1
|
Xavier JM, Magno R, Russell R, de Almeida BP, Jacinta-Fernandes A, Besouro-Duarte A, Dunning M, Samarajiwa S, O'Reilly M, Maia AM, Rocha CL, Rosli N, Ponder BAJ, Maia AT. Identification of candidate causal variants and target genes at 41 breast cancer risk loci through differential allelic expression analysis. Sci Rep 2024; 14:22526. [PMID: 39341862 PMCID: PMC11438911 DOI: 10.1038/s41598-024-72163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Understanding breast cancer genetic risk relies on identifying causal variants and candidate target genes in risk loci identified by genome-wide association studies (GWAS), which remains challenging. Since most loci fall in active gene regulatory regions, we developed a novel approach facilitated by pinpointing the variants with greater regulatory potential in the disease's tissue of origin. Through genome-wide differential allelic expression (DAE) analysis, using microarray data from 64 normal breast tissue samples, we mapped the variants associated with DAE (daeQTLs). Then, we intersected these with GWAS data to reveal candidate risk regulatory variants and analysed their cis-acting regulatory potential. Finally, we validated our approach by extensive functional analysis of the 5q14.1 breast cancer risk locus. We observed widespread gene expression regulation by cis-acting variants in breast tissue, with 65% of coding and noncoding expressed genes displaying DAE (daeGenes). We identified over 54 K daeQTLs for 6761 (26%) daeGenes, including 385 daeGenes harbouring variants previously associated with BC risk. We found 1431 daeQTLs mapped to 93 different loci in strong linkage disequilibrium with risk-associated variants (risk-daeQTLs), suggesting a link between risk-causing variants and cis-regulation. There were 122 risk-daeQTL with stronger cis-acting potential in active regulatory regions with protein binding evidence. These variants mapped to 41 risk loci, of which 29 had no previous report of target genes and were candidates for regulating the expression levels of 65 genes. As validation, we identified and functionally characterised five candidate causal variants at the 5q14.1 risk locus targeting the ATG10 and ATP6AP1L genes, likely acting via modulation of alternative transcription and transcription factor binding. Our study demonstrates the power of DAE analysis and daeQTL mapping to identify causal regulatory variants and target genes at breast cancer risk loci, including those with complex regulatory landscapes. It additionally provides a genome-wide resource of variants associated with DAE for future functional studies.
Collapse
Affiliation(s)
- Joana M Xavier
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
| | - Ramiro Magno
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal
- Pattern Institute PT, Faro, Portugal
| | - Roslin Russell
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Bernardo P de Almeida
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
- InstaDeep, Paris, France
| | - Ana Jacinta-Fernandes
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
| | | | - Mark Dunning
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
- Sheffield Bioinformatics Core, The School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Shamith Samarajiwa
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
- Genetics and Genomics Section, Imperial College London, London, UK
| | - Martin O'Reilly
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | | | - Cátia L Rocha
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Faculty of Medicine, Instituto de Saúde Ambiental (ISAMB), University of Lisbon, Lisbon, Portugal
| | - Nordiana Rosli
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal
- Training Division, Ministry of Health Malaysia, Putrajaya, Malaysia
- Biometrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Bruce A J Ponder
- Cambridge Institute - CRUK, University of Cambridge, Cambridge, UK
| | - Ana-Teresa Maia
- Cintesis@Rise, Universidade do Algarve, Faro, Portugal.
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Faro, Portugal.
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
2
|
Correia L, Magno R, Xavier JM, de Almeida BP, Duarte I, Esteves F, Ghezzo M, Eldridge M, Sun C, Bosma A, Mittempergher L, Marreiros A, Bernards R, Caldas C, Chin SF, Maia AT. Allelic expression imbalance of PIK3CA mutations is frequent in breast cancer and prognostically significant. NPJ Breast Cancer 2022; 8:71. [PMID: 35676284 PMCID: PMC9177727 DOI: 10.1038/s41523-022-00435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
PIK3CA mutations are the most common in breast cancer, particularly in the estrogen receptor-positive cohort, but the benefit of PI3K inhibitors has had limited success compared with approaches targeting other less common mutations. We found a frequent allelic expression imbalance between the missense mutant and wild-type PIK3CA alleles in breast tumors from the METABRIC (70.2%) and the TCGA (60.1%) projects. When considering the mechanisms controlling allelic expression, 27.7% and 11.8% of tumors showed imbalance due to regulatory variants in cis, in the two studies respectively. Furthermore, preferential expression of the mutant allele due to cis-regulatory variation is associated with poor prognosis in the METABRIC tumors (P = 0.031). Interestingly, ER-, PR-, and HER2+ tumors showed significant preferential expression of the mutated allele in both datasets. Our work provides compelling evidence to support the clinical utility of PIK3CA allelic expression in breast cancer in identifying patients of poorer prognosis, and those with low expression of the mutated allele, who will unlikely benefit from PI3K inhibitors. Furthermore, our work proposes a model of differential regulation of a critical cancer-promoting gene in breast cancer.
Collapse
Affiliation(s)
- Lizelle Correia
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
| | - Ramiro Magno
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Joana M Xavier
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Bernardo P de Almeida
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
- The Research Institute of Molecular Pathology, Vienna, Austria
| | - Isabel Duarte
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Filipa Esteves
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, Universidade do Algarve, Faro, Portugal
| | - Marinella Ghezzo
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal
| | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK
| | - Chong Sun
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- DKFZ, Heidelberg, Germany
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lorenza Mittempergher
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ana Marreiros
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal
| | - Rene Bernards
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Cancer Centre, Cambridge, UK
| | - Suet-Feung Chin
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| | - Ana-Teresa Maia
- Faculty of Medicine and Biomedical Sciences (FMCB), Universidade do Algarve, Faro, Portugal.
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, Faro, Portugal.
| |
Collapse
|
3
|
Galisa SLG, Jacob PL, de Farias AA, Lemes RB, Alves LU, Nóbrega JCL, Zatz M, Santos S, Weller M. Haplotypes of single cancer driver genes and their local ancestry in a highly admixed long-lived population of Northeast Brazil. Genet Mol Biol 2022; 45:e20210172. [PMID: 35112701 PMCID: PMC8811751 DOI: 10.1590/1678-4685-gmb-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.
Collapse
Affiliation(s)
- Steffany Larissa Galdino Galisa
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Priscila Lima Jacob
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Allysson Allan de Farias
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Renan Barbosa Lemes
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Leandro Ucela Alves
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Júlia Cristina Leite Nóbrega
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Mayana Zatz
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Silvana Santos
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| | - Mathias Weller
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| |
Collapse
|
4
|
Ruiz de Garibay G, Fernandez-Garcia I, Mazoyer S, Leme de Calais F, Ameri P, Vijayakumar S, Martinez-Ruiz H, Damiola F, Barjhoux L, Thomassen M, Andersen LVB, Herranz C, Mateo F, Palomero L, Espín R, Gómez A, García N, Jimenez D, Bonifaci N, Extremera AI, Castaño J, Raya A, Eyras E, Puente XS, Brunet J, Lázaro C, Radice P, Barnes DR, Antoniou AC, Spurdle AB, de la Hoya M, Baralle D, Barcellos-Hoff MH, Pujana MA. Altered regulation of BRCA1 exon 11 splicing is associated with breast cancer risk in carriers of BRCA1 pathogenic variants. Hum Mutat 2021; 42:1488-1502. [PMID: 34420246 DOI: 10.1002/humu.24276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022]
Abstract
Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.
Collapse
Affiliation(s)
- Gorka Ruiz de Garibay
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Ignacio Fernandez-Garcia
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Sylvie Mazoyer
- Equipe GENDEV, INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Université St Etienne, Lyon, France
| | - Flavia Leme de Calais
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Pietro Ameri
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Sangeetha Vijayakumar
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Haydeliz Martinez-Ruiz
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA
| | - Francesca Damiola
- Department of Biopathology, Pathology Research Platform, Centre Léon Bérard, Lyon, France
| | - Laure Barjhoux
- Department of Biopathology, Pathology Research Platform, Centre Léon Bérard, Lyon, France
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Lars V B Andersen
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
| | - Carmen Herranz
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Francesca Mateo
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Luis Palomero
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Roderic Espín
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Antonio Gómez
- Gene Regulation, Stem Cells and Cancer, Center for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| | - Nadia García
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Daniel Jimenez
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Núria Bonifaci
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Ana I Extremera
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Julio Castaño
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Angel Raya
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L'Hospitalet del Llobregat, Barcelona, Spain.,Centre for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Eduardo Eyras
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain.,Department of Genome Sciences, The John Curtin School of Medical Research, EMBL Australia Partner Laboratory Network, Australian National University, Canberra, Australia
| | - Xose S Puente
- Department of Biochemistry and Molecular Biology, University Institute of Oncology, University of Oviedo, Oviedo, Spain.,Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, and Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | - Conxi Lázaro
- Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, and Girona Biomedical Research Institute (IDIBGI), Girona, Catalonia, Spain
| | -
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | -
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Research Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniel R Barnes
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Amanda B Spurdle
- Genetics and Computational Division, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Miguel de la Hoya
- Biomedical Research Centre in Cancer (CIBERONC), Instituto Salud Carlos III, Madrid, Spain.,Molecular Oncology Laboratory, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Diana Baralle
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, Southampton University Hospital NHS Trust, Southampton, UK
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, New York, New York, USA.,Department of Radiation Oncology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Miquel A Pujana
- ProCURE, Oncobell, Catalan Institute of Oncology, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Identification of Variants (rs11571707, rs144848, and rs11571769) in the BRCA2 Gene Associated with Hereditary Breast Cancer in Indigenous Populations of the Brazilian Amazon. Genes (Basel) 2021; 12:genes12020142. [PMID: 33499154 PMCID: PMC7911168 DOI: 10.3390/genes12020142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/09/2022] Open
Abstract
Estimates show that 5–10% of breast cancer cases are hereditary, caused by genetic variants in autosomal dominant genes; of these, 16% are due to germline mutations in the BRCA1 and BRCA2 genes. The comprehension of the mutation profile of these genes in the Brazilian population, particularly in Amazonian Amerindian groups, is scarce. We investigated fifteen polymorphisms in the BRCA1 and BRCA2 genes in Amazonian Amerindians and compared the results with the findings of global populations publicly available in the 1000 Genomes Project database. Our study shows that three variants (rs11571769, rs144848, and rs11571707) of the BRCA2 gene, commonly associated with hereditary breast cancer, had a significantly higher allele frequency in the Amazonian Amerindian individuals in comparison with the African, American, European, and Asian groups analyzed. These data outline the singular genetic profiles of the indigenous population from the Brazilian Amazon region. The knowledge about BRCA1 and BRCA2 variants is critical to establish public policies for hereditary breast cancer screening in Amerindian groups and populations admixed with them, such as the Brazilian population.
Collapse
|
6
|
Ma B, Guo W, Shan M, Zhang N, Ma B, Sun G. BRCA1 subcellular localization regulated by PI3K signaling pathway in triple-negative breast cancer MDA-MB-231 cells and hormone-sensitive T47D cells. Open Life Sci 2020; 15:501-510. [PMID: 33817238 PMCID: PMC7874579 DOI: 10.1515/biol-2020-0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
This study is to investigate the effect of the PI3K/Akt signaling pathway on the regulation of BRCA1 subcellular localization in triple-negative breast cancer (TNBC) MDA-MB-231 cells and hormone-sensitive T47D cells. We found that heregulin-activated T47D cells showed more nuclear localization of BRCA1, but BRCA1 nuclear localization decreased after the inhibition of the PI3K signaling pathway. In MDA-MB-231 cells, activation or inhibition of the PI3K signaling pathway did not significantly affect cell apoptosis and BRCA1 nuclear translocation (P > 0.05). However, in T47D cells, the activation of the PI3K pathway significantly increased cell apoptosis (P < 0.05). In the heregulin-activated MDA-MB-231 and T47D cells, the phosphorylation of Akt and BRCA1 was significantly increased (P < 0.05), while that was significantly reduced after PI3K pathway inhibition (P < 0.05). The changing trends of the mRNA levels of Akt and BRCA1 in MDA-MB-231 and T47D cells after PI3K pathway activation or inhibition were consistent with the trends of their proteins. In both MDA-MB-231 and T47D cells, BRCA1 phosphorylation is regulated by the PI3K signaling pathway, but the nuclear localization of BRCA1 is different in these two cell lines. Moreover, the apoptosis rates of these two cell lines are different.
Collapse
Affiliation(s)
- Bin Ma
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| | - Wenjia Guo
- Xinjiang Uygur Autonomous Region Cancer Research Institute, Urumqi 830011, Xinjiang, P. R. China
| | - Meihui Shan
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| | - Nan Zhang
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| | - Binlin Ma
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| | - Gang Sun
- Department of Breast and Head & Neck, The Affiliated Cancer Hospital of Xinjiang Medical University, No. 789 Suzhou East Street, Urumqi 830011, Xinjiang, P. R. China
| |
Collapse
|
7
|
Li Q, Li L. The diagnostic value of combined detection of genetic markers and serum protein markers on breast cancer. Saudi J Biol Sci 2019; 26:183-187. [PMID: 30622425 PMCID: PMC6319083 DOI: 10.1016/j.sjbs.2018.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 11/30/2022] Open
Abstract
Objective: The research is to explore the diagnostic value of several detection methods including separated and combined detection of the related genes and related proteins of breast cancer and combined detection of all genetic markers and serum protein markers on breast cancer. Method: The mRNA level expression of the related genes of breast cancer was detected by FQ-PCR technique and the ratio of BRCA-1, Myc, C-erbB2 and β2 micro-globulin was used to express levels of BRCA-1, Myc and C-erbB2; the related proteins of breast cancer were detected through ELISA. Then the research data was analyzed by SPSS19.0 software with t-test as comparison method, and ROC curve was used to calculate the sensitivity, specificity and accuracy of the diagnostic models. Result: No difference can be found among the six indexes in the control group and benign breast tumor group while compared with the benign breast tumor group and the control group, the breast cancer group was significantly different from them; combined detection of genes and that of proteins were both superior to their separated detection; all-marker combined detection was superior to separated detection, which is consistent with combined detection of genes and proteins. Conclusion: More detection indexes will not necessarily outcome better detection effect. Hence, appropriate detection indexes and number are needed to achieve better diagnosis effect. In order to conduct more specific method, more test samples are needed for further researches.
Collapse
Affiliation(s)
- Qiujian Li
- Chinese and Western Medicine Combined Department, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Lu Li
- Chinese and Western Medicine Combined Department, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
8
|
Hamdi Y, Ben Rekaya M, Jingxuan S, Nagara M, Messaoud O, Benammar Elgaaied A, Mrad R, Chouchane L, Boubaker MS, Abdelhak S, Boussen H, Romdhane L. A genome wide SNP genotyping study in the Tunisian population: specific reporting on a subset of common breast cancer risk loci. BMC Cancer 2018; 18:1295. [PMID: 30594178 PMCID: PMC6310952 DOI: 10.1186/s12885-018-5133-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background Breast cancer is the most common cancer in women worldwide. Around 50% of breast cancer familial risk has been so far explained by known susceptibility alleles with variable levels of risk and prevalence. The vast majority of these breast cancer associated variations reported to date are from populations of European ancestry. In spite of its heterogeneity and genetic wealth, North-African populations have not been studied by the HapMap and the 1000Genomes projects. Thus, very little is known about the genetic architecture of these populations. Methods This study aimed to investigate a subset of common breast cancer loci in the general Tunisian population and to compare their genetic composition to those of other ethnic groups. We undertook a genome-wide haplotype study by genotyping 135 Tunisian subjects using the Affymetrix 6.0-Array. We compared Tunisian allele frequencies and linkage disequilibrium patterns to those of HapMap populations and we performed a comprehensive assessment of the functional effects of several selected variants. Results Haplotype analyses showed that at risk haplotypes on 2p24, 4q21, 6q25, 9q31, 10q26, 11p15, 11q13 and 14q32 loci are considerably frequent in the Tunisian population (> 20%). Allele frequency comparison showed that the frequency of rs13329835 is significantly different between Tunisian and all other HapMap populations. LD-blocks and Principle Component Analysis revealed that the genetic characteristics of breast cancer variants in the Tunisian, and so probably the North-African populations, are more similar to those of Europeans than Africans. Using eQTl analysis, we characterized rs9911630 as the most strongly expression-associated SNP that seems to affect the expression levels of BRCA1 and two long non coding RNAs (NBR2 and LINC008854). Additional in-silico analysis also suggested a potential functional significance of this variant. Conclusions We illustrated the utility of combining haplotype analysis in diverse ethnic groups with functional analysis to explore breast cancer genetic architecture in Tunisia. Results presented in this study provide the first report on a large number of common breast cancer genetic polymorphisms in the Tunisian population which may establish a baseline database to guide future association studies in North Africa. Electronic supplementary material The online version of this article (10.1186/s12885-018-5133-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yosr Hamdi
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie.
| | - Mariem Ben Rekaya
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Shan Jingxuan
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Majdi Nagara
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Olfa Messaoud
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ridha Mrad
- Department of Human Genetics, Charles Nicolle Hospital, Tunis, Tunisia
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medical College-Qatar, Doha, Qatar
| | - Mohamed Samir Boubaker
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Sonia Abdelhak
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie
| | - Hamouda Boussen
- Medical Oncology Department, Abderrahmen Mami Hospital, Ariana, Tunisia
| | - Lilia Romdhane
- Laboratory of biomedical genomics and oncogenetics, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur BP 74, 1002, Tunis, Belvédère, Tunisie.,Department of Biology, Faculty of Science of Bizerte, Université Tunis Carthage, Tunis, Tunisia
| |
Collapse
|
9
|
Cherdyntseva N, Gervas P, Voropaeva E, Denisov E, Pisareva L, Malinovskaya E, Maksimov V, Voevoda M, Perinov D, Panferova Y, Cherdyntsev E, Choynzonov E. New variants in the BRCA1 gene in Buryat Mongol breast cancer patients: Report from two families. Cancer Biomark 2017; 18:291-296. [PMID: 27983536 DOI: 10.3233/cbm-161649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The BRCA1 mutations that are endemic to the Slavic population of Russia have not been identified among indigenous peoples, including the Buryats, Tuvinians and Altaians with hereditary breast cancer. OBJECTIVE This study was aimed to identify the mutations that are responsible for the occurrence of hereditary breast cancer in the indigenous population of the Republic of Buryatia. METHODS Mutations in the BRCA1 gene were identified in blood samples by Sanger-based sequencing. RESULTS We identified 11 polymorphisms (10 SNPs and 1 Indel) and 6 new unclassified sequence variants in the BRCA1 gene. In our study three new sequence variants (c.321T>A, c.366T>A, c.4357+2T>A) were found in position of previously described polymorphisms in dbSNPs: rs80357544 (c.321delT), rs190900046 (c.366T>G), and rs80358152 (c.4357+2T>C), respectively. Other three new sequence variants (c.3605A>G, c.1998A>C, and c.80+13A>C) have not been previously described in dbSNP, BIC and Human Gene Mutation Databases. CONCLUSIONS We described six new sequence variants that have never been published in the literature or databases. Further studies are required to confirm the impact of new sequence variants on the risk of breast cancer in the Buryat Mongol population.
Collapse
Affiliation(s)
- Nadezda Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Centre, Russian Academy of Science, Tomsk, Russia.,Tomsk State University, Tomsk, Russia.,Cancer Research Institute, Tomsk National Research Medical Centre, Russian Academy of Science, Tomsk, Russia
| | - Polina Gervas
- Cancer Research Institute, Tomsk National Research Medical Centre, Russian Academy of Science, Tomsk, Russia.,Cancer Research Institute, Tomsk National Research Medical Centre, Russian Academy of Science, Tomsk, Russia
| | - Elena Voropaeva
- Therapy Research Institute of Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Evgeny Denisov
- Cancer Research Institute, Tomsk National Research Medical Centre, Russian Academy of Science, Tomsk, Russia.,Tomsk State University, Tomsk, Russia
| | - Lubov Pisareva
- Cancer Research Institute, Tomsk National Research Medical Centre, Russian Academy of Science, Tomsk, Russia
| | - Elena Malinovskaya
- Cancer Research Institute, Tomsk National Research Medical Centre, Russian Academy of Science, Tomsk, Russia
| | - Vladimir Maksimov
- Therapy Research Institute of Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Michail Voevoda
- Therapy Research Institute of Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | | | | | | | - Evgeny Choynzonov
- Cancer Research Institute, Tomsk National Research Medical Centre, Russian Academy of Science, Tomsk, Russia
| |
Collapse
|
10
|
McVeigh TP, Cody N, Carroll C, Duff M, Farrell M, Bradley L, Gallagher D, McDevitt T, Green AJ. Recurrent large genomic rearrangements in BRCA1 and BRCA2 in an Irish case series. Cancer Genet 2017; 214-215:1-8. [PMID: 28595730 DOI: 10.1016/j.cancergen.2017.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
Mutations in BRCA1 and BRCA2 confer a highly increased risk of cancers, mainly of the breast and ovary. Most variants are point mutations or small insertions/deletions detectable by Sanger sequencing. Large genomic rearrangements, including deletions/duplications of multiple exons, are not routinely detectable by Sanger sequencing, but can be reliably identified by Multiplex Ligation-dependent Probe Amplification (MLPA), and account for 5-17% mutations in different populations. Comprehensive mutation testing using these two methods has been facilitated via our centre since 2005. The aim of this study was to investigate the incidence of and phenotype associated with large genomic rearrangements in BRCA1 and BRCA2 in an Irish cohort. An observational cohort study was undertaken. Patients with large genomic rearrangements in BRCA1/BRCA2 were identified from a prospectively maintained database of MLPA test results. Phenotypic and genotypic data were retrieved by chart review. Large genomic rearrangements in BRCA1 were identified in 49 families; and in BRCA2 in 7 families, representing ~11% of mutations in BRCA1/BRCA2 in Ireland. The most common large genomic rearrangement in BRCA1 was deletion of exons 1-23 (11 families, 7 from Co. Galway). Other common mutations included deletions of exon 3 (8 families) and exons 1-2 (6 families). Deletion of exons 19-20 in BRCA2 represented the familial mutation in five families, all from East Ireland (Wexford/Wicklow/Dublin). It is evident that a significant proportion of highly penetrant pathogenic variants in BRCA1 and BRCA2 will be missed if testing is limited to PCR-based Sanger sequencing alone. Screening for large genomic rearrangements in BRCA1 and BRCA2 in the routine diagnostic workflow is critical to avoid false negative results.
Collapse
Affiliation(s)
- Terri P McVeigh
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland.
| | - Nuala Cody
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Cliona Carroll
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Marie Duff
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Michael Farrell
- Cancer Genetics Service, Mater Misericordiae University Hospital, Ireland
| | - Lisa Bradley
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - David Gallagher
- Cancer Genetics Service, Mater Misericordiae University Hospital, Ireland; Cancer Genetics Service, St James' University Hospital, UK
| | - Trudi McDevitt
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| | - Andrew J Green
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Ireland
| |
Collapse
|
11
|
Spectrum of genetic variants of BRCA1 and BRCA2 in a German single center study. Arch Gynecol Obstet 2017; 295:1227-1238. [PMID: 28324225 DOI: 10.1007/s00404-017-4330-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/10/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Determination of mutation status of BRCA1 and BRCA2 has become part of the clinical routine. However, the spectrum of genetic variants differs between populations. The aim of this study was to deliver a comprehensive description of all detected variants. METHODS In families fulfilling one of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) criteria for genetic testing, one affected was chosen for analysis. DNA of blood lymphocytes was amplified by PCR and prescreened by DHPLC. Aberrant fragments were sequenced. All coding exons and splice sites of BRCA1 and BRCA2 were analyzed. Screening for large rearrangements in both genes was performed by MLPA. RESULTS Of 523 index patients, 121 (23.1%) were found to carry a pathogenic or likely pathogenic (class 4/5) mutation. A variant of unknown significance (VUS) was detected in 73/523 patients (13.9%). Two mutations p.Gln1756Profs*74 and p.Cys61Gly comprised 42.3% (n = 33/78) of all detected pathogenic mutations in BRCA1. Most of the other mutations were unique mutations. The most frequently detected mutation in BRCA2 was p.Val1283Lys (13.9%; n = 6/43). Altogether, 101 different neutral genetic variants were counted in BRCA1 (n = 35) and in BRCA2 (n = 66). CONCLUSION The two most frequently detected mutations are founder mutations in Poland and Czech Republic. More similarities seem to be shared with our direct neighbor countries compared to other European countries. For comparison of the extended genotype, a shared database is needed.
Collapse
|
12
|
de Gouvea ACRC, Garber JE. Breast Cancer Genetics. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Hamdi Y, Soucy P, Adoue V, Michailidou K, Canisius S, Lemaçon A, Droit A, Andrulis IL, Anton-Culver H, Arndt V, Baynes C, Blomqvist C, Bogdanova NV, Bojesen SE, Bolla MK, Bonanni B, Borresen-Dale AL, Brand JS, Brauch H, Brenner H, Broeks A, Burwinkel B, Chang-Claude J, Couch FJ, Cox A, Cross SS, Czene K, Darabi H, Dennis J, Devilee P, Dörk T, Dos-Santos-Silva I, Eriksson M, Fasching PA, Figueroa J, Flyger H, García-Closas M, Giles GG, Goldberg MS, González-Neira A, Grenaker-Alnæs G, Guénel P, Haeberle L, Haiman CA, Hamann U, Hallberg E, Hooning MJ, Hopper JL, Jakubowska A, Jones M, Kabisch M, Kataja V, Lambrechts D, Marchand LL, Lindblom A, Lubinski J, Mannermaa A, Maranian M, Margolin S, Marme F, Milne RL, Neuhausen SL, Nevanlinna H, Neven P, Olswold C, Peto J, Plaseska-Karanfilska D, Pylkäs K, Radice P, Rudolph A, Sawyer EJ, Schmidt MK, Shu XO, Southey MC, Swerdlow A, Tollenaar RA, Tomlinson I, Torres D, Truong T, Vachon C, Van Den Ouweland AMW, Wang Q, Winqvist R, Investigators KC, Zheng W, Benitez J, Chenevix-Trench G, Dunning AM, Pharoah PDP, Kristensen V, Hall P, Easton DF, Pastinen T, Nord S, Simard J. Association of breast cancer risk with genetic variants showing differential allelic expression: Identification of a novel breast cancer susceptibility locus at 4q21. Oncotarget 2016; 7:80140-80163. [PMID: 27792995 PMCID: PMC5340257 DOI: 10.18632/oncotarget.12818] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 10/13/2016] [Indexed: 12/02/2022] Open
Abstract
There are significant inter-individual differences in the levels of gene expression. Through modulation of gene expression, cis-acting variants represent an important source of phenotypic variation. Consequently, cis-regulatory SNPs associated with differential allelic expression are functional candidates for further investigation as disease-causing variants. To investigate whether common variants associated with differential allelic expression were involved in breast cancer susceptibility, a list of genes was established on the basis of their involvement in cancer related pathways and/or mechanisms. Thereafter, using data from a genome-wide map of allelic expression associated SNPs, 313 genetic variants were selected and their association with breast cancer risk was then evaluated in 46,451 breast cancer cases and 42,599 controls of European ancestry ascertained from 41 studies participating in the Breast Cancer Association Consortium. The associations were evaluated with overall breast cancer risk and with estrogen receptor negative and positive disease. One novel breast cancer susceptibility locus on 4q21 (rs11099601) was identified (OR = 1.05, P = 5.6x10-6). rs11099601 lies in a 135 kb linkage disequilibrium block containing several genes, including, HELQ, encoding the protein HEL308 a DNA dependant ATPase and DNA Helicase involved in DNA repair, MRPS18C encoding the Mitochondrial Ribosomal Protein S18C and FAM175A (ABRAXAS), encoding a BRCA1 BRCT domain-interacting protein involved in DNA damage response and double-strand break (DSB) repair. Expression QTL analysis in breast cancer tissue showed rs11099601 to be associated with HELQ (P = 8.28x10-14), MRPS18C (P = 1.94x10-27) and FAM175A (P = 3.83x10-3), explaining about 20%, 14% and 1%, respectively of the variance inexpression of these genes in breast carcinomas.
Collapse
Affiliation(s)
- Yosr Hamdi
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Quebec, Canada
| | - Penny Soucy
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Quebec, Canada
| | - Véronique Adoue
- Institut National de la Santé et de la Recherche Médicale U1043, Toulouse, France
- Centre National de la Recherche Scientifique, Toulouse, France
- Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
| | - Kyriaki Michailidou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Sander Canisius
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Audrey Lemaçon
- Centre de Recherche du CHU de Québec – Université Laval, Faculté de Médecine, Département de Médecine Moléculaire, Université Laval, Quebec, Canada
| | - Arnaud Droit
- Centre de Recherche du CHU de Québec – Université Laval, Faculté de Médecine, Département de Médecine Moléculaire, Université Laval, Quebec, Canada
| | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, CA, USA
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Caroline Baynes
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Natalia V. Bogdanova
- Department of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Stig E. Bojesen
- Copenhagen General Population Study, Herlevand Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manjeet K. Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia, Milan, Italy
| | - Anne-Lise Borresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Judith S. Brand
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
- University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - NBCS Collaborators
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
- Section of Oncology, Institute of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Akershus University Hospital, Lørenskog, Norway
- Department of Breast-Endocrine Surgery, Akershus University Hospital, Lørenskog, Norway
- Department of Breast and Endocrine Surgery, Oslo University Hospital, Ullevål, Oslo, Norway
- Department of Research, Vestre Viken, Drammen, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- National Advisory Unit on Late Effects after Cancer Treatment, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Oncology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Radiology and Nuclear Medicine, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Angela Cox
- Sheffield Cancer Research, Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, UK
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Peter Devilee
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, Hannover, Germany
| | - Isabel Dos-Santos-Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter A. Fasching
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jonine Figueroa
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | | | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Mark S. Goldberg
- Department of Medicine, McGill University, Montreal, Canada
- Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montreal, Canada
| | - Anna González-Neira
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
| | - Grethe Grenaker-Alnæs
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Pascal Guénel
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, VilleJuif, France
| | - Lothar Haeberle
- Department of Gynaecology and Obstetrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Emily Hallberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Maartje J. Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Michael Jones
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London, UK
| | - Maria Kabisch
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Vesa Kataja
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Central Finland Hospital District, Jyväskylä Central Hospital, Jyväskylä, Finland
| | - Diether Lambrechts
- Vesalius Research Center, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Oncology, University of Leuven, Leuven, Belgium
| | | | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Arto Mannermaa
- Cancer Center of Eastern Finland, University of Eastern Finland, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Mel Maranian
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Sara Margolin
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Frederik Marme
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Susan L. Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Patrick Neven
- Multidisciplinary Breast Center, Department of Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Curtis Olswold
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dijana Plaseska-Karanfilska
- Research Center for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione Istituto Di Ricovero e Cura a Carattere, Scientifico, Istituto Nazionale Tumori, Milan, Italy
| | - Anja Rudolph
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Elinor J. Sawyer
- Research Oncology, Guy's Hospital, King's College London, London, UK
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology & Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Rob A.E.M. Tollenaar
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center, Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Thérèse Truong
- Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, VilleJuif, France
| | - Celine Vachon
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | | | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland
- Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland
| | | | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Javier Benitez
- Human Cancer Genetics Program, Spanish National Cancer Research Centre, Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras, Valencia, Spain
| | | | - Alison M. Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Paul D. P. Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Vessela Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Department of Clinical Molecular Biology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Douglas F. Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Silje Nord
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Jacques Simard
- Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Quebec, Canada
| |
Collapse
|
14
|
Heramb C, Ekstrøm PO, Tharmaratnam K, Hovig E, Møller P, Mæhle L. Ten modifiers of BRCA1 penetrance validated in a Norwegian series. Hered Cancer Clin Pract 2015; 13:14. [PMID: 26052370 PMCID: PMC4456774 DOI: 10.1186/s13053-015-0035-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/19/2015] [Indexed: 11/13/2022] Open
Abstract
Background Common genetic variants have been shown to modify BRCA1 penetrance. The aim of this study was to validate these reports in a special cohort of Norwegian BRCA1 mutation carriers that were selected for their extreme age of onset of disease. Methods The ten variants rs13387042, rs3803662, rs8170, rs9397435, rs700518, rs10046, rs3834129, rs1045485, rs2363956 and rs16942 were selected to be tested on samples from our biobank. We selected female BRCA1 mutation carriers having had a diagnosis of breast or ovarian cancer below 40 years of age (young cancer group, N = 40), and mutation carriers having had neither breast nor ovarian cancer above 60 years of age (i.e., old no cancer group, N = 38). Relative risks and odd ratios of belonging to the young cancer versus old no cancer groups were calculated as a function of having or not having the SNPs in question. Results Five of the ten variants were found to be significantly associated with early onset cancer. Some of the variation between our results and those previously reported may be ascribed to stochastic effects in our limited number of patient studies, and/or genetic drift in linkage disequilibrium in the genetically isolated Norwegian population. This is in accordance with the understanding that the SNPs are markers in linkage disequilibrium with their respective disease-causing genetic variants, and that this may vary between different populations. Conclusions The results confirmed associations previously reported, with the notion that the degree of association may differ between other populations, which must be considered when discussing the clinical use of the associations described. Electronic supplementary material The online version of this article (doi:10.1186/s13053-015-0035-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilie Heramb
- Research Group on Inherited Cancer, Department of Medical Genetics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Per Olaf Ekstrøm
- Department of Tumor Biology, Institute for Cancer Research The Norwegian Radium Hospital, Oslo, Norway
| | | | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research The Norwegian Radium Hospital, Oslo, Norway
| | - Pål Møller
- Research Group on Inherited Cancer, Department of Medical Genetics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Lovise Mæhle
- Research Group on Inherited Cancer, Department of Medical Genetics, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| |
Collapse
|
15
|
Chevrier S, Boidot R. gDNA enrichment by a transposase-based technology for NGS analysis of the whole sequence of BRCA1, BRCA2, and 9 genes involved in DNA damage repair. J Vis Exp 2014:e51902. [PMID: 25350069 DOI: 10.3791/51902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The widespread use of Next Generation Sequencing has opened up new avenues for cancer research and diagnosis. NGS will bring huge amounts of new data on cancer, and especially cancer genetics. Current knowledge and future discoveries will make it necessary to study a huge number of genes that could be involved in a genetic predisposition to cancer. In this regard, we developed a Nextera design to study 11 complete genes involved in DNA damage repair. This protocol was developed to safely study 11 genes (ATM, BARD1, BRCA1, BRCA2, BRIP1, CHEK2, PALB2, RAD50, RAD51C, RAD80, and TP53) from promoter to 3'-UTR in 24 patients simultaneously. This protocol, based on transposase technology and gDNA enrichment, gives a great advantage in terms of time for the genetic diagnosis thanks to sample multiplexing. This protocol can be safely used with blood gDNA.
Collapse
Affiliation(s)
- Sandy Chevrier
- Department of Biology and Pathology of Tumors, Unit of Molecular Biology, Platform of Immunomonitoring and Genetics, Centre Georges-François Leclerc
| | - Romain Boidot
- Department of Biology and Pathology of Tumors, Unit of Molecular Biology, Platform of Immunomonitoring and Genetics, Centre Georges-François Leclerc;
| |
Collapse
|
16
|
Ricks-Santi LJ, Nie J, Marian C, Ochs-Balcom HM, Trevisan M, Edge SB, Kanaan Y, Freudenheim JL, Shields PG. BRCA1 polymorphisms and breast cancer epidemiology in the Western New York exposures and breast cancer (WEB) study. Genet Epidemiol 2013; 37:504-11. [PMID: 23674270 DOI: 10.1002/gepi.21730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/07/2013] [Accepted: 03/29/2013] [Indexed: 12/24/2022]
Abstract
Results of studies for the association of BRCA1 genotypes and haplotypes with sporadic breast cancer have been inconsistent. Therefore, a candidate single nucleotide polymorphism (SNP) approach was used in a breast cancer case-control study to explore genotypes and haplotypes that have the potential to affect protein functions or levels. In a breast cancer case-control study, genotyping of BRCA1 polymorphisms Q356R, D693N, and E1038G was performed on 1,005 cases and 1,765 controls. Unconditional, polytomous logistic regression and χ(2) -tests were used to examine the associations of breast cancer with genotypes and haplotypes. In addition, interactions between genotype and smoking, benign breast disease, family history of breast cancer, body mass index (BMI), alcohol consumption, and hormonal risk factors, hormone receptor status, and breast cancer pathology were calculated also using logistic regression and χ(2) . Although sporadic breast cancer was not associated with BRCA1 genotypes or haplotypes overall or by menopausal status, there was evidence of an interaction between the E1038G BRCA1 genotype, smoking, and BMI among premenopausal women (P for interaction = 0.01 and 0.045, respectively) and between E1038G and D693N BRCA1 genotypes and hormone therapy use among postmenopausal women (P for interaction = 0.01 and 0.02, respectively). There were no other associations found between BRCA1 genotypes and stage, histological grade, or nuclear grade. However, the D693N SNP was associated with the risk of triple negative breast cancer (odds ratio = 2.31 95% confidence interval 1.08-4.93). The BRCA1 variants studied may play a role in the etiology of triple negative breast cancer and may interact with environmental factors such as hormone therapy or smoking and increase sporadic breast cancer risk.
Collapse
Affiliation(s)
- Luisel J Ricks-Santi
- National Human Genome Center at Howard University, Washington, District of Columbia, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Association of the BRCA1 promoter polymorphism rs11655505 with the risk of familial breast and/or ovarian cancer. Fam Cancer 2013; 12:691-8. [PMID: 23657760 DOI: 10.1007/s10689-013-9647-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Germline mutations in the BRCA1 tumor suppressor gene predispose affected individuals to breast cancer; however, incomplete cancer penetrance and the presence of phenocopies in BRCA1 families also indicate genetic and environmental modifiers of breast cancer risk. In this study, we have tested the single nucleotide polymorphism rs1655505 of the BRCA1 promoter, as candidate for the modifier of breast cancer risk. The polymorphic variants were genotyped in BRCA1-negative (729), familial breast and/or ovarian cancer cases (FBOC), including cases with a reported maternal history (154), nonfamilal (sporadic) cases (600), hereditary breast/ovarian cases with BRCA1 mutations (190) and population controls (1,590) from Central Poland. An association with the risk of FBOC was observed for the minor (T) allele and (TT) genotype (T: p = 0.006, OR = 1.40, 95% CI = 1.10-1.79; TT: p = 0.001, OR = 2.23, 95% CI = 1.37-3.62) in female cases with a reported maternal history, specifically in women with the onset of disease after 50 years of age (T: p = 0.004, OR = 1.77, 95% CI = 1.20-2.62; TT: p = 0.001, OR = 3.7, 95% CI = 1.62-8.46). The presented evidence suggests a need to conduct larger studies on the association between genetic variations at the BRCA1 promoter and the breast cancer risk, according to maternal/paternal lineage.
Collapse
|
18
|
Spurdle AB, Whiley PJ, Thompson B, Feng B, Healey S, Brown MA, Pettigrew C, Van Asperen CJ, Ausems MGEM, Kattentidt-Mouravieva AA, van den Ouweland AMW, Lindblom A, Pigg MH, Schmutzler RK, Engel C, Meindl A, Caputo S, Sinilnikova OM, Lidereau R, Couch FJ, Guidugli L, Hansen TVO, Thomassen M, Eccles DM, Tucker K, Benitez J, Domchek SM, Toland AE, Van Rensburg EJ, Wappenschmidt B, Borg Å, Vreeswijk MPG, Goldgar DE. BRCA1 R1699Q variant displaying ambiguous functional abrogation confers intermediate breast and ovarian cancer risk. J Med Genet 2012; 49:525-32. [PMID: 22889855 DOI: 10.1136/jmedgenet-2012-101037] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Clinical classification of rare sequence changes identified in the breast cancer susceptibility genes BRCA1 and BRCA2 is essential for appropriate genetic counselling of individuals carrying these variants. We previously showed that variant BRCA1 c.5096G>A p.Arg1699Gln in the BRCA1 transcriptional transactivation domain demonstrated equivocal results from a series of functional assays, and proposed that this variant may confer low to moderate risk of cancer. METHODS Measures of genetic risk (report of family history, segregation) were assessed for 68 BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) families recruited through family cancer clinics, comparing results with 34 families carrying the previously classified pathogenic BRCA1 c.5095C>T p.Arg1699Trp (R1699W) mutation at the same residue, and to 243 breast cancer families with no BRCA1 pathogenic mutation (BRCA-X). RESULTS Comparison of BRCA1 carrier prediction scores of probands using the BOADICEA risk prediction tool revealed that BRCA1 c.5096G>A p.Arg1699Gln variant carriers had family histories that were less 'BRCA1-like' than BRCA1 c.5095C>T p.Arg1699Trp mutation carriers (p<0.00001), but more 'BRCA1-like' than BRCA-X families (p=0.0004). Further, modified segregation analysis of the subset of 30 families with additional genotyping showed that BRCA1 c.5096G >A p.Arg1699Gln had reduced penetrance compared with the average truncating BRCA1 mutation penetrance (p=0.0002), with estimated cumulative risks to age 70 of breast or ovarian cancer of 24%. CONCLUSIONS Our results provide substantial evidence that the BRCA1 c.5096G>A p.Arg1699Gln (R1699Q) variant, demonstrating ambiguous functional deficiency across multiple assays, is associated with intermediate risk of breast and ovarian cancer, highlighting challenges for risk modelling and clinical management of patients of this and other potential moderate-risk variants.
Collapse
Affiliation(s)
- Amanda B Spurdle
- Division of Genetics and Population Health, Queensland Institute of Medical Research, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Antoniou AC, Kuchenbaecker KB, Soucy P, Beesley J, Chen X, McGuffog L, Lee A, Barrowdale D, Healey S, Sinilnikova OM, Caligo MA, Loman N, Harbst K, Lindblom A, Arver B, Rosenquist R, Karlsson P, Nathanson K, Domchek S, Rebbeck T, Jakubowska A, Lubinski J, Jaworska K, Durda K, Złowowcka-Perłowska E, Osorio A, Durán M, Andrés R, Benítez J, Hamann U, Hogervorst FB, van Os TA, Verhoef S, Meijers-Heijboer HEJ, Wijnen J, Gómez Garcia EB, Ligtenberg MJ, Kriege M, Collée JM, Ausems MGEM, Oosterwijk JC, Peock S, Frost D, Ellis SD, Platte R, Fineberg E, Evans DG, Lalloo F, Jacobs C, Eeles R, Adlard J, Davidson R, Cole T, Cook J, Paterson J, Douglas F, Brewer C, Hodgson S, Morrison PJ, Walker L, Rogers MT, Donaldson A, Dorkins H, Godwin AK, Bove B, Stoppa-Lyonnet D, Houdayer C, Buecher B, de Pauw A, Mazoyer S, Calender A, Léoné M, Bressac- de Paillerets B, Caron O, Sobol H, Frenay M, Prieur F, Ferrer SF, Mortemousque I, Buys S, Daly M, Miron A, Terry MB, Hopper JL, John EM, Southey M, Goldgar D, Singer CF, Fink-Retter A, Tea MK, Kaulich DG, Hansen TVO, Nielsen FC, Barkardottir RB, Gaudet M, Kirchhoff T, Joseph V, Dutra-Clarke A, Offit K, Piedmonte M, Kirk J, Cohn D, Hurteau J, Byron J, Fiorica J, Toland AE, Montagna M, Oliani C, Imyanitov E, Isaacs C, Tihomirova L, Blanco I, Lazaro C, Teulé A, Valle JD, Gayther SA, Odunsi K, Gross J, Karlan BY, Olah E, Teo SH, Ganz PA, Beattie MS, Dorfling CM, van Rensburg EJ, Diez O, Kwong A, Schmutzler RK, Wappenschmidt B, Engel C, Meindl A, Ditsch N, Arnold N, Heidemann S, Niederacher D, Preisler-Adams S, Gadzicki D, Varon-Mateeva R, Deissler H, Gehrig A, Sutter C, Kast K, Fiebig B, Schäfer D, Caldes T, de la Hoya M, Nevanlinna H, Muranen TA, Lespérance B, Spurdle AB, Neuhausen SL, Ding YC, Wang X, Fredericksen Z, Pankratz VS, Lindor NM, Peterlongo P, Manoukian S, Peissel B, Zaffaroni D, Bonanni B, Bernard L, Dolcetti R, Papi L, Ottini L, Radice P, Greene MH, Loud JT, Andrulis IL, Ozcelik H, Mulligan AM, Glendon G, Thomassen M, Gerdes AM, Jensen UB, Skytte AB, Kruse TA, Chenevix-Trench G, Couch FJ, Simard J, Easton DF. Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. Breast Cancer Res 2012; 14:R33. [PMID: 22348646 PMCID: PMC3496151 DOI: 10.1186/bcr3121] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/15/2011] [Accepted: 02/20/2012] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2). METHODS To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework. RESULTS Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049). CONCLUSIONS The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.
Collapse
Affiliation(s)
- Antonis C Antoniou
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Karoline B Kuchenbaecker
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Penny Soucy
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec, 2705 Laurier Boulevard, T3-57, Quebec City, QC Canada
| | - Jonathan Beesley
- Genetics and Population Health Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Xiaoqing Chen
- Genetics and Population Health Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Lesley McGuffog
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Andrew Lee
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Daniel Barrowdale
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Sue Healey
- Genetics and Population Health Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Olga M Sinilnikova
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Centre Hospitalier Universitaire de Lyon/Centre Léon Bérard, 28 rue Laënnec, Lyon 69373, France and INSERM U1052, CNRS UMR5286, Université Lyon 1, Cancer Research Center of Lyon, 28 rue Laënnec, Lyon 69373, France
| | - Maria A Caligo
- Section of Genetic Oncology, Dept. of Laboratory Medicine, University and University Hospital of Pisa, Via Roma 57, 56125 Pisa, Italy
| | - Niklas Loman
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Katja Harbst
- Department of Oncology, Lund University Hospital, Lund, Sweden
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Brita Arver
- Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Richard Rosenquist
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Karlsson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kate Nathanson
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Domchek
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Tim Rebbeck
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Jaworska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin and Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | | | - Ana Osorio
- Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain and Spanish Network on Rare Diseases (CIBERER)
| | - Mercedes Durán
- Institute of Biology and Molecular Genetics. Universidad de Valladolid (IBGM-UVA), Valladolid, Spain
| | - Raquel Andrés
- Oncology unit. Hospital clinico Universitario "Lozano Blesa", Zaragoza, Spain
| | - Javier Benítez
- Human Genetics Group and Genotyping Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain and Spanish Network on Rare Diseases (CIBERER)
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Frans B Hogervorst
- Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Theo A van Os
- Department of Clinical Genetics, Academic Meical Center, Amsterdam, The Netherlands
| | - Senno Verhoef
- Department of Clinical Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Juul Wijnen
- Department of Clinical Genetics and GROM, School for Oncology and Developmental Biology, MUMC, Maastricht, The Netherlands
| | - Encarna B Gómez Garcia
- Department of Clinical Genetics and GROM, School for Oncology and Developmental Biology, MUMC, Maastricht, The Netherlands
| | - Marjolijn J Ligtenberg
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Mieke Kriege
- Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J Margriet Collée
- Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Margreet GEM Ausems
- Department of Medical Genetics, University Medical Center Utrecht, PO Box 85090, 3508 AB Utrecht, The Netherlands
| | - Jan C Oosterwijk
- Department of Genetics, University Medical Center, Groningen University, Groningen, The Netherlands
| | - Susan Peock
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Debra Frost
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Steve D Ellis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Radka Platte
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - Elena Fineberg
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| | - D Gareth Evans
- Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Fiona Lalloo
- Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Chris Jacobs
- Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ros Eeles
- Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, UK
| | | | - Rosemarie Davidson
- Ferguson-Smith Centre for Clinical Genetics, Yorkhill Hospitals, Glasgow, UK
| | - Trevor Cole
- West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Edgbaston, Birmingham, UK
| | - Jackie Cook
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
| | - Joan Paterson
- Department of Clinical Genetics, East Anglian Regional Genetics Service, Addenbrookes Hospital, Cambridge, UK
| | - Fiona Douglas
- Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Carole Brewer
- Department of Clinical Genetics, Royal Devon & Exeter Hospital, Exeter, UK
| | - Shirley Hodgson
- Medical Genetics Unit, St George's, University of London, UK
| | - Patrick J Morrison
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, and Department of Medical Genetics, Queens University Belfast, Belfast UK
| | - Lisa Walker
- Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK
| | - Mark T Rogers
- All Wales Medical Genetics Services, University Hospital of Wales, Cardiff, UK
| | - Alan Donaldson
- Clinical Genetics Department, St Michael's Hospital, Bristol, UK
| | - Huw Dorkins
- North West Thames Regional Genetics Service, Kennedy-Galton Centre, Harrow, UK
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Betsy Bove
- Clinical Molecular Genetics Laboratory, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Dominique Stoppa-Lyonnet
- Service de Génétique Oncologique, Institut Curie, Paris, France, Unité INSERM U830, Institut Curie, Paris, France, Université Paris Descartes, Faculté de Médecine, Paris, France
| | - Claude Houdayer
- Service de Génétique Oncologique, Institut Curie, Paris, France and Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | - Bruno Buecher
- Service de Génétique Oncologique, Institut Curie, 26 rue d'Ulm, Paris, France
| | - Antoine de Pauw
- Service de Génétique Oncologique, Institut Curie, Paris, France
| | - Sylvie Mazoyer
- INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Alain Calender
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Mélanie Léoné
- Unité Mixte de Génétique Constitutionnelle des Cancers Fréquents, Hospices Civils de Lyon/Centre Léon Bérard, Lyon, France
| | - Brigitte Bressac- de Paillerets
- Service de Génétique, Institut de Cancérologie Gustave Roussy, Villejuif, France and INSERM U946, Fondation Jean Dausset, Paris, France
| | - Olivier Caron
- Consultation de Génétique, Département de Médecine, Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Hagay Sobol
- Département Oncologie génétique, Prévention et Dépistage, INSERM CIC-P9502, Institut Paoli-Calmettes/Université d'Aix-Marseille II, Marseille, France
| | | | - Fabienne Prieur
- Service de Génétique Clinique Chromosomique et Moléculaire, Centre Hospitalier Universitaire de St Etienne, St Etienne, France
| | - Sandra Fert Ferrer
- Laboratoire de Génétique Chromosomique, Hôtel Dieu Centre Hospitalier, BP 1125 Chambéry, France
| | | | - Saundra Buys
- Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Mary Daly
- Division of Population Science, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Alexander Miron
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Surgery, Harvard Medical School, 27 Drydock Avenue, Boston, MA 02210, USA
| | - Mary Beth Terry
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - John L Hopper
- Centre for Molecular, Environmental, Genetic and Analytic (MEGA) Epidemiology, Melbourne School of Population Health, Level 1, 723 Swanston Street, The University of Melbourne, VIC 3010, Australia
| | - Esther M John
- Department of Epidemiology, Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA 94538, USA
| | - Melissa Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Australia
| | - David Goldgar
- Department of Dermatology, University of Utah School of Medicine, 30 North 1900 East, SOM 4B454, Salt Lake City, UT 84132, USA
| | - Christian F Singer
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anneliese Fink-Retter
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Muy-Kheng Tea
- Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Thomas VO Hansen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Finn C Nielsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Rosa B Barkardottir
- Department of Pathology, Landspitali - University Hospital, Reykjavik Iceland and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mia Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Tomas Kirchhoff
- Department of Environmental Medicine, NYU Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Vijai Joseph
- Clinical Cancer Genetics Laboratory, Memorial Sloane Kettering Cancer Center, New York, NY, USA
| | - Ana Dutra-Clarke
- Clinical Cancer Genetics Laboratory, Memorial Sloane Kettering Cancer Center, New York, NY, USA
| | - Kenneth Offit
- Clinical Cancer Genetics Laboratory, Memorial Sloane Kettering Cancer Center, New York, NY, USA
| | - Marion Piedmonte
- Statistical and Data Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Judy Kirk
- Australia New Zealand (ANZGOG), Westmead Hospital, Sydney, Australia
| | - David Cohn
- Ohio State University, Columbus Cancer Council, Columbus, OH, USA
| | - Jean Hurteau
- Evanston CCOP - NorthShore University Health System; University of Chicago, Chicago, IL, USA
| | - John Byron
- Southern Pines Women's Health Center, P.C., University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James Fiorica
- Sarasota Memorial Healthcare, Tufts Medical Center, Sarasota, Florida, USA
| | - Amanda E Toland
- Department of Molecular Virology, Immunology and Medical Genetics and Internal Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Marco Montagna
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | | | - Evgeny Imyanitov
- Laboratory of Molecular Oncology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | - Claudine Isaacs
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA
| | | | - Ignacio Blanco
- Genetic Counselling Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain
| | - Conxi Lazaro
- Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain
| | - Alex Teulé
- Genetic Counselling Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain
| | - J Del Valle
- Molecular Diagnostic Unit, Hereditary Cancer Program, IDIBELL-Catalan Institute of Oncology, Barcelona, Spain
| | - Simon A Gayther
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jenny Gross
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Beth Y Karlan
- Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute at Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Edith Olah
- Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
| | - Soo-Hwang Teo
- Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Malaysia and University Malaya Cancer Research Institute, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| | - Patricia A Ganz
- Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, CA, USA
| | - Mary S Beattie
- UCSF Cancer Risk Program, University of California, San Francisco, CA; UCSF Departments of Medicine, Epidemiology, and Biostatistics, Sand Francisco, CA, USA
| | - Cecelia M Dorfling
- Cancer Genetics Laboratory, Department of Genetics, University of Pretoria, South Africa
| | | | - Orland Diez
- Oncogenetics Laboratory. Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital. Barcelona, Spain
| | - Ava Kwong
- The Hong Kong Hereditary Breast Cancer Family Registry; The Universtiy of Hong Kong; Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong
| | - Rita K Schmutzler
- Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology (CIO), University hospital of Cologne, Cologne, Germany
| | - Barbara Wappenschmidt
- Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology (CIO), University hospital of Cologne, Cologne, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Alfons Meindl
- Department of Gynaecology and Obstetrics, Division of Tumour Genetics, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Nina Ditsch
- Department of Gynaecology and Obstetrics, Ludwig-Maximilian University Munich, Munich, Germany
| | - Norbert Arnold
- Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Simone Heidemann
- Institute of Human Genetics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany
| | - Dieter Niederacher
- Department of Gynaecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | | | - Dorothea Gadzicki
- Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
| | | | - Helmut Deissler
- Department of Gynaecology and Obstetrics, University Hospital Ulm, Germany
| | - Andrea Gehrig
- Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institute of Human Genetics, University Würzburg, Würzburg, Germany
| | - Christian Sutter
- Institute of Human Genetics, Department of Human Genetics, University Hospital Heidelberg, Germany
| | - Karin Kast
- Department of Gynaecology and Obstetrics, University Hospital Carl Gustav Carus, Technical University. Dresden, Germany
| | - Britta Fiebig
- Institute of Human Genetics, University Regensburg, Regensbirg. Germany
| | - Dieter Schäfer
- Institute of Human Genetics, University Hospital Frankfurt a.M., Germany Molecular Oncology Laboratory, Hospital Clinico San Carlos, Madrid, Spain
| | - Trinidad Caldes
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, Martin Lagos s/n, Madrid, Spain
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, Martin Lagos s/n, Madrid, Spain
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Biomedicum Helsinki, P.O. BOX 700, 00029 HUS, Helsinki, Finland
| | - Taru A Muranen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Biomedicum Helsinki, P.O. BOX 700, 00029 HUS, Helsinki, Finland
| | - Bernard Lespérance
- Faculty of Medicine - Medicine and Medical Specialties, Université de Montréal Hemato-oncology service, Hôpital du Sacré-Coeur de Montréal, 5400 Gouin Blvd West Montreal, QC, Canada
| | - Amanda B Spurdle
- Genetics and Population Health Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Susan L Neuhausen
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yuan C Ding
- Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Xianshu Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Paolo Peterlongo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predicted Medicine, Fondazione IRCCS Istituto Nazionale Tumouri (INT), Milan, Italy and IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumouri (INT), Milan, Italy
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumouri (INT), Milan, Italy
| | - Daniela Zaffaroni
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumouri (INT), Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan Italy
| | - Loris Bernard
- Department of Experimental Oncology, Istituto Europeo di Oncologia, Milan, Italy and Consortium for Genomics Technology (Cogentech), Milan, Italy
| | - Riccardo Dolcetti
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy
| | - Laura Papi
- Medical Genetics Unit, Department of Clinical Physiopathology, University of Florence, Firenze, Italy
| | - Laura Ottini
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predicted Medicine, Fondazione IRCCS Istituto Nazionale Tumouri (INT), Milan, Italy and IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Mark H Greene
- Clinical Genetics Branch, DCEG, NCI; Room EPS 7032, Rockville, MD 20852, USA
| | - Jennifer T Loud
- Clinical Genetics Branch, DCEG, NCI; Room EPS 7032, Rockville, MD 20852, USA
| | - Irene L Andrulis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON; Cancer Care Ontario, Departments of Molecular Genetics and Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Hilmi Ozcelik
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON; Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine, and the Keenan Research Centre of the Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Gord Glendon
- Ontario Cancer Genetics Network: Cancer Care Ontario, Toronto, ON, Canada
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Anne-Marie Gerdes
- Department of Clincial Genetics, Rigshospital and Copenhagen University, Denmark
| | - Uffe B Jensen
- Department of Clinical Genetics, Skejby Hospital, Aarhus, Denmark
| | | | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Georgia Chenevix-Trench
- Genetics and Population Health Division, Queensland Institute of Medical Research, 300 Herston Rd, Herston, Brisbane, QLD 4006, Australia
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, and Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Jacques Simard
- Cancer Genomics Laboratory, Centre Hospitalier Universitaire de Québec, 2705 Laurier Boulevard, T3-57, Quebec City and Canada Research Chair in Oncogenetics, Department of Molecular Medicine, Faculty of Medicine, Laval University, QC, Canada
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Worts Causeway, Cambridge CB1 8RN, UK
| |
Collapse
|