1
|
Sun H, Yang L, Li N, Hu Y, Hu Q, Zhou Z, Cong X. The effect of 1,25(OH) 2D 3 on Dickkopf-1 methylation in colorectal cancer. Clin Epigenetics 2025; 17:52. [PMID: 40140935 PMCID: PMC11948728 DOI: 10.1186/s13148-025-01857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Vitamin D is a fat-soluble vitamin that has a protective role in colorectal cancer. Several studies have identified the association between vitamin D and changes in DNA methylation in different types of tumours. Dickkopf-1 (DKK1) inhibits the Wnt/β-catenin signalling pathway, and 1,25(OH)2D3 can induce DKK1 expression in colorectal cancer. However, whether 1,25(OH)2D3 can affect DKK1 expression by regulating DNA methylation in colorectal cancer is not known. METHODS Fifty-seven colorectal cancer (CRC) patients and fifty-five healthy controls were included in this study. Serum DKK1 and 25(OH)D levels were measured via ELISA and liquid chromatography‒tandem mass spectrometry, respectively, and the associations of DKK1 with clinicopathological characteristics and 25(OH)D were analysed. A DKK1 expression plasmid was transfected into cells to assess the functional significance of DKK1 in CRC progression via CCK8, wound healing and migration assays. BiSulphite Amplicon Sequencing (BSAS) and methylation-specific PCR were used to detect the DKK1 methylation status of colorectal cancer cells and tissues. The effect of 1,25(OH)2D3 on DKK1 methylation was investigated by pyrosequencing. A dual-luciferase reporter assay was performed to investigate the influence of CpG island methylation on DKK1 transcriptional activity. RESULTS A decreased serum DKK1 level was closely associated with nerve infiltration and 25(OH)D status in patients with colorectal cancer. Overexpression of DKK1 reduced the proliferative and migratory capabilities of colorectal cancer cells. The methylation patterns of DKK1 (- 195 to + 231), including 31 CpG sites, were assayed via BSAS in CRC cells and tissues. Compared with those in adjacent normal tissues, the methylation levels of multiple CpG sites located in the promoter, 5'UTR and exon 1 were increased in tumour tissues. DKK1 hypermethylation was associated with decreased DKK1 expression in colorectal cancer cells and tissues. 1,25(OH)2D3 induced DKK1 expression in colorectal cancer cells, and pyrosequencing revealed that 1,25(OH)2D3 treatment induced demethylation of CpG sites located in the promoter (- 97 to - 32) and 5'UTR (+ 39 to + 97). The dual-luciferase reporter assay further confirmed that CpG island methylation (-120 to + 225) directly represses DKK1 transcription. CONCLUSION DKK1 functions as a tumour suppressor in colorectal cancer, and 1,25(OH)2D3 upregulates DKK1 expression by inducing demethylation of the DKK1 promoter and 5'UTR in specific colorectal cancer cell lines.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Liehao Yang
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Nan Li
- Department of Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qianying Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zilong Zhou
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Ma J, Zhang Y, Li J, Dang Y, Hu D. Regulation of histone H3K27 methylation in inflammation and cancer. MOLECULAR BIOMEDICINE 2025; 6:14. [PMID: 40042761 PMCID: PMC11882493 DOI: 10.1186/s43556-025-00254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Inflammation is a multifaceted defense mechanism of the immune system against infection. Chronic inflammation is intricately linked to all stages of tumorigenesis and is therefore associated with an elevated risk of developing serious cancers. Epigenetic mechanisms have the capacity to trigger inflammation as well as facilitate tumor development and transformation within an inflammatory context. They achieve this by dynamically modulating the expression of both pro-inflammatory and anti-inflammatory cytokines, which in turn sustains chronic inflammation. The aberrant epigenetic landscape reconfigures the transcriptional programs of inflammatory and oncogenic genes. This reconfiguration is pivotal in dictating the biological functions of both tumor cells and immune cells. Aberrant histone H3 lysine 27 site (H3K27) methylation has been shown to be involved in biological behaviors such as inflammation development, tumor progression, and immune response. The establishment and maintenance of this repressive epigenetic mark is dependent on the involvement of the responsible histone modifying enzymes enhancer of zeste homologue 2 (EZH2), jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat gene X (UTX) as well as multiple cofactors. In addition, specific pharmacological agents have been shown to modulate H3K27 methylation levels, thereby modulating inflammation and carcinogenesis. This review comprehensively summarises the current characteristics and clinical significance of epigenetic regulation of H3K27 methylation in the context of inflammatory response and tumor progression.
Collapse
Affiliation(s)
- Jing Ma
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Yalin Zhang
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jingyuan Li
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, (Shanghai University of Traditional Chinese Medicine), Shanghai, 200032, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, (Shanghai University of Traditional Chinese Medicine), Shanghai, 200032, China.
| | - Dan Hu
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358 Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
3
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
4
|
Li Y, Guo Y, Geng C, Song S, Yang W, Li X, Wang C. Vitamin D/vitamin D receptor protects intestinal barrier against colitis by positively regulating Notch pathway. Front Pharmacol 2024; 15:1421577. [PMID: 39130644 PMCID: PMC11310051 DOI: 10.3389/fphar.2024.1421577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Vitamin D/Vitamin D receptor (VD/VDR) signaling and the Notch pathway are involved in intestinal barrier restoration in colitis; however, their relationship and underlying mechanism are largely unknown. Therefore, this study aimed to investigate the role and mechanism of VD/VDR and the Notch pathways in intestinal barrier protection. Methods Genetic Vdr knockout (VDR KO) and VD deficient (VDd) mice were established, and colitis was induced by feeding 2.5% dextran sodium sulfate (DSS) water. Mechanistic studies, including real-time PCR, immunofluorescence, Western blotting and dual-luciferase reporter assays, were performed on cultured Caco-2 cells and intestinal organoids. Results VD deficiency and VDR genetical KO increased the severity of DSS-induced colitis in mice, which presented a higher disease activity index score, increased intestinal permeability, and more severe intestinal histological damage than controls, accompanied by decreased and disrupted claudin-1 and claudin-3. Moreover, inhibition of Notch pathway by LY411,575 aggravated the severity of DSS-induced colitis and intestinal injury. In Caco-2 cells and intestinal organoids, the expression of Notch-1, N1ICD and Hes1 decreased upon downregulation or KO of VDR but increased upon paricalcitol (PAR, a VDR agonist) treatment. Meanwhile, PAR rescued claudin-1 and claudin-3 impairments that resulted from TNF-α exposure but failed to restore claudin-3 upon Notch inhibition. The dual-luciferase reporter assay further suggested that VD/VDR positively regulated the Notch signaling pathway by modulating Notch-1 transcription. Conclusion VD/VDR positively modulates Notch activation by promoting Notch-1 transcription to maintain intestinal tight junction integrity and barrier function. This highlights the VD/VDR-Notch pathway as a potential new therapeutic target for protecting the intestinal barrier against ulcerative colitis.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Yaoyu Guo
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chong Geng
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuailing Song
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjuan Yang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Li
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| | - Chunhui Wang
- Department of Gastroenterology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Pereira F, Fernández-Barral A, Larriba MJ, Barbáchano A, González-Sancho JM. From molecular basis to clinical insights: a challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J 2024; 291:2485-2518. [PMID: 37699548 DOI: 10.1111/febs.16955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most life-threatening neoplasias in terms of incidence and mortality worldwide. Vitamin D deficiency has been associated with an increased risk of CRC. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, is a pleiotropic hormone that, through its binding to a transcription factor of the nuclear receptor superfamily, is a major regulator of the human genome. 1,25(OH)2D3 acts on colon carcinoma and stromal cells and displays tumor protective actions. Here, we review the variety of molecular mechanisms underlying the effects of 1,25(OH)2D3 in CRC, which affect multiple processes that are dysregulated during tumor initiation and progression. Additionally, we discuss the epidemiological data that associate vitamin D deficiency and CRC, and the most relevant randomized controlled trials of vitamin D3 supplementation conducted in both healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Fábio Pereira
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Ourense, Spain
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
6
|
Tong D, Tang Y, Zhong P. The emerging roles of histone demethylases in cancers. Cancer Metastasis Rev 2024; 43:795-821. [PMID: 38227150 DOI: 10.1007/s10555-023-10160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Modulation of histone methylation status is regarded as an important mechanism of epigenetic regulation and has substantial clinical potential for the therapy of diseases, including cancer and other disorders. The present study aimed to provide a comprehensive introduction to the enzymology of histone demethylases, as well as their cancerous roles, molecular mechanisms, therapeutic possibilities, and challenges for targeting them, in order to advance drug design for clinical therapy and highlight new insight into the mechanisms of these enzymes in cancer. A series of clinical trials have been performed to explore potential roles of histone demethylases in several cancer types. Numerous targeted inhibitors associated with immunotherapy, chemotherapy, radiotherapy, and targeted therapy have been used to exert anticancer functions. Future studies should evaluate the dynamic transformation of histone demethylases leading to carcinogenesis and explore individual therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urological Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| | - Ying Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Peng Zhong
- Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China.
| |
Collapse
|
7
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Dey SK, Kumar S, Rani D, Maurya SK, Banerjee P, Verma M, Senapati S. Implications of vitamin D deficiency in systemic inflammation and cardiovascular health. Crit Rev Food Sci Nutr 2023; 64:10438-10455. [PMID: 37350746 DOI: 10.1080/10408398.2023.2224880] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Clinical, epidemiological, and molecular studies have sufficiently highlighted the vitality of vitamin D [25(OH)D and 1,25(OH)2D] in human health and wellbeing. Globally, vitamin D deficiency (VDD) has become a public health concern among all age groups. There is a very high prevalence of VDD per the estimates from several epidemiological studies on different ethnic populations. But, population-specific scales do not support these estimates to define VDD clinically and consistent genetic associations. However, clinical studies have shown the relevance of serum vitamin D screening and oral supplementation in improving health conditions, pointing toward a more prominent role of vitamin D in health and wellness. Routinely, the serum concentration of vitamin D is measured to determine the deficiency and is correlated with physiological conditions and clinical symptoms. Recent research points toward a more inclusive role of vitamin D in different disease pathologies and is not just limited to otherwise bone health and overall growth. VDD contributes to the natural history of systemic ailments, including cardiovascular and systemic immune diseases. Considering its significant impact on premature morbidity and mortality, there is a compelling need to comprehensively review and document the direct and indirect implications of VDD in immune system deregulation, systemic inflammatory conditions, and cardio-metabolism. The recommendations from this review call for furthering our research concerning vitamin D and its direct and indirect implications.
Collapse
Affiliation(s)
- Sanjay Kumar Dey
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Shashank Kumar
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Diksha Rani
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | | | - Pratibha Banerjee
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| | - Madhur Verma
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
10
|
Moena D, Vargas E, Montecino M. Epigenetic regulation during 1,25-dihydroxyvitamin D 3-dependent gene transcription. VITAMINS AND HORMONES 2023; 122:51-74. [PMID: 36863801 DOI: 10.1016/bs.vh.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Multiple evidence accumulated over the years, demonstrates that vitamin D-dependent physiological control in vertebrates occurs primarily through the regulation of target gene transcription. In addition, there has been an increasing appreciation of the role of the chromatin organization of the genome on the ability of the active form of vitamin D, 1,25(OH)2D3, and its specific receptor VDR to regulate gene expression. Chromatin structure in eukaryotic cells is principally modulated through epigenetic mechanisms including, but not limited to, a wide number of post-translational modifications of histone proteins and ATP-dependent chromatin remodelers, which are operative in different tissues during response to physiological cues. Hence, there is necessity to understand in depth the epigenetic control mechanisms that operate during 1,25(OH)2D3-dependent gene regulation. This chapter provides a general overview about epigenetic mechanisms functioning in mammalian cells and discusses how some of these mechanisms represent important components during transcriptional regulation of the model gene system CYP24A1 in response to 1,25(OH)2D3.
Collapse
Affiliation(s)
- Daniel Moena
- School of Bachelor in Science, Faculty of Life Sciences, Universidad Andres Bello, Concepcion, Chile
| | - Esther Vargas
- School of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Martin Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millenium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
11
|
Du L, Dai B, Liu X, Zhou D, Yan H, Shen T, Wang D, Tan X. KDM6B regulates M2 polarization of macrophages by modulating the stability of nuclear β-catenin. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166611. [PMID: 36427698 DOI: 10.1016/j.bbadis.2022.166611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/21/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Accumulating evidences suggest that the epigenetic regulation plays a pivotal role in establishing phenotype and function of tumor associated macrophages (TAMs). KDM6B is an epigenetic enzyme responsible for the H3K27me3 and reported to influence macrophage polarization. However, the underlying mechanism remains to be determined. Here, we demonstrated that inhibition of KDM6B in TAMs increased M2 polarization induced by coculture of breast cancer cells. Furthermore, we identified that KDM6B downregulation activated β-catenin/c-Myc signaling, and thus promoted the M2-like phenotype. KDM6B accelerated the intranuclear ubiquitination degradation of β-catenin, which depended on its demethylase activity. Therapeutically, our data showed that activated vitamin D analog paricalcitol upregulated the expression of KDM6B and decreased the M2 polarization, consequently protected against tumor progress in the xenograft mouse model of breast cancer. Taken together, our data reveal that epigenetic regulator KDM6B prevents M2 polarization via promoting the intranuclear degradation of β-catenin. Active vitamin D analog induces KDM6B and suppresses tumor progress, suggesting a novel therapeutic potential of epigenetic modulation for the tumor treatment.
Collapse
Affiliation(s)
- Lingfang Du
- School of Medicine, Nankai University, Tianjin 300071, China; Clinical Medical Research Center, the Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Bo Dai
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuan Liu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Donghui Zhou
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Heng Yan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Tianyu Shen
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Lesko P, Vlkova B, Kalavska K, De Angelis V, Novotna V, Obertova J, Orszaghova Z, Palacka P, Rejlekova K, Sycova-Mila Z, Kollarik B, Aziri R, Pindak D, Mardiak J, Chovanec M, Celec P, Mego M. Prognostic role of plasma vitamin D and its association with disease characteristics in germ cell tumours. Front Oncol 2023; 13:1149432. [PMID: 37114140 PMCID: PMC10126247 DOI: 10.3389/fonc.2023.1149432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background Testicular cancer is the most common malignancy among young men. Vitamin D has pluripotent effects on cancer pathogenesis and plays a role in the metastatic cascade. The aim of this study is to analyze plasma vitamin D in association with clinico-pathological findings and prognosis in patients with germ-cell tumors (GCTs). Methods This study included 120 newly diagnosed and/or relapsed GCT patients treated from April 2013 to July 2020, for whom plasma was available in the biobank. Blood samples were drawn the 1st chemotherapy cycle as well as before the 2nd cycle. Plasma vitamin D was measured using ELISA and correlated with disease characteristics and the outcome. For survival analysis, the cohort was dichotomized into "low" and "high" based on median vitamin D. Results There was no significant difference in vitamin D plasma levels between healthy donors and GCT patients (p = 0.71). Vitamin D level was not associated with disease characteristics except for brain metastases, where patients with brain metastases had a vitamin D level that was 32% lower compared to patients without brain metastases, p = 0.03. Vitamin D was also associated with response to chemotherapy, with an approximately 32% lower value in patients with an unfavorable response compared to a favorable response, p = 0.02. Moreover, low plasma levels of vitamin D were significantly associated with disease recurrence and inferior progression-free survival (PFS), but not with overall survival (OS) (HR = 3.02, 95% CI 1.36-6.71, p = 0.01 for PFS and HR = 2.06, 95% CI 0.84-5.06, p = 0.14 for OS, respectively). Conclusion Our study suggests the prognostic value of pretreatment vitamin D concentrations in GCT patients. Low plasma vitamin D was associated with an unfavorable response to therapy and disease recurrence. However, it remains to be determined whether the biology of the disease confirms a causative role for low vitamin D and whether its supplementation affects the outcome.
Collapse
Affiliation(s)
- Peter Lesko
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
- *Correspondence: Peter Lesko,
| | - Barbora Vlkova
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Katarina Kalavska
- Translation Research Unit, Comenius University, National Cancer Institute, Bratislava, Slovakia
| | - Valentina De Angelis
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Vera Novotna
- 1st Department of Oncology, Faculty of Medicine Comenius University (FMCU) and St. Elizabeth Cancer Institute, Bratislava, Slovakia
| | - Jana Obertova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Zuzana Orszaghova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Patrik Palacka
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Katarina Rejlekova
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Zuzana Sycova-Mila
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Boris Kollarik
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Ramadan Aziri
- Department of Surgical Oncology, National Institute for Oncology, Bratislava, Slovakia
| | - Daniel Pindak
- Department of Surgical Oncology, National Institute for Oncology, Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Mego
- Translation Research Unit, Comenius University, National Cancer Institute, Bratislava, Slovakia
| |
Collapse
|
13
|
KDM6B promotes gastric carcinogenesis and metastasis via upregulation of CXCR4 expression. Cell Death Dis 2022; 13:1068. [PMID: 36564369 PMCID: PMC9789124 DOI: 10.1038/s41419-022-05458-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022]
Abstract
KDM6B (Lysine-specific demethylase 6B) is a histone lysine demethyltransferase that plays a key role in many types of cancers. However, its potential role in gastric cancer (GC) remains unclear. Here, we focused on the clinical significance and potential role of KDM6B in GC. We found that the KDM6B expression is upregulated in GC tissues and that its high expression in patients is related to poor prognosis. KDM6B ectopic expression promotes GC cells' proliferation and metastasis, while its inhibition has opposite effects in vitro and in vivo. Mechanistically, KDM6B promotes GC cells proliferation and metastasis through its enzymatic activity through the induction of H3K27me3 demethylation near the CXCR4 (C-X-C chemokine receptor type 4) promoter region, resulting in the upregulation of CXCR4 expression. Furthermore, H. pylori was found to induce KDM6B expression. In conclusion, our results suggest that KDM6B is aberrantly expressed in GC and plays a key role in gastric carcinogenesis and metastasis through CXCR4 upregulation. Our work also suggests that KDM6B may be a potential oncogenic factor and a therapeutic target for GC.
Collapse
|
14
|
Plantone D, Primiano G, Manco C, Locci S, Servidei S, De Stefano N. Vitamin D in Neurological Diseases. Int J Mol Sci 2022; 24:87. [PMID: 36613531 PMCID: PMC9820561 DOI: 10.3390/ijms24010087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Vitamin D may have multiple effects on the nervous system and its deficiency can represent a possible risk factor for the development of many neurological diseases. Recent studies are also trying to clarify the different effects of vitamin D supplementation over the course of progressive neurological diseases. In this narrative review, we summarise vitamin D chemistry, metabolism, mechanisms of action, and the recommended daily intake. The role of vitamin D on gene transcription and the immune response is also reviewed. Finally, we discuss the scientific evidence that links low 25-hydroxyvitamin D concentrations to the onset and progression of severe neurological diseases, such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, migraine, diabetic neuropathy and amyotrophic lateral sclerosis. Completed and ongoing clinical trials on vitamin D supplementation in neurological diseases are listed.
Collapse
Affiliation(s)
- Domenico Plantone
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carlo Manco
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Sara Locci
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Dipartimento Universitario di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Nicola De Stefano
- Centre for Precision and Translational Medicine, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| |
Collapse
|
15
|
Henn M, Martin-Gorgojo V, Martin-Moreno JM. Vitamin D in Cancer Prevention: Gaps in Current Knowledge and Room for Hope. Nutrients 2022; 14:4512. [PMID: 36364774 PMCID: PMC9657468 DOI: 10.3390/nu14214512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/03/2023] Open
Abstract
Intensive epigenome and transcriptome analyses have unveiled numerous biological mechanisms, including the regulation of cell differentiation, proliferation, and induced apoptosis in neoplastic cells, as well as the modulation of the antineoplastic action of the immune system, which plausibly explains the observed population-based relationship between low vitamin D status and increased cancer risk. However, large randomized clinical trials involving cholecalciferol supplementation have so far failed to show the potential of such interventions in cancer prevention. In this article, we attempt to reconcile the supposed contradiction of these findings by undertaking a thorough review of the literature, including an assessment of the limitations in the design, conduct, and analysis of the studies conducted thus far. We examine the long-standing dilemma of whether the beneficial effects of vitamin D levels increase significantly above a critical threshold or if the conjecture is valid that an increase in available cholecalciferol translates directly into an increase in calcitriol activity. In addition, we try to shed light on the high interindividual epigenetic and transcriptomic variability in response to cholecalciferol supplementation. Moreover, we critically review the standards of interpretation of the available study results and propose criteria that could allow us to reach sound conclusions in this field. Finally, we advocate for options tailored to individual vitamin D needs, combined with a comprehensive intervention that favors prevention through a healthy environment and responsible health behaviors.
Collapse
Affiliation(s)
- Matthias Henn
- Department of Preventive Medicine and Public Health, University of Navarra-IdiSNA (Instituto de Investigación Sanitaria de Navarra), 31008 Pamplona, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Victor Martin-Gorgojo
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Orthopedic Surgery and Traumatology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Jose M. Martin-Moreno
- Biomedical Research Institute INCLIVA, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Department of Preventive Medicine and Public Health, Universitat de Valencia, 46010 Valencia, Spain
| |
Collapse
|
16
|
Mazur A, Frączek P, Tabarkiewicz J. Vitamin D as a Nutri-Epigenetic Factor in Autoimmunity-A Review of Current Research and Reports on Vitamin D Deficiency in Autoimmune Diseases. Nutrients 2022; 14:nu14204286. [PMID: 36296970 PMCID: PMC9611618 DOI: 10.3390/nu14204286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Epigenetics is a series of alterations regulating gene expression without disrupting the DNA sequence of bases. These regulatory mechanisms can result in embryogenesis, cellular differentiation, X-chromosome inactivation, and DNA-protein interactions. The main epigenetic mechanisms considered to play a major role in both health and disease are DNA methylation, histone modifications, and profiling of non-coding RNA. When the fragile balance between these simultaneously occurring phenomena is disrupted, the risk of pathology increases. Thus, the factors that determine proper epigenetic modeling are defined and those with disruptive influence are sought. Several such factors with proven negative effects have already been described. Diet and nutritional substances have recently been one of the most interesting targets of exploration for epigenetic modeling in disease states, including autoimmunity. The preventive role of proper nutrition and maintaining sufficient vitamin D concentration in maternal blood during pregnancy, as well as in the early years of life, is emphasized. Opportunities are also being investigated for affecting the course of the disease by exploring nutriepigenetics. The authors aim to review the literature presenting vitamin D as one of the important nutrients potentially modeling the course of disease in selected autoimmune disorders.
Collapse
Affiliation(s)
- Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
| | - Paulina Frączek
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Correspondence:
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, 35-310 Rzeszow, Poland
| |
Collapse
|
17
|
Khayami R, Goltzman D, Rabbani SA, Kerachian MA. Epigenomic effects of vitamin D in colorectal cancer. Epigenomics 2022; 14:1213-1228. [PMID: 36325830 DOI: 10.2217/epi-2022-0288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D regulates a plethora of physiological processes in the human body and has been proposed to exert several anticancer effects. Epigenetics plays an important role in regulating vitamin D actions. In this review, we highlight the recent advances in the understanding of different epigenetic factors such as lncRNAs, miRNAs, methylation and acetylation influenced by vitamin D and its downstream targets in colorectal cancer to find more potential therapeutic targets. We discuss how vitamin D exerts anticancer properties through interactions between the vitamin D receptor and genes (e.g., SLC30A10), the microenvironment, microbiota and other factors in colorectal cancer. Developing therapeutic approaches targeting the vitamin D signaling system will be aided by a better knowledge of the epigenetic impact of vitamin D.
Collapse
Affiliation(s)
- Reza Khayami
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - David Goltzman
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, H3G 1A4, Canada
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, On, H3A 1A4, Canada
| |
Collapse
|
18
|
JMJD family proteins in cancer and inflammation. Signal Transduct Target Ther 2022; 7:304. [PMID: 36050314 PMCID: PMC9434538 DOI: 10.1038/s41392-022-01145-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
The occurrence of cancer entails a series of genetic mutations that favor uncontrollable tumor growth. It is believed that various factors collectively contribute to cancer, and there is no one single explanation for tumorigenesis. Epigenetic changes such as the dysregulation of enzymes modifying DNA or histones are actively involved in oncogenesis and inflammatory response. The methylation of lysine residues on histone proteins represents a class of post-translational modifications. The human Jumonji C domain-containing (JMJD) protein family consists of more than 30 members. The JMJD proteins have long been identified with histone lysine demethylases (KDM) and histone arginine demethylases activities and thus could function as epigenetic modulators in physiological processes and diseases. Importantly, growing evidence has demonstrated the aberrant expression of JMJD proteins in cancer and inflammatory diseases, which might serve as an underlying mechanism for the initiation and progression of such diseases. Here, we discuss the role of key JMJD proteins in cancer and inflammation, including the intensively studied histone lysine demethylases, as well as the understudied group of JMJD members. In particular, we focused on epigenetic changes induced by each JMJD member and summarized recent research progress evaluating their therapeutic potential for the treatment of cancer and inflammatory diseases.
Collapse
|
19
|
Chen YH, Chen CH, Chien CY, Su YY, Luo SD, Li SH. JMJD3 suppresses tumor progression in oral tongue squamous cell carcinoma patients receiving surgical resection. PeerJ 2022; 10:e13759. [PMID: 35855897 PMCID: PMC9288160 DOI: 10.7717/peerj.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/29/2022] [Indexed: 01/17/2023] Open
Abstract
Background Jumonji domain-containing-3 (JMJD3) is reported to be a histone H3 lysine 27 (H3K27) demethylase and a tumor suppressor gene. The present study designed to investigate the crucial role of JMJD3 in oral tongue squamous cell carcinoma (OTSCC) patients who received surgical resection. Methods We enrolled a total of 156 OTSCC patients receiving surgical resection, including 73 patients (47%) with high expression of JMJD3 and 83 patients (53%) harboring low expression of JMJD3. Two OTSCC cell lines, SAS and Cal 27, were used to explore the modulation of cancer. GSK-J4, a potent inhibitor of JMJD3, was used to treat the two OTSCC cell lines. The Chi-square test was performed to examine between-group differences in categorical variables; the Kaplan-Meier method was used to investigate survival outcome in univariate analysis, and the Cox regression model was used for multivariate analysis. Results The median follow-up period was 59.2 months and he five-year disease-free survival (DFS) and overall survival (OS) rates were 46.2% and 50.0%, respectively. Better five-year DFS (59% versus 35%) and five-year OS (63% versus 39%) were mentioned in patients with high expression of JMJD3 compared to those with low expression of JMJD3. High expression of JMJD3 was significantly associated with superior DFS and OS in the univariate and multivariate analyses. Following successful inhibition of JMJD3 by GSK-J4, western blotting analysis showed the decreased expression of Rb and p21. Conclusion Our study showed that high expression of JMJD3 is a good prognostic factor in OTSCC patients who underwent surgical resection.
Collapse
Affiliation(s)
- Yen-Hao Chen
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan,Department of Nursing, School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Chang-Han Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yan-Ye Su
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Shau-Hsuan Li
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Zhang H, Hu Y, Liu D, Liu Z, Xie N, Liu S, Zhang J, Jiang Y, Li C, Wang Q, Chen X, Ye D, Sun D, Zhai Y, Yan X, Liu Y, Chen CD, Huang X, Eugene Chin Y, Shi Y, Wu B, Zhang X. The histone demethylase Kdm6b regulates the maturation and cytotoxicity of TCRαβ+CD8αα+ intestinal intraepithelial lymphocytes. Cell Death Differ 2022; 29:1349-1363. [PMID: 34999729 PMCID: PMC9287323 DOI: 10.1038/s41418-021-00921-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
AbstractIntestinal intraepithelial lymphocytes (IELs) are distributed along the length of the intestine and are considered the frontline of immune surveillance. The precise molecular mechanisms, especially epigenetic regulation, of their development and function are poorly understood. The trimethylation of histone 3 at lysine 27 (H3K27Me3) is a kind of histone modifications and associated with gene repression. Kdm6b is an epigenetic enzyme responsible for the demethylation of H3K27Me3 and thus promotes gene expression. Here we identified Kdm6b as an important intracellular regulator of small intestinal IELs. Mice genetically deficient for Kdm6b showed greatly reduced numbers of TCRαβ+CD8αα+ IELs. In the absence of Kdm6b, TCRαβ+CD8αα+ IELs exhibited increased apoptosis, disturbed maturation and a compromised capability to lyse target cells. Both IL-15 and Kdm6b-mediated demethylation of histone 3 at lysine 27 are responsible for the maturation of TCRαβ+CD8αα+ IELs through upregulating the expression of Gzmb and Fasl. In addition, Kdm6b also regulates the expression of the gut-homing molecule CCR9 by controlling H3K27Me3 level at its promoter. However, Kdm6b is dispensable for the reactivity of thymic precursors of TCRαβ+CD8αα+ IELs (IELPs) to IL-15 and TGF-β. In conclusion, we showed that Kdm6b plays critical roles in the maturation and cytotoxic function of small intestinal TCRαβ+CD8αα+ IELs.
Collapse
|
21
|
Abstract
Histone lysine methylation plays a key role in gene activation and repression. The trimethylation of histone H3 on lysine-27 (H3K27me3) is a critical epigenetic event that is controlled by Jumonji domain-containing protein-3 (JMJD3). JMJD3 is a histone demethylase that specifically removes methyl groups. Previous studies have suggested that JMJD3 has a dual role in cancer cells. JMJD3 stimulates the expression of proliferative-related genes and increases tumor cell growth, propagation, and migration in various cancers, including neural, prostate, ovary, skin, esophagus, leukemia, hepatic, head and neck, renal, lymphoma, and lung. In contrast, JMJD3 can suppress the propagation of tumor cells, and enhance their apoptosis in colorectal, breast, and pancreatic cancers. In this review, we summarized the recent advances of JMJD3 function in cancer cells.
Collapse
|
22
|
Shen MH, Huang CJ, Ho TF, Liu CY, Shih YY, Huang CS, Huang CC. Colorectal cancer concurrent gene signature based on coherent patterns between genomic and transcriptional alterations. BMC Cancer 2022; 22:590. [PMID: 35637462 PMCID: PMC9150289 DOI: 10.1186/s12885-022-09627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background The aim of the study was to enhance colorectal cancer prognostication by integrating single nucleotide polymorphism (SNP) and gene expression (GE) microarrays for genomic and transcriptional alteration detection; genes with concurrent gains and losses were used to develop a prognostic signature. Methods The discovery dataset comprised 32 Taiwanese colorectal cancer patients, of which 31 were assayed for GE and copy number variations (CNVs) with Illumina Human HT-12 BeadChip v4.0 and Omni 25 BeadChip v1.1. Concurrent gains and losses were declared if coherent manners were observed between GE and SNP arrays. Concurrent genes were also identified in The Cancer Genome Atlas Project (TCGA) as the secondary discovery dataset (n = 345). Results The “universal” concurrent genes, which were the combination of z-transformed correlation coefficients, contained 4022 genes. Candidate genes were evaluated within each of the 10 public domain microarray datasets, and 1655 (2000 probe sets) were prognostic in at least one study. Consensus across all datasets was used to build a risk predictive model, while distinct relapse-free/overall survival patterns between defined risk groups were observed among four out of five training datasets. The predictive accuracy of recurrence, metastasis, or death was between 61 and 86% (cross-validation area under the receiver operating characteristic (ROC) curve: 0.548-0.833) from five independent validation studies. Conclusion The colorectal cancer concurrent gene signature is prognostic in terms of recurrence, metastasis, or mortality among 1746 patients. Genes with coherent patterns between genomic and transcriptional contexts are more likely to provide prognostication for colorectal cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09627-9.
Collapse
Affiliation(s)
- Ming-Hung Shen
- Department of Surgery, Fu-Jen Catholic University Hospital, No. 69, Guizi Road, Taishan District, New Taipei City, 243, Taiwan.,Ph. D Program in Nutrition and Food Science, College of Human Ecology, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 242062, Taiwan
| | - Chi-Jung Huang
- Department of Biochemistry, National Defense Medical Center, No.161, Sec. 6, Minquan E. Rd., Neihu Dist., Taipei City, 11490, Taiwan.,Department of Medical Research, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei City, 106, Taiwan
| | - Thien-Fiew Ho
- Division of General Surgery, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Chih-Yi Liu
- Division of Pathology, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Ying-Yih Shih
- Division of Hematology and Oncology, Cathay General Hospital Sijhih, No. 2, Ln. 59, Jiancheng Rd., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Ching-Shui Huang
- Department of Surgery, Cathay General Hospital, No.280, Sec. 4, Renai Rd., Daan Dist., Taipei City, 106, Taiwan. .,School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, 110, Taiwan.
| | - Chi-Cheng Huang
- Department of Surgery, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, 11217, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan, 11217. .,Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No.17, Xuzhou Rd., Taipei City, 100, Taiwan.
| |
Collapse
|
23
|
Warwick T, Schulz MH, Gilsbach R, Brandes RP, Seuter S. Nuclear receptor activation shapes spatial genome organization essential for gene expression control: lessons learned from the vitamin D receptor. Nucleic Acids Res 2022; 50:3745-3763. [PMID: 35325193 PMCID: PMC9023275 DOI: 10.1093/nar/gkac178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
Spatial genome organization is tightly controlled by several regulatory mechanisms and is essential for gene expression control. Nuclear receptors are ligand-activated transcription factors that modulate physiological and pathophysiological processes and are primary pharmacological targets. DNA binding of the important loop-forming insulator protein CCCTC-binding factor (CTCF) was modulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). We performed CTCF HiChIP assays to produce the first genome-wide dataset of CTCF long-range interactions in 1,25(OH)2D3-treated cells, and to determine whether dynamic changes of spatial chromatin interactions are essential for fine-tuning of nuclear receptor signaling. We detected changes in 3D chromatin organization upon vitamin D receptor (VDR) activation at 3.1% of all observed CTCF interactions. VDR binding was enriched at both differential loop anchors and within differential loops. Differential loops were observed in several putative functional roles including TAD border formation, promoter-enhancer looping, and establishment of VDR-responsive insulated neighborhoods. Vitamin D target genes were enriched in differential loops and at their anchors. Secondary vitamin D effects related to dynamic chromatin domain changes were linked to location of downstream transcription factors in differential loops. CRISPR interference and loop anchor deletion experiments confirmed the functional relevance of nuclear receptor ligand-induced adjustments of the chromatin 3D structure for gene expression regulation.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Marcel H Schulz
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Ralf Gilsbach
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| | - Sabine Seuter
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt/Main, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Rhein-Main 60590, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Matusiewicz M, Marczak K, Kwiecińska B, Kupis J, Zglińska K, Niemiec T, Kosieradzka I. Effect of extracts from eggs of Helix aspersa maxima and Helix aspersa aspersa snails on Caco-2 colon cancer cells. PeerJ 2022; 10:e13217. [PMID: 35433131 PMCID: PMC9012176 DOI: 10.7717/peerj.13217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
Background Colorectal cancer is the third most commonly diagnosed cancer. Natural compounds, administered together with conventional chemotherapeutic agent(s) and/or radiotherapy, may be a novel element in the combination therapy of this cancer. Considering the anticancer properties of compounds derived from different tissues of various snail species confirmed earlier, the purpose of the present research was to evaluate the effect of extracts from eggs of Helix aspera maxima and Helix aspersa aspersa snails, and fractions of extracts containing particles of different molecular weights on Caco-2 human epithelial colorectal adenocarcinoma cells. Methods The extracts and fractions were analyzed for antioxidant activity, phenols and total carbohydrates using colorimetric methods. Lipid peroxidation products and glutathione in eggs were also examined using these methods. Crude protein and fat in eggs were determined. Molecular weights of egg proteins and glycoproteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Astaxanthin, selected vitamins and amino acids in eggs were measured using liquid chromatography methods, and minerals by emission spectroscopy, mass spectrometry or X-ray fluorescence. The action of extracts on the cell viability was determined by the MTT (methylthiazolyldiphenyl-tetrazolium bromide) test, based on the mitochondrial oxidative activity, after 24 and 72 h of treatment. The influence of fractions on the cell viability was assayed after 24 h. The effect of extracts on the percentage of live and dead cells was evaluated by the trypan blue assay, in which live cells exclude trypan blue, while dead cells take up this dye, after 12, 24, 48 and 72 h of treatment. Their influence on the integrity of cell membranes was determined based on the activity of LDH (lactate dehydrogenase), released from damaged cells, after 24 and 72 h of treatment. Then, the effect of extracts on the content of lipid peroxidation products in cells was examined using colorimetric method, after 24 h of treatment. Their influence on types of cell death was determined by flow cytometry, after this time. Results The extracts and their fractions containing molecules <3 kDa decreased the cell viability, after 24 h of treatment. The extracts reduced the percentage of live cells (also after 48 h), increased the degree of cell membrane damage and the amount of lipid peroxidation products, induced apoptosis and reduced necrosis. Conclusions Antioxidants, phenols, lipid peroxidation products, anticancer peptides, restriction of methionine, appropriate ratio of essential amino acids to non-essential amino acids, vitamin D3, Ca, Mg, S, Cu, Mn, Zn, Se and other bioactive compounds comprised in the extracts and their additive and synergistic effects may have influenced Caco-2 cells. Natural extracts or the chemical compounds contained in them might be used in the combination therapy of colorectal cancer, which requires further research.
Collapse
Affiliation(s)
- Magdalena Matusiewicz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina Marczak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Kwiecińska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Julia Kupis
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Klara Zglińska
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Niemiec
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Kosieradzka
- Department of Animal Nutrition, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Albracht SP. Hypothesis: mutual dependency of ascorbate and calcidiol for optimal performance of the immune system. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Gkotinakou IM, Mylonis I, Tsakalof A. Vitamin D and Hypoxia: Points of Interplay in Cancer. Cancers (Basel) 2022; 14:cancers14071791. [PMID: 35406562 PMCID: PMC8997790 DOI: 10.3390/cancers14071791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological responses ranging from classic to nonclassical actions such as bone morphogenesis and immune function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemiological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary, tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of calcitriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors (HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular signaling to give the opportunity to better understand their relationship in cancer development and their prospect for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ilias Mylonis
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| | - Andreas Tsakalof
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| |
Collapse
|
27
|
Muñoz A, Grant WB. Vitamin D and Cancer: An Historical Overview of the Epidemiology and Mechanisms. Nutrients 2022; 14:1448. [PMID: 35406059 PMCID: PMC9003337 DOI: 10.3390/nu14071448] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023] Open
Abstract
This is a narrative review of the evidence supporting vitamin D's anticancer actions. The first section reviews the findings from ecological studies of cancer with respect to indices of solar radiation, which found a reduced risk of incidence and mortality for approximately 23 types of cancer. Meta-analyses of observational studies reported the inverse correlations of serum 25-hydroxyvitamin D [25(OH)D] with the incidence of 12 types of cancer. Case-control studies with a 25(OH)D concentration measured near the time of cancer diagnosis are stronger than nested case-control and cohort studies as long follow-up times reduce the correlations due to changes in 25(OH)D with time. There is no evidence that undiagnosed cancer reduces 25(OH)D concentrations unless the cancer is at a very advanced stage. Meta-analyses of cancer incidence with respect to dietary intake have had limited success due to the low amount of vitamin D in most diets. An analysis of 25(OH)D-cancer incidence rates suggests that achieving 80 ng/mL vs. 10 ng/mL would reduce cancer incidence rates by 70 ± 10%. Clinical trials have provided limited support for the UVB-vitamin D-cancer hypothesis due to poor design and execution. In recent decades, many experimental studies in cultured cells and animal models have described a wide range of anticancer effects of vitamin D compounds. This paper will review studies showing the inhibition of tumor cell proliferation, dedifferentiation, and invasion together with the sensitization to proapoptotic agents. Moreover, 1,25-(OH)2D3 and other vitamin D receptor agonists modulate the biology of several types of stromal cells such as fibroblasts, endothelial and immune cells in a way that interferes the apparition of metastases. In sum, the available mechanistic data support the global protective action of vitamin D against several important types of cancer.
Collapse
Affiliation(s)
- Alberto Muñoz
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, CIBERONC and IdiPAZ, 28029 Madrid, Spain;
| | - William B. Grant
- Sunlight, Nutrition and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA
| |
Collapse
|
28
|
Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells 2022; 11:cells11071129. [PMID: 35406694 PMCID: PMC8997406 DOI: 10.3390/cells11071129] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vitamin D receptor (VDR) executes most of the biological functions of vitamin D. Beyond this, VDR is a transcriptional factor regulating the expression levels of many target genes, such as genes for tight junction proteins claudin-2, -5, -12, and -15. In this review, we discuss the progress of research on VDR that influences intestinal barriers in health and disease. We searched PubMed and Google Scholar using key words vitamin D, VDR, tight junctions, cancer, inflammation, and infection. We summarize the literature and progress reports on VDR regulation of tight junction distribution, cellular functions, and mechanisms (directly or indirectly). We review the impacts of VDR on barriers in various diseases, e.g., colon cancer, infection, inflammatory bowel disease, and chronic inflammatory lung diseases. We also discuss the limits of current studies and future directions. Deeper understanding of the mechanisms by which the VDR signaling regulates intestinal barrier functions allow us to develop efficient and effective therapeutic strategies based on levels of tight junction proteins and vitamin D/VDR statuses for human diseases.
Collapse
|
29
|
Vitamin D and Its Target Genes. Nutrients 2022; 14:nu14071354. [PMID: 35405966 PMCID: PMC9003440 DOI: 10.3390/nu14071354] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022] Open
Abstract
The vitamin D metabolite 1α,25-dihydroxyvitamin D3 is the natural, high-affinity ligand of the transcription factor vitamin D receptor (VDR). In many tissues and cell types, VDR binds in a ligand-dependent fashion to thousands of genomic loci and modulates, via local chromatin changes, the expression of hundreds of primary target genes. Thus, the epigenome and transcriptome of VDR-expressing cells is directly affected by vitamin D. Vitamin D target genes encode for proteins with a large variety of physiological functions, ranging from the control of calcium homeostasis, innate and adaptive immunity, to cellular differentiation. This review will discuss VDR’s binding to genomic DNA, as well as its genome-wide locations and interaction with partner proteins, in the context of chromatin. This information will be integrated into a model of vitamin D signaling, explaining the regulation of vitamin D target genes.
Collapse
|
30
|
Català-Moll F, Ferreté-Bonastre AG, Godoy-Tena G, Morante-Palacios O, Ciudad L, Barberà L, Fondelli F, Martínez-Cáceres EM, Rodríguez-Ubreva J, Li T, Ballestar E. Vitamin D receptor, STAT3, and TET2 cooperate to establish tolerogenesis. Cell Rep 2022; 38:110244. [DOI: 10.1016/j.celrep.2021.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
|
31
|
Hua C, Chen J, Li S, Zhou J, Fu J, Sun W, Wang W. KDM6 Demethylases and Their Roles in Human Cancers. Front Oncol 2021; 11:779918. [PMID: 34950587 PMCID: PMC8688854 DOI: 10.3389/fonc.2021.779918] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/17/2021] [Indexed: 12/31/2022] Open
Abstract
Cancer therapy is moving beyond traditional chemotherapy to include epigenetic approaches. KDM6 demethylases are dynamic regulation of gene expression by histone demethylation in response to diverse stimuli, and thus their dysregulation has been observed in various cancers. In this review, we first briefly introduce structural features of KDM6 subfamily, and then discuss the regulation of KDM6, which involves the coordinated control between cellular metabolism (intrinsic regulators) and tumor microenvironment (extrinsic stimuli). We further describe the aberrant functions of KDM6 in human cancers, acting as either a tumor suppressor or an oncoprotein in a context-dependent manner. Finally, we propose potential therapy of KDM6 enzymes based on their structural features, epigenetics, and immunomodulatory mechanisms, providing novel insights for prevention and treatment of cancers.
Collapse
Affiliation(s)
- Chunyan Hua
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | | | - Shuting Li
- Wenzhou Medical University, Wenzhou, China
| | | | - Jiahong Fu
- Wenzhou Medical University, Wenzhou, China
| | - Weijian Sun
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Bhutia SK. Vitamin D in autophagy signaling for health and diseases: Insights on potential mechanisms and future perspectives. J Nutr Biochem 2021; 99:108841. [PMID: 34403722 DOI: 10.1016/j.jnutbio.2021.108841] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
Vitamin D regulates the pleiotropic effect to maintain cellular homeostasis and epidemiological evidence establishes an association between vitamin D deficiency and various human diseases. Here, the role of autophagy, the cellular self-degradation process, in vitamin D-dependent function is documented in different cellular settings and discussed the molecular aspects for treating chronic inflammatory, infectious diseases, and cancer. Vitamin D activates autophagy through a genomic and non-genomic signaling pathway to influence a wide variety of physiological functions of different body organs along with bone health and calcium metabolism. Moreover, it induces autophagy as a protective mechanism to inhibit oxidative stress and apoptosis to regulate cell proliferation, differentiation, and immune modulation. Furthermore, vitamin D and its receptor regulate autophagy signaling to control inflammation and host immunity by activating antimicrobial defense mechanisms. Vitamin D has been revealed as a potent anticancer agent and induces autophagy to increase the response to radiation and chemotherapeutic drugs for potential cancer therapy. Increasing vitamin D levels in the human body through timely exposure to sunlight or vitamin D supplements could activate autophagy as part of the homeostasis mechanism to prevent multiple human diseases and aging-associated dysfunctions.
Collapse
Affiliation(s)
- Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, India.
| |
Collapse
|
33
|
Xun J, Gao R, Wang B, Li Y, Ma Y, Guan J, Zhang Q. Histone demethylase KDM6B inhibits breast cancer metastasis by regulating Wnt/β-catenin signaling. FEBS Open Bio 2021. [PMID: 34165914 PMCID: PMC8329947 DOI: 10.1002/2211-5463.13236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 01/22/2023] Open
Abstract
Tumor metastasis remains a major challenge for patients with breast cancer. Aberrant epigenetic factor lysine‐specific demethylase 6B (KDM6B) has been associated with tumor progression. Here, we show that KDM6B is significantly down‐regulated in human breast cancer tissues, and its low expression is associated with poor prognosis of patients with breast cancer. Furthermore, overexpression of KDM6B remarkably inhibited cell proliferation, invasion, migration and epithelial–mesenchymal transition markers of breast cancer cells in vitro and tumor growth and lung metastasis in vivo. Notably, the expression of KDM6B in breast cancer tissues was negatively correlated with that of β‐catenin, and overexpression of KDM6B decreased the expression of β‐catenin and its accumulation in the nucleus of breast cancer cells. Overall, our findings provide novel insights into suppression of metastasis of breast cancer cells by KDM6B via β‐catenin and suggest involvement of the KDM6B‐Wnt/β‐catenin axis in breast cancer progression.
Collapse
Affiliation(s)
- Jing Xun
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, China
| | - Ruifang Gao
- Tianjin Institute of Medical & Pharmaceutical Sciences, Tianjin, China
| | - Botao Wang
- Graduate School of Tianjin Medical University, China
| | - Yifan Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, China
| | - Yuan Ma
- Graduate School of Tianjin Medical University, China
| | - Jun Guan
- Graduate School of Tianjin Medical University, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, China
| |
Collapse
|
34
|
Punnia-Moorthy G, Hersey P, Emran AA, Tiffen J. Lysine Demethylases: Promising Drug Targets in Melanoma and Other Cancers. Front Genet 2021; 12:680633. [PMID: 34220955 PMCID: PMC8242339 DOI: 10.3389/fgene.2021.680633] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation has been implicated in a variety of pathological processes including carcinogenesis. A major group of enzymes that influence epigenetic modifications are lysine demethylases (KDMs) also known as "erasers" which remove methyl groups on lysine (K) amino acids of histones. Numerous studies have implicated aberrant lysine demethylase activity in a variety of cancers, including melanoma. This review will focus on the structure, classification and functions of KDMs in normal biology and the current knowledge of how KDMs are deregulated in cancer pathogenesis, emphasizing our interest in melanoma. We highlight the current knowledge gaps of KDMs in melanoma pathobiology and describe opportunities to increases our understanding of their importance in this disease. We summarize the progress of several pre-clinical compounds that inhibit KDMs and represent promising candidates for further investigation in oncology.
Collapse
Affiliation(s)
- Gaya Punnia-Moorthy
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Peter Hersey
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Abdullah Al Emran
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| | - Jessamy Tiffen
- Melanoma Oncology and Immunology Group, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Epigenetics Laboratory, Centenary Institute, University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Chen X, Lin X, Pang G, Deng J, Xie Q, Zhang Z. Significance of KDM6A mutation in bladder cancer immune escape. BMC Cancer 2021; 21:635. [PMID: 34051747 PMCID: PMC8164329 DOI: 10.1186/s12885-021-08372-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Bladder cancer (BC) is the fourth most prevalent neoplasm in men and is associated with high tumour recurrence rates, leading to major treatment challenges. Lysine-specific demethylase 6A (KDM6A) is frequently mutated in several cancer types; however, its effects on tumour progression and clinical outcome in BC remain unclear. Here, we explored the potential role of KDM6A in regulating the antitumor immune response. Methods We mined The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases for somatic mutation and clinical data in patients with BC. Results We found frequent mutations in 12 genes in both cohorts, including TP53, KDM6A, CSMD3, MUC16, STAG2, PIK3CA, ARID1A, RB1, EP300, ERBB2, ERBB3, and FGFR3. The frequency o KDM6A mutations in the TCGA and ICGC datasets was 25.97 and 24.27%, respectively. In addition, KDM6A mutation was associated with a lower number of tumour-infiltrating immune cells (TIICs) and indicated a state of immune tolerance. KDM6A mutation was associated with lower KDM6A mRNA level compared with that in samples carrying the wild-type gene. Further, survival analysis showed that the prognosis of patients with low KDM6A expression was worse than that with high KDM6A expression. Using the CIBERSORT algorithm, Tumor Immune Estimation Resource site, and Gene Set Enrichment Analysis, we found that KDM6A mutation downregulated nine signalling pathways that participate in the immune system and attenuated the tumour immune response. Conclusion Overall, we conclude that KDM6A mutation is frequent in BC and promotes tumour immune escape, which may serve as a novel biomarker to predict the immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08372-9.
Collapse
Affiliation(s)
- Xingxing Chen
- Department of Urology, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Kangning Road No.79, in Zhuhai city, Guang Dong Province, Zhuhai, People's Republic of China
| | - Xuehua Lin
- Department of Urology, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Kangning Road No.79, in Zhuhai city, Guang Dong Province, Zhuhai, People's Republic of China
| | - Guofu Pang
- Department of Urology, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Kangning Road No.79, in Zhuhai city, Guang Dong Province, Zhuhai, People's Republic of China
| | - Jian Deng
- Department of Urology, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Kangning Road No.79, in Zhuhai city, Guang Dong Province, Zhuhai, People's Republic of China
| | - Qun Xie
- Department of Urology, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Kangning Road No.79, in Zhuhai city, Guang Dong Province, Zhuhai, People's Republic of China
| | - Zhengrong Zhang
- Department of Urology, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Kangning Road No.79, in Zhuhai city, Guang Dong Province, Zhuhai, People's Republic of China.
| |
Collapse
|
36
|
Qin M, Han F, Wu J, Gao FX, Li Y, Yan DX, He XM, Long Y, Tang XP, Ren DL, Gao Y, Dai TY. KDM6B promotes ESCC cell proliferation and metastasis by facilitating C/EBPβ transcription. BMC Cancer 2021; 21:559. [PMID: 34001062 PMCID: PMC8130268 DOI: 10.1186/s12885-021-08282-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
Background As an H3K27me3 demethylase and counteracts polycomb-mediated transcription repression, KDM6B has been implicated in the development and malignant progression in various types of cancers. However, its potential roles in esophageal squamous cell carcinoma (ESCC) have not been explored. Methods The expression of KDM6B in human ESCC tissues and cell lines was examined using RT-qPCR, immunohistochemical staining and immunoblotting. The effects of KDM6B on the proliferation and metastasis of ESCC were examined using in vitro and in vivo functional tests. RNA-seq and ChIP-seq assay were used to demonstrate the molecular biological mechanism of KDM6B in ESCC. Results We show that the expression level of KDM6B increased significantly in patients with lymph node metastasis. Furthermore, we confirmed that KDM6B knockdown reduces proliferation and metastasis of ESCC cells, while KDM6B overexpression has the opposite effects. Mechanistically, KDM6B regulates TNFA_SIGNALING_VIA_NFκB signalling pathways, and H3K27me3 binds to the promoter region of C/EBPβ, leading to the promotion of C/EBPβ transcription. Besides, we show that GSK-J4, a chemical inhibitor of KDM6B, markedly inhibits proliferation and metastasis of ESCC cells. Conclusions The present study demonstrated that KDM6B promotes ESCC progression by increasing the transcriptional activity of C/EBPβ depending on its H3K27 demethylase activity. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08282-w.
Collapse
Affiliation(s)
- Mei Qin
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Fei Han
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China
| | - Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China
| | - Feng-Xia Gao
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Yuan Li
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China
| | - De-Xin Yan
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China
| | - Xue-Mei He
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yang Long
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ping Tang
- Experimental Medicine Center, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - De-Lian Ren
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Yan Gao
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China.
| | - Tian-Yang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of Southwest, Medical University, Sichuan, Luzhou, China.
| |
Collapse
|
37
|
Vitamin D decreases silencer methylation to downregulate renin gene expression. Gene 2021; 786:145623. [PMID: 33798678 DOI: 10.1016/j.gene.2021.145623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Renin, encoded by REN, is an essential enzyme in the renin-angiotensin aldosterone system (RAAS) which is responsible for the maintenance of blood pressure homeostasis. Transcriptional regulation of REN has been linked to enhancer-promoter crosstalk, cAMP response element-binding protein (CREB), the active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and a less well-characterized intronic silencer element. We hypothesized that in addition to these, differential DNA methylation is linked to REN expression and influenced by 1,25(OH)2D3. REN expressing cells (HEK293) were used to elucidate the effect of 1,25(OH)2D3 on REN methylation and expression as quantified by methylation-sensitive qPCR and RT-qPCR, respectively. In vitro 1,25(OH)2D3 supplementation (10 nM) induced significant hypomethylation of the REN silencer (P < 0.050), which was linked to a significant reduction in REN expression (P < 0.010) but had no effect on enhancer methylation. In addition, 1,25(OH)2D3 increased VDR (P < 0.05), as well as TET1 (P < 0.05) expression, suggesting an association between 1,25(OH)2D3 and DNA methylation. Thus, it appears that the silencer element, which is controlled by DNA methylation and influenced by 1,25(OH)2D3, plays an essential role in regulating REN expression.
Collapse
|
38
|
The Functions of the Demethylase JMJD3 in Cancer. Int J Mol Sci 2021; 22:ijms22020968. [PMID: 33478063 PMCID: PMC7835890 DOI: 10.3390/ijms22020968] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/09/2022] Open
Abstract
Cancer is a major cause of death worldwide. Epigenetic changes in response to external (diet, sports activities, etc.) and internal events are increasingly implicated in tumor initiation and progression. In this review, we focused on post-translational changes in histones and, more particularly, the tri methylation of lysine from histone 3 (H3K27me3) mark, a repressive epigenetic mark often under- or overexpressed in a wide range of cancers. Two actors regulate H3K27 methylation: Jumonji Domain-Containing Protein 3 demethylase (JMJD3) and Enhancer of zeste homolog 2 (EZH2) methyltransferase. A number of studies have highlighted the deregulation of these actors, which is why this scientific review will focus on the role of JMJD3 and, consequently, H3K27me3 in cancer development. Data on JMJD3’s involvement in cancer are classified by cancer type: nervous system, prostate, blood, colorectal, breast, lung, liver, ovarian, and gastric cancers.
Collapse
|
39
|
Yu C, Xiong C, Tang J, Hou X, Liu N, Bayliss G, Zhuang S. Histone demethylase JMJD3 protects against renal fibrosis by suppressing TGFβ and Notch signaling and preserving PTEN expression. Am J Cancer Res 2021; 11:2706-2721. [PMID: 33456568 PMCID: PMC7806480 DOI: 10.7150/thno.48679] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: The Jumonji domain containing-3 (JMJD3), a specific histone demethylase for trimethylation on histone H3 lysine 27 (H3K27me3), is associated with the pathogenesis of many diseases, but its role in renal fibrosis remains unexplored. Here we examined the role of JMJD3 and mechanisms involved in the activation of renal fibroblasts and development of renal fibrosis. Methods: Murine models of 5/6 surgical nephrectomy (SNx) and ureteral unilateral obstruction (UUO) were used to assess the effect of a specific JMJD3 inhibitor, GSKJ4, and genetic deletion of JMJD3 from FOXD1 stroma-derived renal interstitial cells on the development of renal fibrosis and activation of renal interstitial fibroblasts. Cultured rat renal interstitial fibroblasts (NRK-49F) and mouse renal tubular epithelial cells (mTECs) were also used to examine JMJD3-mediated activation of profibrotic signaling. Results: JMJD3 and H3K27me3 expression levels were upregulated in the kidney of mice subjected to SNx 5/6 and UUO. Pharmacological inhibition of JMJD3 with GSKJ4 or genetic deletion of JMJD3 led to worsening of renal dysfunction as well as increased deposition of extracellular matrix proteins and activation of renal interstitial fibroblasts in the injured kidney. This was coincident with decreased expression of Smad7 and enhanced expression of H3K27me3, transforming growth factor β1 (TGFβ1), Smad3, Notch1, Notch3 and Jagged1. Inhibition of JMJD3 by GSK J4 or its specific siRNA also resulted in the similar responses in cultured NRK-49F and mTECs exposed to serum or TGFβ1. Moreover, JMJD3 inhibition augmented phosphorylation of AKT and ERK1/2 in vivo and in vitro. Conclusion: These results indicate that JMJD3 confers anti-fibrotic effects by limiting activation of multiple profibrotic signaling pathways and suggest that JMJD3 modulation may have therapeutic effects for chronic kidney disease.
Collapse
|
40
|
Wang HQ, Zhang WH, Wang YQ, Geng XP, Wang MW, Fan YY, Guan J, Shen JL, Chen X. Colonic vitamin D receptor expression is inversely associated with disease activity and jumonji domain-containing 3 in active ulcerative colitis. World J Gastroenterol 2020; 26:7352-7366. [PMID: 33362389 PMCID: PMC7739157 DOI: 10.3748/wjg.v26.i46.7352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The expression of jumonji domain-containing 3 (Jmjd3) and trimethylated H3 lysine 27 (H3K27me3) in active ulcerative colitis (UC) and the correlation between vitamin D receptor (VDR) and the Jmjd3 pathway are unknown.
AIM To study the relationship between VDR, Jmjd3 and H3K27me3 in patients with active UC.
METHODS One hundred patients with active UC and 56 healthy controls were enrolled in this study. The patients with active UC were divided into groups according to mild (n = 29), moderate (n = 32) and severe (n = 29) disease activity based on the modified Mayo score. Vitamin D levels were measured by radioimmunoassay. Colonic mucosal tissues from UC patients and controls were collected by colonoscopy. The expression of VDR, Jmjd3 and H3K27me3 in the intestinal mucosa was determined by immunohistochemistry staining.
RESULTS Patients with active UC had lower levels of serum vitamin D (13.7 ± 2.8 ng/mL, P < 0.001) than the controls (16.2 ± 2.5 ng/mL). In the UC cohort, serum vitamin D level was negatively correlated with disease activity (r = -0.323, P = 0.001). VDR expression in the mucosa of UC patients was reduced compared to that in normal tissues (P < 0.001) and negatively correlated with disease activity (r = -0.868, P < 0.001). Similar results for VDR expression were noted in the most serious lesion (defined as UC diseased) and 20 cm proximal to the anus (defined as UC normal) (P < 0.05). Simultaneously, Jmjd3 expression significantly increased in UC patients (P < 0.001), but no difference was found between the different sites in UC patients. H3K27me3 expression in UC patients was significantly down-regulated when compared with normal tissues (P < 0.001), but up-regulated in the mild disease activity group in comparison with the moderate disease activity group of UC patients (P < 0.05). Jmjd3 Level was negatively correlated with the level of VDR (r = -0.342, P = 0.002) and H3K27me3 (r = -0.341, P = 0.002), while VDR level was positively correlated with H3K27me3 (r = 0.473, P < 0.001).
CONCLUSION Serum vitamin D and VDR were inversely correlated with disease activity in active UC. Jmjd3 expression increased in the colonic mucosa of active UC patients and was negatively associated with VDR and H3K27me3 level.
Collapse
Affiliation(s)
- Hong-Qian Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Wen-Hui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ya-Qi Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Xiao-Pan Geng
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ming-Wei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Yuan-Yuan Fan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Jing Guan
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| | - Ji-Long Shen
- Department of Pathogen Biology, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Xi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui Province, China
| |
Collapse
|
41
|
Common and personal target genes of the micronutrient vitamin D in primary immune cells from human peripheral blood. Sci Rep 2020; 10:21051. [PMID: 33273683 PMCID: PMC7713372 DOI: 10.1038/s41598-020-78288-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
Vitamin D is essential for the function of the immune system. In this study, we treated peripheral blood mononuclear cells (PBMCs) of healthy adults with the biologically active form of vitamin D3, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) using two different approaches: single repeats with PBMCs obtained from a cohort of 12 individuals and personalized analysis based on triplicates of five study participants. This identified 877 (cohort approach) and 3951 (personalized approach) genes that significantly (p < 0.05) changed their expression 24 h after 1,25(OH)2D3 stimulation. From these, 333 and 1232 were classified as supertargets, a third of which were identified as novel. Individuals differed largely in their vitamin D response not only by the magnitude of expression change but also by their personal selection of (super)target genes. Functional analysis of the target genes suggested the overarching role of vitamin D in the regulation of metabolism, proliferation and differentiation, but in particular in the control of functions mediated by the innate and adaptive immune system, such as responses to infectious diseases and chronic inflammatory disorders. In conclusion, immune cells are an important target of vitamin D and common genes may serve as biomarkers for personal responses to the micronutrient.
Collapse
|
42
|
Wnt and Vitamin D at the Crossroads in Solid Cancer. Cancers (Basel) 2020; 12:cancers12113434. [PMID: 33227961 PMCID: PMC7699248 DOI: 10.3390/cancers12113434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Wnt/β-catenin signaling pathway is aberrantly activated in most colorectal cancers and less frequently in a variety of other solid neoplasias. Many epidemiological and experimental studies and some clinical trials suggest an anticancer action of vitamin D, mainly against colorectal cancer. The aim of this review was to analyze the literature supporting the interference of Wnt/β-catenin signaling by the active vitamin D metabolite 1α,25-dihydroxyvitamin D3. We discuss the molecular mechanisms of this antagonism in colorectal cancer and other cancer types. Additionally, we summarize the available data indicating a reciprocal inhibition of vitamin D action by the activated Wnt/β-catenin pathway. Thus, a complex mutual antagonism between Wnt/β-catenin signaling and the vitamin D system seems to be at the root of many solid cancers. Abstract Abnormal activation of the Wnt/β-catenin pathway is common in many types of solid cancers. Likewise, a large proportion of cancer patients have vitamin D deficiency. In line with these observations, Wnt/β-catenin signaling and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active vitamin D metabolite, usually have opposite effects on cancer cell proliferation and phenotype. In recent years, an increasing number of studies performed in a variety of cancer types have revealed a complex crosstalk between Wnt/β-catenin signaling and 1,25(OH)2D3. Here we review the mechanisms by which 1,25(OH)2D3 inhibits Wnt/β-catenin signaling and, conversely, how the activated Wnt/β-catenin pathway may abrogate vitamin D action. The available data suggest that interaction between Wnt/β-catenin signaling and the vitamin D system is at the crossroads in solid cancers and may have therapeutic applications.
Collapse
|
43
|
Sun HY, Yang D, Mi J, Yu YQ, Qiu LH. Histone demethylase Jmjd3 modulates osteoblast apoptosis induced by tumor necrosis factor-alpha through directly targeting RASSF5. Connect Tissue Res 2020; 61:517-525. [PMID: 31092054 DOI: 10.1080/03008207.2019.1620225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: Regulation of gene expression is fine-tuned by a dynamic equilibrium between repressive modifications and transcriptional activation of histone tails. Jumonji domain-containing 3 (Jmjd3), also known as KDM6B, is a specific histone demethylase for trimethylation on histone H3 lysine 27 (H3K27me3) that specifically removes the methylation of H3K27me3 and promotes gene expression. Our previous study showed that Jmjd3 inhibits serum deprivation-induced osteoblast apoptosis. In this study, we clarified the role of Jmjd3 in tumor necrosis factor-alpha (TNF-α)-induced osteoblast apoptosis. Materials and Methods: Jmjd3 activity was inhibited by GSK-J4. Transfection of osteoblastic murine MC3T3-E1 cells with short hairpin RNA (shRNA) was used to establish stable Jmjd3 knockdown cells. Osteoblast apoptosis was detected using Annexin V-APC/PI staining, cysteinyl aspartate specific protease-3 (caspase-3) activity assays, and Western blot. Real-time polymerase chain reaction (PCR) and chromatin immunoprecipitation (ChIP) assays were performed to clarify the mechanism responsible for Jmjd3-regulated osteoblast apoptosis induced by TNF-α. Results: Based on Annexin V-APC/PI staining, caspase-3 activation, and poly ADP-ribose polymerase (PARP) cleavage, pretreatment with GSK-J4 and knockdown of Jmjd3 by shRNA transfection each inhibited osteoblast apoptosis. Furthermore, knockdown of Jmjd3 decreased the expression of Ras association domain family 5 (RASSF5), which is a pro-apoptotic gene of the Ras associated domain family. H3K27me3 levels in the promoter region of RASSF5 were up-regulated in the Jmjd3 knockdown cells. Conclusions: Jmjd3 regulated TNF-α-induced osteoblast apoptosis by targeting RASSF5.
Collapse
Affiliation(s)
- Hai-Yan Sun
- Department of Endodontics, School of Stomatology, China Medical University , Shenyang, China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University , Shenyang, China
| | - Jing Mi
- Department of Endodontics, School of Stomatology, China Medical University , Shenyang, China
| | - Ya-Qiong Yu
- Department of Endodontics, School of Stomatology, China Medical University , Shenyang, China
| | - Li-Hong Qiu
- Department of Endodontics, School of Stomatology, China Medical University , Shenyang, China
| |
Collapse
|
44
|
Saponaro F, Saba A, Zucchi R. An Update on Vitamin D Metabolism. Int J Mol Sci 2020; 21:ijms21186573. [PMID: 32911795 PMCID: PMC7554947 DOI: 10.3390/ijms21186573] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is a steroid hormone classically involved in the calcium metabolism and bone homeostasis. Recently, new and interesting aspects of vitamin D metabolism has been elucidated, namely the special role of the skin, the metabolic control of liver hydroxylase CYP2R1, the specificity of 1α-hydroxylase in different tissues and cell types and the genomic, non-genomic and epigenomic effects of vitamin D receptor, which will be addressed in the present review. Moreover, in the last decades, several extraskeletal effects which can be attributed to vitamin D have been shown. These beneficial effects will be here summarized, focusing on the immune system and cardiovascular system.
Collapse
|
45
|
Vitamin D Effects on Cell Differentiation and Stemness in Cancer. Cancers (Basel) 2020; 12:cancers12092413. [PMID: 32854355 PMCID: PMC7563562 DOI: 10.3390/cancers12092413] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin D3 is the precursor of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), a pleiotropic hormone that is a major regulator of the human genome. 1,25(OH)2D3 modulates the phenotype and physiology of many cell types by controlling the expression of hundreds of genes in a tissue- and cell-specific fashion. Vitamin D deficiency is common among cancer patients and numerous studies have reported that 1,25(OH)2D3 promotes the differentiation of a wide panel of cultured carcinoma cells, frequently associated with a reduction in cell proliferation and survival. A major mechanism of this action is inhibition of the epithelial–mesenchymal transition, which in turn is largely based on antagonism of the Wnt/β-catenin, TGF-β and EGF signaling pathways. In addition, 1,25(OH)2D3 controls the gene expression profile and phenotype of cancer-associated fibroblasts (CAFs), which are important players in the tumorigenic process. Moreover, recent data suggest a regulatory role of 1,25(OH)2D3 in the biology of normal and cancer stem cells (CSCs). Here, we revise the current knowledge of the molecular and genetic basis of the regulation by 1,25(OH)2D3 of the differentiation and stemness of human carcinoma cells, CAFs and CSCs. These effects support a homeostatic non-cytotoxic anticancer action of 1,25(OH)2D3 based on reprogramming of the phenotype of several cell types.
Collapse
|
46
|
Carlberg C, Muñoz A. An update on vitamin D signaling and cancer. Semin Cancer Biol 2020; 79:217-230. [DOI: 10.1016/j.semcancer.2020.05.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022]
|
47
|
Yang K, Zhu J, Wu J, Zhong Y, Shen X, Petrov B, Cai W. Maternal Vitamin D Deficiency Increases Intestinal Permeability and Programs Wnt/β-Catenin Pathway in BALB/C Mice. JPEN J Parenter Enteral Nutr 2020; 45:102-114. [PMID: 32270535 DOI: 10.1002/jpen.1820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent studies suggest that vitamin D deficiency is associated with intestinal dysfunctions, but the underlying mechanism remains unclear. This study aimed to investigate whether maternal vitamin D deficiency increases intestinal permeability in offspring and its related mechanism. METHODS Timed-pregnant mice were fed with either a standard chow diet (SC) or a vitamin D-deprived chow diet (VD-) 6 weeks prior to breeding and kept on the same diet until the end of gestation. All offspring were fed an SC for 3 weeks after weaning and then observed for effects associated with maternal vitamin D deficiency. RESULTS Maternal vitamin D deficiency increased intestinal permeability in offspring, which corresponded with the decreased expression of the tight junction protein claudin-1. Maternal vitamin D deficiency also repressed the messenger RNA expression of wingless/integrated family member 3a (Wnt3a) and the protein expression of nuclear β-catenin. The decreased Wnt3a gene expression in male was concurrent with the changes in histone H4 acetylation at either promoter or coding regions. The activation of the Wnt/β-catenin pathway protected against the impairment of intestinal permeability induced by maternal vitamin D deficiency. CONCLUSIONS Maternal vitamin D deficiency increased intestinal permeability and decreased tight junction protein expression in offspring. The suppression of the Wnt/β-catenin signaling pathway through histone modification might be involved in the underlying mechanism.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, San Marcos, Texas, USA
| | - Jiang Wu
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhong
- Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuhua Shen
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Brawnie Petrov
- Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Wei Cai
- Department of Clinical Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Nutrition, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
48
|
Carlberg C. Vitamin D: A Micronutrient Regulating Genes. Curr Pharm Des 2020; 25:1740-1746. [PMID: 31298160 DOI: 10.2174/1381612825666190705193227] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/21/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND At sufficient sun exposure, humans can synthesize vitamin D3 endogenously in their skin, but today's lifestyle makes the secosteroid a true vitamin that needs to be taken up by diet or supplementation with pills. The vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 acts as a nuclear hormone activating the transcription factor vitamin D receptor (VDR). METHODS This review discusses the biological effects of micronutrient vitamin D ranging from calcium homeostasis and bone formation to the modulation of innate and adaptive immunity. RESULTS Since normal human diet is sufficient in vitamin D, the need for efficient vitamin D3 synthesis in the skin acts as an evolutionary driver for its lightening during the migration out of Africa towards North. Via activating the VDR, vitamin D has direct effects on the epigenome and the expression of more than 1000 genes in most human tissues and cell types. CONCLUSIONS The pleiotropic action of vitamin D in health and disease prevention is explained through complex gene regulatory events of the transcription factor VDR.
Collapse
Affiliation(s)
- Carsten Carlberg
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| |
Collapse
|
49
|
Abstract
Epigenetic modifications play an important role in disease pathogenesis and therefore are a focus of intense investigation. Epigenetic changes include DNA, RNA, and histone modifications along with expression of non-coding RNAs. Various factors such as environment, diet, and lifestyle can influence the epigenome. Dietary nutrients like vitamins can regulate both physiological and pathological processes through their direct impact on epigenome. Vitamin A acts as a major regulator of above-mentioned epigenetic mechanisms. B group vitamins including biotin, niacin, and pantothenic acid also participate in modulation of various epigenome. Further, vitamin C has shown to modulate both DNA methylation and histone modifications while few reports have also supported its role in miRNA-mediated pathways. Similarly, vitamin D also influences various epigenetic modifications of both DNA and histone by controlling the regulatory mechanisms. Despite the information that vitamins can modulate the epigenome, the detailed mechanisms of vitamin-mediated epigenetic regulations have not been explored fully and hence further detailed studies are required to decipher their role at epigenome level in both normal and disease pathogenesis. The current review summarizes the available literature on the role of vitamins as epigenetic modifier and highlights the key evidences for developing vitamins as potential epidrugs.
Collapse
Affiliation(s)
- Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suvasmita Rath
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI, USA
| | - Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur (IIT K), Kanpur, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell 2020; 49:361-374. [PMID: 31063755 DOI: 10.1016/j.devcel.2019.04.010] [Citation(s) in RCA: 661] [Impact Index Per Article: 132.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/17/2019] [Accepted: 04/07/2019] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) and its reversed process, mesenchymal-to-epithelial transition (MET), are fundamental processes in embryonic development and tissue repair but confer malignant properties to carcinoma cells, including invasive behavior, cancer stem cell activity, and greater resistance to chemotherapy and immunotherapy. Understanding the molecular and cellular basis of EMT provides fundamental insights into the etiology of cancer and may, in the long run, lead to new therapeutic strategies. Here, we discuss the regulatory mechanisms and pathological roles of epithelial-mesenchymal plasticity, with a focus on recent insights into the complexity and dynamics of this phenomenon in cancer.
Collapse
|