1
|
Zhou Z, Arroum T, Luo X, Kang R, Lee YJ, Tang D, Hüttemann M, Song X. Diverse functions of cytochrome c in cell death and disease. Cell Death Differ 2024; 31:387-404. [PMID: 38521844 PMCID: PMC11043370 DOI: 10.1038/s41418-024-01284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
The redox-active protein cytochrome c is a highly positively charged hemoglobin that regulates cell fate decisions of life and death. Under normal physiological conditions, cytochrome c is localized in the mitochondrial intermembrane space, and its distribution can extend to the cytosol, nucleus, and extracellular space under specific pathological or stress-induced conditions. In the mitochondria, cytochrome c acts as an electron carrier in the electron transport chain, facilitating adenosine triphosphate synthesis, regulating cardiolipin peroxidation, and influencing reactive oxygen species dynamics. Upon cellular stress, it can be released into the cytosol, where it interacts with apoptotic peptidase activator 1 (APAF1) to form the apoptosome, initiating caspase-dependent apoptotic cell death. Additionally, following exposure to pro-apoptotic compounds, cytochrome c contributes to the survival of drug-tolerant persister cells. When translocated to the nucleus, it can induce chromatin condensation and disrupt nucleosome assembly. Upon its release into the extracellular space, cytochrome c may act as an immune mediator during cell death processes, highlighting its multifaceted role in cellular biology. In this review, we explore the diverse structural and functional aspects of cytochrome c in physiological and pathological responses. We summarize how posttranslational modifications of cytochrome c (e.g., phosphorylation, acetylation, tyrosine nitration, and oxidation), binding proteins (e.g., HIGD1A, CHCHD2, ITPR1, and nucleophosmin), and mutations (e.g., G41S, Y48H, and A51V) affect its function. Furthermore, we provide an overview of the latest advanced technologies utilized for detecting cytochrome c, along with potential therapeutic approaches related to this protein. These strategies hold tremendous promise in personalized health care, presenting opportunities for targeted interventions in a wide range of conditions, including neurodegenerative disorders, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Zhuan Zhou
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA
| | - Xu Luo
- Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yong J Lee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Xinxin Song
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Casati SR, Cervia D, Roux-Biejat P, Moscheni C, Perrotta C, De Palma C. Mitochondria and Reactive Oxygen Species: The Therapeutic Balance of Powers for Duchenne Muscular Dystrophy. Cells 2024; 13:574. [PMID: 38607013 PMCID: PMC11011272 DOI: 10.3390/cells13070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic progressive muscle-wasting disorder that leads to rapid loss of mobility and premature death. The absence of functional dystrophin in DMD patients reduces sarcolemma stiffness and increases contraction damage, triggering a cascade of events leading to muscle cell degeneration, chronic inflammation, and deposition of fibrotic and adipose tissue. Efforts in the last decade have led to the clinical approval of novel drugs for DMD that aim to restore dystrophin function. However, combination therapies able to restore dystrophin expression and target the myriad of cellular events found impaired in dystrophic muscle are desirable. Muscles are higher energy consumers susceptible to mitochondrial defects. Mitochondria generate a significant source of reactive oxygen species (ROS), and they are, in turn, sensitive to proper redox balance. In both DMD patients and animal models there is compelling evidence that mitochondrial impairments have a key role in the failure of energy homeostasis. Here, we highlighted the main aspects of mitochondrial dysfunction and oxidative stress in DMD and discussed the recent findings linked to mitochondria/ROS-targeted molecules as a therapeutic approach. In this respect, dual targeting of both mitochondria and redox homeostasis emerges as a potential clinical option in DMD.
Collapse
Affiliation(s)
- Silvia Rosanna Casati
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Paulina Roux-Biejat
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Claudia Moscheni
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, via G.B. Grassi 74, 20157 Milano, Italy; (P.R.-B.); (C.M.)
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, via Fratelli Cervi 93, 20054 Segrate, Italy; (S.R.C.); (C.D.P.)
| |
Collapse
|
3
|
Sulfur amino acid supplementation displays therapeutic potential in a C. elegans model of Duchenne muscular dystrophy. Commun Biol 2022; 5:1255. [PMID: 36385509 PMCID: PMC9668843 DOI: 10.1038/s42003-022-04212-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the dystrophin gene cause Duchenne muscular dystrophy (DMD), a common muscle disease that manifests with muscle weakness, wasting, and degeneration. An emerging theme in DMD pathophysiology is an intramuscular deficit in the gasotransmitter hydrogen sulfide (H2S). Here we show that the C. elegans DMD model displays reduced levels of H2S and expression of genes required for sulfur metabolism. These reductions can be offset by increasing bioavailability of sulfur containing amino acids (L-methionine, L-homocysteine, L-cysteine, L-glutathione, and L-taurine), augmenting healthspan primarily via improved calcium regulation, mitochondrial structure and delayed muscle cell death. Additionally, we show distinct differences in preservation mechanisms between sulfur amino acid vs H2S administration, despite similarities in required health-preserving pathways. Our results suggest that the H2S deficit in DMD is likely caused by altered sulfur metabolism and that modulation of this pathway may improve DMD muscle health via multiple evolutionarily conserved mechanisms. A C. elegans model of Duchenne muscular dystrophy reveals a potential role for disrupted sulfur metabolism in the disease and thus the therapeutic potential of sulfur amino acid supplementation.
Collapse
|
4
|
Cheng X, Yan Z, Su Z, Liu J. The transforming growth factor beta ligand TIG-2 modulates the function of neuromuscular junction and muscle energy metabolism in Caenorhabditis elegans. Front Mol Neurosci 2022; 15:962974. [PMID: 36385772 PMCID: PMC9650414 DOI: 10.3389/fnmol.2022.962974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/03/2022] [Indexed: 07/22/2023] Open
Abstract
Deciphering the physiological function of TGF-β (the transforming growth factor beta) family ligands is import for understanding the role of TGF-β in animals' development and aging. Here, we investigate the function of TIG-2, one of the ligands in Caenorhabditis elegans TGF-β family, in animals' behavioral modulation. Our results show that a loss-of-function mutation in tig-2 gene result in slower locomotion speed in the early adulthood and an increased density of cholinergic synapses, but a decreased neurotransmitter release at neuromuscular junctions (NMJs). Further tissue-specific rescue results reveal that neuronal and intestinal TIG-2 are essential for the formation of cholinergic synapses at NMJs. Interestingly, tig-2(ok3416) mutant is characterized with reduced muscle mitochondria content and adenosine triphosphate (ATP) production, although the function of muscle acetylcholine receptors and the morphology muscle fibers in the mutant are comparable to that in wild-type animals. Our result suggests that TIG-2 from different neuron and intestine regulates worm locomotion by modulating synaptogenesis and neurotransmission at NMJs, as well as energy metabolism in postsynaptic muscle cells.
Collapse
Affiliation(s)
- Xinran Cheng
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Zhenzhen Yan
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Zexiong Su
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jie Liu
- Neuroscience Program, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Lescouzères L, Bordignon B, Bomont P. Development of a high-throughput tailored imaging method in zebrafish to understand and treat neuromuscular diseases. Front Mol Neurosci 2022; 15:956582. [PMID: 36204134 PMCID: PMC9530744 DOI: 10.3389/fnmol.2022.956582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
The zebrafish (Danio rerio) is a vertebrate species offering multitude of advantages for the study of conserved biological systems in human and has considerably enriched our knowledge in developmental biology and physiology. Being equally important in medical research, the zebrafish has become a critical tool in the fields of diagnosis, gene discovery, disease modeling, and pharmacology-based therapy. Studies on the zebrafish neuromuscular system allowed for deciphering key molecular pathways in this tissue, and established it as a model of choice to study numerous motor neurons, neuromuscular junctions, and muscle diseases. Starting with the similarities of the zebrafish neuromuscular system with the human system, we review disease models associated with the neuromuscular system to focus on current methodologies employed to study them and outline their caveats. In particular, we put in perspective the necessity to develop standardized and high-resolution methodologies that are necessary to deepen our understanding of not only fundamental signaling pathways in a healthy tissue but also the changes leading to disease phenotype outbreaks, and offer templates for high-content screening strategies. While the development of high-throughput methodologies is underway for motility assays, there is no automated approach to quantify the key molecular cues of the neuromuscular junction. Here, we provide a novel high-throughput imaging methodology in the zebrafish that is standardized, highly resolutive, quantitative, and fit for drug screening. By providing a proof of concept for its robustness in identifying novel molecular players and therapeutic drugs in giant axonal neuropathy (GAN) disease, we foresee that this new tool could be useful for both fundamental and biomedical research.
Collapse
Affiliation(s)
- Léa Lescouzères
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| | - Benoît Bordignon
- Montpellier Ressources Imagerie, BioCampus, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Pascale Bomont
- ERC Team, Institut NeuroMyoGéne-PGNM, Inserm U1315, CNRS UMR 5261, Claude Bernard University Lyon 1, Lyon, France
| |
Collapse
|
6
|
Willi L, Abramovich I, Fernandez-Garcia J, Agranovich B, Shulman M, Milman H, Baskin P, Eisen B, Michele DE, Arad M, Binah O, Gottlieb E. Bioenergetic and Metabolic Impairments in Induced Pluripotent Stem Cell-Derived Cardiomyocytes Generated from Duchenne Muscular Dystrophy Patients. Int J Mol Sci 2022; 23:ijms23179808. [PMID: 36077200 PMCID: PMC9456153 DOI: 10.3390/ijms23179808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 12/19/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene and dilated cardiomyopathy (DCM) is a major cause of morbidity and mortality in DMD patients. We tested the hypothesis that DCM is caused by metabolic impairments by employing induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from four DMD patients; an adult male, an adult female, a 7-year-old (7y) male and a 13-year-old (13y) male, all compared to two healthy volunteers. To test the hypothesis, we measured the bioenergetics, metabolomics, electrophysiology, mitochondrial morphology and mitochondrial activity of CMs, using respirometry, LC–MS, patch clamp, electron microscopy (EM) and confocal microscopy methods. We found that: (1) adult DMD CMs exhibited impaired energy metabolism and abnormal mitochondrial structure and function. (2) The 7y CMs demonstrated arrhythmia-free spontaneous firing along with “healthy-like” metabolic status, normal mitochondrial morphology and activity. In contrast, the 13y CMs were mildly arrhythmogenic and showed adult DMD-like bioenergetics deficiencies. (3) In DMD adult CMs, mitochondrial activities were attenuated by 45–48%, whereas the 7y CM activity was similar to that of healthy CMs. (4) In DMD CMs, but not in 7y CMs, there was a 75% decrease in the mitochondrial ATP production rate compared to healthy iPSC-CMs. In summary, DMD iPSC-CMs exhibit bioenergetic and metabolic impairments that are associated with rhythm disturbances corresponding to the patient’s phenotype, thereby constituting novel targets for alleviating cardiomyopathy in DMD patients.
Collapse
Affiliation(s)
- Lubna Willi
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Ifat Abramovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Jonatan Fernandez-Garcia
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Bella Agranovich
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Margarita Shulman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Helena Milman
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Polina Baskin
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Binyamin Eisen
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
| | - Daniel E. Michele
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Arad
- Leviev Heart Center, Sheba Medical Center, Ramat Gan 52621, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ofer Binah
- Department of Physiology, Biophysics and Systems Biology, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| | - Eyal Gottlieb
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine and Research Institute, Technion, Haifa 31096, Israel
- Correspondence: (O.B.); (E.G.)
| |
Collapse
|
7
|
Hrach HC, O'Brien S, Steber HS, Newbern J, Rawls A, Mangone M. Transcriptome changes during the initiation and progression of Duchenne muscular dystrophy in Caenorhabditis elegans. Hum Mol Genet 2021; 29:1607-1623. [PMID: 32227114 PMCID: PMC7322572 DOI: 10.1093/hmg/ddaa055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal, X-linked disease characterized by progressive muscle degeneration. The condition is driven by nonsense and missense mutations in the dystrophin gene, leading to instability of the sarcolemma and skeletal muscle necrosis and atrophy. Resulting changes in muscle-specific gene expression that take place in dystrophin's absence remain largely uncharacterized, as they are potentially obscured by the chronic inflammation elicited by muscle damage in humans. Caenorhabditis elegans possess a mild inflammatory response that is not active in the muscle, and lack a satellite cell equivalent. This allows for the characterization of the transcriptome rearrangements affecting disease progression independently of inflammation and regeneration. In effort to better understand these dynamics, we have isolated and sequenced body muscle-specific transcriptomes from C. elegans lacking functional dystrophin at distinct stages of disease progression. We have identified an upregulation of genes involved in mitochondrial function early in disease progression, and an upregulation of genes related to muscle repair in later stages. Our results suggest that in C. elegans, dystrophin may have a signaling role early in development, and its absence may activate compensatory mechanisms that counteract muscle degradation caused by loss of dystrophin. We have also developed a temperature-based screening method for synthetic paralysis that can be used to rapidly identify genetic partners of dystrophin. Our results allow for the comprehensive identification of transcriptome changes that potentially serve as independent drivers of disease progression and may in turn allow for the identification of new therapeutic targets for the treatment of DMD.
Collapse
Affiliation(s)
- Heather C Hrach
- Molecular and Cellular Biology Graduate Program, School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA.,Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| | - Shannon O'Brien
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA.,Barrett Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85281, USA
| | - Hannah S Steber
- Barrett Honors College, Arizona State University, 751 E Lemon Mall, Tempe, AZ 85281, USA
| | - Jason Newbern
- School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA
| | - Alan Rawls
- School of Life Sciences, 427 East Tyler Mall, Tempe, AZ 85287 4501, USA
| | - Marco Mangone
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA
| |
Collapse
|
8
|
In Vivo Visualization and Quantification of Mitochondrial Morphology in C. elegans. Methods Mol Biol 2021. [PMID: 34060057 DOI: 10.1007/978-1-0716-1266-8_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Caenorhabditis elegans is a highly versatile model system, intensively used for functional, genetic, cytometric, and integrative studies. Due to its simplicity and large muscle cell number, C. elegans has frequently been used to study mitochondrial deficiencies caused by disease or drug toxicity. Here we describe a robust and efficient method to visualize and quantify mitochondrial morphology in vivo. This method has many practical and technical advantages above traditional (manual) methods and provides a comprehensive analysis of mitochondrial morphology.
Collapse
|
9
|
Ellwood RA, Piasecki M, Szewczyk NJ. Caenorhabditis elegans as a Model System for Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22094891. [PMID: 34063069 PMCID: PMC8125261 DOI: 10.3390/ijms22094891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
The nematode worm Caenorhabditis elegans has been used extensively to enhance our understanding of the human neuromuscular disorder Duchenne Muscular Dystrophy (DMD). With new arising clinically relevant models, technologies and treatments, there is a need to reconcile the literature and collate the key findings associated with this model.
Collapse
Affiliation(s)
- Rebecca A. Ellwood
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence:
| |
Collapse
|
10
|
Rexius-Hall ML, Khalil NN, Andres AM, McCain ML. Mitochondrial division inhibitor 1 (mdivi-1) increases oxidative capacity and contractile stress generated by engineered skeletal muscle. FASEB J 2020; 34:11562-11576. [PMID: 32652761 DOI: 10.1096/fj.201901039rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
In skeletal muscle fibers, mitochondria are densely packed adjacent to myofibrils because adenosine triphosphate (ATP) is needed to fuel sarcomere shortening. However, despite this close physical and biochemical relationship, the effects of mitochondrial dynamics on skeletal muscle contractility are poorly understood. In this study, we analyzed the effects of Mitochondrial Division Inhibitor 1 (mdivi-1), an inhibitor of mitochondrial fission, on the structure and function of both mitochondria and myofibrils in skeletal muscle tissues engineered on micromolded gelatin hydrogels. Treatment with mdivi-1 did not alter myotube morphology, but did increase the mitochondrial turbidity and oxidative capacity, consistent with reduced mitochondrial fission. Mdivi-1 also significantly increased basal, twitch, and tetanus stresses, as measured using the Muscular Thin Film (MTF) assay. Finally, mdivi-1 increased sarcomere length, potentially due to mdivi-1-induced changes in mitochondrial volume and compression of myofibrils. Together, these results suggest that mdivi-1 increases contractile stress generation, which may be caused by an increase in maximal respiration and/or sarcomere length due to increased volume of individual mitochondria. These data reinforce that mitochondria have both biochemical and biomechanical roles in skeletal muscle and that mitochondrial dynamics can be manipulated to alter muscle contractility.
Collapse
Affiliation(s)
- Megan L Rexius-Hall
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Natalie N Khalil
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Allen M Andres
- Smidt Heart Institute and Barbra Streisand Women's Heart Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.,Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Bonora M, Patergnani S, Ramaccini D, Morciano G, Pedriali G, Kahsay AE, Bouhamida E, Giorgi C, Wieckowski MR, Pinton P. Physiopathology of the Permeability Transition Pore: Molecular Mechanisms in Human Pathology. Biomolecules 2020; 10:biom10070998. [PMID: 32635556 PMCID: PMC7408088 DOI: 10.3390/biom10070998] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial permeability transition (MPT) is the sudden loss in the permeability of the inner mitochondrial membrane (IMM) to low-molecular-weight solutes. Due to osmotic forces, MPT is paralleled by a massive influx of water into the mitochondrial matrix, eventually leading to the structural collapse of the organelle. Thus, MPT can initiate outer-mitochondrial-membrane permeabilization (MOMP), promoting the activation of the apoptotic caspase cascade and caspase-independent cell-death mechanisms. The induction of MPT is mostly dependent on mitochondrial reactive oxygen species (ROS) and Ca2+, but is also dependent on the metabolic stage of the affected cell and signaling events. Therefore, since its discovery in the late 1970s, the role of MPT in human pathology has been heavily investigated. Here, we summarize the most significant findings corroborating a role for MPT in the etiology of a spectrum of human diseases, including diseases characterized by acute or chronic loss of adult cells and those characterized by neoplastic initiation.
Collapse
Affiliation(s)
- Massimo Bonora
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Correspondence: (M.B.); (P.P.)
| | - Simone Patergnani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Daniela Ramaccini
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Giampaolo Morciano
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
| | - Gaia Pedriali
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
| | - Asrat Endrias Kahsay
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Esmaa Bouhamida
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
| | - Mariusz R. Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Str., 02-093 Warsaw, Poland;
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (D.R.); (G.M.); (G.P.); (A.E.K.); (E.B.); (C.G.)
- Maria Cecilia Hospital, GVM Care & Research, Via Corriera 1, Cotignola, 48033 Ravenna, Italy
- Correspondence: (M.B.); (P.P.)
| |
Collapse
|
12
|
Wasala NB, Chen SJ, Duan D. Duchenne muscular dystrophy animal models for high-throughput drug discovery and precision medicine. Expert Opin Drug Discov 2020; 15:443-456. [PMID: 32000537 PMCID: PMC7065965 DOI: 10.1080/17460441.2020.1718100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Introduction: Duchenne muscular dystrophy (DMD) is an X-linked handicapping disease due to the loss of an essential muscle protein dystrophin. Dystrophin-null animals have been extensively used to study disease mechanisms and to develop experimental therapeutics. Despite decades of research, however, treatment options for DMD remain very limited.Areas covered: High-throughput high-content screening and precision medicine offer exciting new opportunities. Here, the authors review animal models that are suitable for these studies.Expert opinion: Nonmammalian models (worm, fruit fly, and zebrafish) are particularly attractive for cost-effective large-scale drug screening. Several promising lead compounds have been discovered using these models. Precision medicine for DMD aims at developing mutation-specific therapies such as exon-skipping and genome editing. To meet these needs, models with patient-like mutations have been established in different species. Models that harbor hotspot mutations are very attractive because the drugs developed in these models can bring mutation-specific therapies to a large population of patients. Humanized hDMD mice carry the entire human dystrophin gene in the mouse genome. Reagents developed in the hDMD mouse-based models are directly translatable to human patients.
Collapse
Affiliation(s)
- Nalinda B. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212
| | - Shi-jie Chen
- Department of Physics, The University of Missouri, Columbia, MO 65211
- Department of Biochemistry, The University of Missouri, Columbia, MO 65211
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, The University of Missouri, Columbia, MO 65212
- Department of Neurology, School of Medicine, The University of Missouri, Columbia, MO 65212
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, The University of Missouri, Columbia, MO 65212
- Department of Biomedical Sciences, College of Veterinary Medicine, The University of Missouri, Columbia, MO 65212
| |
Collapse
|
13
|
Abstract
Sarcopenia - the accelerated age-related loss of muscle mass and function - is an under-diagnosed condition, and is central to deteriorating mobility, disability and frailty in older age. There is a lack of treatment options for older adults at risk of sarcopenia. Although sarcopenia's pathogenesis is multifactorial, its major phenotypes - muscle mass and muscle strength - are highly heritable. Several genome-wide association studies of muscle-related traits were published recently, providing dozens of candidate genes, many with unknown function. Therefore, animal models are required not only to identify causal mechanisms, but also to clarify the underlying biology and translate this knowledge into new interventions. Over the past several decades, small teleost fishes had emerged as powerful systems for modeling the genetics of human diseases. Owing to their amenability to rapid genetic intervention and the large number of conserved genetic and physiological features, small teleosts - such as zebrafish, medaka and killifish - have become indispensable for skeletal muscle genomic studies. The goal of this Review is to summarize evidence supporting the utility of small fish models for accelerating our understanding of human skeletal muscle in health and disease. We do this by providing a basic foundation of the (zebra)fish skeletal muscle morphology and physiology, and evidence of muscle-related gene homology. We also outline challenges in interpreting zebrafish mutant phenotypes and in translating them to human disease. Finally, we conclude with recommendations on future directions to leverage the large body of tools developed in small fish for the needs of genomic exploration in sarcopenia.
Collapse
Affiliation(s)
- Alon Daya
- The Faculty of Marine Sciences, Ruppin Academic Center, Michmoret 40297, Israel
| | - Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 130010, Israel
- Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA
| |
Collapse
|
14
|
Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Mikheeva IB, Sharapov MG, Belosludtsev KN. Duchenne muscular dystrophy is associated with the inhibition of calcium uniport in mitochondria and an increased sensitivity of the organelles to the calcium-induced permeability transition. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165674. [PMID: 31926263 DOI: 10.1016/j.bbadis.2020.165674] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a pronounced and progressive degradation of the structure of skeletal muscles, which decreases their strength and lowers endurance of the organism. At muscular dystrophy, mitochondria are known to undergo significant functional changes, which is manifested in a decreased efficiency of oxidative phosphorylation and impaired energy metabolism of the cell. It is believed that the DMD-induced functional changes of mitochondria are mainly associated with the dysregulation of Ca2+ homeostasis. This work examines the kinetic parameters of Ca2+ transport and the opening of the Ca2+-dependent MPT pore in the skeletal-muscle mitochondria of the dystrophin-deficient C57BL/10ScSn-mdx mice. As compared to the organelles of wild-type animals, skeletal-muscle mitochondria of mdx mice have been found to be much less efficient in respect to Ca2+ uniport, with the kinetics of Na+-dependent Ca2+ efflux not changing. The data obtained indicate that the decreased rate of Ca2+ uniport in the mitochondria of mdx mice may be associated with the increased level of the dominant negative subunit of Ca2+ uniporter (MCUb). The experiments have also shown that in mdx mice, skeletal-muscle mitochondria have low resistance to the induction of MPT, which may be related to a significantly increased expression of adenylate translocator (ANT2), a possible structural element of the MPT pore. The paper discusses how changes in the expression of calcium uniporter and putative components of the MPT pore caused by the development of DMD can affect Ca2+ homeostasis of skeletal-muscle mitochondria.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia.
| | - Eugeny Yu Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Kirill S Tenkov
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Vlada S Starinets
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, PSCBR RAS, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
15
|
Hughes MC, Ramos SV, Turnbull PC, Rebalka IA, Cao A, Monaco CM, Varah NE, Edgett BA, Huber JS, Tadi P, Delfinis LJ, Schlattner U, Simpson JA, Hawke TJ, Perry CG. Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H 2 O 2 emission during impaired oxidative phosphorylation. J Cachexia Sarcopenia Muscle 2019; 10:643-661. [PMID: 30938481 PMCID: PMC6596403 DOI: 10.1002/jcsm.12405] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/13/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.
Collapse
Affiliation(s)
- Meghan C. Hughes
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Sofhia V. Ramos
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Patrick C. Turnbull
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Irena A. Rebalka
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Andrew Cao
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Cynthia M.F. Monaco
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Nina E. Varah
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Brittany A. Edgett
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Jason S. Huber
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Peyman Tadi
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - Luca J. Delfinis
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| | - U. Schlattner
- Laboratory of Fundamental and Applied Bioenergetics (LBFA) and SFR Environmental and Systems Biology (BEeSy)University Grenoble AlpesGrenobleFrance
| | - Jeremy A. Simpson
- Department of Human Health and Nutritional Sciences and Cardiovascular Research GroupUniversity of GuelphGuelphONCanada
| | - Thomas J. Hawke
- Department of Pathology and Molecular MedicineMcMaster UniversityHamiltonONCanada
| | - Christopher G.R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, 344 Norman Bethune CollegeYork UniversityTorontoONCanada
| |
Collapse
|
16
|
Valladares D, Utreras-Mendoza Y, Campos C, Morales C, Diaz-Vegas A, Contreras-Ferrat A, Westermeier F, Jaimovich E, Marchi S, Pinton P, Lavandero S. IP 3 receptor blockade restores autophagy and mitochondrial function in skeletal muscle fibers of dystrophic mice. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3685-3695. [PMID: 30251688 DOI: 10.1016/j.bbadis.2018.08.042] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 08/06/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by a severe and progressive destruction of muscle fibers associated with altered Ca2+ homeostasis. We have previously shown that the IP3 receptor (IP3R) plays a role in elevating basal cytoplasmic Ca2+ and that pharmacological blockade of IP3R restores muscle function. Moreover, we have shown that the IP3R pathway negatively regulates autophagy by controlling mitochondrial Ca2+ levels. Nevertheless, it remains unclear whether IP3R is involved in abnormal mitochondrial Ca2+ levels, mitochondrial dynamics, or autophagy and mitophagy observed in adult DMD skeletal muscle. Here, we show that the elevated basal autophagy and autophagic flux levels were normalized when IP3R was downregulated in mdx fibers. Pharmacological blockade of IP3R in mdx fibers restored both increased mitochondrial Ca2+ levels and mitochondrial membrane potential under resting conditions. Interestingly, mdx mitochondria changed from a fission to an elongated state after IP3R knockdown, and the elevated mitophagy levels in mdx fibers were normalized. To our knowledge, this is the first study associating IP3R1 activity with changes in autophagy, mitochondrial Ca2+ levels, mitochondrial membrane potential, mitochondrial dynamics, and mitophagy in adult mouse skeletal muscle. Moreover, these results suggest that increased IP3R activity in mdx fibers plays an important role in the pathophysiology of DMD. Overall, these results lead us to propose the use of specific IP3R blockers as a new pharmacological treatment for DMD, given their ability to restore both autophagy/mitophagy and mitochondrial function.
Collapse
Affiliation(s)
- Denisse Valladares
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Escuela de Kinesiologia, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile.
| | - Yildy Utreras-Mendoza
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Cristian Campos
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Camilo Morales
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Alexis Diaz-Vegas
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Ariel Contreras-Ferrat
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Francisco Westermeier
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Enrique Jaimovich
- Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Chile
| | - Saverio Marchi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Center for Studies of Exercise, Metabolism and Cancer (CEMC), Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
17
|
Scholtes C, Bellemin S, Martin E, Carre-Pierrat M, Mollereau B, Gieseler K, Walter L. DRP-1-mediated apoptosis induces muscle degeneration in dystrophin mutants. Sci Rep 2018; 8:7354. [PMID: 29743663 PMCID: PMC5943356 DOI: 10.1038/s41598-018-25727-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are double-membrane subcellular organelles with highly conserved metabolic functions including ATP production. Mitochondria shapes change continually through the combined actions of fission and fusion events rendering mitochondrial network very dynamic. Mitochondria are largely implicated in pathologies and mitochondrial dynamics is often disrupted upon muscle degeneration in various models. Currently, the exact roles of mitochondria in the molecular mechanisms that lead to muscle degeneration remain poorly understood. Here we report a role for DRP-1 in regulating apoptosis induced by dystrophin-dependent muscle degeneration. We found that: (i) dystrophin-dependent muscle degeneration was accompanied by a drastic increase in mitochondrial fragmentation that can be rescued by genetic manipulations of mitochondrial dynamics (ii) the loss of function of the fission gene drp-1 or the overexpression of the fusion genes eat-3 and fzo-1 provoked a reduction of muscle degeneration and an improved mobility of dystrophin mutant worms (iii) the functions of DRP-1 in apoptosis and of others apoptosis executors are important for dystrophin-dependent muscle cell death (iv) DRP-1-mediated apoptosis is also likely to induce age-dependent loss of muscle cell. Collectively, our findings point toward a mechanism involving mitochondrial dynamics to respond to trigger(s) of muscle degeneration via apoptosis in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Charlotte Scholtes
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.,NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Stéphanie Bellemin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Edwige Martin
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France
| | - Maïté Carre-Pierrat
- Biology of Caenorhabditis elegans facility, Universite Lyon 1, UMS3421, Lyon 69008, France
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France
| | - Kathrin Gieseler
- NeuroMyoGene Institute (INMG), Universite Lyon 1, CNRS UMR 5310, INSERM U1217, Lyon 69008, France.
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, Universite de Lyon, Lyon, 69007, France.
| |
Collapse
|
18
|
Mergoud dit Lamarche A, Molin L, Pierson L, Mariol M, Bessereau J, Gieseler K, Solari F. UNC-120/SRF independently controls muscle aging and lifespan in Caenorhabditis elegans. Aging Cell 2018; 17:e12713. [PMID: 29314608 PMCID: PMC5847867 DOI: 10.1111/acel.12713] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 12/21/2022] Open
Abstract
Aging is commonly defined as the loss of global homeostasis, which results from progressive alteration of all organs function. This model is currently challenged by recent data showing that interventions that extend lifespan do not always increase the overall fitness of the organism. These data suggest the existence of tissue-specific factors that regulate the pace of aging in a cell-autonomous manner. Here, we investigated aging of Caenorhabditis elegans striated muscles at the subcellular and the physiological level. Our data show that muscle aging is characterized by a dramatic decrease in the expression of genes encoding proteins required for muscle contraction, followed by a change in mitochondria morphology, and an increase in autophagosome number. Myofilaments, however, remain unaffected during aging. We demonstrated that the conserved transcription factor UNC-120/SRF regulates muscle aging biomarkers. Interestingly, the role of UNC-120/SRF in the control of muscle aging can be dissociated from its broader effect on lifespan. In daf-2/insulin/IGF1 receptor mutants, which exhibit a delayed appearance of muscle aging biomarkers and are long-lived, disruption of unc-120 accelerates muscle aging but does not suppress the lifespan phenotype of daf-2 mutant. Conversely, unc-120 overexpression delays muscle aging but does not increase lifespan. Overall, we demonstrate that UNC-120/SRF controls the pace of muscle aging in a cell-autonomous manner downstream of the insulin/IGF1 receptor.
Collapse
Affiliation(s)
- Adeline Mergoud dit Lamarche
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laurent Molin
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Laura Pierson
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Marie‐Christine Mariol
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Jean‐Louis Bessereau
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
- Hospices Civils de LyonFaculté de Médecine Lyon EstLyonFrance
| | - Kathrin Gieseler
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| | - Florence Solari
- University of LyonUniversity of Lyon1 Claude Bernard Lyon1NeuroMyoGene InstituteCNRS UMR5310INSERM U1217LyonFrance
| |
Collapse
|
19
|
Szabo A, Sumegi K, Fekete K, Hocsak E, Debreceni B, Setalo G, Kovacs K, Deres L, Kengyel A, Kovacs D, Mandl J, Nyitrai M, Febbraio MA, Gallyas F, Sumegi B. Activation of mitochondrial fusion provides a new treatment for mitochondria-related diseases. Biochem Pharmacol 2018; 150:86-96. [PMID: 29378182 DOI: 10.1016/j.bcp.2018.01.038] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
Mitochondria fragmentation destabilizes mitochondrial membranes, promotes oxidative stress and facilitates cell death, thereby contributing to the development and the progression of several mitochondria-related diseases. Accordingly, compounds that reverse mitochondrial fragmentation could have therapeutic potential in treating such diseases. BGP-15, a hydroxylamine derivative, prevents insulin resistance in humans and protects against several oxidative stress-related diseases in animal models. Here we show that BGP-15 promotes mitochondrial fusion by activating optic atrophy 1 (OPA1), a GTPase dynamin protein that assist fusion of the inner mitochondrial membranes. Suppression of Mfn1, Mfn2 or OPA1 prevents BGP-15-induced mitochondrial fusion. BGP-15 activates Akt, S6K, mTOR, ERK1/2 and AS160, and reduces JNK phosphorylation which can contribute to its protective effects. Furthermore, BGP-15 protects lung structure, activates mitochondrial fusion, and stabilizes cristae membranes in vivo determined by electron microscopy in a model of pulmonary arterial hypertension. These data provide the first evidence that a drug promoting mitochondrial fusion in in vitro and in vivo systems can reduce or prevent the progression of mitochondria-related disorders.
Collapse
Affiliation(s)
- Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Fekete
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Eniko Hocsak
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Balazs Debreceni
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Gyorgy Setalo
- Department of Medical Biology, University of Pécs Medical School, Pécs, Hungary; Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Laszlo Deres
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary; 1st Department of Medicine, Division of Cardiology, University of Pecs Medical School, Pecs, Hungary
| | - Andras Kengyel
- Department of Biophysics, University of Pécs Medical School, Pécs, Hungary
| | - Dominika Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary
| | - Jozsef Mandl
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Miklos Nyitrai
- Department of Biophysics, University of Pécs Medical School, Pécs, Hungary
| | - Mark A Febbraio
- Cellular and Molecular Metabolism Laboratory, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary; Szentagothai Research Centre, University of Pécs, Pécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Pécs, Hungary; Szentagothai Research Centre, University of Pécs, Pécs, Hungary; Nuclear-Mitochondrial Interactions Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
20
|
Riba A, Deres L, Eros K, Szabo A, Magyar K, Sumegi B, Toth K, Halmosi R, Szabados E. Doxycycline protects against ROS-induced mitochondrial fragmentation and ISO-induced heart failure. PLoS One 2017; 12:e0175195. [PMID: 28384228 PMCID: PMC5383248 DOI: 10.1371/journal.pone.0175195] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/22/2017] [Indexed: 11/18/2022] Open
Abstract
In addition to their anti-bacterial action, tetracyclines also have complex biological effects, including the modification of mitochondrial protein synthesis, metabolism and gene-expression. Long-term clinical studies have been performed using tetracyclines, without significant side effects. Previous studies demonstrated that doxycycline (DOX), a major tetracyclin antibiotic, exerted a protective effect in animal models of heart failure; however, its exact molecular mechanism is still unknown. Here, we provide the first evidence that DOX reduces oxidative stress-induced mitochondrial fragmentation and depolarization in H9c2 cardiomyocytes and beneficially alters the expression of Mfn-2, OPA-1 and Drp-1 -the main regulators of mitochondrial fusion and fission-in our isoproterenol (ISO)-induced heart failure model, ultimately decreasing the severity of heart failure. In mitochondria, oxidative stress causes a shift toward fission which leads to mitochondrial fragmentation and cell death. Protecting mitochondria from oxidative stress, and the regulation of mitochondrial dynamics by drugs that shift the balance toward fusion, could be a novel therapeutic approach for heart failure. On the basis of our findings, we raise the possibility that DOX could be a novel therapeutic agent in the future treatment of heart failure.
Collapse
Affiliation(s)
- Adam Riba
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Laszlo Deres
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Krisztian Eros
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Aliz Szabo
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pécs, Hungary
| | - Klara Magyar
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Balazs Sumegi
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Kalman Toth
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Department of Biochemistry and Medical Chemistry, University of Pecs, Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Robert Halmosi
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| | - Eszter Szabados
- 1st Department of Medicine, University of Pecs, Pécs, Hungary
- Szentagothai ResearchCenter, University of Pecs, Pécs, Hungary
| |
Collapse
|
21
|
|
22
|
Zulian A, Schiavone M, Giorgio V, Bernardi P. Forty years later: Mitochondria as therapeutic targets in muscle diseases. Pharmacol Res 2016; 113:563-573. [PMID: 27697642 DOI: 10.1016/j.phrs.2016.09.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/22/2022]
Abstract
The hypothesis that mitochondrial dysfunction can be a general mechanism for cell death in muscle diseases is 40 years old. The key elements of the proposed pathogenetic sequence (cytosolic Ca2+ overload followed by excess mitochondrial Ca2+ uptake, functional and then structural damage of mitochondria, energy shortage, worsened elevation of cytosolic Ca2+ levels, hypercontracture of muscle fibers, cell necrosis) have been confirmed in amazing detail by subsequent work in a variety of models. The explicit implication of the hypothesis was that it "may provide the basis for a more rational treatment for some conditions even before their primary causes are known" (Wrogemann and Pena, 1976, Lancet, 1, 672-674). This prediction is being fulfilled, and the potential of mitochondria as pharmacological targets in muscle diseases may soon become a reality, particularly through inhibition of the mitochondrial permeability transition pore and its regulator cyclophilin D.
Collapse
Affiliation(s)
- Alessandra Zulian
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Schiavone
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Valentina Giorgio
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- CNR Neuroscience Institute and Department of Biomedical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
23
|
Gaffney CJ, Shephard F, Chu J, Baillie DL, Rose A, Constantin-Teodosiu D, Greenhaff PL, Szewczyk NJ. Degenerin channel activation causes caspase-mediated protein degradation and mitochondrial dysfunction in adult C. elegans muscle. J Cachexia Sarcopenia Muscle 2016; 7:181-92. [PMID: 27493871 PMCID: PMC4864282 DOI: 10.1002/jcsm.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Declines in skeletal muscle structure and function are found in various clinical populations, but the intramuscular proteolytic pathways that govern declines in these individuals remain relatively poorly understood. The nematode Caenorhabditis elegans has been developed into a model for identifying and understanding these pathways. Recently, it was reported that UNC-105/degenerin channel activation produced muscle protein degradation via an unknown mechanism. METHODS Generation of transgenic and double mutant C. elegans, RNAi, and drug treatments were utilized to assess molecular events governing protein degradation. Western blots were used to measure protein content. Cationic dyes and adenosine triphosphate (ATP) production assays were utilized to measure mitochondrial function. RESULTS unc-105 gain-of-function mutants display aberrant muscle protein degradation and a movement defect; both are reduced in intragenic revertants and in let-2 mutants that gate the hyperactive UNC-105 channel. Degradation is not suppressed by interventions suppressing proteasome-mediated, autophagy-mediated, or calpain-mediated degradation nor by suppressors of degenerin-induced neurodegeneration. Protein degradation, but not the movement defect, is decreased by treatment with caspase inhibitors or RNAi against ced-3 or ced-4. Adult unc-105 muscles display a time-dependent fragmentation of the mitochondrial reticulum that is associated with impaired mitochondrial membrane potential and that correlates with decreased rates of maximal ATP production. Reduced levels of CED-4, which is sufficient to activate CED-3 in vitro, are observed in unc-105 mitochondrial isolations. CONCLUSIONS Constitutive cationic influx into muscle appears to cause caspase degradation of cytosolic proteins as the result of mitochondrial dysfunction, which may be relevant to ageing and sarcopenia.
Collapse
Affiliation(s)
- Christopher J Gaffney
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Freya Shephard
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Jeff Chu
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BCV5A 1S6 Canada; Department of Medical Genetics University of British Columbia Vancouver BCV6T 1Z4 Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry Simon Fraser University Burnaby BC V5A 1S6 Canada
| | - Ann Rose
- Department of Medical Genetics University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dumitru Constantin-Teodosiu
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| | - Nathaniel J Szewczyk
- MRC/ARUK Centre for Musculoskeletal Ageing Research, Faculty of Medicine and Health Sciences University of Nottingham Nottingham NG7 2UH UK
| |
Collapse
|
24
|
Giacomotto J, Carroll AP, Rinkwitz S, Mowry B, Cairns MJ, Becker TS. Developmental suppression of schizophrenia-associated miR-137 alters sensorimotor function in zebrafish. Transl Psychiatry 2016; 6:e818. [PMID: 27219344 PMCID: PMC5070046 DOI: 10.1038/tp.2016.88] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/02/2023] Open
Abstract
The neurodevelopmentally regulated microRNA miR-137 was strongly implicated as risk locus for schizophrenia in the most recent genome wide association study coordinated by the Psychiatric Genome Consortium (PGC). This molecule is highly conserved in vertebrates enabling the investigation of its function in the developing zebrafish. We utilized this model system to achieve overexpression and suppression of miR-137, both transiently and stably through transgenesis. While miR-137 overexpression was not associated with an observable specific phenotype, downregulation by antisense morpholino and/or transgenic expression of miR-sponge RNA induced significant impairment of both embryonic and larval touch-sensitivity without compromising overall anatomical development. We observed miR-137 expression and activity in sensory neurons including Rohon-Beard neurons and dorsal root ganglia, two neuronal cell types that confer touch-sensitivity in normal zebrafish, suggesting a role of these cell types in the observed phenotype. The lack of obvious anatomical or histological pathology in these cells, however, suggested that subtle axonal network defects or a change in synaptic function and neural connectivity might be responsible for the behavioral phenotype rather than a change in the cellular morphology or neuroanatomy.
Collapse
Affiliation(s)
- J Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,Psychiatric Genomics Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| | - A P Carroll
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
| | - S Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - B Mowry
- Psychiatric Genomics Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia,Queensland Centre for Mental Health Research, University of Queensland, Brisbane, QLD, Australia
| | - M J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia,Schizophrenia Research Institute, Sydney, NSW, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| | - T S Becker
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia,Brain and Mind Research Institute, Sydney Medical School, University of Sydney, 94 Mallet Street, Camperdown, NSW 2050, Australia. E-mail: or or
| |
Collapse
|
25
|
Laird AS, Mackovski N, Rinkwitz S, Becker TS, Giacomotto J. Tissue-specific models of spinal muscular atrophy confirm a critical role of SMN in motor neurons from embryonic to adult stages. Hum Mol Genet 2016; 25:1728-38. [PMID: 26908606 DOI: 10.1093/hmg/ddw044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 11/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism.
Collapse
Affiliation(s)
- Angela S Laird
- ANZAC Research Institute, Concord Repatriation Hospital, University of Sydney, Sydney, New South Wales, Australia, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, Australia
| | - Nikolce Mackovski
- ANZAC Research Institute, Concord Repatriation Hospital, University of Sydney, Sydney, New South Wales, Australia
| | - Silke Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia and
| | - Thomas S Becker
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia and
| | - Jean Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia and Queensland Brain Institute, The University of Queensland, Building #79, St Lucia, Queensland 4072, Australia
| |
Collapse
|
26
|
Allen DG, Whitehead NP, Froehner SC. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy. Physiol Rev 2016; 96:253-305. [PMID: 26676145 DOI: 10.1152/physrev.00007.2015] [Citation(s) in RCA: 295] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca(2+)-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca(2+) entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease.
Collapse
Affiliation(s)
- David G Allen
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Nicholas P Whitehead
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| | - Stanley C Froehner
- Sydney Medical School & Bosch Institute, University of Sydney, New South Wales, Australia; and Department of Physiology & Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
27
|
A γ-Secretase Independent Role for Presenilin in Calcium Homeostasis Impacts Mitochondrial Function and Morphology in Caenorhabditis elegans. Genetics 2015; 201:1453-66. [PMID: 26500256 DOI: 10.1534/genetics.115.182808] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Mutations in the presenilin (PSEN) encoding genes (PSEN1 and PSEN2) occur in most early onset familial Alzheimer's Disease. Despite the identification of the involvement of PSEN in Alzheimer's Disease (AD) ∼20 years ago, the underlying role of PSEN in AD is not fully understood. To gain insight into the biological function of PSEN, we investigated the role of the PSEN homolog SEL-12 in Caenorhabditis elegans. Using genetic, cell biological, and pharmacological approaches, we demonstrate that mutations in sel-12 result in defects in calcium homeostasis, leading to mitochondrial dysfunction. Moreover, consistent with mammalian PSEN, we provide evidence that SEL-12 has a critical role in mediating endoplasmic reticulum (ER) calcium release. Furthermore, we found that in SEL-12-deficient animals, calcium transfer from the ER to the mitochondria leads to fragmentation of the mitochondria and mitochondrial dysfunction. Additionally, we show that the impact that SEL-12 has on mitochondrial function is independent of its role in Notch signaling, γ-secretase proteolytic activity, and amyloid plaques. Our results reveal a critical role for PSEN in mediating mitochondrial function by regulating calcium transfer from the ER to the mitochondria.
Collapse
|
28
|
Brouilly N, Lecroisey C, Martin E, Pierson L, Mariol MC, Qadota H, Labouesse M, Streichenberger N, Mounier N, Gieseler K. Ultra-structural time-course study in the C. elegans model for Duchenne muscular dystrophy highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in the earliest steps of the muscle degeneration process. Hum Mol Genet 2015; 24:6428-45. [PMID: 26358775 DOI: 10.1093/hmg/ddv353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/26/2015] [Indexed: 01/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a genetic disease characterized by progressive muscle degeneration due to mutations in the dystrophin gene. In spite of great advances in the design of curative treatments, most patients currently receive palliative therapies with steroid molecules such as prednisone or deflazacort thought to act through their immunosuppressive properties. These molecules only slightly slow down the progression of the disease and lead to severe side effects. Fundamental research is still needed to reveal the mechanisms involved in the disease that could be exploited as therapeutic targets. By studying a Caenorhabditis elegans model for DMD, we show here that dystrophin-dependent muscle degeneration is likely to be cell autonomous and affects the muscle cells the most involved in locomotion. We demonstrate that muscle degeneration is dependent on exercise and force production. Exhaustive studies by electron microscopy allowed establishing for the first time the chronology of subcellular events occurring during the entire process of muscle degeneration. This chronology highlighted the crucial role for dystrophin in stabilizing sarcomeric anchoring structures and the sarcolemma. Our results suggest that the disruption of sarcomeric anchoring structures and sarcolemma integrity, observed at the onset of the muscle degeneration process, triggers subcellular consequences that lead to muscle cell death. An ultra-structural analysis of muscle biopsies from DMD patients suggested that the chronology of subcellular events established in C. elegans models the pathogenesis in human. Finally, we found that the loss of sarcolemma integrity was greatly reduced after prednisone treatment suggesting a role for this molecule in plasma membrane stabilization.
Collapse
Affiliation(s)
- Nicolas Brouilly
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Claire Lecroisey
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Edwige Martin
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Laura Pierson
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Marie-Christine Mariol
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Hiroshi Qadota
- Department of Pathology, Emory University, 615 Michael Street, Whitehead 165, Atlanta, GA 30322, USA
| | - Michel Labouesse
- Intitut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104 - Inserm U 964, 1 rue Laurent Fries, BP 10142, 67404 Illkirch CEDEX, France and
| | | | - Nicole Mounier
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France
| | - Kathrin Gieseler
- Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre, 69622 Villeurbanne, France, Centre de Génétique et de Physiologie moléculaires et cellulaires, CNRS UMR 5534, 16 rue Dubois, 69622 Villeurbanne, France,
| |
Collapse
|
29
|
Giacomotto J, Rinkwitz S, Becker TS. Effective heritable gene knockdown in zebrafish using synthetic microRNAs. Nat Commun 2015; 6:7378. [PMID: 26051838 PMCID: PMC4468906 DOI: 10.1038/ncomms8378] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
Abstract
Although zebrafish is used to model human diseases through mutational and morpholino-based knockdown approaches, there are currently no robust transgenic knockdown tools. Here we investigate the knockdown efficiency of three synthetic miRNA-expressing backbones and show that these constructs can downregulate a sensor transgene with different degrees of potency. Using this approach, we reproduce spinal muscular atrophy (SMA) in zebrafish by targeting the smn1 gene. We also generate different transgenic lines, with severity and age of onset correlated to the level of smn1 inhibition, recapitulating for the first time the different forms of SMA in zebrafish. These lines are proof-of-concept that miRNA-based approaches can be used to generate potent heritable gene knockdown in zebrafish. Zebrafish is a model system for which for no reliable heritable gene silencing method is available. Here the authors provide a system for heritable miRNA-mediated knockdown and demonstrate tunable silencing of the smn1 gene that recapitulate different forms of spinal muscular atrophy.
Collapse
Affiliation(s)
- Jean Giacomotto
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Silke Rinkwitz
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.,Department of Physiology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Thomas S Becker
- Brain and Mind Research Institute, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia.,Department of Physiology, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
30
|
Abstract
Caenorhabditis elegans is a highly malleable model system, intensively used for functional, genetic, cytometric, and integrative studies. Due to its simplicity and large muscle cell number, C. elegans has frequently been used to study mitochondrial deficiencies caused by disease or drug toxicity. Here, we describe a robust and efficient method to visualize and quantify mitochondrial morphology in vivo. This method has many practical and technical advantages above traditional (manual) methods and provides a comprehensive analysis of mitochondrial morphology.
Collapse
|
31
|
Abstract
Muscular dystrophies are a group of diseases characterised by the primary wasting of skeletal muscle, which compromises patient mobility and in the most severe cases originate a complete paralysis and premature death. Existing evidence implicates calcium dysregulation as an underlying crucial event in the pathophysiology of several muscular dystrophies, such as dystrophinopathies, calpainopathies or myotonic dystrophy among others. Duchenne muscular dystrophy is the most frequent myopathy in childhood, and calpainopathy or LGMD2A is the most common form of limb-girdle muscular dystrophy, whereas myotonic dystrophy is the most frequent inherited muscle disease worldwide. In this review, we summarise recent advances in our understanding of calcium ion cycling through the sarcolemma, the sarcoplasmic reticulum and mitochondria, and its involvement in the pathogenesis of these dystrophies. We also discuss some of the clinical implications of recent findings regarding Ca2+ handling as well as novel approaches to treat muscular dystrophies targeting Ca2+ regulatory proteins.
Collapse
|
32
|
Abstract
Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.
Collapse
Affiliation(s)
- Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. Université Paris Descartes/Paris V; Sorbonne Paris Cité; F-75005 Paris, France. INSERM, U1138, F-94805 Villejuif, France. Metabolomics and Cell Biology Platforms, Gustave Roussy, F-94805 Villejuif, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015 Paris, France.
| |
Collapse
|
33
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
34
|
Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 2013; 20:202-15. [PMID: 24331362 DOI: 10.1016/j.spen.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Joseph J Melvin
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|