1
|
Mantle D, Hargreaves IP. Efficacy and Safety of Coenzyme Q10 Supplementation in Neonates, Infants and Children: An Overview. Antioxidants (Basel) 2024; 13:530. [PMID: 38790635 PMCID: PMC11117623 DOI: 10.3390/antiox13050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
To date, there have been no review articles specifically relating to the general efficacy and safety of coenzyme Q10 (CoQ10) supplementation in younger subjects. In this article, we therefore reviewed the efficacy and safety of CoQ10 supplementation in neonates (less than 1 month of age), infants (up to 1 year of age) and children (up to 12 years of age). As there is no rationale for the supplementation of CoQ10 in normal younger subjects (as there is in otherwise healthy older subjects), all of the articles in the medical literature reviewed in the present article therefore refer to the supplementation of CoQ10 in younger subjects with a variety of clinical disorders; these include primary CoQ10 deficiency, acyl CoA dehydrogenase deficiency, Duchenne muscular dystrophy, migraine, Down syndrome, ADHD, idiopathic cardiomyopathy and Friedreich's ataxia.
Collapse
Affiliation(s)
- David Mantle
- Pharma Nord (UK) Ltd., Morpeth, Northumberland NE61 2DB, UK
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK;
| |
Collapse
|
2
|
He X, Jarrell ZR, Smith MR, Ly VT, Hu X, Sueblinvong V, Liang Y, Orr M, Go YM, Jones DP. Low-dose vanadium pentoxide perturbed lung metabolism associated with inflammation and fibrosis signaling in male animal and in vitro models. Am J Physiol Lung Cell Mol Physiol 2023; 325:L215-L232. [PMID: 37310758 PMCID: PMC10396228 DOI: 10.1152/ajplung.00303.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.
Collapse
Affiliation(s)
- Xiaojia He
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Zachery R Jarrell
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
- Atlanta Department of Veterans Affairs Healthcare System, Decatur, Georgia, United States
| | - ViLinh Thi Ly
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Xin Hu
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Viranuj Sueblinvong
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Yongliang Liang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Michael Orr
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Young-Mi Go
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Staiano C, García-Corzo L, Mantle D, Turton N, Millichap LE, Brea-Calvo G, Hargreaves I. Biosynthesis, Deficiency, and Supplementation of Coenzyme Q. Antioxidants (Basel) 2023; 12:1469. [PMID: 37508007 PMCID: PMC10375973 DOI: 10.3390/antiox12071469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis. In this article, we review the current knowledge on CoQ biosynthesis, the defects leading to diminished CoQ10 levels in human tissues and their associated clinical manifestations.
Collapse
Affiliation(s)
- Carmine Staiano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Laura García-Corzo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Lauren E Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
4
|
Coenzyme Q10: Role in Less Common Age-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11112293. [DOI: 10.3390/antiox11112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this article we have reviewed the potential role of coenzyme Q10 (CoQ10) in the pathogenesis and treatment of a number of less common age-related disorders, for many of which effective therapies are not currently available. For most of these disorders, mitochondrial dysfunction, oxidative stress and inflammation have been implicated in the disease process, providing a rationale for the potential therapeutic use of CoQ10, because of its key roles in mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. Disorders reviewed in the article include multi system atrophy, progressive supranuclear palsy, sporadic adult onset ataxia, and pulmonary fibrosis, together with late onset versions of Huntington’s disease, Alexander disease, lupus, anti-phospholipid syndrome, lysosomal storage disorders, fibromyalgia, Machado-Joseph disease, acyl-CoA dehydrogenase deficiency, and Leber’s optic neuropathy.
Collapse
|
5
|
Multiple Acyl-Coenzyme A Dehydrogenase Deficiency Leading to Severe Metabolic Acidosis in a Young Adult. AACE Clin Case Rep 2022; 9:13-16. [PMID: 36654993 PMCID: PMC9837082 DOI: 10.1016/j.aace.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background Multiple acyl-coenzyme A dehydrogenase deficiency (MADD) is a rare metabolic disorder affecting fatty acid oxidation. Incidence at birth is estimated at 1:250 000, but type III presents in adults. It is characterized by nonspecific symptoms but if undiagnosed may cause ketoacidosis and rhabdomyolysis. A review of 350 patients found less than one third presented with metabolic crises. Our objective is to describe an adult with weakness after carbohydrate restriction that developed a pulmonary embolism and ketoacidosis, and was diagnosed with MADD type III. Case Report A 27-year-old woman with obesity presented to the hospital with fatigue and weakness worsening over months causing falls and decreased intake. She presented earlier to clinic with milder symptoms starting months after initiating a low carbohydrate diet. Testing revealed mild hypothyroidism and she started Levothyroxine for presumed hypothyroid myopathy but progressed. Muscle biopsy suggested a lipid storage myopathy. Genetic testing revealed a mutation in the ETFDH (electron transfer flavoprotein dehydrogenase) gene likely pathogenic for MADD; however, before this was available she developed severe ketoacidosis and rhabdomyolysis. She empirically started a low-fat diet, carnitine, cyanocobalamin, and coenzyme Q10 supplementation with improvement. Over months her energy and strength normalized. Discussion MADD may cause ketoacidosis and rhabdomyolysis but this is rare in adults. Diagnosis requires clinical suspicion followed by biochemical and genetic testing. It should be considered when patients present with weakness or fasting intolerance. Treatment includes high carbohydrate, low-fat diets, supplementation, and avoiding fasting. Conclusion There should be greater awareness to consider MADD in adults presenting with neuromuscular symptoms, if untreated it may cause severe metabolic derangements.
Collapse
|
6
|
Al-Sabri MH, Behare N, Alsehli AM, Berkins S, Arora A, Antoniou E, Moysiadou EI, Anantha-Krishnan S, Cosmen PD, Vikner J, Moulin TC, Ammar N, Boukhatmi H, Clemensson LE, Rask-Andersen M, Mwinyi J, Williams MJ, Fredriksson R, Schiöth HB. Statins Induce Locomotion and Muscular Phenotypes in Drosophila melanogaster That Are Reminiscent of Human Myopathy: Evidence for the Role of the Chloride Channel Inhibition in the Muscular Phenotypes. Cells 2022; 11:3528. [PMID: 36428957 PMCID: PMC9688544 DOI: 10.3390/cells11223528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The underlying mechanisms for statin-induced myopathy (SIM) are still equivocal. In this study, we employ Drosophila melanogaster to dissect possible underlying mechanisms for SIM. We observe that chronic fluvastatin treatment causes reduced general locomotion activity and climbing ability. In addition, transmission microscopy of dissected skeletal muscles of fluvastatin-treated flies reveals strong myofibrillar damage, including increased sarcomere lengths and Z-line streaming, which are reminiscent of myopathy, along with fragmented mitochondria of larger sizes, most of which are round-like shapes. Furthermore, chronic fluvastatin treatment is associated with impaired lipid metabolism and insulin signalling. Mechanistically, knockdown of the statin-target Hmgcr in the skeletal muscles recapitulates fluvastatin-induced mitochondrial phenotypes and lowered general locomotion activity; however, it was not sufficient to alter sarcomere length or elicit myofibrillar damage compared to controls or fluvastatin treatment. Moreover, we found that fluvastatin treatment was associated with reduced expression of the skeletal muscle chloride channel, ClC-a (Drosophila homolog of CLCN1), while selective knockdown of skeletal muscle ClC-a also recapitulated fluvastatin-induced myofibril damage and increased sarcomere lengths. Surprisingly, exercising fluvastatin-treated flies restored ClC-a expression and normalized sarcomere lengths, suggesting that fluvastatin-induced myofibrillar phenotypes could be linked to lowered ClC-a expression. Taken together, these results may indicate the potential role of ClC-a inhibition in statin-associated muscular phenotypes. This study underlines the importance of Drosophila melanogaster as a powerful model system for elucidating the locomotion and muscular phenotypes, promoting a better understanding of the molecular mechanisms underlying SIM.
Collapse
Affiliation(s)
- Mohamed H. Al-Sabri
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Neha Behare
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Ahmed M. Alsehli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, King Abdulaziz University and Hospital, Al Ehtifalat St., Jeddah 21589, Saudi Arabia
| | - Samuel Berkins
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Aadeya Arora
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eirini Antoniou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Eleni I. Moysiadou
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Sowmya Anantha-Krishnan
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Patricia D. Cosmen
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Johanna Vikner
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
- Faculty of Medicine, Department of Experimental Medical Science, Lund University, Sölvegatan 19, BMC F10, 221 84 Lund, Sweden
| | - Nourhene Ammar
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Hadi Boukhatmi
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS, UMR6290, 35065 Rennes, France
| | - Laura E. Clemensson
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Mathias Rask-Andersen
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Biomedical Center (BMC), Uppsala University, Husargatan 3, 751 24 Uppsala, Sweden
| |
Collapse
|
7
|
Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radic Biol Med 2022; 179:339-362. [PMID: 34775001 DOI: 10.1016/j.freeradbiomed.2021.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/31/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Insulin resistance is one of the earliest pathological features of a suite of diseases including type 2 diabetes collectively referred to as metabolic syndrome. There is a growing body of evidence from both pre-clinical studies and human cohorts indicating that reactive oxygen species, such as the superoxide radical anion and hydrogen peroxide are key players in the development of insulin resistance. Here we review the evidence linking mitochondrial reactive oxygen species generated within mitochondria with insulin resistance in adipose tissue and skeletal muscle, two major insulin sensitive tissues. We outline the relevant mitochondria-derived reactive species, how the mitochondrial redox state is regulated, and methodologies available to measure mitochondrial reactive oxygen species. Importantly, we highlight key experimental issues to be considered when studying the role of mitochondrial reactive oxygen species in insulin resistance. Evaluating the available literature on both mitochondrial reactive oxygen species/redox state and insulin resistance in a variety of biological systems, we conclude that the weight of evidence suggests a likely role for mitochondrial reactive oxygen species in the etiology of insulin resistance in adipose tissue and skeletal muscle. However, major limitations in the methods used to study reactive oxygen species in insulin resistance as well as the lack of data linking mitochondrial reactive oxygen species and cytosolic insulin signaling pathways are significant obstacles in proving the mechanistic link between these two processes. We provide a framework to guide future studies to provide stronger mechanistic information on the link between mitochondrial reactive oxygen species and insulin resistance as understanding the source, localization, nature, and quantity of mitochondrial reactive oxygen species, their targets and downstream signaling pathways may pave the way for important new therapeutic strategies.
Collapse
Affiliation(s)
- Anita Ayer
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Metabolic Research Laboratory, Wellcome-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
| | - David E James
- Charles Perkins Centre, Sydney Medical School, The University of Sydney, Sydney, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Roland Stocker
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia; School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia.
| |
Collapse
|
8
|
Li Q, Yang C, Feng L, Zhao Y, Su Y, Liu H, Men H, Huang Y, Körner H, Wang X. Glutaric Acidemia, Pathogenesis and Nutritional Therapy. Front Nutr 2022; 8:704984. [PMID: 34977106 PMCID: PMC8714794 DOI: 10.3389/fnut.2021.704984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/26/2021] [Indexed: 01/13/2023] Open
Abstract
Glutaric acidemia (GA) are heterogeneous, genetic diseases that present with specific catabolic deficiencies of amino acid or fatty acid metabolism. The disorders can be divided into type I and type II by the occurrence of different types of recessive mutations of autosomal, metabolically important genes. Patients of glutaric acidemia type I (GA-I) if not diagnosed very early in infanthood, experience irreversible neurological injury during an encephalopathic crisis in childhood. If diagnosed early the disorder can be treated successfully with a combined metabolic treatment course that includes early catabolic emergency treatment and long-term maintenance nutrition therapy. Glutaric acidemia type II (GA- II) patients can present clinically with hepatomegaly, non-ketotic hypoglycemia, metabolic acidosis, hypotonia, and in neonatal onset cardiomyopathy. Furthermore, it features adult-onset muscle-related symptoms, including weakness, fatigue, and myalgia. An early diagnosis is crucial, as both types can be managed by simple nutraceutical supplementation. This review discusses the pathogenesis of GA and its nutritional management practices, and aims to promote understanding and management of GA. We will provide a detailed summary of current clinical management strategies of the glutaric academia disorders and highlight issues of nutrition therapy principles in emergency settings and outline some specific cases.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacy, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Chunlan Yang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lijuan Feng
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yazi Zhao
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Su
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong Liu
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongkang Men
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yan Huang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Tang Z, Gao S, He M, Chen Q, Fang J, Luo Y, Yan W, Shi X, Huang H, Tang J. Clinical Presentations and Genetic Characteristics of Late-Onset MADD Due to ETFDH Mutations in Five Patients: A Case Series. Front Neurol 2021; 12:747360. [PMID: 34819910 PMCID: PMC8606537 DOI: 10.3389/fneur.2021.747360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Late-onset multiple acyl-CoA dehydrogenase deficiency (LO-MADD) describes a curable autosomal recessive genetic disease caused by ETFDH mutations that result in defects in ETF-ubiquinone oxidoreductase. Almost all patients are responsive to riboflavin. This study describes the clinical presentations and genetic characteristics of five LO-MADD patients. Methods: From 2018 to 2021, we collected clinical and genetic data on five patients diagnosed with LO-MADD at our hospital and retrospectively analyzed their clinical characteristics, laboratory examination, electromyography, muscle biopsy, genetic analysis, and outcome data. Results: This study included three males and two females with mean onset age of 37.8 years. Fluctuating exercise intolerance was the most common presentation. Serum creatine kinase (CK) levels were significantly elevated in all patients, and plasma acylcarnitine profiles revealed an increase in long-chain acylcarnitine species in three cases. The urinary organic acid study revealed a high level of hydroxyglutaric acid in all patients. Electrophysiology demonstrated myogenic impairment. Muscle biopsies revealed lipid storage myopathy. Molecular analysis identified nine mutations (three novels and six reported) in ETFDH. Exercise intolerance and muscle weakness were dramatically improved in all patients treated with riboflavin (100 mg) daily following diagnosis. Conclusions: LO-MADD is caused by ETFDH variants and responds well to riboflavin. Three novel ETFDH pathogenic variants were identified, expanding their spectrum in the Chinese population and facilitating future interpretation and analysis of ETFDH mutations.
Collapse
Affiliation(s)
- Zhenchu Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shan Gao
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao He
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qihua Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Fang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Luo
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Huang
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Amidst the madness of genetic adult myopathies: a rare, treatable MADD. Neurol Sci 2021; 43:743-745. [PMID: 34714453 DOI: 10.1007/s10072-021-05695-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
|
11
|
Duong QV, Levitsky Y, Dessinger MJ, Strubbe-Rivera JO, Bazil JN. Identifying Site-Specific Superoxide and Hydrogen Peroxide Production Rates From the Mitochondrial Electron Transport System Using a Computational Strategy. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab050. [PMID: 35330793 PMCID: PMC8788716 DOI: 10.1093/function/zqab050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) play important roles in cellular signaling; however, certain pathological conditions such as ischemia/reperfusion (I/R) injury disrupt ROS homeostasis and contribute to cell death. A major impediment to developing therapeutic measures against oxidative stress-induced cellular damage is the lack of a quantitative framework to identify the specific sources and regulatory mechanisms of mitochondrial ROS production. We developed a thermodynamically consistent, mass-and-charge balanced, kinetic model of mitochondrial ROS homeostasis focused on redox sites of electron transport chain complexes I, II, and III. The model was calibrated and corroborated using comprehensive data sets relevant to ROS homeostasis. The model predicts that complex I ROS production dominates other sources under conditions favoring a high membrane potential with elevated nicotinamide adenine dinucleotide (NADH) and ubiquinol (QH2) levels. In general, complex I contributes to significant levels of ROS production under pathological conditions, while complexes II and III are responsible for basal levels of ROS production, especially when QH2 levels are elevated. The model also reveals that hydrogen peroxide production by complex I underlies the non-linear relationship between ROS emission and O2 at low O2 concentrations. Lastly, the model highlights the need to quantify scavenging system activity under different conditions to establish a complete picture of mitochondrial ROS homeostasis. In summary, we describe the individual contributions of the electron transport system complex redox sites to total ROS emission in mitochondria respiring under various combinations of NADH- and Q-linked respiratory fuels under varying workloads.
Collapse
Affiliation(s)
- Quynh V Duong
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Levitsky
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Maria J Dessinger
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jasiel O Strubbe-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
12
|
Brandão SR, Ferreira R, Rocha H. Exploring the contribution of mitochondrial dynamics to multiple acyl-CoA dehydrogenase deficiency-related phenotype. Arch Physiol Biochem 2021; 127:210-216. [PMID: 31215835 DOI: 10.1080/13813455.2019.1628065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mitochondrial fatty acid β-oxidation disorders (FAOD) are among the diseases detected by newborn screening in most developed countries. Alterations of mitochondrial functionality are characteristic of these metabolic disorders. However, many questions remain to be clarified, namely how the interplay between the signaling pathways harbored in mitochondria contributes to the disease-related phenotype. Herein, we overview the role of mitochondria on the regulation of cell homeostasis through the production of ROS, mitophagy, apoptosis, and mitochondrial biogenesis. Emphasis is given to the signaling pathways involving MnSOD, sirtuins and PGC-1α, which seem to contribute to FAOD phenotype, namely to multiple acyl-CoA dehydrogenase deficiency (MADD). The association between phenotype and genotype is not straightforward, suggesting that specific molecular mechanisms may contribute to MADD pathogenesis, making MADD an interesting model to better understand this interplay. However, more work needs to be done envisioning the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Sofia R Brandão
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- Mass Spectrometry Group, QOPNA, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Ricardo Jorge, Porto, Portugal
| |
Collapse
|
13
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|
14
|
Castejón-Vega B, Battino M, Quiles JL, Bullon B, Cordero MD, Bullón P. Potential Role of the Mitochondria for the Dermatological Treatment of Papillon-Lefèvre. Antioxidants (Basel) 2021; 10:antiox10010095. [PMID: 33445524 PMCID: PMC7827181 DOI: 10.3390/antiox10010095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
The Papillon–Lefèvre syndrome (PLS) is a rare autosomal recessive disorder caused by mutations in the Cathepsin C (CTSC) gene, characterized by periodontitis and palmoplantar hyperkeratosis. The main inflammatory deficiencies include oxidative stress and autophagic dysfunction. Mitochondria are the main source of reactive oxygen species; their impaired function is related to skin diseases and periodontitis. The mitochondrial function has been evaluated in PLS and mitochondria have been targeted as a possible treatment for PLS. We show for the first time an important mitochondrial dysfunction associated with increased oxidative damage of mtDNA, reduced CoQ10 and mitochondrial mass and aberrant morphologies of the mitochondria in PLS patients. Mitochondrial dysfunction, determined by oxygen consumption rate (OCR) in PLS fibroblasts, was treated with CoQ10 supplementation, which determined an improvement in OCR and a remission of skin damage in a patient receiving a topical administration of a cream enriched with CoQ10 0.1%. We provide the first evidence of the role of mitochondrial dysfunction and CoQ10 deficiency in the pathophysiology of PLS and a future therapeutic option for PLS.
Collapse
Affiliation(s)
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche, Sez. Biochimica, Università Politecnica delle Marche, 60131 Ancona, Italy;
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Center (CIBM), University of Granada, Avda. del Conocimiento s.n., 18100 Armilla, Spain;
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, 39011 Santander, Spain
| | - Beatriz Bullon
- Department of Periodontology, Dental School, University of Sevilla, 41009 Sevilla, Spain;
| | - Mario D. Cordero
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, 11009 Cadiz, Spain
- Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)-Universidad Europea del Atlántico (UNEATLANTICO)-Fundación Universitaria Iberoamericana (FUNIBER), 39011 Santander, Spain
- Correspondence: (M.D.C.); (P.B.); Tel.: +34-9-5448-6783 (M.D.C.); +34-9-5448-1120 (P.B.)
| | - Pedro Bullón
- Department of Periodontology, Dental School, University of Sevilla, 41009 Sevilla, Spain;
- Correspondence: (M.D.C.); (P.B.); Tel.: +34-9-5448-6783 (M.D.C.); +34-9-5448-1120 (P.B.)
| |
Collapse
|
15
|
Woerner AC, Vockley J. Mitochondrial Disease and Coenzyme Q10 Deficiency: Commentary. J Pediatr 2021; 228:14-15.e1. [PMID: 32966804 DOI: 10.1016/j.jpeds.2020.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Audrey C Woerner
- Department of Medical Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; UPMC Children's Hospital, Pittsburgh, PA
| | - Jerry Vockley
- Department of Medical Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; UPMC Children's Hospital, Pittsburgh, PA; University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA.
| |
Collapse
|
16
|
Siano MA, Mandato C, Nazzaro L, Iannicelli G, Ciccarelli GP, Barretta F, Mazzaccara C, Ruoppolo M, Frisso G, Baldi C, Tartaglione S, Di Salle F, Melis D, Vajro P. Hepatic Presentation of Late-Onset Multiple Acyl-CoA Dehydrogenase Deficiency (MADD): Case Report and Systematic Review. Front Pediatr 2021; 9:672004. [PMID: 34041209 PMCID: PMC8143529 DOI: 10.3389/fped.2021.672004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Diagnosis of pediatric steatohepatitis is a challenging issue due to a vast number of established and novel causes. Here, we report a child with Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) presenting with an underrated muscle weakness, exercise intolerance and an atypically severe steatotic liver involvement. A systematic literature review of liver involvement in MADD was performed as well. Our patient is a 11-year-old otherwise healthy, non-obese, male child admitted for some weakness/asthenia, vomiting and recurrent severe hypertransaminasemia (aspartate and alanine aminotransferases up to ×20 times upper limit of normal). Hepatic ultrasound showed a bright liver. MRI detected mild lipid storage of thighs muscles. A liver biopsy showed a micro-macrovacuolar steatohepatitis with minimal fibrosis. Main causes of hypertransaminasemia were ruled out. Serum aminoacids (increased proline), acylcarnitines (increased C4-C18) and a large excretion of urinary glutaric acid, ethylmalonic, butyric, isobutyric, 2-methyl-butyric and isovaleric acids suggested a diagnosis of MADD. Serum acylcarnitines and urinary organic acids fluctuated overtime paralleling serum transaminases during periods of illness/catabolic stress, confirming their recurrent nature. Genetic testing confirmed the diagnosis [homozygous c.1658A > G (p.Tyr553Cys) in exon 12 of the ETFDH gene]. Lipid-restricted diet and riboflavin treatment rapidly ameliorated symptoms, hepatic ultrasonography/enzymes, and metabolic profiles. Literature review (37 retrieved eligible studies, 283 patients) showed that liver is an extramuscular organ rarely involved in late-onset MADD (70 patients), and that amongst 45 patients who had fatty liver only nine had severe presentation. Conclusion: MADD is a disorder with a clinically heterogeneous phenotype. Our study suggests that MADD warrants consideration in the work-up of obesity-unrelated severe steatohepatitis.
Collapse
Affiliation(s)
- Maria Anna Siano
- Postgraduate School of Pediatrics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Claudia Mandato
- Unit of Pediatrics 1, AORN Santobono-Pausilipon, Naples, Italy
| | - Lucia Nazzaro
- Pediatric Clinic, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy
| | - Gennaro Iannicelli
- Pediatric Clinic, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy
| | - Gian Paolo Ciccarelli
- Postgraduate School of Pediatrics, Faculty of Medicine University of Naples Federico II, Naples, Italy
| | - Ferdinando Barretta
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, Faculty of Medicine University of Naples Federico II, Naples, Italy.,CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Carlo Baldi
- Pathology Unit, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy
| | | | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Daniela Melis
- Postgraduate School of Pediatrics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.,Pediatric Clinic, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy
| | - Pietro Vajro
- Postgraduate School of Pediatrics, Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy.,Pediatric Clinic, AOU "S. Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy.,Postgraduate School of Pediatrics, Faculty of Medicine University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Xiao C, Astiazaran-Symonds E, Basu S, Kisling M, Scaglia F, Chapman KA, Wang Y, Vockley J, Ferreira CR. Mitochondrial energetic impairment in a patient with late-onset glutaric acidemia Type 2. Am J Med Genet A 2020; 182:2426-2431. [PMID: 32804429 DOI: 10.1002/ajmg.a.61786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Glutaric acidemia type 2 (GA2), also called multiple acyl-CoA dehydrogenase deficiency, is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism resulting in excretion of multiple organic acids and glycine conjugates as well as elevation of various plasma acylcarnitine species (C4-C18). It is caused by mutations in the ETFA, ETFB, or ETFDH genes which are involved in the transfer of electrons from 11 flavin-containing dehydrogenases to Coenzyme Q10 (CoQ10 ) of the mitochondrial electron transport chain (ETC). We report a patient who was originally reported as the first case with primary myopathic CoQ10 deficiency when he presented at 11.5 years with exercise intolerance and myopathy that improved after treatment with ubiquinone and carnitine. At age 23, his symptoms relapsed despite increasing doses of ubiquinone and he was shown to have biallelic mutations in the ETFDH gene. Treatment with riboflavin was started and ubiquinone was changed to ubiquinol. After 4 months, the patient recovered his muscle strength with normalization of laboratory exams and exercise tolerance. Functional studies on fibroblasts revealed decreased levels of ETFDH as well as of very long-chain acyl-CoA dehydrogenase and trifunctional protein α. In addition, the mitochondrial mass was decreased, with increased formation of reactive oxygen species and oxygen consumption rate, but with a decreased spared respiratory capacity, and decreased adenosine triphosphate level. These findings of widespread dysfunction of fatty acid oxidation and ETC enzymes support the impairment of a larger mitochondrial ETC supercomplex in our patient.
Collapse
Affiliation(s)
- Changrui Xiao
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Shrabani Basu
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Monisha Kisling
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, Hong Kong, SAR
| | - Kimberly A Chapman
- Rare Disease Institute, Children's National Health System, Washington, District of Columbia, USA
| | - Yudong Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA.,Center for Rare Disease Therapy, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
18
|
Mensch A, Zierz S. Cellular Stress in the Pathogenesis of Muscular Disorders-From Cause to Consequence. Int J Mol Sci 2020; 21:ijms21165830. [PMID: 32823799 PMCID: PMC7461575 DOI: 10.3390/ijms21165830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular stress has been considered a relevant pathogenetic factor in a variety of human diseases. Due to its primary functions by means of contractility, metabolism, and protein synthesis, the muscle cell is faced with continuous changes of cellular homeostasis that require rapid and coordinated adaptive mechanisms. Hence, a prone susceptibility to cellular stress in muscle is immanent. However, studies focusing on the cellular stress response in muscular disorders are limited. While in recent years there have been emerging indications regarding a relevant role of cellular stress in the pathophysiology of several muscular disorders, the underlying mechanisms are to a great extent incompletely understood. This review aimed to summarize the available evidence regarding a deregulation of the cellular stress response in individual muscle diseases. Potential mechanisms, as well as involved pathways are critically discussed, and respective disease models are addressed. Furthermore, relevant therapeutic approaches that aim to abrogate defects of cellular stress response in muscular disorders are outlined.
Collapse
|
19
|
Beneficial Effect of N-Carbamylglutamate in a Neonatal Form of Multiple Acyl-CoA Dehydrogenase Deficiency. Case Rep Pediatr 2020; 2020:1370293. [PMID: 32733732 PMCID: PMC7378605 DOI: 10.1155/2020/1370293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/26/2023] Open
Abstract
Background. Multiple acyl-CoA dehydrogenase deficiency is an autosomal recessive disorder of the amino acid metabolism and fatty acid oxidation due to the deficiency of the electron transfer protein or electron transfer protein ubiquinone oxidoreductase. The clinical picture ranges from a severe neonatal lethal presentation to late myopathic forms responsive to riboflavin. Up to now, there is no effective treatment for the neonatal form, which exhibits severe metabolic acidosis, hyperammonemia, hypoketotic hypoglycemia, and rhabdomyolysis. We present the case of a child who has had a good long-term outcome after a typical neonatal onset, with a dramatic drop in ammonia levels during the initial metabolic decompensation crisis and adequate control even during intercurrent diseases thereafter with N-carbamylglutamate treatment.
Collapse
|
20
|
Tolomeo M, Nisco A, Leone P, Barile M. Development of Novel Experimental Models to Study Flavoproteome Alterations in Human Neuromuscular Diseases: The Effect of Rf Therapy. Int J Mol Sci 2020; 21:ijms21155310. [PMID: 32722651 PMCID: PMC7432027 DOI: 10.3390/ijms21155310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Inborn errors of Riboflavin (Rf) transport and metabolism have been recently related to severe human neuromuscular disorders, as resulting in profound alteration of human flavoproteome and, therefore, of cellular bioenergetics. This explains why the interest in studying the “flavin world”, a topic which has not been intensively investigated before, has increased much over the last few years. This also prompts basic questions concerning how Rf transporters and FAD (flavin adenine dinucleotide) -forming enzymes work in humans, and how they can create a coordinated network ensuring the maintenance of intracellular flavoproteome. The concept of a coordinated cellular “flavin network”, introduced long ago studying humans suffering for Multiple Acyl-CoA Dehydrogenase Deficiency (MADD), has been, later on, addressed in model organisms and more recently in cell models. In the frame of the underlying relevance of a correct supply of Rf in humans and of a better understanding of the molecular rationale of Rf therapy in patients, this review wants to deal with theories and existing experimental models in the aim to potentiate possible therapeutic interventions in Rf-related neuromuscular diseases.
Collapse
|
21
|
Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21113847. [PMID: 32481712 PMCID: PMC7312377 DOI: 10.3390/ijms21113847] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.
Collapse
|
22
|
Lucas TG, Henriques BJ, Gomes CM. Conformational analysis of the riboflavin-responsive ETF:QO-p.Pro456Leu variant associated with mild multiple acyl-CoA dehydrogenase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140393. [PMID: 32087359 DOI: 10.1016/j.bbapap.2020.140393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023]
Abstract
Multiple-CoA dehydrogenase deficiency (MADD) is an inborn disorder of fatty acid and amino acid metabolism caused by mutations in the genes encoding for human electron transfer flavoprotein (ETF) and its partner electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). Albeit a rare disease, extensive newborn screening programs contributed to a wider coverage of MADD genotypes. However, the impact of non-lethal mutations on ETF:QO function remains scarcely understood from a structural perspective. To this end, we here revisit the relatively common MADD mutation ETF:QO-p.Pro456Leu, in order to clarify how it affects enzyme structure and folding. Given the limitation in recombinant expression of human ETF:QO, we resort to its bacterial homologue from Rhodobacter sphaeroides (Rs), in which the corresponding mutation (p.Pro389Leu) was inserted. The in vitro biochemical and biophysical investigations of the Rs ETF:QO-p.Pro389Leu variant showed that, while the mutation does not significantly affect the protein α/β fold, it introduces some plasticity on the tertiary structure and within flavin interactions. Indeed, in the p.Pro389Leu variant, FAD exhibits a higher thermolability during thermal denaturation and a faster rate of release in temperature-induced dissociation experiments, in comparison to the wild type. Therefore, although this clinical mutation occurs in the ubiquinone domain, its effect likely propagates to the nearby FAD binding domain, probably influencing electron transfer and redox potentials. Overall, our results provide a molecular rational for the decreased enzyme activity observed in patients and suggest that compromised FAD interactions in ETF:QO might account for the known riboflavin responsiveness of this mutation.
Collapse
Affiliation(s)
- Tânia G Lucas
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
23
|
Nilipour Y, Fatehi F, Sanatinia S, Bradshaw A, Duff J, Lochmüller H, Horvath R, Nafissi S. Multiple acyl-coenzyme A dehydrogenase deficiency shows a possible founder effect and is the most frequent cause of lipid storage myopathy in Iran. J Neurol Sci 2020; 411:116707. [PMID: 32007756 DOI: 10.1016/j.jns.2020.116707] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/30/2023]
Abstract
INTRODUCTION Multiple acyl-coenzyme A dehydrogenase deficiency disorder (MADD) is a relatively rare disorders of lipid metabolism. This study aimed to investigate the demographic, clinical, and genetic features of MADD in Iran. METHODS Twenty-nine patients with a definite diagnosis of lipid storage myopathy were recruited. All patients were tested for mutation in the ETFDH gene, and 19 had a biallelic mutation in this gene. RESULTS Of 19 patients with definite mutations, 11 (57.9%) were female, and the median age was 31 years. Twelve patients had c.1130 T > C (p.L377P) mutation in exon 10. Two patients had two novel heterozygote pathogenic variants (c.679C > T (p.P227S) in exon 6 and c.814G > A (p.G272R) in exon 7) and two patients had c.1699G > A (p.E567K) in exon 13. Before treatment, the median muscle power was 4.6 (IQR: 4-4.7) that increased to 5 (IQR: 5-5) after treatment (Z = -3.71, p = .000). The median CK was 1848 U/l (IQR: 1014-3473) before treatment, which declined to 188 U/l (IQR: 117-397) after treatment (Z = -3.41, p = .001). Sixteen patients (84.2%) had full recovery after the treatment. The disease onset was earlier (12 years of age; IQR: 6-18) in patients with homozygous c.1130 T > C; p.(L377P) mutation compared to other ETFDH mutations (30 years of age; IQR: 20-35) (p = .00). DISCUSSION MADD has different clinical presentations. As the patients respond favorably to treatment, early diagnosis and treatment may prevent the irreversible complications of the disease.
Collapse
Affiliation(s)
- Yalda Nilipour
- Pediatric pathology research center, Research institute for children's health, AND Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Aix Marseille University, CNRS (UMR 7339), Centre de Resonance Magnétique Biologique et Medicale, Faculte de Medecine, 27 bd. J. Moulin, 13005 Marseille, France
| | - Saleheh Sanatinia
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Anna Bradshaw
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jennifer Duff
- Wellcome Centre for Mitochondrial Research, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center - the University of Freiburg, Faculty of Medicine, Freiburg, Germany; Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Shahriar Nafissi
- Neurology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Masschelin PM, Cox AR, Chernis N, Hartig SM. The Impact of Oxidative Stress on Adipose Tissue Energy Balance. Front Physiol 2020; 10:1638. [PMID: 32038305 PMCID: PMC6987041 DOI: 10.3389/fphys.2019.01638] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Overnutrition and sedentary activity reinforce the growing trend of worldwide obesity, insulin resistance, and type 2 diabetes. However, we have limited insight into how food intake generates sophisticated metabolic perturbations associated with obesity. Accumulation of mitochondrial oxidative stress contributes to the metabolic changes in obesity, but the mechanisms and significance are unclear. In white adipose tissue (WAT), mitochondrial oxidative stress, and the generation of reactive oxygen species (ROS) impact the endocrine and metabolic function of fat cells. The central role of mitochondria in nutrient handling suggests pharmacological targeting of pathological oxidative stress likely improves the metabolic profile of obesity. This review will summarize the critical pathogenic mechanisms of obesity-driven oxidative stress in WAT.
Collapse
Affiliation(s)
- Peter M Masschelin
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Aaron R Cox
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Natasha Chernis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sean M Hartig
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
25
|
Myogenic Disease and Metabolic Acidosis: Consider Multiple Acyl-Coenzyme A Dehydrogenase Deficiency. Case Rep Crit Care 2019; 2019:1598213. [PMID: 31934457 PMCID: PMC6942752 DOI: 10.1155/2019/1598213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/30/2019] [Indexed: 12/30/2022] Open
Abstract
Background Multiple acyl-coA dehydrogenase deficiency (MADD) is a rare, inherited, autosomal-recessive disorder leading to the accumulation of acylcarnitine of all chain lengths. Acute decompensation with cardiac, respiratory or hepatic failure and metabolic abnormalities may be life-threatening. Case Presentation A 29-year-old woman presented with severe lactic acidosis associated with intense myalgia and muscle weakness. The clinical examination revealed symmetric upper and lower limb motor impairment (rated at 2 or 3 out of 5 on the Medical Research Council scale) and clear amyotrophy. Laboratory tests had revealed severe rhabdomyolysis, with a serum creatine phosphokinase level of 8,700 IU/L and asymptomatic hypoglycemia in the absence of ketosis. Electromyography revealed myotonic bursts in all four limbs. The absence of myositis-specific autoantibodies ruled out a diagnosis of autoimmune myositis. Finally, Acylcarnitine profile and gas chromatography–mass spectrometry analysis of organic acids led to the diagnosis of MADD. A treatment based on the intravenous infusion of glucose solutes, administration of riboflavin, and supplementation with coenzyme Q10 and carnitine was effective. Lipid consumption was strictly prohibited in the early stages of treatment. The clinical and biochemical parameters rapidly improved and we noticed a complete disappearance of the motor deficit, without sequelae. Conclusion A diagnosis of MADD must be considered whenever acute or chronic muscle involvement is associated with metabolic disorders. Acute heart, respiratory or hepatic failure and metabolic abnormalities caused by MADD may be life-threatening, and will require intensive care.
Collapse
|
26
|
Dernoncourt A, Bouchereau J, Acquaviva-Bourdain C, Wicker C, De Lonlay P, Dessein A, Gourguechon C, Sevestre H, Merle P, Maizel J, Brault C. Syndrome myogène et acidose métabolique, penser au déficit multiple en acyl-coenzyme A déshydrogénase. MEDECINE INTENSIVE REANIMATION 2019. [DOI: 10.3166/rea-2019-0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Le déficit multiple en acyl-coenzyme A déshydrogénase (DMAD), aussi appelé acidurie glutarique de type 2, est un trouble de l’oxydation des acides gras [1]. Bien qu’il soit habituellement diagnostiqué en période néonatale, certaines de ses formes se distinguent par un début plus tardif et peuvent parfois se révéler à l’âge adulte [1–3]. Nous rapportons le cas d’une patiente prise en charge en médecine intensive et réanimation pour un déficit moteur des quatre membres associé à une rhabdomyolyse, une acidose lactique sévère et une hypoglycémie hypocétosique. L’objectif de ce cas clinique est d’illustrer la démarche diagnostique ainsi que la prise en charge thérapeutique d’une décompensation aiguë de DMAD.
Collapse
|
27
|
Andalib S, Mashhadi-Mousapour M, Bijani S, Hosseini MJ. Coenzyme Q 10 Alleviated Behavioral Dysfunction and Bioenergetic Function in an Animal Model of Depression. Neurochem Res 2019; 44:1182-1191. [PMID: 30820817 DOI: 10.1007/s11064-019-02761-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Coenzyme Q10 (CoQ10) is a natural compound, is involved in the mitochondrial electron transfer chain (ETC) and plays an important pattern in adenosine triphosphate (ATP) production. Amelioration of ATP is related to abnormalities in cognitive function and psychiatric diseases. Previous studies have shown that depression is accompanied by the induction of inflammatory and oxidative stress pathways and amelioration of antioxidant status. In a recent study, we investigated the beneficial effects of CoQ10 on behavioral dysfunction and CoQ10 level in the rat brain. Therefore, intracerebroventricular (ICV) infusion of a single dose of streptozotocin (STZ, 0.2 mg/mouse) was used in adult male mice to induce depression. The behavioral data revealed a significant difference between the depression and control groups regarding the forced swim test (FST) and splash test results at 24 h following STZ treatment. Also, the validated and accurate high-performance liquid chromatography (HPLC) technique showed decreased CoQ10 level in the brain samples of the STZ group, compared to the controls. Our findings revealed that behavioral abnormalities due to STZ target mitochondria and affect energy metabolism and hemostasis, resulting in the initiation of oxidative damage in the brain. Besides, 4-week administration of CoQ10 could reverse the depressive like behavior and bioenergetic effects of STZ in the treated groups.
Collapse
Affiliation(s)
- Sina Andalib
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Mobin Mashhadi-Mousapour
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Soroush Bijani
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran.,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical sciences, Zanjan, Iran. .,Departments of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, P. O. Box: 45139-56184, Iran.
| |
Collapse
|
28
|
ETF-QO Mutants Uncoupled Fatty Acid β-Oxidation and Mitochondrial Bioenergetics Leading to Lipid Pathology. Cells 2019; 8:cells8020106. [PMID: 30709034 PMCID: PMC6406559 DOI: 10.3390/cells8020106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
The electron-transfer flavoprotein dehydrogenase gene (ETFDH) that encodes the ETF-ubiquinone oxidoreductase (ETF-QO) has been reported to be the major cause of multiple acyl-CoA dehydrogenase deficiency (MADD). ETF-QO is an electron carrier that mainly functions in mitochondrial fatty acid β-oxidation and the delivery of electrons to the ubiquinone pool in the mitochondrial respiratory chain. A high frequency of c.250G>A has been found in Taiwanese patients with late-onset MADD. We postulated that the ETFDH c.250G>A mutation may concomitantly impair fatty acid β-oxidation and mitochondrial function. Using MADD patient-derived lymphoblastoid cells and specifically overexpressed ETFDH c.92C>T, c.250G>A, or coexisted c.92C>T and c.250G>A (c.92C>T + c.250G>A) mutated lymphoblastoid cells, we addressed the genotype-phenotype relationship of ETFDH variation in the pathogenesis of MADD. The decreased adenosine triphosphate synthesis, dissipated mitochondrial membrane potentials, reduced mitochondrial bioenergetics, and increased neutral lipid droplets and lipid peroxides were found in the MADD patient-derived lymphoblastoid cells. Riboflavin and/or coenzyme Q10 supplementation rescued cells from lipid droplet accumulation. All three mutant types, c.92C>T, c.250G>A, or c.92C>T + c.250G>A, had increased lipid droplet accumulation after treatment with palmitic acid. These results help to clarify the molecular pathogenesis of MADD as a result of the high frequency of the ETFDH c.250G>A and c.92C>T mutations.
Collapse
|
29
|
Dombi E, Mortiboys H, Poulton J. Modulating Mitophagy in Mitochondrial Disease. Curr Med Chem 2019; 25:5597-5612. [DOI: 10.2174/0929867324666170616101741] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 01/28/2023]
Abstract
Mitochondrial diseases may result from mutations in the maternally-inherited mitochondrial
DNA (mtDNA) or from mutations in nuclear genes encoding mitochondrial proteins.
Their bi-genomic nature makes mitochondrial diseases a very heterogeneous group of
disorders that can present at any age and can affect any type of tissue.
The autophagic-lysosomal degradation pathway plays an important role in clearing dysfunctional
and redundant mitochondria through a specific quality control mechanism termed mitophagy.
Mitochondria could be targeted for autophagic degradation for a variety of reasons including
basal turnover for recycling, starvation induced degradation, and degradation due to
damage. While the core autophagic machinery is highly conserved and common to most
pathways, the signaling pathways leading to the selective degradation of damaged mitochondria
are still not completely understood. Type 1 mitophagy due to nutrient starvation is dependent
on PI3K (phosphoinositide 3-kinase) for autophagosome formation but independent
of mitophagy proteins, PINK1 (PTEN-induced putative kinase 1) and Parkin. Whereas type 2
mitophagy that occurs due to damage is dependent on PINK1 and Parkin but does not require
PI3K.
Autophagy and mitophagy play an important role in human disease and hence could serve as
therapeutic targets for the treatment of mitochondrial as well as neurodegenerative disorders.
Therefore, we reviewed drugs that are known modulators of autophagy (AICAR and metformin)
and may affect this by activating the AMP-activated protein kinase signaling pathways.
Furthermore, we reviewed the data available on supplements, such as Coenzyme Q and
the quinone idebenone, that we assert rescue increased mitophagy in mitochondrial disease by
benefiting mitochondrial function.
Collapse
Affiliation(s)
- Eszter Dombi
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, Neuroscience Department, University of Sheffield, United Kingdom
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Sinha T, Makia M, Du J, Naash MI, Al-Ubaidi MR. Flavin homeostasis in the mouse retina during aging and degeneration. J Nutr Biochem 2018; 62:123-133. [PMID: 30290331 PMCID: PMC7162609 DOI: 10.1016/j.jnutbio.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Accepted: 09/01/2018] [Indexed: 12/14/2022]
Abstract
Involvement of flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) in cellular homeostasis has been well established for tissues other than the retina. Here, we present an optimized method to effectively extract and quantify FAD and FMN from a single neural retina and its corresponding retinal pigment epithelium (RPE). Optimizations led to detection efficiency of 0.1 pmol for FAD and FMN while 0.01 pmol for riboflavin. Interestingly, levels of FAD and FMN in the RPE were found to be 1.7- and 12.5-fold higher than their levels in the retina, respectively. Both FAD and FMN levels in the RPE and retina gradually decline with age and preceded the age-dependent drop in the functional competence of the retina as measured by electroretinography. Further, quantifications of retinal levels of FAD and FMN in different mouse models of retinal degeneration revealed differential metabolic requirements of these two factors in relation to the rate and degree of photoreceptor degeneration. We also found twofold reductions in retinal levels of FAD and FMN in two mouse models of diabetic retinopathy. Altogether, our results suggest that retinal levels of FAD and FMN can be used as potential markers to determine state of health of the retina in general and more specifically the photoreceptors.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Mustafa Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Jianhai Du
- Department of Ophthalmology and Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204.
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204.
| |
Collapse
|
31
|
Chokchaiwong S, Kuo YT, Lin SH, Hsu YC, Hsu SP, Liu YT, Chou AJ, Kao SH. Coenzyme Q10 serves to couple mitochondrial oxidative phosphorylation and fatty acid β-oxidation, and attenuates NLRP3 inflammasome activation. Free Radic Res 2018; 52:1445-1455. [PMID: 30003820 DOI: 10.1080/10715762.2018.1500695] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD), an autosomal recessive metabolic disorder of fatty acid metabolism, is mostly caused by mutations in the ETFA, ETFB or ETFDH genes that result in dysfunctions in electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone dehydrogenase (ETFDH). In β-oxidation, fatty acids are processed to generate acyl-CoA, which is oxidised by flavin adenine dinucleotide and transfers an electron to ETF and, through ETFDH, to mitochondrial respiratory complex III to trigger ATP synthesis. Coenzyme Q10 (CoQ10) is believed to be a potential treatment that produces symptom relief in some MADD patients. CoQ10 acts as a key regulator linking ETFDH and mitochondrial respiratory complex III. Our aim is to investigate the effectiveness of CoQ10 in serving in the ETF/ETFDH system to improve mitochondrial function and to reduce lipotoxicity. In this study, we used lymphoblastoid cells with an ETFDH mutation from MADD patients. ETFDH dysfunction caused insufficient β-oxidation, leading to increasing lipid droplet and lipid peroxide accumulation. In contrast, supplementation with CoQ10 significantly recovered mitochondrial function and concurrently decreased the generation of reactive oxygen species and lipid peroxides, inhibited the accumulation of lipid droplets and the formation of the NOD-like receptor family pyrin domain-containing three (NLRP3) inflammasome, and reduced interleukin-1β release and cell death. These results clarify the causal role of CoQ10 in coupling the electron transport chain with β-oxidation, which may promote the development of CoQ10-directed therapies for MADD patients.
Collapse
Affiliation(s)
- Suphannee Chokchaiwong
- a Ph.D. Program in Medical Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Yung-Ting Kuo
- b Department of Pediatrics, School of Medicine , College of Medicine, Taipei Medical University , Taipei , Taiwan.,c Department of Pediatrics , Shuang Ho Hospital, Taipei Medical University , Taipei , Taiwan
| | - Shih-Hsiang Lin
- d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Yi-Ching Hsu
- d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| | - Sung-Po Hsu
- e Department of Physiology, School of Medicine , College of Medicine, Taipei Medical University , Taipei , Taiwan
| | - Yu-Ting Liu
- f Taipei First Girls' High School , Taipei , Taiwan
| | - An-Je Chou
- f Taipei First Girls' High School , Taipei , Taiwan
| | - Shu-Huei Kao
- a Ph.D. Program in Medical Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan.,d School of Medical Laboratory Science and Biotechnology , College of Medical Science and Technology, Taipei Medical University , Taipei , Taiwan
| |
Collapse
|
32
|
Repp BM, Mastantuono E, Alston CL, Schiff M, Haack TB, Rötig A, Ardissone A, Lombès A, Catarino CB, Diodato D, Schottmann G, Poulton J, Burlina A, Jonckheere A, Munnich A, Rolinski B, Ghezzi D, Rokicki D, Wellesley D, Martinelli D, Wenhong D, Lamantea E, Ostergaard E, Pronicka E, Pierre G, Smeets HJM, Wittig I, Scurr I, de Coo IFM, Moroni I, Smet J, Mayr JA, Dai L, de Meirleir L, Schuelke M, Zeviani M, Morscher RJ, McFarland R, Seneca S, Klopstock T, Meitinger T, Wieland T, Strom TM, Herberg U, Ahting U, Sperl W, Nassogne MC, Ling H, Fang F, Freisinger P, Van Coster R, Strecker V, Taylor RW, Häberle J, Vockley J, Prokisch H, Wortmann S. Clinical, biochemical and genetic spectrum of 70 patients with ACAD9 deficiency: is riboflavin supplementation effective? Orphanet J Rare Dis 2018; 13:120. [PMID: 30025539 PMCID: PMC6053715 DOI: 10.1186/s13023-018-0784-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/09/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Mitochondrial acyl-CoA dehydrogenase family member 9 (ACAD9) is essential for the assembly of mitochondrial respiratory chain complex I. Disease causing biallelic variants in ACAD9 have been reported in individuals presenting with lactic acidosis and cardiomyopathy. RESULTS We describe the genetic, clinical and biochemical findings in a cohort of 70 patients, of whom 29 previously unpublished. We found 34 known and 18 previously unreported variants in ACAD9. No patients harbored biallelic loss of function mutations, indicating that this combination is unlikely to be compatible with life. Causal pathogenic variants were distributed throughout the entire gene, and there was no obvious genotype-phenotype correlation. Most of the patients presented in the first year of life. For this subgroup the survival was poor (50% not surviving the first 2 years) comparing to patients with a later presentation (more than 90% surviving 10 years). The most common clinical findings were cardiomyopathy (85%), muscular weakness (75%) and exercise intolerance (72%). Interestingly, severe intellectual deficits were only reported in one patient and severe developmental delays in four patients. More than 70% of the patients were able to perform the same activities of daily living when compared to peers. CONCLUSIONS Our data show that riboflavin treatment improves complex I activity in the majority of patient-derived fibroblasts tested. This effect was also reported for most of the treated patients and is mirrored in the survival data. In the patient group with disease-onset below 1 year of age, we observed a statistically-significant better survival for patients treated with riboflavin.
Collapse
Affiliation(s)
- Birgit M. Repp
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Elisa Mastantuono
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Charlotte L. Alston
- 0000 0001 0462 7212grid.1006.7Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Manuel Schiff
- 0000 0001 2217 0017grid.7452.4UMR1141, PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, 75019 Paris, France ,0000 0004 1937 0589grid.413235.2Reference Center for Inborn Errors of Metabolism, Robert Debré University Hospital, APHP, 75019 Paris, France
| | - Tobias B. Haack
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0001 2190 1447grid.10392.39Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Agnes Rötig
- 0000 0001 2188 0914grid.10992.33UMR1163, Université Paris Descartes, Sorbonne Paris Cité, Institut IMAGINE, 24 Boulevard du Montparnasse, 75015 Paris, France
| | - Anna Ardissone
- 0000 0001 0707 5492grid.417894.7Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy ,0000 0001 0707 5492grid.417894.7Child Neurology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy ,0000 0001 2174 1754grid.7563.7Department of Molecular and Translational Medicine DIMET, University of Milan-Bicocca, Milan, Italy
| | - Anne Lombès
- 0000 0004 0643 431Xgrid.462098.1INSERM U1016, Institut Cochin, Paris, France
| | - Claudia B. Catarino
- 0000 0004 1936 973Xgrid.5252.0Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daria Diodato
- 0000 0001 0727 6809grid.414125.7Muscular and Neurodegenerative Disorders Unit, Bambino Gesu´ Children’s Hospital, IRCCS, Rome, Italy
| | - Gudrun Schottmann
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Joanna Poulton
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, The Women’s Centre, John Radcliffe Hospital, Oxford, UK
| | - Alberto Burlina
- 0000 0004 1760 2630grid.411474.3Division of Inherited Metabolic Diseases, Department of Paediatrics, University Hospital of Padova, Padova, Italy
| | - An Jonckheere
- 0000 0004 0626 3418grid.411414.5Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Arnold Munnich
- 0000 0001 2188 0914grid.10992.33UMR1163, Université Paris Descartes, Sorbonne Paris Cité, Institut IMAGINE, 24 Boulevard du Montparnasse, 75015 Paris, France
| | | | - Daniele Ghezzi
- 0000 0001 0707 5492grid.417894.7Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy ,0000 0004 1757 2822grid.4708.bDepartment of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Dariusz Rokicki
- 0000 0001 2232 2498grid.413923.eDepartment of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Diana Wellesley
- 0000 0004 0641 6277grid.415216.5Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Diego Martinelli
- 0000 0001 0727 6809grid.414125.7Genetics and Rare Diseases Research Division, Unit of Metabolism, Bambino Gesù Children’s Research Hospital, Rome, Italy
| | - Ding Wenhong
- Department of Pediatric cardiology, Beijing Anzhe Hospital, Captital Medical University, Beijing, China
| | - Eleonora Lamantea
- 0000 0001 0707 5492grid.417894.7Unit of Molecular Neurogenetics, Fondazione Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Elsebet Ostergaard
- grid.475435.4Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Ewa Pronicka
- 0000 0001 2232 2498grid.413923.eDepartment of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Germaine Pierre
- 0000 0004 0399 4960grid.415172.4South West Regional Metabolic Department, Bristol Royal Hospital for Children, Bristol, BS1 3NU UK
| | - Hubert J. M. Smeets
- 0000 0004 0480 1382grid.412966.eDepartment of Genetics and Cell Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ilka Wittig
- 0000 0004 1936 9721grid.7839.5Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Ingrid Scurr
- grid.416544.6Department of Clinical Genetics, St Michael’s Hospital, Bristol, UK
| | - Irenaeus F. M. de Coo
- 000000040459992Xgrid.5645.2Department of Neurology, Erasmus MC, Rotterdam, Netherlands ,0000 0004 0480 1382grid.412966.eDepartment of Clinical Genetics, Research School GROW, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Isabella Moroni
- 0000 0001 0707 5492grid.417894.7Child Neurology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Joél Smet
- 0000 0004 0626 3303grid.410566.0Department of Pediatric Neurology and Metabolism, Ghent University Hospital, De Pintelaan, Ghent, Belgium
| | - Johannes A. Mayr
- 0000 0000 9803 4313grid.415376.2Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | - Lifang Dai
- 0000 0004 0369 153Xgrid.24696.3fDepartment of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Linda de Meirleir
- 0000 0001 2290 8069grid.8767.eResearch Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium ,0000 0001 2290 8069grid.8767.eDepartment of Pediatric Neurology, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Markus Schuelke
- NeuroCure Clinical Research Center (NCRC), Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Massimo Zeviani
- 0000 0004 0427 1414grid.462573.1MRC-Mitochondrial Biology Unit, Cambridge, Cambridgeshire UK
| | - Raphael J. Morscher
- 0000 0000 9803 4313grid.415376.2Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria ,0000 0000 8853 2677grid.5361.1Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Robert McFarland
- 0000 0001 0462 7212grid.1006.7Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Seneca
- 0000 0001 2290 8069grid.8767.eCenter for Medical Genetics, UZ Brussel, Research Group Reproduction and Genetics (REGE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Klopstock
- 0000 0004 1936 973Xgrid.5252.0Department of Neurology, Friedrich-Baur-Institute, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany ,0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.452617.3Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Meitinger
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany ,grid.452617.3Munich Cluster of Systems Neurology (SyNergy), Munich, Germany ,0000 0004 5937 5237grid.452396.fDZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Wieland
- 0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Tim M. Strom
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Ulrike Herberg
- 0000 0001 2240 3300grid.10388.32Department of Pediatric Cardiology, University of Bonn, Bonn, Germany
| | - Uwe Ahting
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany
| | - Wolfgang Sperl
- 0000 0000 9803 4313grid.415376.2Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| | - Marie-Cecile Nassogne
- 0000 0004 0461 6320grid.48769.34Université Catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Han Ling
- Department of Pediatric cardiology, Beijing Anzhe Hospital, Captital Medical University, Beijing, China
| | - Fang Fang
- 0000 0004 0369 153Xgrid.24696.3fDepartment of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Peter Freisinger
- Department of Pediatrics, Klinikum Reutlingen, Reutlingen, Germany
| | - Rudy Van Coster
- 0000 0004 0626 3303grid.410566.0Department of Pediatric Neurology and Metabolism, Ghent University Hospital, De Pintelaan, Ghent, Belgium
| | - Valentina Strecker
- 0000 0004 1936 9721grid.7839.5Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe-University, Frankfurt am Main, Germany
| | - Robert W. Taylor
- 0000 0001 0462 7212grid.1006.7Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Johannes Häberle
- 0000 0001 0726 4330grid.412341.1Division of Metabolism and Children’s Research Center, University Children’s Hospital, Zurich, Switzerland
| | - Jerry Vockley
- Department of Pediatrics, University of Pittsburgh School of Medicine, University of Pittsburgh, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, USA
| | - Holger Prokisch
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Saskia Wortmann
- 0000000123222966grid.6936.aInstitute of Human Genetics, Technische Universität München, Trogerstrasse 32, 81675 Munich, Germany ,0000 0004 0483 2525grid.4567.0Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany ,0000 0000 9803 4313grid.415376.2Department of Pediatrics, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg, Austria
| |
Collapse
|
33
|
Fan X, Xie B, Zou J, Luo J, Qin Z, D'Gama AM, Shi J, Yi S, Yang Q, Wang J, Luo S, Chen S, Agrawal PB, Li Q, Shen Y. Novel ETFDH mutations in four cases of riboflavin responsive multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep 2018; 16:15-19. [PMID: 29988809 PMCID: PMC6031868 DOI: 10.1016/j.ymgmr.2018.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 05/30/2018] [Indexed: 02/01/2023] Open
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism caused by mutations in EFTA, EFTB, or ETFDH. Many MADD patients are responsive to treatment with riboflavin, termed riboflavin-responsive MADD (RR-MADD). Here, we report three novel mutations and one previously reported mutation in ETFDH in four RR-MADD patients who presented at various ages, and characterize the corresponding changes in ETF-QO protein structure. Clinicians should consider MADD in the differential diagnosis when patients present with muscle weakness and biochemical abnormalities. Gene testing plays a critical role in confirming the diagnosis of MADD, and may not only prevent patients from invasive testing, but also allow timely initiation of riboflavin treatment. The novel variants in ETFDH and the corresponding clinical features reported here enrich the allelic heterogeneity of RR-MADD and provide insight into genotype-phenotype relationships.
Collapse
Affiliation(s)
- Xin Fan
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Bobo Xie
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Jun Zou
- Department of Gastroenterology, The Second Affiliated Hospital, Guangxi Medical University, Nanning 530000, People's Republic of China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Alissa M D'Gama
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jiahai Shi
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Qi Yang
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Jin Wang
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Shiyu Luo
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Shaoke Chen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China
| | - Pankaj B Agrawal
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Qifei Li
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China.,Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.,Division of Newborn Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning 530003, People's Republic of China.,Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Fazakerley DJ, Chaudhuri R, Yang P, Maghzal GJ, Thomas KC, Krycer JR, Humphrey SJ, Parker BL, Fisher-Wellman KH, Meoli CC, Hoffman NJ, Diskin C, Burchfield JG, Cowley MJ, Kaplan W, Modrusan Z, Kolumam G, Yang JY, Chen DL, Samocha-Bonet D, Greenfield JR, Hoehn KL, Stocker R, James DE. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. eLife 2018; 7:32111. [PMID: 29402381 PMCID: PMC5800848 DOI: 10.7554/elife.32111] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/02/2018] [Indexed: 12/11/2022] Open
Abstract
Insulin resistance in muscle, adipocytes and liver is a gateway to a number of metabolic diseases. Here, we show a selective deficiency in mitochondrial coenzyme Q (CoQ) in insulin-resistant adipose and muscle tissue. This defect was observed in a range of in vitro insulin resistance models and adipose tissue from insulin-resistant humans and was concomitant with lower expression of mevalonate/CoQ biosynthesis pathway proteins in most models. Pharmacologic or genetic manipulations that decreased mitochondrial CoQ triggered mitochondrial oxidants and insulin resistance while CoQ supplementation in either insulin-resistant cell models or mice restored normal insulin sensitivity. Specifically, lowering of mitochondrial CoQ caused insulin resistance in adipocytes as a result of increased superoxide/hydrogen peroxide production via complex II. These data suggest that mitochondrial CoQ is a proximal driver of mitochondrial oxidants and insulin resistance, and that mechanisms that restore mitochondrial CoQ may be effective therapeutic targets for treating insulin resistance. After we eat, our blood sugar levels increase. To counteract this, the pancreas releases a hormone called insulin. Part of insulin’s effect is to promote the uptake of sugar from the blood into muscle and fat tissue for storage. Under certain conditions, such as obesity, this process can become defective, leading to a condition known as insulin resistance. This condition makes a number of human diseases more likely to develop, including type 2 diabetes. Working out how insulin resistance develops could therefore unveil new treatment strategies for these diseases. Mitochondria – structures that produce most of a cell’s energy supply – appear to play a role in the development of insulin resistance. Mitochondria convert nutrients such as fats and sugars into molecules called ATP that fuel the many processes required for life. However, ATP production can also generate potentially harmful intermediates often referred to as ‘reactive oxygen species’ or ‘oxidants’. Previous studies have suggested that an increase in the amount of oxidants produced in mitochondria can cause insulin resistance. Fazakerley et al. therefore set out to identify the reason for increased oxidants in mitochondria, and did so by analysing the levels of proteins and oxidants found in cells grown in the laboratory, and mouse and human tissue samples. This led them to find that concentrations of a molecule called coenzyme Q (CoQ), an essential component of mitochondria that helps to produce ATP, were lower in mitochondria from insulin-resistant fat and muscle tissue. Further experiments suggested a link between the lower levels of CoQ and the higher levels of oxidants in the mitochondria. Replenishing the mitochondria of the lab-grown cells and insulin-resistant mice with CoQ restored ‘normal’ oxidant levels and prevented the development of insulin resistance. Strategies that aim to increase mitochondria CoQ levels may therefore prevent or reverse insulin resistance. Although CoQ supplements are readily available, swallowing CoQ does not efficiently deliver CoQ to mitochondria in humans, so alternative treatment methods must be found. It is also of interest that statins, common drugs taken by millions of people around the world to lower cholesterol, also lower CoQ and have been reported to increase the risk of developing type 2 diabetes. Further research is therefore needed to investigate whether CoQ might provide the link between statins and type 2 diabetes.
Collapse
Affiliation(s)
- Daniel J Fazakerley
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Rima Chaudhuri
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Pengyi Yang
- School of Mathematics and Statistics, University of Sydney, Camperdown, Australia
| | - Ghassan J Maghzal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Kristen C Thomas
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - James R Krycer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Benjamin L Parker
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Kelsey H Fisher-Wellman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, United States
| | - Christopher C Meoli
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Nolan J Hoffman
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Ciana Diskin
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - James G Burchfield
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia
| | - Mark J Cowley
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Warren Kaplan
- Peter Wills Bioinformatics Centre, Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - Jean Yh Yang
- School of Mathematics and Statistics, University of Sydney, Camperdown, Australia
| | - Daniel L Chen
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | - Kyle L Hoehn
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Camperdown, Australia.,Charles Perkins Centre, Sydney Medical School, University of Sydney, Camperdown NSW, Australia
| |
Collapse
|
35
|
Yiş U, Becker K, Çırak S. A boy with neck weakness. Neuromuscul Disord 2018; 28:236-237. [PMID: 29339009 DOI: 10.1016/j.nmd.2017.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 11/25/2022]
Affiliation(s)
- Uluç Yiş
- Department of Pediatrics, Division of Child Neurology, Dokuz Eylül University School of Medicine, İzmir, Turkey.
| | - Kerstin Becker
- Department of Pediatrics, University Hospital Cologne, Kerpener Str. 62, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| | - Sebahattin Çırak
- Department of Pediatrics, University Hospital Cologne, Kerpener Str. 62, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
| |
Collapse
|
36
|
Xu G, Lu H, Dong Y, Shapoval D, Soriano S, Liu X, Zhang Y, Xie Z. Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice. Br J Anaesth 2017; 119:481-491. [DOI: 10.1093/bja/aex071] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
|
37
|
Nochi Z, Olsen RKJ, Gregersen N. Short-chain acyl-CoA dehydrogenase deficiency: from gene to cell pathology and possible disease mechanisms. J Inherit Metab Dis 2017; 40:641-655. [PMID: 28516284 DOI: 10.1007/s10545-017-0047-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/31/2017] [Accepted: 04/05/2017] [Indexed: 12/15/2022]
Abstract
Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an inherited disorder of mitochondrial fatty acid oxidation that is characterized by the presence of increased butyrylcarnitine and ethylmalonic acid (EMA) concentrations in plasma and urine. Individuals with symptomatic SCADD may show relatively severe phenotype, while the majority of those who are diagnosed through newborn screening by tandem mass spectrometry may remain asymptomatic. As such, the associated clinical symptoms are very diverse, ranging from severe metabolic or neuromuscular disabilities to asymptomatic. Molecular analysis of affected individuals has identified rare gene variants along with two common gene variants, c.511C > T and c.625G > A. In vitro studies have demonstrated that the common variants as well as the great majority of rare variants, which are missense variants, impair folding, that may lead to toxic accumulation of the encoded protein, and/or metabolites, and initiate excessive production of ROS and chronic oxidative stress. It has been suggested that this cell toxicity in combination with yet unknown factors can trigger disease development. This association and the full implications of SCADD are not commonly appreciated. Accordingly, there is a worldwide discussion of the relationship of clinical manifestation to SCADD, and whether SCAD gene variants are disease associated at all. Therefore, SCADD is not part of the newborn screening programs in most countries, and consequently many patients with SCAD gene variants do not get a diagnosis and the possibilities to be followed up during development.
Collapse
Affiliation(s)
- Zahra Nochi
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University Hospital and Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| |
Collapse
|
38
|
Auranen M, Paetau A, Piirilä P, Pohju A, Salmi T, Lamminen A, Löfberg M, Mosegaard S, Olsen RK, Tyni T. Patient with multiple acyl-CoA dehydrogenation deficiency disease and FLAD1 mutations benefits from riboflavin therapy. Neuromuscul Disord 2017; 27:581-584. [PMID: 28433476 DOI: 10.1016/j.nmd.2017.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
Multiple acyl-CoA dehydrogenation deficiency is genetically heterogenous metabolic disease with mutations in genes involved in electron transfer to the mitochondrial respiratory chain. Disease symptoms vary from severe neonatal form to late-onset presentation with metabolic acidosis, lethargy, vomiting, muscle pain and weakness. Riboflavin therapy has been shown to ameliorate diseases symptoms in some of these patients. Recently, mutations in FAD synthase have been described to cause multiple acyl-CoA dehydrogenation deficiency. We describe here the effect of riboflavin supplementation therapy in a previously reported adult patient with multiple acyl-CoA dehydrogenation deficiency having compound heterozygous gene variations in FLAD1 (MIM: 610595) encoding FAD synthase. We present thorough clinical history including laboratory investigations, muscle MRI, muscle biopsy and spiroergometric analyses comprising of a follow-up of 20 years. Our data suggest that patients with adult-onset multiple acyl-CoA dehydrogenation deficiency with FLAD1 gene mutations also benefit from long-term riboflavin therapy.
Collapse
Affiliation(s)
- M Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland.
| | - A Paetau
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, Finland
| | - P Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - A Pohju
- Clinical Nutrition Unit, Helsinki University Hospital, Finland
| | - T Salmi
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Hospital, Finland
| | - A Lamminen
- Department of Radiology, Medical Imaging Center, Helsinki University Hospital, Finland
| | - M Löfberg
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - S Mosegaard
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Health, Aarhus University Hospital and Aarhus University, Denmark
| | - R K Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Health, Aarhus University Hospital and Aarhus University, Denmark
| | - T Tyni
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland; Department of Pediatric Neurology, Hospital for Children and Adolescence, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
39
|
Ishii T, Yasuda K, Miyazawa M, Mitsushita J, Johnson TE, Hartman PS, Ishii N. Infertility and recurrent miscarriage with complex II deficiency-dependent mitochondrial oxidative stress in animal models. Mech Ageing Dev 2016; 155:22-35. [DOI: 10.1016/j.mad.2016.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/16/2016] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
|
40
|
Coenzyme Q biosynthesis and its role in the respiratory chain structure. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1073-1078. [PMID: 26970214 DOI: 10.1016/j.bbabio.2016.03.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 03/03/2016] [Accepted: 03/07/2016] [Indexed: 01/23/2023]
Abstract
Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane. We also review the current knowledge about the involvement of mitochondrial genome defects and electron transfer flavoprotein dehydrogenase mutations in the induction of secondary CoQ deficiency. This mechanism would imply specific interactions coupling CoQ itself or the CoQ-biosynthetic apparatus with the respiratory chain components. These interactions would regulate mitochondrial CoQ steady-state levels and function. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.
Collapse
|
41
|
Wang Z, Hong D, Zhang W, Li W, Shi X, Zhao D, Yang X, Lv H, Yuan Y. Severe sensory neuropathy in patients with adult-onset multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord 2016; 26:170-5. [DOI: 10.1016/j.nmd.2015.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022]
|
42
|
Gelfand AA, Gallagher RC. Cyclic vomiting syndrome versus inborn errors of metabolism: A review with clinical recommendations. Headache 2016; 56:215-21. [PMID: 26678622 PMCID: PMC4728152 DOI: 10.1111/head.12749] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Inborn errors of metabolism are on the differential for patients presenting with a cyclic vomiting syndrome phenotype. Classes of disorders to consider include: mitochondrial disorders, fatty acid oxidation disorders, urea cycle defects, organic acidurias, and acute intermittent porphyria. AIM This article reviews the metabolic differential diagnosis and approach to screening for inborn errors in children and adults presenting with a cyclic or recurrent vomiting phenotype. CONCLUSION Cyclic vomiting syndrome is thought to be an episodic syndrome that may be associated with migraine. It is a diagnosis of exclusion. Inborn errors of metabolism should be considered in the patient presenting with a recurrent vomiting phenotype. Mitochondrial dysfunction may play a role in cyclic vomiting syndrome, and true mitochondrial disorders can present with a true cyclic vomiting phenotype.
Collapse
Affiliation(s)
- Amy A. Gelfand
- Department of Neurology, UCSF, San Francisco, CA, USA
- Department of Pediatrics, UCSF, San Francisco, CA, USA
| | | |
Collapse
|
43
|
Cascajo MV, Abdelmohsen K, Noh JH, Fernández-Ayala DJM, Willers IM, Brea G, López-Lluch G, Valenzuela-Villatoro M, Cuezva JM, Gorospe M, Siendones E, Navas P. RNA-binding proteins regulate cell respiration and coenzyme Q biosynthesis by post-transcriptional regulation of COQ7. RNA Biol 2015; 13:622-34. [PMID: 26690054 PMCID: PMC7609068 DOI: 10.1080/15476286.2015.1119366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain carrying electrons from complexes I and II to complex III and it is an intrinsic component of the respirasome. CoQ concentration is highly regulated in cells in order to adapt the metabolism of the cell to challenges of nutrient availability and stress stimuli. At least 10 proteins have been shown to be required for CoQ biosynthesis in a multi-peptide complex and COQ7 is a central regulatory factor of this pathway. We found that the first 765 bp of the 3′-untranslated region (UTR) of COQ7 mRNA contains cis-acting elements of interaction with RNA-binding proteins (RBPs) HuR and hnRNP C1/C2. Binding of hnRNP C1/C2 to COQ7 mRNA was found to require the presence of HuR, and hnRNP C1/C2 silencing appeared to stabilize COQ7 mRNA modestly. By contrast, lowering HuR levels by silencing or depriving cells of serum destabilized and reduced the half-life of COQ7 mRNA, thereby reducing COQ7 protein and CoQ biosynthesis rate. Accordingly, HuR knockdown decreased oxygen consumption rate and mitochondrial production of ATP, and increased lactate levels. Taken together, our results indicate that a reduction in COQ7 mRNA levels by HuR depletion causes mitochondrial dysfunction and a switch toward an enhanced aerobic glycolysis, the characteristic phenotype exhibited by primary deficiency of CoQ10. Thus HuR contributes to efficient oxidative phosphorylation by regulating of CoQ10 biosynthesis.
Collapse
Affiliation(s)
- María V Cascajo
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Kotb Abdelmohsen
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Ji Heon Noh
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Daniel J M Fernández-Ayala
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Imke M Willers
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Gloria Brea
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Guillermo López-Lluch
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Marina Valenzuela-Villatoro
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - José M Cuezva
- c Departamento de Biología Molecular , Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM) and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Madrid , Spain
| | - Myriam Gorospe
- b Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH , Baltimore , Maryland , USA
| | - Emilio Siendones
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| | - Plácido Navas
- a Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, and Center for Biomedical Research on Rare Diseases (CIBERER), ISCIII , Sevilla , Spain
| |
Collapse
|
44
|
Hyperprolinemia in Type 2 Glutaric Aciduria and MADD-Like Profiles. JIMD Rep 2015; 27:39-45. [PMID: 26409463 DOI: 10.1007/8904_2015_481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 12/13/2022] Open
Abstract
Classical neonatal-onset glutaric aciduria type 2 (MAD deficiency) is a severe disorder of mitochondrial fatty acid oxidation associated with poor survival. Secondary dysfunction of acyl-CoA dehydrogenases may result from deficiency for riboflavin transporters, leading to severe disorders that, nevertheless, are treatable by riboflavin supplementation. In the last 10 years, we identified nine newborns with biochemical features consistent with MAD deficiency, only four of whom survived past the neonatal period. A likely iatrogenic cause of riboflavin deficiency was found in two premature newborns having parenteral nutrition, one of whom recovered upon multivitamin supplementation, whereas the other died before diagnosis. Four other patients had demonstrated mutations involving ETF or ETF-DH flavoproteins, whereas the remaining three patients presumably had secondary deficiencies of unknown mechanism. Interestingly, six newborns among the seven tested for plasma amino acids had pronounced hyperprolinemia. In one case, because the initial diagnostic workup did not include organic acids and acylcarnitine profiling, clinical presentation and hyperprolinemia suggested the diagnosis. Analysis of our full cohort of >50,000 samples from >30,000 patients suggests that the proline/alanine ratio may be a good marker of MAD deficiency and could contribute to a more effective management of the treatable forms.
Collapse
|
45
|
Lund M, Olsen RKJ, Gregersen N. A short introduction to acyl-CoA dehydrogenases; deficiencies and novel treatment strategies. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1092869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Olsen RKJ, Cornelius N, Gregersen N. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism. J Inherit Metab Dis 2015; 38:703-19. [PMID: 26025548 PMCID: PMC4493798 DOI: 10.1007/s10545-015-9861-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/25/2015] [Accepted: 05/07/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism, by production of pathological amounts of ROS, may cause disturbed redox signalling and induce chronic cell stress with non-resolving or compromised cell repair responses and increased susceptibility to cell stress induced cell death. We suggest that this model may have important implications for those inborn errors of metabolism, where mitochondrial dysfunction plays a major role, as it allows the explanation of oxidative stress, metabolic reprogramming and altered signalling growth pathways that have been reported in many of the diseases. It is our hope that the model may facilitate novel ideas and directions that can be tested experimentally and used in the design of future new approaches for pre-symptomatic diagnosis and prognosis and perhaps more effective treatments of inborn errors of metabolism.
Collapse
Affiliation(s)
- Rikke K J Olsen
- Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark,
| | | | | |
Collapse
|
47
|
Mohammadi-Bardbori A, Najibi A, Amirzadegan N, Gharibi R, Dashti A, Omidi M, Saeedi A, Ghafarian-Bahreman A, Niknahad H. Coenzyme Q10 remarkably improves the bio-energetic function of rat liver mitochondria treated with statins. Eur J Pharmacol 2015; 762:270-4. [PMID: 26007644 DOI: 10.1016/j.ejphar.2015.05.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
CoQ10 shares a biosynthetic pathway with cholesterol therefore it can be a potential target of the widely available lipid-lowering agents such as statins. Statins are the most widely prescribed cholesterol-lowering drugs with the ability to inhibit HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) reductase. Preclinical and clinical safety data have shown that statins do not cause serious adverse effects in humans. However, their long-term administration is associated with a variety of myopatic complaints. The aim of this study was to investigate whether CoQ10 supplementation of animals under high fat diet (HFD) treated with statins is able to bypass the mitochondrial metabolic defects or not? Animals were divided into 7 groups and fed with either regular (RD) or HFD during experiments. The first group considered as regular control and fed with a RD. Groups 2-7 including HFD control, CoQ10 (10mg/kg), simvastatin (30mg/kg), atorvastatin (30mg/kg), simvastatin+CoQ10 or atorvastatin+CoQ10 treated orally for 30 days and fed with HFD. At the end of treatments, the animals were killed and blood samples were collected for biochemical examinations. The rat liver mitochondria were isolated and several mitochondrial indices including succinate dehydrogenase activity (SDA), ATP levels, mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (MPP) were determined. We found that triglyceride (Tg), cholesterol (Chol) and low-density lipoprotein (LDL) were augmented with HFD compared to RD and treatment with statins remarkably lowered the Tg, Chol and LDL levels. Mitochondrial parameters including, SDA, ATP levels, MMP and MPP were reduced with statin treatment and improved by co-administration with CoQ10.
Collapse
Affiliation(s)
- Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran.
| | - Asma Najibi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran
| | - Najmeh Amirzadegan
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran
| | - Raziyeh Gharibi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran
| | - Ayat Dashti
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran
| | - Arastoo Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran
| | - Ali Ghafarian-Bahreman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Fars 71345-1583, Shiraz, Iran; Pharmaceutical Science Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
48
|
Abstract
SIGNIFICANCE Cystic fibrosis (CF) is the most common lethal genetic disorder in the Caucasian people. It is due to the mutation of cystic fibrosis transmembrane conductance regulator (CFTR) gene located on the long arm of the chromosome 7, which encodes for CFTR protein. The latter, an adenosine triphosphate binding cassette, is a transmembrane chloride channel that is also involved in glutathione transport. As glutathione/glutathione disulfide constitutes the most important pool of cellular redox systems, CFTR defects could thus disrupt the intracellular redox balance. Resulting multisystemic diseases are essentially characterized by a chronic respiratory failure, a pancreatic insufficiency, an essential fatty acid deficiency (EFAD), and inadequate levels of antioxidant vitamins. RECENT ADVANCES The pathophysiology of CF is complex; however, several mechanisms are proposed, including oxidative stress (OxS) whose implication is recognized and has been clearly demonstrated in CF airways. CRITICAL ISSUES Little is known about OxS intrinsic triggers and its own involvement in intestinal lipid disorders. Despite the regular administration of pancreatic supplements, high-fat high-calorie diets, and antioxidant fat-soluble vitamins, there is a persistence of steatorrhea, EFAD, and harmful OxS. Intriguingly, several trials with elevated doses of antioxidant vitamins have not yielded significant improvements. FUTURE DIRECTIONS The main sources and self-maintenance of OxS in CF should be clarified to improve treatment of patients. Therefore, this review will discuss the potential sources and study the mechanisms of OxS in the intestine, known to develop various complications, and its involvement in intestinal lipid disorders in CF patients.
Collapse
Affiliation(s)
- Marie-Laure Kleme
- 1 Research Centre, CHU Ste-Justine, Université de Montréal , Montréal, Quebec, Canada
| | | |
Collapse
|
49
|
Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis 2015; 38:145-56. [PMID: 25091424 DOI: 10.1007/s10545-014-9749-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/24/2022]
Abstract
Coenzyme Q(10) is a remarkable lipid involved in many cellular processes such as energy production through the mitochondrial respiratory chain (RC), beta-oxidation of fatty acids, and pyrimidine biosynthesis, but it is also one of the main cellular antioxidants. Its biosynthesis is still incompletely characterized and requires at least 15 genes. Mutations in eight of them (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) cause primary CoQ(10) deficiency, a heterogeneous group of disorders with variable age of onset (from birth to the seventh decade) and associated clinical phenotypes, ranging from a fatal multisystem disease to isolated steroid resistant nephrotic syndrome (SRNS) or isolated central nervous system disease. The pathogenesis is complex and related to the different functions of CoQ(10). It involves defective ATP production and oxidative stress, but also an impairment of pyrimidine biosynthesis and increased apoptosis. CoQ(10) deficiency can also be observed in patients with defects unrelated to CoQ(10) biosynthesis, such as RC defects, multiple acyl-CoA dehydrogenase deficiency, and ataxia and oculomotor apraxia.Patients with both primary and secondary deficiencies benefit from high-dose oral supplementation with CoQ(10). In primary forms treatment can stop the progression of both SRNS and encephalopathy, hence the critical importance of a prompt diagnosis. Treatment may be beneficial also for secondary forms, although with less striking results.In this review we will focus on CoQ(10) biosynthesis in humans, on the genetic defects and the specific clinical phenotypes associated with CoQ(10) deficiency, and on the diagnostic strategies for these conditions.
Collapse
Affiliation(s)
- Maria Andrea Desbats
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, Padova, 35128, Italy
| | | | | | | | | |
Collapse
|
50
|
Grünert SC. Clinical and genetical heterogeneity of late-onset multiple acyl-coenzyme A dehydrogenase deficiency. Orphanet J Rare Dis 2014; 9:117. [PMID: 25200064 PMCID: PMC4222585 DOI: 10.1186/s13023-014-0117-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder caused by deficiency of electron transfer flavoprotein or electron transfer flavoprotein dehydrogenase. The clinical picture of late-onset forms is highly variable with symptoms ranging from acute metabolic decompensations to chronic, mainly muscular problems or even asymptomatic cases. METHODS All 350 cases of late-onset MADD reported in the literature to date have been analyzed and evaluated with respect to age at presentation, diagnostic delay, biochemical features and diagnostic parameters as well as response to treatment. RESULTS Mean age at onset was 19.2 years. The mean delay between onset of symptoms and diagnosis was 3.9 years. Chronic muscular symptoms were more than twice as common as acute metabolic decompensations (85% versus 33% of patients, respectively). 20% had both acute and chronic symptoms. 5% of patients had died at a mean age of 5.8 years, while 3% of patients have remained asymptomatic until a maximum age of 14 years. Diagnosis may be difficult as a relevant number of patients do not display typical biochemical patterns of urine organic acids and blood acylcarnitines during times of wellbeing. The vast majority of patients carry mutations in the ETFDH gene (93%), while mutations in the ETFA (5%) and ETFB (2%) genes are the exceptions. Almost all patients with late-onset MADD (98%) are clearly responsive to riboflavin. CONCLUSIONS Late-onset MADD is probably an underdiagnosed disease and should be considered in all patients with acute or chronic muscular symptoms or acute metabolic decompensation with hypoglycemia, acidosis, encephalopathy and hepatopathy. This may not only prevent patients from invasive diagnostic procedures such as muscle biopsies, but also help to avoid fatal metabolic decompensations.
Collapse
Affiliation(s)
- Sarah C Grünert
- Center of Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|