overall HIV gene transcription. Concordantly, depletion of FUS elevates the occupancy of AFF4 and Cdk9 on the viral promoter and activates HIV gene transcription. Live cell imaging demonstrates that FUS co-localizes with AFF4 within nuclear punctuated condensates, which are disrupted upon treating cells with aliphatic alcohol. In HIV infected cells, knockout of FUS delays the gradual entry of HIV into latency, and similarly promotes viral activation in a T cell latency model that is treated with JQ1. Finally, effects of FUS on HIV gene transcription are also exhibited genome wide, where FUS mainly occupies gene promoters at transcription starting sites, while its knockdown leads to an increase in AFF4 and Cdk9 occupancy on gene promoters of FUS affected genes. Conclusions Towards eliminating the HIV infected reservoir, understanding the mechanisms by which the virus persists in the face of therapy is important. Our observations show that FUS regulates both HIV and global gene transcription and modulates viral latency, thus can potentially serve as a target for future therapy that sets to reactivate HIV from its latent state. Electronic supplementary material The online version of this article (10.1186/s12977-019-0478-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simona Krasnopolsky
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Lital Marom
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Rachel A Victor
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Jacob C Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Koh Fujinaga
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
38
|
Sun QQ, Hua DJ, Huang SC, Cen H, Zhou L, Shao S. Association study of AFF1 rs340630 polymorphism with genetic susceptibility to rheumatoid arthritis in Chinese population. ACTA ACUST UNITED AC 2018; 51:e7126. [PMID: 29791587 PMCID: PMC5972020 DOI: 10.1590/1414-431x20187126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
This study was performed to examine whether the AF4/FMR2 family, member
1 (AFF1) rs340630 polymorphism is involved in the
genetic background of rheumatoid arthritis (RA) in a Chinese population. Two
different study groups of RA patients and controls (328 RA patients and 449
healthy controls in the first study group; 232 RA patients and 313 controls in
the second study group) were included in our study. Overall, there was no
significant difference in either genotype (P=0.71 and 0.64 in the first and
second study group, respectively) nor allele (in the first study group: A
vs G, P=0.65, OR=1.05, 95%CI=0.85–1.29; in the second study
group: G vs A, P=0.47, OR=1.10, 95%CI=0.86–1.40) frequencies of
AFF1 rs340630 polymorphism between RA patients and
controls. Our study represents the first report assessing the association of
AFF1 rs340630 polymorphism with RA risk. No significant
evidence was found for the dominant or recessive models. Further case-control
studies with larger sample sizes and fine-mapping studies are needed to clarify
the role of AFF1 in the genetic basis of RA.
Collapse
Affiliation(s)
- Qing-Qing Sun
- Department of Preventive Medicine, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Dong-Jin Hua
- Department of Preventive Medicine, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Si-Chao Huang
- Department of Preventive Medicine, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Han Cen
- Department of Preventive Medicine, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Li Zhou
- Ningbo First Hospital, Department of Rheumatology, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang, China
| | - Song Shao
- Department of Orthopaedics, Liu'an People's Hospital, Liu'an, Anhui, China
| |
Collapse
|
39
|
Li XH, Chavali PL, Pancsa R, Chavali S, Babu MM. Function and Regulation of Phase-Separated Biological Condensates. Biochemistry 2018; 57:2452-2461. [PMID: 29392932 DOI: 10.1021/acs.biochem.7b01228] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Achieving functional specificity while minimizing cost to fitness is a key constraint during evolution. Formation of biological condensates by liquid-liquid phase separation (LLPS) appears to serve as an important regulatory mechanism to generate moderate specificity in molecular recognition while maintaining a reasonable cost for fitness in terms of design complexity. Formation of biological condensates serves as a unique mechanism of molecular recognition achieving some level of specificity without a huge cost to fitness. Rapid formation of biological condensates in vivo induced by specific cellular or environmental triggers has been shown to be an important mechanism for increasing cellular fitness. Here we discuss the functions and regulation of biological condensates, especially those formed by LLPS, involving interactions between proteins and nucleic acids. These condensates are spatially isolated within the cytosol or nucleus and can facilitate specific biochemical functions under conditions such as stress. The misregulation of biological condensates resulting in nondynamic aggregates has been implicated in a number of diseases. Understanding the functional importance of biological condensates and their regulation opens doors for development of therapies targeting dysfunctional biological condensates, as well as spatiotemporal engineering of functions in cells.
Collapse
Affiliation(s)
- Xiao-Han Li
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| | - Pavithra L Chavali
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| | - Rita Pancsa
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| | - M Madan Babu
- MRC Laboratory of Molecular Biology , Francis Crick Avenue , Cambridge , U.K
| |
Collapse
|
40
|
Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci 2018; 75:417-446. [PMID: 28819864 PMCID: PMC5765206 DOI: 10.1007/s00018-017-2620-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
B cell leukaemia is one of the most frequent malignancies in the paediatric population, but also affects a significant proportion of adults in developed countries. The majority of infant and paediatric cases initiate the process of leukaemogenesis during foetal development (in utero) through the formation of a chromosomal translocation or the acquisition/deletion of genetic material (hyperdiploidy or hypodiploidy, respectively). This first genetic insult is the major determinant for the prognosis and therapeutic outcome of patients. B cell leukaemia in adults displays similar molecular features as its paediatric counterpart. However, since this disease is highly represented in the infant and paediatric population, this review will focus on this demographic group and summarise the biological, clinical and epidemiological knowledge on B cell acute lymphoblastic leukaemia of four well characterised subtypes: t(4;11) MLL-AF4, t(12;21) ETV6-RUNX1, t(1;19) E2A-PBX1 and t(9;22) BCR-ABL1.
Collapse
Affiliation(s)
- Camille Malouf
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
41
|
AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs. Bone Res 2017; 5:17044. [PMID: 28955517 PMCID: PMC5613922 DOI: 10.1038/boneres.2017.44] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 02/05/2023] Open
Abstract
AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in super elongation complexes (SECs). Both AFF1 and AFF4 regulate gene transcription through elongation and chromatin remodeling. However, their function in the osteogenic differentiation of mesenchymal stem cells (MSCs) is unknown. In this study, we show that small interfering RNA (siRNA)-mediated depletion of AFF1 in human MSCs leads to increased alkaline phosphatase (ALP) activity, enhanced mineralization and upregulated expression of osteogenic-related genes. On the contrary, depletion of AFF4 significantly inhibits the osteogenic potential of MSCs. In addition, we confirm that overexpression of AFF1 and AFF4 differentially affects osteogenic differentiation in vitro and MSC-mediated bone formation in vivo. Mechanistically, we find that AFF1 regulates the expression of DKK1 via binding to its promoter region. Depletion of DKK1 in HA-AFF1-overexpressing MSCs abrogates the impairment of osteogenic differentiation. Moreover, we detect that AFF4 is enriched in the promoter region of ID1. AFF4 knockdown blunts the BRE luciferase activity, SP7 expression and ALP activity induced by BMP2 treatment. In conclusion, our data indicate that AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs.
Collapse
|
42
|
Fay MM, Lyons SM, Ivanov P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J Mol Biol 2017; 429:2127-2147. [PMID: 28554731 PMCID: PMC5603239 DOI: 10.1016/j.jmb.2017.05.017] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/26/2022]
Abstract
G-quadruplexes (G4s) are extremely stable DNA or RNA secondary structures formed by sequences rich in guanine. These structures are implicated in many essential cellular processes, and the number of biological functions attributed to them continues to grow. While DNA G4s are well understood on structural and, to some extent, functional levels, RNA G4s and their functions have received less attention. The presence of bona fide RNA G4s in cells has long been a matter of debate. The development of G4-specific antibodies and ligands hinted on their presence in vivo, but recent advances in RNA sequencing coupled with chemical footprinting suggested the opposite. In this review, we will critically discuss the biology of RNA G4s focusing on the molecular mechanisms underlying their proposed functions.
Collapse
Affiliation(s)
- Marta M Fay
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Shawn M Lyons
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
43
|
Gunnarsson B, Jónsdóttir GA, Björnsdóttir G, Konte B, Sulem P, Kristmundsdóttir S, Kehr B, Gústafsson Ó, Helgason H, Iordache PD, Ólafsson S, Frigge ML, Þorleifsson G, Arnarsdóttir S, Stefánsdóttir B, Giegling I, Djurovic S, Sundet KS, Espeseth T, Melle I, Hartmann AM, Thorsteinsdottir U, Kong A, Guðbjartsson DF, Ettinger U, Andreassen OA, Dan Rujescu, Halldórsson JG, Stefánsson H, Halldórsson BV, Stefánsson K. A sequence variant associating with educational attainment also affects childhood cognition. Sci Rep 2016; 6:36189. [PMID: 27811963 PMCID: PMC5095652 DOI: 10.1038/srep36189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/12/2016] [Indexed: 11/21/2022] Open
Abstract
Only a few common variants in the sequence of the genome have been shown to impact cognitive traits. Here we demonstrate that polygenic scores of educational attainment predict specific aspects of childhood cognition, as measured with IQ. Recently, three sequence variants were shown to associate with educational attainment, a confluence phenotype of genetic and environmental factors contributing to academic success. We show that one of these variants associating with educational attainment, rs4851266-T, also associates with Verbal IQ in dyslexic children (P = 4.3 × 10−4, β = 0.16 s.d.). The effect of 0.16 s.d. corresponds to 1.4 IQ points for heterozygotes and 2.8 IQ points for homozygotes. We verified this association in independent samples consisting of adults (P = 8.3 × 10−5, β = 0.12 s.d., combined P = 2.2 x 10−7, β = 0.14 s.d.). Childhood cognition is unlikely to be affected by education attained later in life, and the variant explains a greater fraction of the variance in verbal IQ than in educational attainment (0.7% vs 0.12%,. P = 1.0 × 10−5).
Collapse
Affiliation(s)
| | | | | | - Bettina Konte
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | | - Birte Kehr
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | | | - Hannes Helgason
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Paul D Iordache
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,Institute of Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
| | | | | | | | | | | | - Ina Giegling
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Srdjan Djurovic
- NORMENT, KG Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo 0450, Norway
| | - Kjetil S Sundet
- Department of Psychology, University of Oslo, Oslo 0373, Norway.,NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo 0373, Norway.,NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway
| | - Ingrid Melle
- Department of Medical Genetics, Oslo University Hospital, Oslo 0450, Norway.,Department of Psychology, University of Oslo, Oslo 0373, Norway
| | - Annette M Hartmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Daníel F Guðbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ole A Andreassen
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo N-0316, Norway.,NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo 0424, Norway
| | - Dan Rujescu
- Department of Psychiatry, Psychotherapy and Psychosomatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany.,Department of Psychiatry, University of Munich (LMU), Munich, Germany
| | | | | | - Bjarni V Halldórsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,Institute of Biomedical and Neural Engineering, Reykjavík University, Reykjavík, Iceland
| | - Kári Stefánsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland.,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
44
|
Molecular Genetic Contributions to Social Deprivation and Household Income in UK Biobank. Curr Biol 2016; 26:3083-3089. [PMID: 27818178 PMCID: PMC5130721 DOI: 10.1016/j.cub.2016.09.035] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/13/2016] [Accepted: 09/19/2016] [Indexed: 11/20/2022]
Abstract
Individuals with lower socio-economic status (SES) are at increased risk of physical and mental illnesses and tend to die at an earlier age [1, 2, 3]. Explanations for the association between SES and health typically focus on factors that are environmental in origin [4]. However, common SNPs have been found collectively to explain around 18% of the phenotypic variance of an area-based social deprivation measure of SES [5]. Molecular genetic studies have also shown that common physical and psychiatric diseases are partly heritable [6]. It is possible that phenotypic associations between SES and health arise partly due to a shared genetic etiology. We conducted a genome-wide association study (GWAS) on social deprivation and on household income using 112,151 participants of UK Biobank. We find that common SNPs explain 21% of the variation in social deprivation and 11% of household income. Two independent loci attained genome-wide significance for household income, with the most significant SNP in each of these loci being rs187848990 on chromosome 2 and rs8100891 on chromosome 19. Genes in the regions of these SNPs have been associated with intellectual disabilities, schizophrenia, and synaptic plasticity. Extensive genetic correlations were found between both measures of SES and illnesses, anthropometric variables, psychiatric disorders, and cognitive ability. These findings suggest that some SNPs associated with SES are involved in the brain and central nervous system. The genetic associations with SES obviously do not reflect direct causal effects and are probably mediated via other partly heritable variables, including cognitive ability, personality, and health. Common SNPs explain 21% of social deprivation and 11% of household income Two loci attained genome-wide significance for household income Genes in these loci have been linked to synaptic plasticity Genetic correlations were found between both measures of SES and many other traits
Collapse
|
45
|
Chromatin, DNA structure and alternative splicing. FEBS Lett 2015; 589:3370-8. [PMID: 26296319 DOI: 10.1016/j.febslet.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023]
Abstract
Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.
Collapse
|
46
|
Maurin T, Melko M, Abekhoukh S, Khalfallah O, Davidovic L, Jarjat M, D'Antoni S, Catania MV, Moine H, Bechara E, Bardoni B. The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the Fragile X mental retardation protein in cerebellum. Nucleic Acids Res 2015; 43:8540-50. [PMID: 26250109 PMCID: PMC4787806 DOI: 10.1093/nar/gkv801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/28/2015] [Indexed: 11/13/2022] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited intellectual disability, is caused by the silencing of the FMR1 gene encoding an RNA-binding protein (FMRP) mainly involved in translational control. We characterized the interaction between FMRP and the mRNA of GRK4, a member of the guanine nucleotide-binding protein (G protein)-coupled receptor kinase super-family, both in vitro and in vivo. While the mRNA level of GRK4 is unchanged in the absence or in the presence of FMRP in different regions of the brain, GRK4 protein level is increased in Fmr1-null cerebellum, suggesting that FMRP negatively modulates the expression of GRK4 at the translational level in this brain region. The C-terminal region of FMRP interacts with a domain of GRK4 mRNA, that we called G4RIF, that is folded in four stem loops. The SL1 stem loop of G4RIF is protected by FMRP and is part of the S1/S2 sub-domain that directs translation repression of a reporter mRNA by FMRP. These data confirm the role of the G4RIF/FMRP complex in translational regulation. Considering the role of GRK4 in GABAB receptors desensitization, our results suggest that an increased GRK4 levels in FXS might contribute to cerebellum-dependent phenotypes through a deregulated desensitization of GABAB receptors.
Collapse
Affiliation(s)
- Thomas Maurin
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Mireille Melko
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Sabiha Abekhoukh
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Olfa Khalfallah
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Laetitia Davidovic
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Marielle Jarjat
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Simona D'Antoni
- Institute of Neurological Sciences, The National Research Council of Italy, 95126 Catania, Italy
| | - Maria Vincenza Catania
- Institute of Neurological Sciences, The National Research Council of Italy, 95126 Catania, Italy IRCCS Oasi Maria SS, 94018 Troina (EN), Italy
| | - Hervé Moine
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS, UMR7104, Inserm U596, Collège de France, Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Elias Bechara
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| | - Barbara Bardoni
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, 06560 Valbonne Sophia-Antipolis, France University of Nice Sophia-Antipolis, 06103 Nice, FRANCE CNRS LIA 'Neogenex', 06560 Valbonne Sophia-Antipolis, France
| |
Collapse
|
47
|
Correia F, Café C, Almeida J, Mouga S, Oliveira G. Autism spectrum disorder: FRAXE mutation, a rare etiology. J Autism Dev Disord 2015; 45:888-92. [PMID: 25035088 DOI: 10.1007/s10803-014-2185-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by impaired social interaction and communication, restricted interests and repetitive behaviors. Fragile X E is associated with X-linked non-specific mild intellectual disability (ID) and with behavioral problems. Most of the known genetic causes of ASD are also causes of ID, implying that these two identities share common genetic bases. We present a child with an ASD with a normal range of intelligence quotient, that later evolved to compulsive behavior. FRAXE locus analysis by polymerase chain reaction revealed a complete mutation of the FMR 2 gene. This report stresses the importance of clinicians being aware of the association between a full mutation of FMR2 and ASD associated with compulsive behavior despite normal intellectual level.
Collapse
Affiliation(s)
- F Correia
- Serviço de Pediatria, Centro Hospitalar do Alto Ave, Rua dos Cutileiros, Creixomil, 4835-044, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
48
|
Combined transcriptome studies identify AFF3 as a mediator of the oncogenic effects of β-catenin in adrenocortical carcinoma. Oncogenesis 2015. [PMID: 26214578 PMCID: PMC4521181 DOI: 10.1038/oncsis.2015.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adrenocortical cancer (ACC) is a very aggressive tumor, and genomics studies demonstrate that the most frequent alterations of driver genes in these cancers activate the Wnt/β-catenin signaling pathway. However, the adrenal-specific targets of oncogenic β-catenin-mediating tumorigenesis have not being established. A combined transcriptomic analysis from two series of human tumors and the human ACC cell line H295R harboring a spontaneous β-catenin activating mutation was done to identify the Wnt/β-catenin targets. Seven genes were consistently identified in the three studies. Among these genes, we found that AFF3 mediates the oncogenic effects of β-catenin in ACC. The Wnt response element site located at nucleotide position −1408 of the AFF3 transcriptional start sites (TSS) mediates the regulation by the Wnt/β-catenin signaling pathway. AFF3 silencing decreases cell proliferation and increases apoptosis in the ACC cell line H295R. AFF3 is located in nuclear speckles, which play an important role in RNA splicing. AFF3 overexpression in adrenocortical cells interferes with the organization and/or biogenesis of these nuclear speckles and alters the distribution of CDK9 and cyclin T1 such that they accumulate at the sites of AFF3/speckles. We demonstrate that AFF3 is a new target of Wnt/β-catenin pathway involved in ACC, acting on transcription and RNA splicing.
Collapse
|
49
|
Bartoletti-Stella A, Gasparini L, Giacomini C, Corrado P, Terlizzi R, Giorgio E, Magini P, Seri M, Baruzzi A, Parchi P, Brusco A, Cortelli P, Capellari S. Messenger RNA processing is altered in autosomal dominant leukodystrophy. Hum Mol Genet 2015; 24:2746-56. [PMID: 25637521 PMCID: PMC4406291 DOI: 10.1093/hmg/ddv034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
Adult-onset autosomal dominant leukodystrophy (ADLD) is a slowly progressive neurological disorder characterized by autonomic dysfunction, followed by cerebellar and pyramidal features. ADLD is caused by duplication of the lamin B1 gene (LMNB1), which leads to its increased expression. The molecular pathways involved in the disease are still poorly understood. Hence, we analyzed global gene expression in fibroblasts and whole blood of LMNB1 duplication carriers and used Gene Set Enrichment Analysis to explore their gene signatures. We found that LMNB1 duplication is associated with dysregulation of genes involved in the immune system, neuronal and skeletal development. Genes with an altered transcriptional profile clustered in specific genomic regions. Among the dysregulated genes, we further studied the role of RAVER2, which we found to be overexpressed at mRNA and protein level. RAVER2 encodes a putative trans regulator of the splicing repressor polypyrimidine tract binding protein (PTB) and is likely implicated in alternative splicing regulation. Functional studies demonstrated an abnormal splicing pattern of several PTB-target genes and of the myelin protein gene PLP1, previously demonstrated to be involved in ADLD. Mutant mice with different lamin B1 expression levels confirmed that Raver2 expression is dependent on lamin B1 in neural tissue and determines an altered splicing pattern of PTB-target genes and Plp1. Overall our results demonstrate that deregulation of lamin B1 expression induces modified splicing of several genes, likely driven by raver-2 overexpression, and suggest that an alteration of mRNA processing could be a pathogenic mechanism in ADLD.
Collapse
Affiliation(s)
- Anna Bartoletti-Stella
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
| | - Laura Gasparini
- Department of Neuroscience and Brain Techonologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Caterina Giacomini
- Department of Neuroscience and Brain Techonologies, Istituto Italiano di Tecnologia, Genova 16163, Italy
| | - Patrizia Corrado
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy
| | - Rossana Terlizzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Elisa Giorgio
- Department of Medical Sciences, University of Torino, Torino 10126, Italy
| | - Pamela Magini
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna 40138, Italy and
| | - Marco Seri
- Medical Genetics Unit, Department of Medical and Surgical Sciences, University of Bologna 40138, Italy and
| | - Agostino Baruzzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy, Città della Salute e della Scienza, University Hospital, Medical Genetics Unit, Torino 10126, Italy
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40123, Italy, IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Ospedale Bellaria, Bologna 40139, Italy,
| |
Collapse
|
50
|
AUF-1 and YB-1 independently regulate β-globin mRNA in developing erythroid cells through interactions with poly(A)-binding protein. Mech Dev 2015; 136:40-52. [PMID: 25720531 DOI: 10.1016/j.mod.2015.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 11/23/2022]
Abstract
The normal expression of β-globin protein in mature erythrocytes is critically dependent on post-transcriptional events in erythroid progenitors that ensure the high stability of β-globin mRNA. Previous work has revealed that these regulatory processes require AUF-1 and YB-1, two RNA-binding proteins that assemble an mRNP β-complex on the β-globin 3'UTR. Here, we demonstrate that the β-complex organizes during the erythropoietic interval when both β-globin mRNA and protein accumulate rapidly, implicating the importance of this regulatory mRNP to normal erythroid differentiation. Subsequent functional analyses link β-complex assembly to the half-life of β-globin mRNA in vivo, providing a mechanistic basis for this regulatory activity. AUF-1 and YB-1 appear to serve a redundant post-transcriptional function, as both β-complex assembly and β-globin mRNA levels are reduced by coordinate depletion of the two factors, and can be restored by independent rescue with either factor alone. Additional studies demonstrate that the β-complex assembles more efficiently on polyadenylated transcripts, implicating a model in which the β-complex enhances the binding of PABPC1 to the poly(A) tail, inhibiting mRNA deadenylation and consequently effecting the high half-life of β-globin transcripts in erythroid progenitors. These data specify a post-transcriptional mechanism through which AUF1 and YB1 contribute to the normal development of erythropoietic cells, as well as to non-hematopoietic tissues in which AUF1- and YB1-based regulatory mRNPs have been observed to assemble on heterologous mRNAs.
Collapse
|