1
|
Fabian L, Karimi E, Farman GP, Gohlke J, Ottenheijm CAC, Granzier HL, Dowling JJ. Comprehensive phenotypic characterization of an allelic series of zebrafish models of NEB-related nemaline myopathy. Hum Mol Genet 2024; 33:1036-1054. [PMID: 38493359 PMCID: PMC11153343 DOI: 10.1093/hmg/ddae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024] Open
Abstract
Nemaline myopathy (NM) is a rare congenital neuromuscular disorder characterized by muscle weakness and hypotonia, slow gross motor development, and decreased respiratory function. Mutations in at least twelve genes, all of each encode proteins that are either components of the muscle thin filament or regulate its length and stability, have been associated with NM. Mutations in Nebulin (NEB), a giant filamentous protein localized in the sarcomere, account for more than 50% of NM cases. At present, there remains a lack of understanding of whether NEB genotype influences nebulin function and NM-patient phenotypes. In addition, there is a lack of therapeutically tractable models that can enable drug discovery and address the current unmet treatment needs of patients. To begin to address these gaps, here we have characterized five new zebrafish models of NEB-related NM. These mutants recapitulate most aspects of NEB-based NM, showing drastically reduced survival, defective muscle structure, reduced contraction force, shorter thin filaments, presence of electron-dense structures in myofibers, and thickening of the Z-disks. This study represents the first extensive investigation of an allelic series of nebulin mutants, and thus provides an initial examination in pre-clinical models of potential genotype-phenotype correlations in human NEB patients. It also represents the first utilization of a set of comprehensive outcome measures in zebrafish, including correlation between molecular analyses, structural and biophysical investigations, and phenotypic outcomes. Therefore, it provides a rich source of data for future studies exploring the NM pathomechanisms, and an ideal springboard for therapy identification and development for NEB-related NM.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Genetics and Genome Biology Program, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
| | - Esmat Karimi
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Jochen Gohlke
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam University Medical Center (location VUMC), De Boelelaan 1108, Amsterdam 1081 HZ, The Netherlands
| | - Hendrikus L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, 1007 E. Lowell Street, Tucson, AZ 85724, United States
| | - James J Dowling
- Genetics and Genome Biology Program, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Division of Neurology, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Burnham HV, Cizauskas HE, Barefield DY. Fine tuning contractility: atrial sarcomere function in health and disease. Am J Physiol Heart Circ Physiol 2024; 326:H568-H583. [PMID: 38156887 PMCID: PMC11221815 DOI: 10.1152/ajpheart.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.
Collapse
Affiliation(s)
- Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| |
Collapse
|
3
|
Lewis CTA, Ochala J. Myosin Heavy Chain as a Novel Key Modulator of Striated Muscle Resting State. Physiology (Bethesda) 2023; 38:0. [PMID: 36067133 DOI: 10.1152/physiol.00018.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
After years of intense research using structural, biological, and biochemical experimental procedures, it is clear that myosin molecules are essential for striated muscle contraction. However, this is just the tip of the iceberg of their function. Interestingly, it has been shown recently that these molecules (especially myosin heavy chains) are also crucial for cardiac and skeletal muscle resting state. In the present review, we first overview myosin heavy chain biochemical states and how they influence the consumption of ATP. We then detail how neighboring partner proteins including myosin light chains and myosin binding protein C intervene in such processes, modulating the ATP demand in health and disease. Finally, we present current experimental drugs targeting myosin ATP consumption and how they can treat muscle diseases.
Collapse
Affiliation(s)
| | - Julien Ochala
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Labasse C, Brochier G, Taratuto AL, Cadot B, Rendu J, Monges S, Biancalana V, Quijano-Roy S, Bui MT, Chanut A, Madelaine A, Lacène E, Beuvin M, Amthor H, Servais L, de Feraudy Y, Erro M, Saccoliti M, Neto OA, Fauré J, Lannes B, Laugel V, Coppens S, Lubieniecki F, Bello AB, Laing N, Evangelista T, Laporte J, Böhm J, Romero NB. Severe ACTA1-related nemaline myopathy: intranuclear rods, cytoplasmic bodies, and enlarged perinuclear space as characteristic pathological features on muscle biopsies. Acta Neuropathol Commun 2022; 10:101. [PMID: 35810298 PMCID: PMC9271256 DOI: 10.1186/s40478-022-01400-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Nemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation.
Collapse
Affiliation(s)
- Clémence Labasse
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Ana-Lia Taratuto
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Bruno Cadot
- Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - John Rendu
- Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Soledad Monges
- Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Valérie Biancalana
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,Laboratoire de Diagnostic Génétique, Faculté de Médecine, CHRU, Strasbourg, France
| | - Susana Quijano-Roy
- APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Mai Thao Bui
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Anaïs Chanut
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Angéline Madelaine
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Lacène
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Maud Beuvin
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Helge Amthor
- APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Laurent Servais
- Centre de Références Des Maladies Neuromusculaires, Department of Paediatrics, University Hospital Liège & University of Liège, Liège, Belgium.,Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yvan de Feraudy
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Marcela Erro
- Gutierrez Pediatric Hospital, Buenos Aires, Argentina
| | - Maria Saccoliti
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Osorio Abath Neto
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Julien Fauré
- Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Béatrice Lannes
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Vincent Laugel
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Sandra Coppens
- Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabiana Lubieniecki
- Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Ana Buj Bello
- Université Paris-Saclay, Integrare Research Unit UMR S951, Inserm, Evry, France.,Généthon, Université Evry, Evry, France
| | - Nigel Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Australia
| | - Teresinha Evangelista
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Norma B Romero
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France. .,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
5
|
Guhathakurta P, Phung LA, Prochniewicz E, Lichtenberger S, Wilson A, Thomas DD. Actin-binding compounds, previously discovered by FRET-based high-throughput screening, differentially affect skeletal and cardiac muscle. J Biol Chem 2020; 295:14100-14110. [PMID: 32788211 DOI: 10.1074/jbc.ra120.014445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/06/2020] [Indexed: 01/21/2023] Open
Abstract
Actin's interactions with myosin and other actin-binding proteins are essential for cellular viability in numerous cell types, including muscle. In a previous high-throughput time-resolved FRET (TR-FRET) screen, we identified a class of compounds that bind to actin and affect actomyosin structure and function. For clinical utility, it is highly desirable to identify compounds that affect skeletal and cardiac muscle differently. Because actin is more highly conserved than myosin and most other muscle proteins, most such efforts have not targeted actin. Nevertheless, in the current study, we tested the specificity of the previously discovered actin-binding compounds for effects on skeletal and cardiac α-actins as well as on skeletal and cardiac myofibrils. We found that a majority of these compounds affected the transition of monomeric G-actin to filamentous F-actin, and that several of these effects were different for skeletal and cardiac actin isoforms. We also found that several of these compounds affected ATPase activity differently in skeletal and cardiac myofibrils. We conclude that these structural and biochemical assays can be used to identify actin-binding compounds that differentially affect skeletal and cardiac muscles. The results of this study set the stage for screening of large chemical libraries for discovery of novel compounds that act therapeutically and specifically on cardiac or skeletal muscle.
Collapse
Affiliation(s)
- Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lien A Phung
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ewa Prochniewicz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Lichtenberger
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anna Wilson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA .,Photonic Pharma LLC, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Duerr GD, Heinemann JC, Kley J, Eichhorn L, Frede S, Weisheit C, Wehner S, Bindila L, Lutz B, Zimmer A, Dewald O. Myocardial maladaptation to pressure overload in CB2 receptor-deficient mice. J Mol Cell Cardiol 2019; 133:86-98. [DOI: 10.1016/j.yjmcc.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
|
7
|
Tinklenberg JA, Siebers EM, Beatka MJ, Meng H, Yang L, Zhang Z, Ross JA, Ochala J, Morris C, Owens JM, Laing NG, Nowak KJ, Lawlor MW. Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and TgACTA1D286G nemaline myopathy mice. Hum Mol Genet 2019; 27:638-648. [PMID: 29293963 DOI: 10.1093/hmg/ddx431] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous congenital skeletal muscle disease with cytoplasmic rod-like structures (nemaline bodies) in muscle tissue. While weakness in NM is related to contractile abnormalities, myofiber smallness is an additional abnormality in NM that may be treatable. We evaluated the effects of mRK35 (a myostatin inhibitor developed by Pfizer) treatment in the TgACTA1D286G mouse model of NM. mRK35 induced skeletal muscle growth that led to significant increases in animal bodyweight, forelimb grip strength and muscle fiber force, although it should be noted that animal weight and forelimb grip strength in untreated TgACTA1D286G mice was not different from controls. Treatment was also associated with an increase in the number of tubular aggregates found in skeletal muscle. These findings suggest that myostatin inhibition may be useful in promoting muscle growth and strength in Acta1-mutant muscle, while also further establishing the relationship between low levels of myostatin and tubular aggregate formation.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Zizhao Zhang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| |
Collapse
|
8
|
Ross JA, Levy Y, Svensson K, Philp A, Schenk S, Ochala J. SIRT1 regulates nuclear number and domain size in skeletal muscle fibers. J Cell Physiol 2018; 233:7157-7163. [PMID: 29574748 PMCID: PMC5993587 DOI: 10.1002/jcp.26542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
Skeletal muscle fibers are giant multinucleated cells wherein individual nuclei govern the protein synthesis in a finite volume of cytoplasm; this is termed the myonuclear domain (MND). The factors that control MND size remain to be defined. In the present study, we studied the contribution of the NAD+‐dependent deacetylase, sirtuin 1 (SIRT1), to the regulation of nuclear number and MND size. For this, we isolated myofibers from mice with tissue‐specific inactivation (mKO) or inducible overexpression (imOX) of SIRT1 and analyzed the 3D organisation of myonuclei. In imOX mice, the number of nuclei was increased whilst the average MND size was decreased as compared to littermate controls. Our findings were the opposite in mKO mice. Muscle stem cell (satellite cell) numbers were reduced in mKO muscles, a possible explanation for the lower density of myonuclei in these mice; however, no change was observed in imOX mice, suggesting that other factors might also be involved, such as the functional regulation of stem cells/muscle precursors. Interestingly, however, the changes in the MND volume did not impact the force‐generating capacity of muscle fibers. Taken together, our results demonstrate that SIRT1 is a key regulator of MND sizes, although the underlying molecular mechanisms and the cause‐effect relationship between MND and muscle function remain to be fully defined.
Collapse
Affiliation(s)
- Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yotam Levy
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Andrew Philp
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
9
|
Shchepkin DV, Nikitina LV, Bershitsky SY, Kopylova GV. The isoforms of α-actin and myosin affect the Ca 2+ regulation of the actin-myosin interaction in the heart. Biochem Biophys Res Commun 2017. [PMID: 28623140 DOI: 10.1016/j.bbrc.2017.06.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myocardium of mammals contains a wide range of isoforms of proteins that provides contractile function of the heart. These are two isoforms of ventricular and two of atrial myosin, α- and β-tropomyosin, and two isoforms of α-actin: cardiac and skeletal. We believe that the difference in the amino acid sequence of α-actin can affect the calcium regulation of the actin-myosin interaction. To test this hypothesis, we investigated effects of the isoforms of α-actin, cardiac and skeletal, and the isoforms of cardiac myosin on the calcium regulation of the actin-myosin interaction in an in vitro motility assay using reconstructed regulated thin filaments. The results show that isoforms of α-actin and the ratio of α/β-chains of Tpm differently affect the calcium regulation of the actin-myosin interaction in myocardium in dependence on cardiac myosin isoforms.
Collapse
Affiliation(s)
- Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Larisa V Nikitina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620049, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg 620049, Russia.
| |
Collapse
|
10
|
Abstract
Actin is the central building block of the actin cytoskeleton, a highly regulated filamentous network enabling dynamic processes of cells and simultaneously providing structure. Mammals have six actin isoforms that are very conserved and thus share common functions. Tissue-specific expression in part underlies their differential roles, but actin isoforms also coexist in various cell types and tissues, suggesting specific functions and preferential interaction partners. Gene deletion models, antibody-based staining patterns, gene silencing effects, and the occurrence of isoform-specific mutations in certain diseases have provided clues for specificity on the subcellular level and its consequences on the organism level. Yet, the differential actin isoform functions are still far from understood in detail. Biochemical studies on the different isoforms in pure form are just emerging, and investigations in cells have to deal with a complex and regulated system, including compensatory actin isoform expression.
Collapse
Affiliation(s)
- Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium.
| | - Marleen Van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, 9000, Ghent, Belgium
| |
Collapse
|
11
|
Chaturvedi V, Dye DE, Kinnear BF, van Kuppevelt TH, Grounds MD, Coombe DR. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System. PLoS One 2015; 10:e0127675. [PMID: 26030912 PMCID: PMC4450880 DOI: 10.1371/journal.pone.0127675] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/17/2015] [Indexed: 12/19/2022] Open
Abstract
Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches were examined; the most effective was phospholipase A2 treatment, which removed cellular material while maximizing the retention of ECM components. Decellularised muscle matrices were then solubilized and used as substrates for C2C12 mouse myoblast serum free cultures. The muscle matrix supported myoblast proliferation and differentiation equally as well as collagen and fibronectin. Immunofluorescence analyses revealed that myoblasts seeded on muscle matrix and fibronectin differentiated to form long, well-aligned myotubes, while myoblasts seeded on collagen were less organized. qPCR analyses showed a time dependent increase in genes involved in skeletal muscle differentiation and suggested that muscle-derived matrix may stimulate an increased rate of differentiation compared to collagen and fibronectin. Decellularized whole muscle three-dimensional scaffolds also supported cell adhesion and spreading, with myoblasts aligning along specific tracts of matrix proteins within the scaffolds. Thus, under serum free conditions, intact acellular muscle matrices provided cues to direct myoblast adhesion and migration. In addition, myoblasts were shown to rapidly secrete and organise their own matrix glycoproteins to create a localized ECM microenvironment. This serum free culture system has revealed that the correct muscle ECM facilitates more rapid cell organisation and differentiation than single matrix glycoprotein substrates.
Collapse
Affiliation(s)
- Vishal Chaturvedi
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Danielle E. Dye
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Beverley F. Kinnear
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Toin H. van Kuppevelt
- Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Miranda D. Grounds
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Western Australia, Australia
| | - Deirdre R. Coombe
- School of Biomedical Science, CHIRI Biosciences Research Precinct, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
12
|
Iwamoto H, Trombitás K, Yagi N, Suggs JA, Bernstein SI. X-ray diffraction from flight muscle with a headless myosin mutation: implications for interpreting reflection patterns. Front Physiol 2014; 5:416. [PMID: 25400584 PMCID: PMC4212879 DOI: 10.3389/fphys.2014.00416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/08/2014] [Indexed: 11/13/2022] Open
Abstract
Fruit fly (Drosophila melanogaster) is one of the most useful animal models to study the causes and effects of hereditary diseases because of its rich genetic resources. It is especially suitable for studying myopathies caused by myosin mutations, because specific mutations can be induced to the flight muscle-specific myosin isoform, while leaving other isoforms intact. Here we describe an X-ray-diffraction-based method to evaluate the structural effects of mutations in contractile proteins in Drosophila indirect flight muscle. Specifically, we describe the effect of the headless myosin mutation, Mhc (10) -Y97, in which the motor domain of the myosin head is deleted, on the X-ray diffraction pattern. The loss of general integrity of the filament lattice is evident from the pattern. A striking observation, however, is the prominent meridional reflection at d = 14.5 nm, a hallmark for the regularity of the myosin-containing thick filament. This reflection has long been considered to arise mainly from the myosin head, but taking the 6th actin layer line reflection as an internal control, the 14.5-nm reflection is even stronger than that of wild-type muscle. We confirmed these results via electron microscopy, wherein image analysis revealed structures with a similar periodicity. These observations have major implications on the interpretation of myosin-based reflections.
Collapse
Affiliation(s)
- Hiroyuki Iwamoto
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8 Hyogo, Japan
| | - Károly Trombitás
- Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University Pullman, WA, USA
| | - Naoto Yagi
- Research and Utilization Division, Japan Synchrotron Radiation Research Institute, SPring-8 Hyogo, Japan
| | - Jennifer A Suggs
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University San Diego, CA, USA
| | - Sanford I Bernstein
- Department of Biology, Molecular Biology Institute, Heart Institute, San Diego State University San Diego, CA, USA
| |
Collapse
|