1
|
Westphal D, Meinhardt M, Grützmann K, Schöne L, Steininger J, Neuhaus LT, Wiegel M, Schrimpf D, Aust DE, Schröck E, Baretton GB, Beissert S, Juratli TA, Schackert GG, Gravemeyer J, Becker JC, von Deimling A, Koelsche C, Klink B, Meier F, Schulz A, Muders MH, Seifert M. Identification of Epigenetically Regulated Genes Distinguishing Intracranial from Extracranial Melanoma Metastases. J Invest Dermatol 2023; 143:1233-1245.e17. [PMID: 36716920 DOI: 10.1016/j.jid.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/29/2023]
Abstract
Despite remarkable advances in treating patients with metastatic melanoma, the management of melanoma brain metastases remains challenging. Recent evidence suggests that epigenetic reprogramming is an important mechanism for the adaptation of melanoma cells to the brain environment. In this study, the methylomes and transcriptomes of a cohort of matched melanoma metastases were evaluated by integrated omics data analysis. The identified 38 candidate genes displayed distinct promoter methylation and corresponding gene expression changes in intracranial compared with extracranial metastases. The 11 most promising genes were validated on protein level in both tumor and surrounding normal tissue using immunohistochemistry. In accordance with the underlying promoter methylation and gene expression changes, a significantly different protein expression was confirmed for STK10, PDXK, WDR24, CSSP1, NMB, RASL11B, phosphorylated PRKCZ, PRKCZ, and phosphorylated GRB10 in the intracranial metastases. The observed changes imply a distinct intracranial phenotype with increased protein kinase B phosphorylation and a higher frequency of proliferating cells. Knockdown of PRKCZ or GRB10 altered the expression of phosphorylated protein kinase B and decreased the viability of a brain-specific melanoma cell line. In summary, epigenetically regulated cancer-relevant alterations were identified that provide insights into the molecular mechanisms that discriminate brain metastases from other organ metastases, which could be exploited by targeting the affected signaling pathways.
Collapse
Affiliation(s)
- Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
| | - Matthias Meinhardt
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Konrad Grützmann
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Lisa Schöne
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Julian Steininger
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Lena T Neuhaus
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Miriam Wiegel
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Daniel Schrimpf
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniela E Aust
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; BioBank Dresden (BBD), Tumor and Normal Tissue Bank (TNTB), National Center for Tumor Diseases (NCT/UCC), University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Evelin Schröck
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Gustavo B Baretton
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; BioBank Dresden (BBD), Tumor and Normal Tissue Bank (TNTB), National Center for Tumor Diseases (NCT/UCC), University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Gabriele G Schackert
- Department of Neurosurgery, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jan Gravemeyer
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Partner Site Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen C Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK), Partner Site Essen, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Andreas von Deimling
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Koelsche
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of General Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Klink
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases (NCT/UCC), Dresden, Germany; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Skin Cancer Center at the University Cancer Center and National Center for Tumor Diseases, Dresden, Germany
| | - Alexander Schulz
- Department of Dermatology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Michael H Muders
- Institute of Pathology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Michael Seifert
- National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany; Institute for Medical Informatics and Biometry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Suresh S, Rabbie R, Garg M, Lumaquin D, Huang TH, Montal E, Ma Y, Cruz NM, Tang X, Nsengimana J, Newton-Bishop J, Hunter MV, Zhu Y, Chen K, de Stanchina E, Adams DJ, White RM. Identifying the Transcriptional Drivers of Metastasis Embedded within Localized Melanoma. Cancer Discov 2023; 13:194-215. [PMID: 36259947 PMCID: PMC9827116 DOI: 10.1158/2159-8290.cd-22-0427] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/25/2022] [Accepted: 10/14/2022] [Indexed: 01/16/2023]
Abstract
In melanoma, predicting which tumors will ultimately metastasize guides treatment decisions. Transcriptional signatures of primary tumors have been utilized to predict metastasis, but which among these are driver or passenger events remains unclear. We used data from the adjuvant AVAST-M trial to identify a predictive gene signature in localized tumors that ultimately metastasized. Using a zebrafish model of primary melanoma, we interrogated the top genes from the AVAST-M signature in vivo. This identified GRAMD1B, a cholesterol transfer protein, as a bona fide metastasis suppressor, with a majority of knockout animals rapidly developing metastasis. Mechanistically, excess free cholesterol or its metabolite 27-hydroxycholesterol promotes invasiveness via activation of an AP-1 program, which is associated with increased metastasis in humans. Our data demonstrate that the transcriptional seeds of metastasis are embedded within localized tumors, suggesting that early targeting of these programs can be used to prevent metastatic relapse. SIGNIFICANCE We analyzed human melanoma transcriptomics data to identify a gene signature predictive of metastasis. To rapidly test clinical signatures, we built a genetic metastasis platform in adult zebrafish and identified GRAMD1B as a suppressor of melanoma metastasis. GRAMD1B-associated cholesterol overload activates an AP-1 program to promote melanoma invasion. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roy Rabbie
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, United Kingdom
| | - Dianne Lumaquin
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Ting-Hsiang Huang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emily Montal
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yilun Ma
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York
| | - Nelly M Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Xinran Tang
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Biochemistry and Structural Biology, Cellular and Developmental Biology and Molecular Biology Ph.D. Program, Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Jérémie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Miranda V. Hunter
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuxin Zhu
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Chen
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David J. Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Zhang G, Hou Y. Screening for aberrantly methylated and differentially expressed genes in nonalcoholic fatty liver disease of hepatocellular carcinoma patients with cirrhosis. World J Surg Oncol 2022; 20:364. [PMCID: PMC9673405 DOI: 10.1186/s12957-022-02828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Nonalcoholic fatty liver disease (NAFLD) as the leading chronic liver disease worldwide causes hepatic fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The aim of this study was to find potential aberrantly methylated and differentially expressed genes in NAFLD of HCC patients with cirrhosis.
Methods
DNA methylation data, mRNA expression data, and the corresponding clinical information of HCC were downloaded from the Cancer Genome Atlas (TCGA, tissue sample) database. HCC patients with cirrhosis were divided into two groups according to the presence of NAFLD. The differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were obtained.
Results
By overlapping 79 up-regulated genes and 1020 hypomethylated genes, we obtained 5 hypomethylated-highly expressed genes (HypoHGs). By overlapping 365 down-regulated genes and 481 hypermethylated genes, we identified 13 hypermethylated-lowly expressed genes (Hyper-LGs). Survival analysis of these 18 MDEGs indicated that the expression of DGKK and HOXD9 was significantly correlated with the overall survival time of NAFLD patients.
Conclusions
We identified several candidate genes whose expressions were regulated by DNA methylation of NAFLD of HCC with cirrhosis, which may provide a new field in understanding the clinical pathological mechanism of NAFLD of HCC with cirrhosis.
Collapse
|
4
|
Aili Y, Maimaitiming N, Qin H, Ji W, Fan G, Wang Z, Wang Y. Tumor microenvironment and exosomes in brain metastasis: Molecular mechanisms and clinical application. Front Oncol 2022; 12:983878. [PMID: 36338717 PMCID: PMC9631487 DOI: 10.3389/fonc.2022.983878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/28/2022] [Indexed: 12/03/2022] Open
Abstract
Metastasis is one of the important biological features of malignant tumors and one of the main factors responsible for poor prognosis. Although the widespread application of newer clinical technologies and their continuous development have significantly improved survival in patients with brain metastases, there is no uniform standard of care. More effective therapeutic measures are therefore needed to improve prognosis. Understanding the mechanisms of tumor cell colonization, growth, and invasion in the central nervous system is of particular importance for the prevention and treatment of brain metastases. This process can be plausibly explained by the “seed and soil” hypothesis, which essentially states that tumor cells can interact with various components of the central nervous system microenvironment to produce adaptive changes; it is this interaction that determines the development of brain metastases. As a novel form of intercellular communication, exosomes play a key role in the brain metastasis microenvironment and carry various bioactive molecules that regulate receptor cell activity. In this paper, we review the roles and prospects of brain metastatic tumor cells, the brain metastatic tumor microenvironment, and exosomes in the development and clinical management of brain metastases.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Nuersimanguli Maimaitiming
- Department of Four Comprehensive Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang, China
| | - Hu Qin
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wenyu Ji
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guofeng Fan
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zengliang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- School of Health Management, Xinjiang Medical University, Urumqi, China
- Department of Neurosurgery, Xinjiang Bazhou People’s Hospital, Xinjiang, China
- *Correspondence: Zengliang Wang, ; Yongxin Wang,
| | - Yongxin Wang
- Department of Neurosurgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Zengliang Wang, ; Yongxin Wang,
| |
Collapse
|
5
|
Carrier A, Desjobert C, Ponger L, Lamant L, Bustos M, Torres-Ferreira J, Henrique R, Jeronimo C, Lanfrancone L, Delmas A, Favre G, Delaunay A, Busato F, Hoon DSB, Tost J, Etievant C, Riond J, Arimondo PB. DNA methylome combined with chromosome cluster-oriented analysis provides an early signature for cutaneous melanoma aggressiveness. eLife 2022; 11:78587. [PMID: 36125262 PMCID: PMC9525058 DOI: 10.7554/elife.78587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Aberrant DNA methylation is a well-known feature of tumours and has been associated with metastatic melanoma. However, since melanoma cells are highly heterogeneous, it has been challenging to use affected genes to predict tumour aggressiveness, metastatic evolution, and patients’ outcomes. We hypothesized that common aggressive hypermethylation signatures should emerge early in tumorigenesis and should be shared in aggressive cells, independent of the physiological context under which this trait arises. We compared paired melanoma cell lines with the following properties: (i) each pair comprises one aggressive counterpart and its parental cell line and (ii) the aggressive cell lines were each obtained from different host and their environment (human, rat, and mouse), though starting from the same parent cell line. Next, we developed a multi-step genomic pipeline that combines the DNA methylome profile with a chromosome cluster-oriented analysis. A total of 229 differentially hypermethylated genes was commonly found in the aggressive cell lines. Genome localization analysis revealed hypermethylation peaks and clusters, identifying eight hypermethylated gene promoters for validation in tissues from melanoma patients. Five Cytosine-phosphate-Guanine (CpGs) identified in primary melanoma tissues were transformed into a DNA methylation score that can predict survival (log-rank test, p=0.0008). This strategy is potentially universally applicable to other diseases involving DNA methylation alterations.
Collapse
Affiliation(s)
- Arnaud Carrier
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Cécile Desjobert
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | | | - Laurence Lamant
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Matias Bustos
- Department of Translational Molecular Medicine, Providence Saint John's Health Center, Santa Monica, United States
| | - Jorge Torres-Ferreira
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Carmen Jeronimo
- Cancer Biology and Epigenetics Group, Portuguese Oncology Institute, Porto, Portugal
| | - Luisa Lanfrancone
- Department of Experimental Oncology, Instituto Europeo di Oncologia, Milan, Italy
| | - Audrey Delmas
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, UMR 1037, INSERM, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Antoine Delaunay
- Laboratory for Functional Genomics, Fondation Jean Dausset-CEPH, Paris, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, CNRS, CEA-Institut de Biologie François Jacob, Evry, France
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Providence Saint John's Health Center, Santa Monica, United States
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, CNRS, CEA-Institut de Biologie François Jacob, Evry, France
| | - Chantal Etievant
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Joëlle Riond
- Unité de Service et de Recherche USR 3388, CNRS-Pierre Fabre, Toulouse, France
| | - Paola B Arimondo
- Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR 3523, Paris, France
| |
Collapse
|
6
|
Wang L, Qiao C, Cao L, Cai S, Ma X, Song X, Jiang Q, Huang C, Wang J. Significance of HOXD transcription factors family in progression, migration and angiogenesis of cancer. Crit Rev Oncol Hematol 2022; 179:103809. [PMID: 36108961 DOI: 10.1016/j.critrevonc.2022.103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 10/31/2022] Open
Abstract
The transcription factors (TFs) of the HOX family play significant roles during early embryonic development and cellular processes. They also play a key role in tumorigenesis as tumor oncogenes or suppressors. Furthermore, TFs of the HOXD geFIne cluster affect proliferation, migration, and invasion of tumors. Consequently, dysregulated activity of HOXD TFs has been linked to clinicopathological characteristics of cancer. HOXD TFs are regulated by non-coding RNAs and methylation of DNA on promoter and enhancer regions. In addition, HOXD genes modulate the biological function of cancer cells via the MEK and AKT signaling pathways, thus, making HOXD TFs, a suitable molecular marker for cancer prognosis and therapy. In this review, we summarized the roles of HOXD TFs in different cancers and highlighted its potential as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Lumin Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Chenyang Qiao
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Li Cao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Shuang Cai
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Xinqiu Song
- Department of Cell Biology and Genetics, Medical College of Yan'an University, Yan'an, Shaanxi, PR China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, PR China.
| | - Jinhai Wang
- Gastroenterology department, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Institute of precision medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
7
|
Creasy CA, Meng YJ, Forget MA, Karpinets T, Tomczak K, Stewart C, Torres-Cabala CA, Pilon-Thomas S, Sarnaik AA, Mulé JJ, Garraway L, Bustos M, Zhang J, Patel SP, Diab A, Glitza IC, Yee C, Tawbi H, Wong MK, McQuade J, Hoon DSB, Davies MA, Hwu P, Amaria RN, Haymaker C, Beroukhim R, Bernatchez C. Genomic Correlates of Outcome in Tumor-Infiltrating Lymphocyte Therapy for Metastatic Melanoma. Clin Cancer Res 2022; 28:1911-1924. [PMID: 35190823 DOI: 10.1158/1078-0432.ccr-21-1060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/01/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Adoptive cell therapy (ACT) of tumor-infiltrating lymphocytes (TIL) historically yields a 40%-50% response rate in metastatic melanoma. However, the determinants of outcome are largely unknown. EXPERIMENTAL DESIGN We investigated tumor-based genomic correlates of overall survival (OS), progression-free survival (PFS), and response to therapy by interrogating tumor samples initially collected to generate TIL infusion products. RESULTS Whole-exome sequencing (WES) data from 64 samples indicated a positive correlation between neoantigen load and OS, but not PFS or response to therapy. RNA sequencing analysis of 34 samples showed that expression of PDE1C, RTKN2, and NGFR was enriched in responders who had improved PFS and OS. In contrast, the expression of ELFN1 was enriched in patients with unfavorable response, poor PFS and OS, whereas enhanced methylation of ELFN1 was observed in patients with favorable outcomes. Expression of ELFN1, NGFR, and PDE1C was mainly found in cancer-associated fibroblasts and endothelial cells in tumor tissues across different cancer types in publicly available single-cell RNA sequencing datasets, suggesting a role for elements of the tumor microenvironment in defining the outcome of TIL therapy. CONCLUSIONS Our findings suggest that transcriptional features of melanomas correlate with outcomes after TIL therapy and may provide candidates to guide patient selection.
Collapse
Affiliation(s)
- Caitlin A Creasy
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Yuzhong Jeff Meng
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marie-Andrée Forget
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Tatiana Karpinets
- Department of Genomic Medicine, The University of Texas MDACC, Houston, Texas
| | - Katarzyna Tomczak
- Department of Translational Molecular Pathology, The University of Texas MDACC, Houston, Texas
| | - Chip Stewart
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Shari Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.,Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amod A Sarnaik
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - James J Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Levi Garraway
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matias Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Saint John's Health Center, Santa Monica, California
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MDACC, Houston, Texas
| | - Sapna P Patel
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Adi Diab
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Isabella C Glitza
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Michael K Wong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Jennifer McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute, Saint John's Health Center, Santa Monica, California
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Rodabe N Amaria
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MDACC, Houston, Texas
| | - Rameen Beroukhim
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center (MDACC), Houston, Texas.,Department of Translational Molecular Pathology, The University of Texas MDACC, Houston, Texas
| |
Collapse
|
8
|
Gaebe K, Li AY, Das S. Clinical Biomarkers for Early Identification of Patients with Intracranial Metastatic Disease. Cancers (Basel) 2021; 13:cancers13235973. [PMID: 34885083 PMCID: PMC8656478 DOI: 10.3390/cancers13235973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The development of brain metastases, or intracranial metastatic disease (IMD), is a serious and life-altering complication for many patients with cancer. While there have been substantial advancements in the treatments available for IMD and in our understanding of its pathogenesis, conventional methods remain insufficient to detect IMD at an early stage. In this review, we discuss current research on biomarkers specific to IMD. In particular, we highlight biomarkers that can be easily accessed via the bloodstream or cerebrospinal fluid, including circulating tumor cells and DNA, as well as advanced imaging techniques. The continued development of these assays could enable clinicians to detect IMD prior to the development of IMD-associated symptoms and ultimately improve patient prognosis and survival. Abstract Nearly 30% of patients with cancer will develop intracranial metastatic disease (IMD), and more than half of these patients will die within a few months following their diagnosis. In light of the profound effect of IMD on survival and quality of life, there is significant interest in identifying biomarkers that could facilitate the early detection of IMD or identify patients with cancer who are at high IMD risk. In this review, we will highlight early efforts to identify biomarkers of IMD and consider avenues for future investigation.
Collapse
Affiliation(s)
- Karolina Gaebe
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Alyssa Y. Li
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 3K1, Canada; (K.G.); (A.Y.L.)
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence:
| |
Collapse
|
9
|
Dobre EG, Constantin C, Costache M, Neagu M. Interrogating Epigenome toward Personalized Approach in Cutaneous Melanoma. J Pers Med 2021; 11:901. [PMID: 34575678 PMCID: PMC8467841 DOI: 10.3390/jpm11090901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Marieta Costache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
10
|
Marney CB, Anderson ES, Adnan M, Peng KL, Hu Y, Weinhold N, Schmitt AM. p53-intact cancers escape tumor suppression through loss of long noncoding RNA Dino. Cell Rep 2021; 35:109329. [PMID: 34192538 PMCID: PMC8287872 DOI: 10.1016/j.celrep.2021.109329] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/15/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many long noncoding RNA (lncRNA) genes exist near cancer-associated loci, yet evidence connecting lncRNA functions to recurrent genetic alterations in cancer are lacking. Here, we report that DINO, the lncRNA transcribed from the cancer-associated DINO/CDKN1A locus, suppresses tumor formation independent of p21, the protein encoded at the locus. Loss of one or two alleles of Dino impairs p53 signaling and apoptosis, resulting in a haplo-insufficient tumor suppressor phenotype in genetically defined mouse models of tumorigenesis. A discrete region of the DINO/CDKN1A locus is recurrently hypermethylated in human cancers, silencing DINO but not CDKN1A, the gene encoding p21. Hypermethylation silences DINO, impairs p53 signaling pathway in trans, and is mutually exclusive with TP53 alterations, indicating that DINO and TP53 comprise a common tumor suppressor module. Therefore, DINO encodes a lncRNA essential for tumor suppression that is recurrently silenced in human cancers as a mechanism to escape p53-dependent tumor suppression.
Collapse
Affiliation(s)
- Christina B Marney
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Erik S Anderson
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Mutayyaba Adnan
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Kai-Lin Peng
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Ya Hu
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Nils Weinhold
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Adam M Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA.
| |
Collapse
|
11
|
Lianidou E. Detection and relevance of epigenetic markers on ctDNA: recent advances and future outlook. Mol Oncol 2021; 15:1683-1700. [PMID: 33942482 PMCID: PMC8169441 DOI: 10.1002/1878-0261.12978] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/24/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsy, a minimally invasive approach, is a highly powerful clinical tool for the real-time follow-up of cancer and overcomes many limitations of tissue biopsies. Epigenetic alterations have a high potential to provide a valuable source of innovative biomarkers for cancer, owing to their stability, frequency, and noninvasive accessibility in bodily fluids. Numerous DNA methylation markers are now tested in circulating tumor DNA (ctDNA) as potential biomarkers, in various types of cancer. DNA methylation in combination with liquid biopsy is very powerful in identifying circulating epigenetic biomarkers of clinical importance. Blood-based epigenetic biomarkers have a high potential for early detection of cancer since DNA methylation in plasma can be detected early during cancer pathogenesis. In this review, we summarize the latest findings on DNA methylation markers in ctDNA for early detection, prognosis, minimal residual disease, risk of relapse, treatment selection, and resistance, for breast, prostate, lung, and colorectal cancer.
Collapse
Affiliation(s)
- Evi Lianidou
- Analysis of Circulating Tumor CellsLaboratory of Analytical ChemistryDepartment of ChemistryUniversity of AthensGreece
| |
Collapse
|
12
|
Xia D, Leon AJ, Cabanero M, Pugh TJ, Tsao MS, Rath P, Siu LLY, Yu C, Bedard PL, Shepherd FA, Zadeh G, Chetty R, Aldape K. Minimalist approaches to cancer tissue-of-origin classification by DNA methylation. Mod Pathol 2020; 33:1874-1888. [PMID: 32415265 PMCID: PMC8808378 DOI: 10.1038/s41379-020-0547-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/06/2020] [Accepted: 03/30/2020] [Indexed: 11/09/2022]
Abstract
Classification of cancers by tissue-of-origin is fundamental to diagnostic pathology. While the combination of clinical data, tissue histology, and immunohistochemistry is usually sufficient, there remains a small but not insignificant proportion of difficult-to-classify cases. These challenging cases provide justification for ancillary molecular testing, including high-throughput DNA methylation array profiling, which promises cell-of-origin information and compatibility with formalin-fixed specimens. While diagnostically powerful, methylation profiling platforms are costly and technically challenging to implement, particularly for less well-resourced laboratories. To address this, we simulated the performance of "minimalist" methylation-based tests for cancer classification using publicly-available and internal institutional profiling data. These analyses showed that small and focused sets of the most informative CpG biomarkers from the arrays are sufficient for accurate diagnoses. As an illustrative example, one classifier, using information from just 53 out of about 450,000 available CpG probes, achieved an accuracy of 94.5% on 2575 fresh primary validation cases across 28 cancer types from The Cancer Genome Atlas Network. By training minimalist classifiers on formalin-fixed primary and metastatic cases, generally high accuracies were also achieved on additional datasets. These results support the potential of minimalist methylation testing, possibly via quantitative PCR and targeted next-generation sequencing platforms, in cancer classification.
Collapse
Affiliation(s)
- Daniel Xia
- Division of Hematopathology and Transfusion Medicine, University Health Network, Toronto, ON, Canada. .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | | | - Michael Cabanero
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Division of Anatomical Pathology, University Health Network, Toronto, ON, Canada
| | | | - Ming Sound Tsao
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Division of Anatomical Pathology, University Health Network, Toronto, ON, Canada
| | - Prisni Rath
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Lillian Lai-Yun Siu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Celeste Yu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | | | - Gelareh Zadeh
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Runjan Chetty
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Division of Anatomical Pathology, University Health Network, Toronto, ON, Canada
| | - Kenneth Aldape
- Laboratory of Pathology, Center of Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
13
|
Fröhlich A, Sirokay J, Fietz S, Vogt TJ, Dietrich J, Zarbl R, Florin M, Kuster P, Saavedra G, Valladolid SR, Hoffmann F, Flatz L, Ring SS, Golletz C, Pietsch T, Strieth S, Brossart P, Gielen GH, Kristiansen G, Bootz F, Landsberg J, Dietrich D. Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma. EBioMedicine 2020; 59:102962. [PMID: 32861198 PMCID: PMC7475111 DOI: 10.1016/j.ebiom.2020.102962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Background The co-receptor lymphocyte-activation gene-3 (LAG3, LAG-3, CD223) is a potential target for immune checkpoint inhibition immunotherapies. However, little is known about the biological and clinical significance of LAG3 DNA methylation in melanoma and its microenvironment. Methods We evaluated LAG3 promoter and gene body methylation in a cohort of N = 470 melanoma patients obtained from The Cancer Genome Atlas (TCGA cohort), an independent cohort of N = 120 patients from the University Hospital Bonn, and in subsets of peripheral blood leukocytes, melanocytes, and melanoma cell lines. We validated the association of LAG3 methylation with mRNA expression in vitro in the melanoma cell line A375 treated with the hypomethylating agent 5-azacytidine and stimulated with interferon-γ. Finally, we investigated correlations between LAG3 methylation and progression-free survival in patients treated with immune checkpoint blockade (ICB cohort, N = 118). Findings Depending on the analysed locus (promoter, gene body) we found region-dependent significant LAG3 methylation differences between monocytes, B cells, CD8+ and CD4+ T cells, regulatory T cells, melanocytes, and melanoma cell lines. In tumor tissues, methylation correlated significantly with LAG3 mRNA expression, immune cell infiltrates (histopathologic lymphocyte score and RNA-Seq signatures of distinct immune infiltrates), and an interferon-γ signature. Finally, LAG3 methylation was associated with overall survival in the TCGA cohort and progression-free survival in the ICB cohort. We detected basal LAG3 mRNA expression in the melanoma cell A375 and an interferon-γ inducible expression after demethylation with 5-azacytidine. Interpretation Our study points towards an epigenetic regulation of LAG3 via promoter methylation and suggests a prognostic and predictive significance of LAG3 methylation in melanoma. Our results give insight in the tumor cell-intrinsic transcriptional regulation of LAG3 in melanoma. In perspective, our results might pave the way for investigating LAG3 methylation as a predictive biomarker for response to anti-LAG3 immune checkpoint blockage. Funding A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Anne Fröhlich
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Judith Sirokay
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Simon Fietz
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Timo J Vogt
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Jörn Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Romina Zarbl
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Mike Florin
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Pia Kuster
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Gonzalo Saavedra
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Susana Ramírez Valladolid
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | | | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St Gallen, St Gallen, Switzerland.; Department of Oncology and Haematology, Kantonsspital St Gallen, St Gallen, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich, Switzerland; Department of Dermatology and Allergology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Sandra S Ring
- Institute of Immunobiology, Kantonsspital St Gallen, St Gallen, Switzerland.; Microbiology and Immunology PhD Program, University of Zurich, Zurich, Switzerland
| | - Carsten Golletz
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Sebastian Strieth
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | | | - Friedrich Bootz
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| |
Collapse
|
14
|
Hoffmann F, Zarbl R, Niebel D, Sirokay J, Fröhlich A, Posch C, Holderried TAW, Brossart P, Saavedra G, Kuster P, Strieth S, Gielen GH, Ring SS, Dietrich J, Pietsch T, Flatz L, Kristiansen G, Landsberg J, Dietrich D. Prognostic and predictive value of PD-L2 DNA methylation and mRNA expression in melanoma. Clin Epigenetics 2020; 12:94. [PMID: 32586358 PMCID: PMC7318478 DOI: 10.1186/s13148-020-00883-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND PD-L1 (programmed cell death 1 ligand 1) expression in melanoma has been associated with a better response to anti-PD-1 (programmed cell death 1) therapy. However, patients with PD-L1-negative melanomas can respond to anti-PD-1 blockade, suggesting that the other PD-1 ligand, PD-L2 (programmed cell death 1 ligand 2), might also be relevant for efficacy of PD-1 inhibition. We investigated PD-L2 expression and methylation as a prognostic and predictive biomarker in melanoma. METHODS DNA methylation at five CpG loci and gene expression of PD-L2 were evaluated with regard to survival in 470 melanomas from The Cancer Genome Atlas. PD-L2 promoter methylation in correlation with PD-L2 mRNA and protein expression was analyzed in human melanoma cell lines. Prognostic and predictive value of PD-L2 methylation was validated using quantitative methylation-specific PCR in a multicenter cohort of 129 melanoma patients receiving anti-PD-1 therapy. mRNA sequencing data of 121 melanoma patients receiving anti-PD-1 therapy provided by Liu et al. were analyzed for PD-L2 mRNA expression. RESULTS We found significant correlations between PD-L2 methylation and mRNA expression levels in melanoma tissues and cell lines. Interferon-γ inducible PD-L2 protein expression correlated with PD-L2 promoter methylation in melanoma cells. PD-L2 DNA promoter hypomethylation and high mRNA expression were found to be strong predictors of prolonged overall survival. In pre-treatment melanoma samples from patients receiving anti-PD-1 therapy, low PD-L2 DNA methylation and high PD-L2 mRNA expression predicted longer progression-free survival. CONCLUSION PD-L2 expression seems to be regulated via DNA promoter methylation. PD-L2 DNA methylation and mRNA expression may predict progression-free survival in melanoma patients receiving anti-PD-1 immunotherapy. Assessment of PD-L2 should be included in further clinical trials with anti-PD-1 antibodies.
Collapse
Affiliation(s)
- Friederike Hoffmann
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Romina Zarbl
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Dennis Niebel
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Judith Sirokay
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Anne Fröhlich
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Christian Posch
- Department of Dermatology and Allergology, Technical University of Munich, Munich, Germany.,Faculty of Medicine, Sigmund Freud University, Vienna, Austria
| | - Tobias A W Holderried
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Gonzalo Saavedra
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Pia Kuster
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Sebastian Strieth
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gerrit H Gielen
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Sandra S Ring
- Microbiology and Immunology PhD Program, University of Zurich, Zurich, Switzerland.,Institute of Immunobiology, Kantonsspital St Gallen, St Gallen, Switzerland
| | - Jörn Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Torsten Pietsch
- Institute of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St Gallen, St Gallen, Switzerland.,Department of Oncology and Hematology, Kantonsspital St Gallen, St Gallen, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.,Department of Dermatology and Allergology, Kantonsspital St Gallen, St Gallen, Switzerland
| | | | - Jennifer Landsberg
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
15
|
Kyriakou G, Melachrinou M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: a review. Future Oncol 2020; 16:1549-1567. [PMID: 32484008 DOI: 10.2217/fon-2020-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review provides an overview of the current understanding of the ontogeny and biology of melanoma stem cells in cutaneous malignant melanoma. This article also summarizes and evaluates the current knowledge of the underlying epigenetic mechanisms, the regulation of melanoma progress by the tumor microenvironment as well as the therapeutic implications and applications of these novel insights, in the setting of personalized medicine. Unraveling the complex ecosystem of cutaneous malignant melanoma and the interplay between its components, aims to provide novel insights into the establishment of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rion 265 04, Greece
| | - Maria Melachrinou
- Department of Pathology, University General Hospital of Patras, Rion 265 04, Greece
| |
Collapse
|
16
|
Comprehensive analysis of tumor necrosis factor receptor TNFRSF9 (4-1BB) DNA methylation with regard to molecular and clinicopathological features, immune infiltrates, and response prediction to immunotherapy in melanoma. EBioMedicine 2020; 52:102647. [PMID: 32028068 PMCID: PMC6997575 DOI: 10.1016/j.ebiom.2020.102647] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Immunotherapy, including checkpoint inhibition, has remarkably improved prognosis in advanced melanoma. Despite this success, acquired resistance is still a major challenge. The T cell costimulatory receptor TNFRSF9 (also known as 4-1BB and CD137) is a promising new target for immunotherapy and two agonistic antibodies are currently tested in clinical trials. However, little is known about epigenetic regulation of the encoding gene. In this study we investigate a possible correlation of TNFRSF9 DNA methylation with gene expression, clinicopathological parameters, molecular and immune correlates, and response to anti-PD-1 immunotherapy to assess the validity of TNFRSF9 methylation to serve as a biomarker. METHODS We performed a correlation analyses of methylation at twelve CpG sites within TNFRSF9 with regard to transcriptional activity, immune cell infiltration, mutation status, and survival in a cohort of N = 470 melanoma patients obtained from The Cancer Genome Atlas. Furthermore, we used quantitative methylation-specific PCR to confirm correlations in a cohort of N = 115 melanoma patients' samples (UHB validation cohort). Finally, we tested the ability of TNFRSF9 methylation and expression to predict progression-free survival (PFS) and response to anti-PD-1 immunotherapy in a cohort comprised of N = 121 patients (mRNA transcription), (mRNA ICB cohort) and a case-control study including N = 48 patients (DNA methylation, UHB ICB cohort). FINDINGS We found a significant inverse correlation between TNFRSF9 DNA methylation and mRNA expression levels at six of twelve analyzed CpG sites (P ≤ 0.005), predominately located in the promoter flank region. Consistent with its role as costimulatory receptor in immune cells, TNFRSF9 mRNA expression and hypomethylation positively correlated with immune cell infiltrates and an interferon-γ signature. Furthermore, elevated TNFRSF9 mRNA expression and TNFRSF9 hypomethylation correlated with superior overall survival. In patients receiving anti-PD-1 immunotherapy (mRNA ICB cohort), we found that TNFRSF9 hypermethylation and reduced mRNA expression correlated with poor PFS and response. INTERPRETATION Our study suggests that TNFRSF9 mRNA expression is regulated via DNA methylation. The observed correlations between TNFRSF9 DNA methylation or mRNA expression with known features of response to immune checkpoint blockage suggest TNFRSF9 methylation could serve as a biomarker in the context of immunotherapies. Concordantly, we identified a correlation between TNFRSF9 DNA methylation and mRNA expression with disease progression in patients under immunotherapy. Our study provides rationale for further investigating TNFRSF9 DNA methylation as a predictive biomarker for response to immunotherapy. FUNDING AF was partly funded by the Mildred Scheel Foundation. SF received funding from the University Hospital Bonn BONFOR program (O-105.0069). DN was funded in part by DFG Cluster of Excellence ImmunoSensation (EXC 1023). The funders had no role in study design, data collection and analysis, interpretation, decision to publish, or preparation of the manuscript; or any aspect pertinent to the study.
Collapse
|
17
|
Koroknai V, Szász I, Hernandez-Vargas H, Fernandez-Jimenez N, Cuenin C, Herceg Z, Vízkeleti L, Ádány R, Ecsedi S, Balázs M. DNA hypermethylation is associated with invasive phenotype of malignant melanoma. Exp Dermatol 2020; 29:39-50. [PMID: 31602702 DOI: 10.1111/exd.14047] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/29/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023]
Abstract
Tumor cell invasion is one of the key processes during cancer progression, leading to life-threatening metastatic lesions in melanoma. As methylation of cancer-related genes plays a fundamental role during tumorigenesis and may lead to cellular plasticity which promotes invasion, our aim was to identify novel epigenetic markers on selected invasive melanoma cells. Using Illumina BeadChip assays and Affymetrix Human Gene 1.0 microarrays, we explored the DNA methylation landscape of selected invasive melanoma cells and examined the impact of DNA methylation on gene expression patterns. Our data revealed predominantly hypermethylated genes in the invasive cells affecting the neural crest differentiation pathway and regulation of the actin cytoskeleton. Integrative analysis of the methylation and gene expression profiles resulted in a cohort of hypermethylated genes (IL12RB2, LYPD6B, CHL1, SLC9A3, BAALC, FAM213A, SORCS1, GPR158, FBN1 and ADORA2B) with decreased expression. On the other hand, hypermethylation in the gene body of the EGFR and RBP4 genes was positively correlated with overexpression of the genes. We identified several methylation changes that can have role during melanoma progression, including hypermethylation of the promoter regions of the ARHGAP22 and NAV2 genes that are commonly altered in locally invasive primary melanomas as well as during metastasis. Interestingly, the down-regulation of the methylcytosine dioxygenase TET2 gene, which regulates DNA methylation, was associated with hypermethylated promoter region of the gene. This can probably lead to the observed global hypermethylation pattern of invasive cells and might be one of the key changes during the development of malignant melanoma cells.
Collapse
Affiliation(s)
- Viktória Koroknai
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - István Szász
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | | | | | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Laura Vízkeleti
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Róza Ádány
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| | - Szilvia Ecsedi
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Margit Balázs
- Public Health Research Institute, University of Debrecen, Debrecen, Hungary
- MTA-DE Public Health Research Group, Public Health Research Institute, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
18
|
Pradhan D, Jour G, Milton D, Vasudevaraja V, Tetzlaff MT, Nagarajan P, Curry JL, Ivan D, Long L, Ding Y, Ezhilarasan R, Sulman EP, Diab A, Hwu WJ, Prieto VG, Torres-Cabala CA, Aung PP. Aberrant DNA Methylation Predicts Melanoma-Specific Survival in Patients with Acral Melanoma. Cancers (Basel) 2019; 11:cancers11122031. [PMID: 31888295 PMCID: PMC6966546 DOI: 10.3390/cancers11122031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023] Open
Abstract
Acral melanoma (AM) is a rare, aggressive type of cutaneous melanoma (CM) with a distinct genetic profile. We aimed to identify a methylome signature distinguishing primary acral lentiginous melanoma (PALM) from primary non-lentiginous AM (NALM), metastatic ALM (MALM), primary non-acral CM (PCM), and acral nevus (AN). A total of 22 PALM, nine NALM, 10 MALM, nine PCM, and three AN were subjected to genome-wide methylation analysis using the Illumina Infinium Methylation EPIC array interrogating 866,562 CpG sites. A prominent finding was that the methylation profiles of PALM and NALM were distinct. Four of the genes most differentially methylated between PALM and NALM or MALM were HHEX, DIPK2A, NELFB, and TEF. However, when primary AMs (PALM + NALM) were compared with MALM, IFITM1 and SIK3 were the most differentially methylated, highlighting their pivotal role in the metastatic potential of AMs. Patients with NALM had significantly worse disease-specific survival (DSS) than patients with PALM. Aberrant methylation was significantly associated with aggressive clinicopathologic parameters and worse DSS. Our study emphasizes the importance of distinguishing the two epigenetically distinct subtypes of AM. We also identified novel epigenetic prognostic biomarkers that may serve to risk-stratify patients with AM and may be leveraged for the development of targeted therapies.
Collapse
Affiliation(s)
- Dinesh Pradhan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
| | - George Jour
- Department of Pathology and Dermatology, NYU Langone Medical Center, New York, NY 10016, USA; (G.J.); (V.V.)
| | - Denái Milton
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Varshini Vasudevaraja
- Department of Pathology and Dermatology, NYU Langone Medical Center, New York, NY 10016, USA; (G.J.); (V.V.)
| | - Michael T. Tetzlaff
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
| | - Jonathan L. Curry
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Doina Ivan
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lihong Long
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yingwen Ding
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Erik P. Sulman
- Department of Radiation Oncology, NYU Langone School of Medicine, New York, NY 10016, USA; (Y.D.); (R.E.); (E.P.S.)
| | - Adi Diab
- Department of Melanoma Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.D.); (W.-J.H.)
| | - Wen-Jen Hwu
- Department of Melanoma Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.D.); (W.-J.H.)
| | - Victor G. Prieto
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carlos Antonio Torres-Cabala
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (C.A.T.-C.); (P.P.A.); Tel.: +713-752-2351 (C.A.T.-C.); +713-794-4951 (P.P.A.)
| | - Phyu P. Aung
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.P.); (M.T.T.); (P.N.); (J.L.C.); (D.I.); (V.G.P.)
- Correspondence: (C.A.T.-C.); (P.P.A.); Tel.: +713-752-2351 (C.A.T.-C.); +713-794-4951 (P.P.A.)
| |
Collapse
|
19
|
Kishibuchi R, Kondo K, Soejima S, Tsuboi M, Kajiura K, Kawakami Y, Kawakita N, Sawada T, Toba H, Yoshida M, Takizawa H, Tangoku A. DNA methylation of GHSR, GNG4, HOXD9 and SALL3 is a common epigenetic alteration in thymic carcinoma. Int J Oncol 2019; 56:315-326. [PMID: 31746370 DOI: 10.3892/ijo.2019.4915] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022] Open
Abstract
Thymic epithelial tumors comprise thymoma, thymic carcinoma and neuroendocrine tumors of the thymus. Recent studies have revealed that the incidence of somatic non‑synonymous mutations is significantly higher in thymic carcinoma than in thymoma. However, limited information is currently available on epigenetic alterations in these types of cancer. In this study, we thus performed genome‑wide screening of aberrantly methylated CpG islands in thymoma and thymic carcinoma using Illumina HumanMethylation450 K BeadChip. We identified 92 CpG islands significantly hypermethylated in thymic carcinoma in relation to thymoma and selected G protein subunit gamma 4 (GNG4), growth hormone secretagogue receptor (GHSR), homeobox D9 (HOXD9) and spalt like transcription factor 3 (SALL3), which are related to cancer. We examined the promoter methylation of 4 genes in 46 thymic epithelial tumors and 20 paired thymus tissues using bisulfite pyrosequencing. Promoter methylation was significantly higher in thymic carcinoma than in thymoma and revealed a high discrimination between thymic carcinoma and thymoma in all 4 genes. Promoter methylation was higher in thymic carcinoma than in the thymus. No significant differences were observed in the promoter methylation of GNG4, HOXD9, or SALL3 between thymoma and the thymus. The promoter methylation of the 4 genes was not significantly higher in advanced‑stage tumors than in early‑stage tumors in all thymic epithelial tumors. Among the 4 genes, relapse‑free survival was significantly worse in tumors with a higher DNA methylation than in those with a lower DNA methylation in all thymic epithelial tumors. Moreover, relapse‑free survival was significantly worse in thymomas with a higher DNA methylation of HOXD9 and SALL3 than in those with a lower DNA methylation. On the whole, the findings of this study indicated that the promoter methylation of cancer‑related genes was significantly higher in thymic carcinoma than in thymoma and the thymus. This is a common epigenetic alteration of high diagnostic value in thymic carcinoma and may be involved in the carcinogenesis of thymic carcinoma. However, epigenetic alterations in the 3 genes, apart from GHSR, are not involved in the tumorigenesis of thymoma.
Collapse
Affiliation(s)
- Reina Kishibuchi
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8509, Japan
| | - Kazuya Kondo
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8509, Japan
| | - Shiho Soejima
- Department of Oncological Medical Services, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8509, Japan
| | - Mitsuhiro Tsuboi
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Koichiro Kajiura
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Yukikiyo Kawakami
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Naoya Kawakita
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Toru Sawada
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Hiroaki Toba
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Mitsuteru Yoshida
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Hiromitsu Takizawa
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| | - Akira Tangoku
- Department of Thoracic, Endocrine Surgery and Oncology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770‑8503, Japan
| |
Collapse
|
20
|
Acceleration in the DNA methylation age in breast cancer tumours from very young women. Sci Rep 2019; 9:14991. [PMID: 31628391 PMCID: PMC6800453 DOI: 10.1038/s41598-019-51457-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer in very young women (≤35 years; BCVY) presents more aggressive and complex biological features than their older counterparts (BCO). Our aim was to evaluate methylation differences between BCVY and BCO and their DNA epigenetic age. EPIC and 450k Illumina methylation arrays were used in 67 breast cancer tumours, including 32 from BCVY, for methylation study and additionally we analysed their epigenetic age. We identified 2 219 CpG sites differently-methylated in BCVY vs. BCO (FDR < 0.05; β-value difference ± 0.1). The signature showed a general hypomethylation profile with a selective small hypermethylation profile located in open-sea regions in BCVY against BCO and normal tissue. Strikingly, BCVY presented a significant increased epigenetic age-acceleration compared with older women. The affected genes were enriched for pathways in neuronal-system pathways, cell communication, and matrix organisation. Validation in an independent sample highlighted consistent higher expression of HOXD9, and PCDH10 genes in BCVY. Regions implicated in the hypermethylation profile were involved in Notch signalling pathways, the immune system or DNA repair. We further validated HDAC5 expression in BCVY. We have identified a DNA methylation signature that is specific to BCVY and have shown that epigenetic age-acceleration is increased in BCVY.
Collapse
|
21
|
Rodger EJ, Chatterjee A, Stockwell PA, Eccles MR. Characterisation of DNA methylation changes in EBF3 and TBC1D16 associated with tumour progression and metastasis in multiple cancer types. Clin Epigenetics 2019; 11:114. [PMID: 31383000 PMCID: PMC6683458 DOI: 10.1186/s13148-019-0710-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Background Characteristic DNA methylation differences have been identified between primary and metastatic melanomas at EBF3 and/or TBC1D16 gene loci. To further evaluate whether these epigenetic changes may act more generally as drivers of tumour onset and metastasis, we have investigated DNA methylation changes involving EBF3 and TBC1D16 in additional publicly available data of multiple different tumour types. Results Promoter hypermethylation and gene body hypomethylation of EBF3 were observed in a number of metastatic tumour types, when compared to normal or primary tumour tissues, as well as in tumour vs normal tissues and in a colorectal primary/metastasis pair, although not all tumour samples or primary/metastasis cancer pairs exhibited altered patterns of EBF3 methylation. In addition, hypomethylation of TBC1D16 was observed in multiple tumours, including a breast cancer primary/metastasis pair, and to a lesser degree in melanoma, although again not all tumours or cancer primary/metastasis pairs exhibited altered patterns of methylation. Conclusions These findings suggest characteristic DNA methylation changes in EBF3 and TBC1D16 are relatively common tumour-associated epigenetic events in multiple tumour types, which is consistent with a potential role as more general drivers of tumour progression.
Collapse
Affiliation(s)
- Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, 56 Hanover Street, Dunedin, 9054, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, Level 2, 3A Symonds Street, Auckland, New Zealand.
| |
Collapse
|
22
|
DiNome ML, Orozco JIJ, Matsuba C, Manughian-Peter AO, Ensenyat-Mendez M, Chang SC, Jalas JR, Salomon MP, Marzese DM. Clinicopathological Features of Triple-Negative Breast Cancer Epigenetic Subtypes. Ann Surg Oncol 2019; 26:3344-3353. [PMID: 31342401 DOI: 10.1245/s10434-019-07565-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVE Triple-negative breast cancer (TNBC) is a heterogeneous collection of breast tumors with numerous differences including morphological characteristics, genetic makeup, immune-cell infiltration, and response to systemic therapy. DNA methylation profiling is a robust tool to accurately identify disease-specific subtypes. We aimed to generate an epigenetic subclassification of TNBC tumors (epitypes) with utility for clinical decision-making. METHODS Genome-wide DNA methylation profiles from TNBC patients generated in the Cancer Genome Atlas project were used to build machine learning-based epigenetic classifiers. Clinical and demographic variables, as well as gene expression and gene mutation data from the same cohort, were integrated to further refine the TNBC epitypes. RESULTS This analysis indicated the existence of four TNBC epitypes, named as Epi-CL-A, Epi-CL-B, Epi-CL-C, and Epi-CL-D. Patients with Epi-CL-B tumors showed significantly shorter disease-free survival and overall survival [log rank; P = 0.01; hazard ratio (HR) 3.89, 95% confidence interval (CI) 1.3-11.63 and P = 0.003; HR 5.29, 95% CI 1.55-18.18, respectively]. Significant gene expression and mutation differences among the TNBC epitypes suggested alternative pathway activation that could be used as ancillary therapeutic targets. These epigenetic subtypes showed complementarity with the recently described TNBC transcriptomic subtypes. CONCLUSIONS TNBC epigenetic subtypes exhibit significant clinical and molecular differences. The links between genetic make-up, gene expression programs, and epigenetic subtypes open new avenues in the development of laboratory tests to more efficiently stratify TNBC patients, helping optimize tailored treatment approaches.
Collapse
Affiliation(s)
- Maggie L DiNome
- Department of Surgery, David Geffen School of Medicine, University California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Javier I J Orozco
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Chikako Matsuba
- Computational Biology Laboratory, John Wayne Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Ayla O Manughian-Peter
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Miquel Ensenyat-Mendez
- Cancer Cell Biology Group, Balearic Islands Health Research Institute (IdISBa), Palma, Islas Baleares, Spain
| | - Shu-Ching Chang
- Medical Data Research Center, Providence Saint Joseph Health, Portland, OR, USA
| | - John R Jalas
- Department of Pathology, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Computational Biology Laboratory, John Wayne Cancer Institute at Providence St. John's Health Center, Santa Monica, CA, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|
23
|
Donnelly D, Aung PP, Jour G. The "-OMICS" facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic biomarkers. Semin Cancer Biol 2019; 59:165-174. [PMID: 31295564 DOI: 10.1016/j.semcancer.2019.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/23/2023]
Abstract
In the recent decade, cutting edge molecular and proteomic analysis platforms revolutionized biomarkers discovery in cancers. Melanoma is the prototype with over 51,100 biomarkers discovered and investigated thus far. These biomarkers include tissue based tumor cell and tumor microenvironment biomarkers and circulating biomarkers including tumor DNA (cf-DNA), mir-RNA, proteins and metabolites. These biomarkers provide invaluable information for diagnosis, prognosis and play an important role in prediction of treatment response. In this review, we summarize the most recent discoveries in each of these biomarker categories. We will discuss the challenges in their implementation and standardization and conclude with some perspectives in melanoma biomarker research.
Collapse
Affiliation(s)
- Douglas Donnelly
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States; Interdisciplinary Melanoma Program, New York University School of Medicine, New York, NY, United States
| | - Phyu P Aung
- Department of Pathology, Section of Dermatopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - George Jour
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY, United States; Interdisciplinary Melanoma Program, New York University School of Medicine, New York, NY, United States; Department of Pathology, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
24
|
Cai W, Ding X, Li J, Li Z. Methylation analysis highlights novel prognostic criteria in human-metastasized melanoma. J Cell Biochem 2019; 120:11990-12001. [PMID: 30861178 DOI: 10.1002/jcb.28484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Melanoma accounts for 90% of the deaths associated with cutaneous neoplasms, and the 5-year survival rate of patients with the advanced stage is about 20%. Many mechanisms are involved in melanoma progression, but dynamic epigenetic changes are likely to be critical contributors, especially for DNA methylation. However, we know little about the methylation events involved in melanoma lymph node metastasis (LNM), a deficit that is of particular concern because it has a growing incidence and mortality. To identify DNA methylated-associated changes involved in the formation of metastatic melanoma, we explored the different methylated genes (DMGs) between primary and LNM melanoma by Illumina Human Methylation 450 K BeadArray GSE44661. By integrating DNA methylation and messenger RNA expression data from The Cancer Genome Atlas database, we identified these DNA methylation biomarkers. Pathway analysis highlighted these DMGs, which were closely related to the carcinogenesis of melanoma, such as cell cycle regulation and RNA transcription process. Furthermore, according to the univariate and multivariate Cox regression analysis, we constructed a four-DMG prognostic signature model, which could precisely predict the outcome of melanoma in a more exact way. In summary, this four-DMG based risk score model successfully predicts the survival of melanoma. It is independent of other clinical characteristics and is good for prognosis prediction.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxia Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Genome reorganization in different cancer types: detection of cancer specific breakpoint regions. Mol Cytogenet 2019; 12:25. [PMID: 31249626 PMCID: PMC6585066 DOI: 10.1186/s13039-019-0435-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/15/2019] [Indexed: 01/11/2023] Open
Abstract
Background Tumorigenesis is a multi-step process which is accompanied by substantial changes in genome organization. The development of these changes is not only a random process, but rather comprise specific DNA regions that are prone to the reorganization process. Results We have analyzed previously published SNP arrays from three different cancer types (pancreatic adenocarcinoma, breast cancer and metastatic melanoma) and from non-malignant control samples. We calculated segmental copy number variations as well as breakpoint regions. Some of these regions were not randomly involved in genome reorganization since we detected fifteen of them in at least 20% of all tumor samples and one region on chromosome 9 where 43% of tumors have a breakpoint. Further, the top-15 breakpoint regions show an association to known fragile sites. The relevance of these common breakpoint regions was further confirmed by analyzing SNP arrays from 917 cancer cell lines. Conclusion Our analyses suggest that genome reorganization is common in tumorigenesis and that some breakpoint regions can be found across all cancer types, while others exclusively occur in specific entities.
Collapse
|
26
|
Orozco JI, Manughian-Peter AO, Salomon MP, Marzese DM. Epigenetic Classifiers for Precision Diagnosis of Brain Tumors. Epigenet Insights 2019; 12:2516865719840284. [PMID: 30968063 PMCID: PMC6444760 DOI: 10.1177/2516865719840284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/04/2019] [Indexed: 01/29/2023] Open
Abstract
DNA methylation profiling has proven to be a powerful analytical tool,
which can accurately identify the tissue of origin of a wide range of
benign and malignant neoplasms. Using microarray-based profiling and
supervised machine learning algorithms, we and other groups have
recently unraveled DNA methylation signatures capable of aiding the
histomolecular diagnosis of different tumor types. We have explored
the methylomes of metastatic brain tumors from patients with lung
cancer, breast cancer, and cutaneous melanoma and primary brain
neoplasms to build epigenetic classifiers. Our brain metastasis
methylation (BrainMETH) classifier has the ability to determine the
type of brain tumor, the origin of the metastases, and the
clinical-therapeutic subtype for patients with breast cancer brain
metastases. To facilitate the translation of these epigenetic
classifiers into clinical practice, we selected and validated the most
informative genomic regions utilizing quantitative
methylation-specific polymerase chain reaction (qMSP). We believe that
the refinement, expansion, integration, and clinical validation of
BrainMETH and other recently developed epigenetic classifiers will
significantly contribute to the development of more comprehensive and
accurate systems for the personalized management of patients with
brain metastases.
Collapse
Affiliation(s)
- Javier Ij Orozco
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Ayla O Manughian-Peter
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Computational Biology Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
27
|
de Almeida BP, Apolónio JD, Binnie A, Castelo-Branco P. Roadmap of DNA methylation in breast cancer identifies novel prognostic biomarkers. BMC Cancer 2019; 19:219. [PMID: 30866861 PMCID: PMC6416975 DOI: 10.1186/s12885-019-5403-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Breast cancer is a highly heterogeneous disease resulting in diverse clinical behaviours and therapeutic responses. DNA methylation is a major epigenetic alteration that is commonly perturbed in cancers. The aim of this study is to characterize the relationship between DNA methylation and aberrant gene expression in breast cancer. METHODS We analysed DNA methylation and gene expression profiles from breast cancer tissue and matched normal tissue in The Cancer Genome Atlas (TCGA). Genome-wide differential methylation analysis and methylation-gene expression correlation was performed. Gene expression changes were subsequently validated in the METABRIC dataset. The Oncoscore tool was used to identify genes that had previously been associated with cancer in the literature. A subset of genes that had not previously been studied in cancer was chosen for further analysis. RESULTS We identified 368 CpGs that were differentially methylated between tumor and normal breast tissue (∆β > 0.4). Hypermethylated CpGs were overrepresented in tumor tissue and were found predominantly (56%) in upstream promoter regions. Conversely, hypomethylated CpG sites were found primarily in the gene body (66%). Expression analysis revealed that 209 of the differentially-methylated CpGs were located in 169 genes that were differently expressed between normal and breast tumor tissue. Methylation-expression correlations were predominantly negative (70%) for promoter CpG sites and positive (74%) for gene body CpG sites. Among these differentially-methylated and differentially-expressed genes, we identified 7 that had not previously been studied in any form of cancer. Three of these, TDRD10, PRAC2 and TMEM132C, contained CpG sites that showed diagnostic and prognostic value in breast cancer, particularly in estrogen-receptor (ER)-positive samples. A pan-cancer analysis confirmed differential expression of these genes together with diagnostic and prognostic value of their respective CpG sites in multiple cancer types. CONCLUSION We have identified 368 DNA methylation changes that characterize breast cancer tumor tissue, of which 209 are associated with genes that are differentially-expressed in the same samples. Novel DNA methylation markers were identified, of which cg12374721 (PRAC2), cg18081940 (TDRD10) and cg04475027 (TMEM132C) show promise as diagnostic and prognostic markers in breast cancer as well as other cancer types.
Collapse
Affiliation(s)
- Bernardo P. de Almeida
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Present address: Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Joana Dias Apolónio
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
| | - Alexandra Binnie
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
- William Osler Health System, Brampton, ON Canada
| | - Pedro Castelo-Branco
- Department of Biomedical Sciences and Medicine, University of Algarve, Campus Gambelas, Bld. 2 - Ala Norte, 8005-139 Faro, Portugal
- Centre for Biomedical Research (CBMR), University of Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
28
|
Wasenang W, Chaiyarit P, Proungvitaya S, Limpaiboon T. Serum cell-free DNA methylation of OPCML and HOXD9 as a biomarker that may aid in differential diagnosis between cholangiocarcinoma and other biliary diseases. Clin Epigenetics 2019; 11:39. [PMID: 30832707 PMCID: PMC6399934 DOI: 10.1186/s13148-019-0634-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a fatal cancer of the bile duct epithelial cell lining. The misdiagnosis of CCA and other biliary diseases may occur due to the similarity of clinical manifestations and blood tests resulting in inappropriate or delayed treatment. Thus, an accurate and less-invasive method for differentiating CCA from other biliary diseases is inevitable. METHODS We quantified methylation of OPCML, HOXA9, and HOXD9 in serum cell-free DNA (cfDNA) of CCA patients and other biliary diseases using methylation-sensitive high-resolution melting (MS-HRM). Their potency as differential biomarkers between CCA and other biliary diseases was also evaluated by using receiver operating characteristic (ROC) curves. RESULTS The significant difference of methylation levels of OPCML and HOXD9 was observed in serum cfDNA of CCA compared to other biliary diseases. Assessment of serum cfDNA methylation of OPCML and HOXD9 as differential biomarkers of CCA and other biliary diseases showed the area under curve (AUC) of 0.850 (0.759-0.941) for OPCML which sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were 80.00%, 90.00%, 88.88%, 81.81%, and 85.00%, respectively. The AUC of HOXD9 was 0.789 (0.686-0.892) with sensitivity, specificity, PPV, NPV, and accuracy of 67.50%, 90.00%, 87.09%, 73.46%, and 78.75%, respectively. The combined marker between OPCML and HOXD9 showed sensitivity, specificity, PPV, and NPV of 62.50%, 100%, 100%, and 72.72%, respectively, which may be helpful to prevent a misdiagnosis between CCA and other biliary diseases. CONCLUSIONS Our findings suggest the application of serum cfDNA methylation of OPCML and HOXD9 for differential diagnosis of CCA and other biliary diseases due to its less invasiveness and clinically practical method which may benefit the patients by preventing the misdiagnosis of CCA and avoiding unnecessary surgical intervention.
Collapse
Affiliation(s)
- Wiphawan Wasenang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ponlatham Chaiyarit
- Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
29
|
Desjobert C, Carrier A, Delmas A, Marzese DM, Daunay A, Busato F, Pillon A, Tost J, Riond J, Favre G, Etievant C, Arimondo PB. Demethylation by low-dose 5-aza-2'-deoxycytidine impairs 3D melanoma invasion partially through miR-199a-3p expression revealing the role of this miR in melanoma. Clin Epigenetics 2019; 11:9. [PMID: 30651148 PMCID: PMC6335767 DOI: 10.1186/s13148-018-0600-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Efficient treatments against metastatic melanoma dissemination are still lacking. Here, we report that low-cytotoxic concentrations of 5-aza-2'-deoxycytidine, a DNA demethylating agent, prevent in vitro 3D invasiveness of metastatic melanoma cells and reduce lung metastasis formation in vivo. RESULTS We unravelled that this beneficial effect is in part due to MIR-199A2 re-expression by promoter demethylation. Alone, this miR showed an anti-invasive and anti-metastatic effect. Throughout integration of micro-RNA target prediction databases with transcriptomic analysis after 5-aza-2'-deoxycytidine treatments, we found that miR-199a-3p downregulates set of genes significantly involved in invasion/migration processes. In addition, analysis of data from melanoma patients showed a stage- and tissue type-dependent modulation of MIR-199A2 expression by DNA methylation. CONCLUSIONS Thus, our data suggest that epigenetic- and/or miR-based therapeutic strategies can be relevant to limit metastatic dissemination of melanoma.
Collapse
Affiliation(s)
- Cécile Desjobert
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France
| | - Arnaud Carrier
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France
| | - Audrey Delmas
- Cancer Research Center of Toulouse, CRCT, Toulouse, France
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Antoine Daunay
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de la Recherche en Génomique Humaine, CEA, Evry, France
| | - Arnaud Pillon
- Institut de Recherche Pierre Fabre, CRDPF, Toulouse, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de la Recherche en Génomique Humaine, CEA, Evry, France
| | - Joëlle Riond
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France.,UMR 1037 INSERM/Université Toulouse III, CRCT, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, CRCT, Toulouse, France
| | | | - Paola B Arimondo
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France. .,Institut Pasteur CNRS UMR3523, Epigenetic Chemical Biology, Paris, France.
| |
Collapse
|
30
|
Salomon MP, Orozco JIJ, Wilmott JS, Hothi P, Manughian-Peter AO, Cobbs CS, Scolyer RA, Hoon DSB, Marzese DM. Brain metastasis DNA methylomes, a novel resource for the identification of biological and clinical features. Sci Data 2018; 5:180245. [PMID: 30398472 PMCID: PMC6219670 DOI: 10.1038/sdata.2018.245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Brain metastases (BM) are one the most lethal and poorly managed clinical complications in cancer patients. These secondary tumors represent the most common intracranial neoplasm in adults, most frequently originating from lung cancer, breast cancer, and cutaneous melanoma. In primary brain tumors, such as gliomas, recent advances in DNA methylation profiling have allowed for a comprehensive molecular classification. Such data provide prognostic information, in addition to helping predict patient response to specific systemic therapies. However, epigenetic alterations of metastatic brain tumors with specific biological and translational relevance still require much further exploration. Using the widely employed Illumina Infinium HumanMethylation 450K platform, we have generated a cohort of genome-wide DNA methylomes from ninety-six needle-dissected BM specimens from patients with lung cancer, breast cancer, and cutaneous melanoma with clinical, pathological, and demographic annotations. This resource offers an unprecedented and unique opportunity to identify novel DNA methylation features influencing the behavior of brain metastasis, and thus accelerate the discovery of BM-specific theranostic epigenetic alterations.
Collapse
Affiliation(s)
- Matthew P. Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Javier I. J. Orozco
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Camperdown, NSW, 2065, Australia
| | - Parvinder Hothi
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Ayla O. Manughian-Peter
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Charles S. Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Camperdown, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Diego M. Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| |
Collapse
|
31
|
Orozco JIJ, Knijnenburg TA, Manughian-Peter AO, Salomon MP, Barkhoudarian G, Jalas JR, Wilmott JS, Hothi P, Wang X, Takasumi Y, Buckland ME, Thompson JF, Long GV, Cobbs CS, Shmulevich I, Kelly DF, Scolyer RA, Hoon DSB, Marzese DM. Epigenetic profiling for the molecular classification of metastatic brain tumors. Nat Commun 2018; 9:4627. [PMID: 30401823 PMCID: PMC6219520 DOI: 10.1038/s41467-018-06715-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/19/2018] [Indexed: 01/29/2023] Open
Abstract
Optimal treatment of brain metastases is often hindered by limitations in diagnostic capabilities. To meet this challenge, here we profile DNA methylomes of the three most frequent types of brain metastases: melanoma, breast, and lung cancers (n = 96). Using supervised machine learning and integration of DNA methylomes from normal, primary, and metastatic tumor specimens (n = 1860), we unravel epigenetic signatures specific to each type of metastatic brain tumor and constructed a three-step DNA methylation-based classifier (BrainMETH) that categorizes brain metastases according to the tissue of origin and therapeutically relevant subtypes. BrainMETH predictions are supported by routine histopathologic evaluation. We further characterize and validate the most predictive genomic regions in a large cohort of brain tumors (n = 165) using quantitative-methylation-specific PCR. Our study highlights the importance of brain tumor-defining epigenetic alterations, which can be utilized to further develop DNA methylation profiling as a critical tool in the histomolecular stratification of patients with brain metastases.
Collapse
Affiliation(s)
- Javier I J Orozco
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | | | - Ayla O Manughian-Peter
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Matthew P Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Garni Barkhoudarian
- Pacific Neuroscience Institute, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - John R Jalas
- Department of Pathology, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
| | - Parvinder Hothi
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Xiaowen Wang
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Yuki Takasumi
- Department of Pathology, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, the Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Charles S Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | | | - Daniel F Kelly
- Pacific Neuroscience Institute, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
- Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA.
| |
Collapse
|
32
|
Iida Y, Salomon MP, Hata K, Tran K, Ohe S, Griffiths CF, Hsu SC, Nelson N, Hoon DSB. Predominance of triple wild-type and IGF2R mutations in mucosal melanomas. BMC Cancer 2018; 18:1054. [PMID: 30373548 PMCID: PMC6206730 DOI: 10.1186/s12885-018-4977-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Primary mucosal melanoma (MM) is a rare subtype of melanoma that arises from melanocytes in the mucosa. MM has not been well profiled for mutations and its etiology is not well understood, rendering current treatment strategies unsuccessful. Hence, we investigated mutational landscape for MM to understand its etiology and to clarify mutations that are potentially relevant for MM treatment. METHODS Forty one MM and 48 cutaneous melanoma (CM) tissues were profiled for mutations using targeted deep next-generation sequencing (NGS) for 89 cancer-related genes. A total of 997 mutations within exons were analyzed for their mutational spectrum and prevalence of mutation, and 685 non-synonymous variants were investigated to identify mutations in individual genes and pathways. PD-L1 expression from 21 MM and 18 CM were assessed by immunohistochemistry. RESULTS Mutational spectrum analysis revealed a lower frequency of UV-induced DNA damage in MM than in CM (p = 0.001), while tobacco exposure was indicated as a potential etiologic factor for MM. In accordance with low UV damage signatures, MM demonstrated an overall lower number of mutations compared to CM (6.5 mutations/Mb vs 14.8 mutations/Mb, p = 0.001), and less PD-L1 expression (p = 0.003). Compared to CM, which showed frequent mutations in known driver genes (BRAF 50.0%, NRAS 29.2%), MM displayed lower mutation frequencies (BRAF; 12.2%, p < 0.001, NRAS; 17.1%), and was significantly more enriched for triple wild-type (no mutations in BRAF, RAS, or NF1, 70.7% vs 25.0%, p < 0.001), IGF2R mutation (31.7% vs 6.3%, p = 0.002), and KIT mutation (9.8% vs 0%, p = 0.042). Of clinical relevance, presence of DCC mutations was significantly associated with poorer overall survival in MM (log-rank test, p = 0.02). Furthermore, mutational spectrum analysis distinguished primary anorectal MM from CM metastasized to the bowel (spectrum analysis p < 0.001, number of mutations p = 0.002). CONCLUSIONS These findings demonstrated a potential etiologic factor and driver mutation for MM and strongly suggested that MM initiation or progression involves distinct molecular-mechanisms from CM. This study also identified mutational signatures that are clinically relevant for MM treatment.
Collapse
Affiliation(s)
- Yuuki Iida
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Matthew P Salomon
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Keisuke Hata
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Kevin Tran
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Shuichi Ohe
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Chester F Griffiths
- Brain Tumor Center, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Sandy C Hsu
- John Wayne Cancer Institute Genome Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Nellie Nelson
- John Wayne Cancer Institute Genome Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA.
| |
Collapse
|
33
|
Sweeney JG, Liang J, Antonopoulos A, Giovannone N, Kang S, Mondala TS, Head SR, King SL, Tani Y, Brackett D, Dell A, Murphy GF, Haslam SM, Widlund HR, Dimitroff CJ. Loss of GCNT2/I-branched glycans enhances melanoma growth and survival. Nat Commun 2018; 9:3368. [PMID: 30135430 PMCID: PMC6105653 DOI: 10.1038/s41467-018-05795-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 07/20/2018] [Indexed: 12/30/2022] Open
Abstract
Cancer cells often display altered cell-surface glycans compared to their nontransformed counterparts. However, functional contributions of glycans to cancer initiation and progression remain poorly understood. Here, from expression-based analyses across cancer lineages, we found that melanomas exhibit significant transcriptional changes in glycosylation-related genes. This gene signature revealed that, compared to normal melanocytes, melanomas downregulate I-branching glycosyltransferase, GCNT2, leading to a loss of cell-surface I-branched glycans. We found that GCNT2 inversely correlated with clinical progression and that loss of GCNT2 increased melanoma xenograft growth, promoted colony formation, and enhanced cell survival. Conversely, overexpression of GCNT2 decreased melanoma xenograft growth, inhibited colony formation, and increased cell death. More focused analyses revealed reduced signaling responses of two representative glycoprotein families modified by GCNT2, insulin-like growth factor receptor and integrins. Overall, these studies reveal how subtle changes in glycan structure can regulate several malignancy-associated pathways and alter melanoma signaling, growth, and survival.
Collapse
Affiliation(s)
- Jenna Geddes Sweeney
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Jennifer Liang
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Aristotelis Antonopoulos
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Nicholas Giovannone
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Shuli Kang
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Tony S. Mondala
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Steven R. Head
- 0000000122199231grid.214007.0The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Sandra L. King
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Yoshihiko Tani
- 0000 0004 1762 2623grid.410775.0Japanese Red Cross Kinki Block Blood Center, 7-5-17 Saito Asagi, Ibaraki-shi, Osaka 567-0085 Japan
| | - Danielle Brackett
- 0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Anne Dell
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - George F. Murphy
- 000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA ,0000 0004 0378 8294grid.62560.37Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115 USA
| | - Stuart M. Haslam
- 0000 0001 2113 8111grid.7445.2Imperial College London, Division of Molecular Biosciences, Faculty of Natural Sciences, Biochemistry Building, London, SW7 2AZ UK
| | - Hans R. Widlund
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| | - Charles J. Dimitroff
- 0000 0004 0378 8294grid.62560.37Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115 USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
34
|
Salomon MP, Wang X, Marzese DM, Hsu SC, Nelson N, Zhang X, Matsuba C, Takasumi Y, Ballesteros-Merino C, Fox BA, Barkhoudarian G, Kelly DF, Hoon DSB. The Epigenomic Landscape of Pituitary Adenomas Reveals Specific Alterations and Differentiates Among Acromegaly, Cushing's Disease and Endocrine-Inactive Subtypes. Clin Cancer Res 2018; 24:4126-4136. [PMID: 30084836 DOI: 10.1158/1078-0432.ccr-17-2206] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/19/2017] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Pituitary adenomas are one of the most common benign neoplasms of the central nervous system. Although emerging evidence suggests roles for both genetic and epigenetic factors in tumorigenesis, the degree to which these factors contribute to disease remains poorly understood.Experimental Design: A multiplatform analysis was performed to identify the genomic and epigenomic underpinnings of disease among the three major subtypes of surgically resected pituitary adenomas in 48 patients: growth hormone (GH)-secreting (n = 17), adrenocorticotropic hormone (ACTH)-secreting (n = 13, including 3 silent-ACTH adenomas), and endocrine-inactive (n = 18). Whole-exome sequencing was used to profile the somatic mutational landscape, whole-transcriptome sequencing was used to identify disease-specific patterns of gene expression, and array-based DNA methylation profiling was used to examine genome-wide patterns of DNA methylation.Results: Recurrent single-nucleotide and small indel somatic mutations were infrequent among the three adenoma subtypes. However, somatic copy-number alterations (SCNA) were identified in all three pituitary adenoma subtypes. Methylation analysis revealed adenoma subtype-specific DNA methylation profiles, with GH-secreting adenomas being dominated by hypomethylated sites. Likewise, gene-expression patterns revealed adenoma subtype-specific profiles. Integrating DNA methylation and gene-expression data revealed that hypomethylation of promoter regions are related with increased expression of GH1 and SSTR5 genes in GH-secreting adenomas and POMC gene in ACTH-secreting adenomas. Finally, multispectral IHC staining of immune-related proteins showed abundant expression of PD-L1 among all three adenoma subtypes.Conclusions: Taken together, these data stress the contribution of epigenomic alterations to disease-specific etiology among adenoma subtypes and highlight potential targets for future immunotherapy-based treatments. This article reveals novel insights into the epigenomics underlying pituitary adenomas and highlights how differences in epigenomic states are related to important transcriptome alterations that define adenoma subtypes. Clin Cancer Res; 24(17); 4126-36. ©2018 AACR.
Collapse
Affiliation(s)
- Matthew P Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Xiaowen Wang
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Sandy C Hsu
- Sequencing Center, John Wayne Cancer Institute at Saint John's Health Center, Providence Health and Service (PHS), Santa Monica, California
| | - Nellie Nelson
- Sequencing Center, John Wayne Cancer Institute at Saint John's Health Center, Providence Health and Service (PHS), Santa Monica, California
| | - Xin Zhang
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Chikako Matsuba
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Yuki Takasumi
- Department of Pathology, Saint John's Health Center, PHS, Santa Monica, California
| | | | - Bernard A Fox
- Earle A. Chiles Research Institute, Providence Cancer Center, PHS, Portland, Oregon
| | - Garni Barkhoudarian
- Pacific Neuroscience Institute, PHS, Santa Monica, California.,John Wayne Cancer Institute Brain Tumor Center, Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Daniel F Kelly
- Pacific Neuroscience Institute, PHS, Santa Monica, California.,John Wayne Cancer Institute Brain Tumor Center, Saint John's Health Center, Providence Health System, Santa Monica, California
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Saint John's Health Center, Providence Health System, Santa Monica, California. .,Sequencing Center, John Wayne Cancer Institute at Saint John's Health Center, Providence Health and Service (PHS), Santa Monica, California.,Pacific Neuroscience Institute, PHS, Santa Monica, California
| |
Collapse
|
35
|
Graff-Baker AN, Orozco JIJ, Marzese DM, Salomon MP, Hoon DSB, Goldfarb M. Epigenomic and Transcriptomic Characterization of Secondary Breast Cancers. Ann Surg Oncol 2018; 25:3082-3087. [PMID: 29956094 DOI: 10.1245/s10434-018-6582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Molecular alterations impact tumor prognosis and response to treatment. This study was designed to identify transcriptomic and epigenomic signatures of breast cancer (BC) tumors from patients with any prior malignancy. METHODS RNA-sequencing and genome-wide DNA methylation profiles from BCs were generated in the Cancer Genome Atlas project. Patients with secondary breast cancer (SBC) were separated by histological subtype and matched to primary breast cancer controls to create two independent cohorts of invasive ductal (IDC, n = 36) and invasive lobular (ILC, n = 40) carcinoma. Differentially expressed genes, as well as differentially methylated genomic regions, were integrated to identify epigenetically regulated abnormal gene pathways in SBCs. RESULTS Differentially expressed genes were identified in IDC SBCs (n = 727) and in ILC SBCs (n = 261; Wilcoxon's test; P < 0.05). In IDC SBCs, 105 genes were upregulated and hypomethylated, including an estrogen receptor gene, and 73 genes were downregulated and hypermethylated, including genes involved in antigen presentation and interferon response pathways (HLA-E, IRF8, and RELA). In ILC SBCs, however, only 17 genes were synchronously hypomethylated and upregulated, whereas 46 genes hypermethylated and downregulated. Interestingly, the SBC gene expression signatures closely corresponded with each histological subtype with only 1.51% of genes overlapping between the two histological subtypes. CONCLUSIONS Differential gene expression and DNA methylation signatures are seen in both IDC and ILC SBCs, including genes that are relevant to tumor growth and proliferation. Differences in gene expression signatures corresponding with each histological subtype emphasize the importance of disease subtype-specific evaluations of molecular alterations.
Collapse
Affiliation(s)
- Amanda N Graff-Baker
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier I J Orozco
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Diego M Marzese
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Melanie Goldfarb
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|
36
|
de Unamuno Bustos B, Murria Estal R, Pérez Simó G, Simarro Farinos J, Pujol Marco C, Navarro Mira M, Alegre de Miquel V, Ballester Sánchez R, Sabater Marco V, Llavador Ros M, Palanca Suela S, Botella Estrada R. Aberrant DNA methylation is associated with aggressive clinicopathological features and poor survival in cutaneous melanoma. Br J Dermatol 2018; 179:394-404. [PMID: 29278418 DOI: 10.1111/bjd.16254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Promoter methylation of tumour suppressor genes (TSGs) has recently been implicated in the pathogenesis of several types of cancer. Regarding melanoma, over 100 genes that contribute to its pathogenesis have been identified to be aberrantly hypermethylated. OBJECTIVES This is a retrospective observational study that aims to analyse the prevalence of CpG island methylation in a series of primary melanomas, to identify the associations with the main clinicopathological features, and to explore the prognostic significance of methylation in melanoma survival. MATERIALS AND METHODS DNA methylation was analysed using methylation-specific multiplex ligation-dependent probe amplification in a series of 170 melanoma formalin-fixed paraffin-embedded tumour samples. The relationship between the methylation status, known somatic mutations and clinicopathological features was evaluated. Disease-free survival (DFS) and overall survival (OS) were displayed by the Kaplan-Meier method. RESULTS In the entire cohort, one or more genes were detected to be methylated in 55% of the patients. The most prevalent methylated genes were RARB 31%, PTEN 24%, APC 16%, CDH13 16%, ESR1 14%, CDKN2A 6% and RASSF1 5%. An association between aberrant methylation and aggressive clinicopathological features was observed (older age, increased Breslow thickness, presence of mitosis and ulceration, fast-growing melanomas, advancing stage and TERT mutations). Furthermore, Kaplan-Meier survival analysis showed a correlation of methylation and poorer DFS and OS. CONCLUSIONS Aberrant methylation of TSGs is a frequent event in melanoma. It is associated with aggressive clinicopathological features and poorer survival. Epigenetic alterations may represent a significant prognostic marker with utility in routine practice.
Collapse
Affiliation(s)
- B de Unamuno Bustos
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - R Murria Estal
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - G Pérez Simó
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - J Simarro Farinos
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - C Pujol Marco
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - M Navarro Mira
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - V Alegre de Miquel
- Department of Dermatology, Hospital General Universitario de Valencia, Valencia, Spain
| | | | - V Sabater Marco
- Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | - M Llavador Ros
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - S Palanca Suela
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - R Botella Estrada
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| |
Collapse
|
37
|
Nagata H, Kozaki KI, Muramatsu T, Hiramoto H, Tanimoto K, Fujiwara N, Imoto S, Ichikawa D, Otsuji E, Miyano S, Kawano T, Inazawa J. Genome-wide screening of DNA methylation associated with lymph node metastasis in esophageal squamous cell carcinoma. Oncotarget 2018; 8:37740-37750. [PMID: 28465481 PMCID: PMC5514945 DOI: 10.18632/oncotarget.17147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/28/2017] [Indexed: 12/18/2022] Open
Abstract
Lymph node metastasis (LNM) of esophageal squamous cell carcinoma (ESCC) is well-known to be an early event associated with poor prognosis in patients with ESCC. Recently, tumor-specific aberrant DNA methylation of CpG islands around the promoter regions of tumor-related genes has been investigated as a possible biomarker for use in early diagnosis and prediction of prognosis. However, there are few DNA methylation markers able to predict the presence of LNM in ESCC. To identify DNA methylation markers associated with LNM of ESCC, we performed a genome-wide screening of DNA methylation status in a discovery cohort of 67 primary ESCC tissues and their paired normal esophageal tissues using the Illumina Infinium HumanMethylation450 BeadChip. In this screening, we focused on differentially methylated regions (DMRs) that were associated with LNM of ESCC, as prime candidates for DNA methylation markers. We extracted three genes, HOXB2, SLC15A3, and SEPT9, as candidates predicting LNM of ESCC, using pyrosequencing and several statistical analyses in the discovery cohort. We confirmed that HOXB2 and SEPT9 were highly methylated in LNM-positive tumors in 59 ESCC validation samples. These results suggested that HOXB2 and SEPT9 may be useful epigenetic biomarkers for the prediction of the presence of LNM in ESCC.
Collapse
Affiliation(s)
- Hiroaki Nagata
- Department of Molecular Cytogenetics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Digestive Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Ken-Ichi Kozaki
- Department of Molecular Cytogenetics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Hard Tissue Genome Research Center, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Tomoki Muramatsu
- Department of Molecular Cytogenetics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidekazu Hiramoto
- Department of Molecular Cytogenetics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Digestive Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Kousuke Tanimoto
- Genome Laboratory, Graduate School of Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoto Fujiwara
- Department of Molecular Cytogenetics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Esophageal and General Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Daisuke Ichikawa
- Department of Digestive Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Eigo Otsuji
- Department of Digestive Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Esophageal and General Surgery, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Hard Tissue Genome Research Center, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
38
|
Zhu X, Li W, Meng Q. LncRNA H19 promotes proliferation and invasion in A375 human melanoma cell line. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:1063-1073. [PMID: 31938202 PMCID: PMC6958159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To determine the effects of H19 gene on the proliferation and invasion of A375 human melanoma cells. METHODS A375 cells were infected with a lentiviral vector overexpressing H19 or transfected with H19 RNA interference constructs. The proliferation and invasion of A375/H19+ cells were measured by MTT cell viability and transwell assays, respectively. The mRNA and protein expression levels of matrix metalloproteinase 2 (MMP2) and MMP9 were measured by quantitative PCR (qPCR) and Western blotting, respectively, and the protein expression of Akt, phosphorylated Akt (p-Akt), Slug and E-cadherin were examined by Western blot analysis. RESULTS The optical density value of A375/H19+ cells increased after incubation with MTT reagent for 12 h (P < 0.05), and the transwell assay showed that the average penetration rate of A375/H19+ cells significantly increased (P < 0.001). The expression levels of MMP2 and MMP9 were significantly increased in A375/H19+ cells, as determined by qPCR and Western blotting (P < 0.001). Moreover, A375/H19+ cells had upregulated levels of Slug and p-Akt and downregulated E-cadherin (P < 0.001). The weight and volume of A375/H19+ cell xenografts in nude mice were significantly increased, but its inhibition rate was smaller (P < 0.05 and P < 0.001, respectively). CONCLUSIONS The results of this study showed that H19 overexpression promoted the proliferation, invasion, and growth of A375 cells. In addition, it upregulated the mRNA and protein expression levels of MMP2 and MMP9, which in turn promoted cell invasion. Furthermore, H19 appeared to enhance Akt phosphorylation, directly suppress E-cadherin, and upregulate Slug expression to promote A375 cell invasion.
Collapse
Affiliation(s)
- Xiaoling Zhu
- Department of Dermatology, The First Hospital of HarbinHarbin, Heilongjiang, China
| | - Wei Li
- Department of Orthopaedic Surgery, The First Hospital of HarbinHarbin, Heilongjiang, China
| | - Qinggang Meng
- Department of Orthopaedic Surgery, The First Hospital of HarbinHarbin, Heilongjiang, China
| |
Collapse
|
39
|
Duan H, Jiang K, Wei D, Zhang L, Cheng D, Lv M, Xu Y, He A. Identification of epigenetically altered genes and potential gene targets in melanoma using bioinformatic methods. Onco Targets Ther 2017; 11:9-15. [PMID: 29302192 PMCID: PMC5741985 DOI: 10.2147/ott.s146663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyze epigenetically and genetically altered genes in melanoma to get a better understanding of the molecular circuitry of melanoma and identify potential gene targets for the treatment of melanoma. The microarray data of GSE31879, including mRNA expression profiles (seven melanoma and four melanocyte samples) and DNA methylation profiles (seven melanoma and five melanocyte samples), were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially methylated positions (DMPs) were screened using the linear models for microarray data (limma) package in melanoma compared with melanocyte samples. Gene ontology (GO) and pathway enrichment analysis of the DEGs were carried out using the Database for Annotation, Visualization, and Integrated Discovery. Moreover, differentially methylated genes (DMGs) were identified, and a transcriptional regulatory network was constructed using the University of California Santa Cruz genome browser database. A total of 1,215 DEGs (199 upregulated and 1,016 downregulated) and 14,094 DMPs (10,450 upregulated and 3,644 downregulated) were identified in melanoma compared with melanocyte samples. Additionally, the upregulated and downregulated DEGs were significantly associated with different GO terms and pathways, such as pigment cell differentiation, biosynthesis, and metabolism. Furthermore, the transcriptional regulatory network showed that DMGs such as Aristaless-related homeobox (ARX), damage-specific DNA binding protein 2 (DDB2), and myelin basic protein (MBP) had higher node degrees. Our results showed that several methylated genes (ARX, DDB2, and MBP) may be involved in melanoma progression.
Collapse
Affiliation(s)
- Honghao Duan
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Dengke Wei
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Lijun Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Min Lv
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Yuben Xu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Aimin He
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
40
|
Niu H, Yang J, Yang K, Huang Y. The relationship between RASSF1A promoter methylation and thyroid carcinoma: A meta-analysis of 14 articles and a bioinformatics of 2 databases (PRISMA). Medicine (Baltimore) 2017; 96:e8630. [PMID: 29145283 PMCID: PMC5704828 DOI: 10.1097/md.0000000000008630] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND DNA promoter methylation can suppresses gene expression and shows an important role in the biological functions of Ras association domain family 1A (RASSF1A). Many studies have performed to elucidate the role of RASSF1A promoter methylation in thyroid carcinoma, while the results were conflicting and heterogeneous. Here, we analyzed the data of databases to determine the relationship between RASSF1A promoter methylation and thyroid carcinoma. METHODS We used the data from 14 cancer-normal studies and Gene Expression Omnibus (GEO) database to analyze RASSF1A promoter methylation in thyroid carcinoma susceptibility. The data from the Cancer Genome Atlas project (TCGA) database was used to analyze the relationship between RASSF1A promoter methylation and thyroid carcinoma susceptibility, clinical characteristics, prognosis. Odds ratios were estimated for thyroid carcinoma susceptibility and hazard ratios were estimated for thyroid carcinoma prognosis. The heterogeneity between studies of meta-analysis was explored using H, I values, and meta-regression. We adopted quality criteria to classify the studies of meta-analysis. Subgroup analyses were done for thyroid carcinoma susceptibility according to ethnicity, methods, and primers. RESULTS Result of meta-analysis indicated that RASSF1A promoter methylation is associated with higher susceptibility to thyroid carcinoma with small heterogeneity. Similarly, the result from GEO database also showed that a significant association between RASSF1A gene promoter methylation and thyroid carcinoma susceptibility. For the results of TCGA database, we found that RASSF1A promoter methylation is associated with susceptibility and poor disease-free survival (DFS) of thyroid carcinoma. In addition, we also found a close association between RASSF1A promoter methylation and patient tumor stage and age, but not in patients of different genders. CONCLUSIONS The methylation status of RASSF1A promoter is strongly associated with thyroid carcinoma susceptibility and DFS. The RASSF1A promoter methylation test can be applied in the clinical diagnosis of thyroid carcinoma.
Collapse
Affiliation(s)
- Heng Niu
- Chest Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan
| | - Jingyu Yang
- Chest Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan
| | - Kunxian Yang
- Chest Surgery, The First People's Hospital of Yunnan Province, Kunming, Yunnan
| | | |
Collapse
|
41
|
Wang J, Hirose H, Du G, Chong K, Kiyohara E, Witz IP, Hoon DSB. P-REX1 amplification promotes progression of cutaneous melanoma via the PAK1/P38/MMP-2 pathway. Cancer Lett 2017; 407:66-75. [PMID: 28803992 DOI: 10.1016/j.canlet.2017.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/26/2017] [Accepted: 08/03/2017] [Indexed: 12/23/2022]
Abstract
P-REX1 (PIP3-dependent Rac exchange factor-1) is a guanine nucleotide exchange factor that activates Rac by catalyzing exchange of GDP for GTP bound to Rac. Aberrant up-regulation of P-REX1 expression has a role in metastasis however, copy number (CN) and function of P-REX1 in cutaneous melanoma are unclear. To explore the role of P-REX1 in melanoma, SNP 6.0 and Exon 1.0 ST microarrays were assessed. There was a higher CN (2.82-fold change) of P-REX1 in melanoma cells than in melanocytes, and P-REX1 expression was significantly correlated with P-REX1 CN. When P-REX1 was knocked down in cells by P-REX1 shRNA, proliferation, colony formation, 3D matrigel growth, and migration/invasiveness were inhibited. Loss of P-REX1 inhibited cell proliferation by inhibiting cyclin D1, blocking cell cycle, and increased cell apoptosis by reducing expression of the protein survivin. Knockdown of P-REX1 expression inhibited cell migration/invasiveness by disrupting P-REX1/RAC1/PAK1/p38/MMP-2 pathway. Assessment of patient tumors and disease outcome demonstrated lower distant metastasis-free survival among AJCC stage I/II/III patients with high P-REX1 expression compared to patients with low P-REX1 expression. These results suggest P-REX1 plays an important role in tumor progression and a potential theranostic target.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research, Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hajime Hirose
- Department of Translational Medicine, Division Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research, Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Kelly Chong
- Department of Translational Medicine, Division Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Eiji Kiyohara
- Department of Translational Medicine, Division Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Isaac P Witz
- Department of Cell Research and Immunology, George S Wise, Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Dave S B Hoon
- Department of Translational Medicine, Division Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, CA 90404, USA.
| |
Collapse
|
42
|
Bustos MA, Ono S, Marzese DM, Oyama T, Iida Y, Cheung G, Nelson N, Hsu SC, Yu Q, Hoon DSB. MiR-200a Regulates CDK4/6 Inhibitor Effect by Targeting CDK6 in Metastatic Melanoma. J Invest Dermatol 2017; 137:1955-1964. [PMID: 28526299 DOI: 10.1016/j.jid.2017.03.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/03/2017] [Accepted: 03/19/2017] [Indexed: 12/29/2022]
Abstract
The CDK4/6 pathway is frequently dysregulated in cutaneous melanoma. Recently, CDK4/6 inhibitors have shown promising clinical activity against several cancer types, including melanoma. Here, we show that microRNA-200a decreases CDK6 expression and thus reduces the response of CDK4/6 inhibitor in highly proliferative metastatic melanoma. Down-regulation of microRNA-200a expression in melanoma cells is associated with disease progression and a higher number of lymph node metastases. Furthermore, microRNA-200a expression is epigenetically modulated by both DNA methylation at the promoter region and chromatin accessibility of an upstream genomic region with enhancer activity. Mechanistically, overexpression of miR-200a in metastatic melanoma cells induces cell cycle arrest by targeting CDK6 and decreases the levels of phosphorylated-Rb1 and E2F-downstream targets, diminishing cell proliferation; these effects are recovered by CDK6 overexpression. Conversely, low microRNA-200a expression in metastatic melanoma cells results in higher levels of CDK6 and a more significant response to CDK4/6 inhibitors. We propose that microRNA-200a functions as a "cell cycle brake" that is lost during melanoma progression to metastasis and provides the ability to identify melanomas that are highly proliferative and more prompted to respond to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Shigeshi Ono
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Diego M Marzese
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Takashi Oyama
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Yuuki Iida
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Garrett Cheung
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Nellie Nelson
- Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Sandy C Hsu
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA; Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA
| | - Qiang Yu
- Cancer Biology and Pharmacology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Division of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA; Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California, USA.
| |
Collapse
|
43
|
Fan K, Wang X, Zhang J, Ramos RI, Zhang H, Li C, Ye D, Kang J, Marzese DM, Hoon DSB, Hua W. Hypomethylation of CNTFRα is associated with proliferation and poor prognosis in lower grade gliomas. Sci Rep 2017; 7:7079. [PMID: 28765641 PMCID: PMC5539284 DOI: 10.1038/s41598-017-07124-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 01/17/2023] Open
Abstract
Ciliary neurotrophic factor receptor α subunit (CNTFRα) and CNTF play important roles in neuron survival, glial differentiation and brain tumor growth. However, the molecular mechanisms of CNTFRα regulation and its clinical significance in glioma remain largely unknown. Here, we found CNTFRα was overexpressed in lower grade gliomas (LGG) compared with glioblastoma (GBM) and normal brain specimens in TCGA datasets and in an independent cohort. Bioinformatics analysis revealed a CpG shore of the CNTFRα gene regulated its mRNA expression in TCGA datasets. This observation was further validated with clinical specimens and functionally verified using demethylating agents. Additionally, we observed that independent of IDH mutation status, methylation of CNTFRα was significantly correlated with down-regulated CNTFRα gene expression and longer LGG patient survival. Interestingly, combination of CNTFRα methylation and IDH mutation significantly (p < 0.05) improved the prognostic prediction in LGG patients. Furthermore, the role of CNTFRα in glioma proliferation and apoptosis through the PI3K/AKT pathways was demonstrated by supplementation with exogenous CNTF in vitro and siRNA knockdown in vivo. Our study demonstrated that hypomethylation leading to CNTFRα up-regulation, together with autocrine expression of CNTF, was involved in glioma growth regulation. Importantly, DNA methylation of CNTFRα might serve as a potential epigenetic theranostic target for LGG patients.
Collapse
Affiliation(s)
- Kun Fan
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaowen Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.,Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America
| | - Jingwen Zhang
- Department of Ultrasound Diagnosis, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Romela Irene Ramos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America
| | - Haibo Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunjie Li
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Ye
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiansheng Kang
- Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America.,Sequencing center, John Wayne Cancer Institute (JWCI), Providence Saint John Health Center, Santa Monica, CA, United States of America
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Wouters J, Vizoso M, Martinez-Cardus A, Carmona FJ, Govaere O, Laguna T, Joseph J, Dynoodt P, Aura C, Foth M, Cloots R, van den Hurk K, Balint B, Murphy IG, McDermott EW, Sheahan K, Jirström K, Nodin B, Mallya-Udupi G, van den Oord JJ, Gallagher WM, Esteller M. Comprehensive DNA methylation study identifies novel progression-related and prognostic markers for cutaneous melanoma. BMC Med 2017; 15:101. [PMID: 28578692 PMCID: PMC5458482 DOI: 10.1186/s12916-017-0851-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cutaneous melanoma is the deadliest skin cancer, with an increasing incidence and mortality rate. Currently, staging of patients with primary melanoma is performed using histological biomarkers such as tumor thickness and ulceration. As disruption of the epigenomic landscape is recognized as a widespread feature inherent in tumor development and progression, we aimed to identify novel biomarkers providing additional clinical information over current factors using unbiased genome-wide DNA methylation analyses. METHODS We performed a comprehensive DNA methylation analysis during all progression stages of melanoma using Infinium HumanMethylation450 BeadChips on a discovery cohort of benign nevi (n = 14) and malignant melanoma from both primary (n = 33) and metastatic (n = 28) sites, integrating the DNA methylome with gene expression data. We validated the discovered biomarkers in three independent validation cohorts by pyrosequencing and immunohistochemistry. RESULTS We identified and validated biomarkers for, and pathways involved in, melanoma development (e.g., HOXA9 DNA methylation) and tumor progression (e.g., TBC1D16 DNA methylation). In addition, we determined a prognostic signature with potential clinical applicability and validated PON3 DNA methylation and OVOL1 protein expression as biomarkers with prognostic information independent of tumor thickness and ulceration. CONCLUSIONS Our data underscores the importance of epigenomic regulation in triggering metastatic dissemination through the inactivation of central cancer-related pathways. Inactivation of cell-adhesion and differentiation unleashes dissemination, and subsequent activation of inflammatory and immune system programs impairs anti-tumoral defense pathways. Moreover, we identify several markers of tumor development and progression previously unrelated to melanoma, and determined a prognostic signature with potential clinical utility.
Collapse
Affiliation(s)
- Jasper Wouters
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Laboratory of Computational Biology, VIB Center for Brain & Disease Research, Leuven, Belgium
- Department of Human Genetics, KU Leuven (University of Leuven), Leuven, Belgium
| | - Miguel Vizoso
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Anna Martinez-Cardus
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - F Javier Carmona
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Olivier Govaere
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Teresa Laguna
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Institute of Molecular Biology (IMB), Mainz, Germany
| | | | | | - Claudia Aura
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - Mona Foth
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Cancer Research UK, Beatson Institute, Glasgow, G61 1BD, UK
| | - Roy Cloots
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Karin van den Hurk
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Department of Pathology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Balazs Balint
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Ian G Murphy
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Enda W McDermott
- Department of Surgery, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Kieran Sheahan
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
| | - Karin Jirström
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden
| | - Bjorn Nodin
- Department of Clinical Sciences, Division of Pathology, Lund University, Skåne University Hospital, 221 85, Lund, Sweden
| | | | - Joost J van den Oord
- Translational Cell and Tissue Research, KU Leuven (University of Leuven), Leuven, Belgium
| | - William M Gallagher
- OncoMark Ltd, NovaUCD, Dublin 4, Ireland.
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain.
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
45
|
Iida Y, Ciechanover A, Marzese DM, Hata K, Bustos M, Ono S, Wang J, Salomon MP, Tran K, Lam S, Hsu S, Nelson N, Kravtsova-Ivantsiv Y, Mills GB, Davies MA, Hoon DSB. Epigenetic Regulation of KPC1 Ubiquitin Ligase Affects the NF-κB Pathway in Melanoma. Clin Cancer Res 2017; 23:4831-4842. [PMID: 28389511 DOI: 10.1158/1078-0432.ccr-17-0146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022]
Abstract
Purpose: Abnormal activation of the NF-κB pathway induces a more aggressive phenotype of cutaneous melanoma. Understanding the mechanisms involved in melanoma NF-κB activation may identify novel targets for this pathway. KPC1, an E3 ubiquitin ligase, is a regulator of the NF-κB pathway. The objective of this study was to investigate the mechanisms regulating KPC1 expression and its clinical impact in melanoma.Experimental Design: The clinical impact of KPC1 expression and its epigenetic regulation were assessed in large cohorts of clinically well-annotated melanoma tissues (tissue microarrays; n = 137, JWCI cohort; n = 40) and The Cancer Genome Atlas database (TCGA cohort, n = 370). Using melanoma cell lines, we investigated the functional interactions between KPC1 and NF-κB, and the epigenetic regulations of KPC1, including DNA methylation and miRNA expression.Results: We verified that KPC1 suppresses melanoma proliferation by processing NF-κB1 p105 into p50, thereby modulating NF-κB target gene expression. Concordantly, KPC1 expression was downregulated in American Joint Committee on Cancer stage IV melanoma compared with early stages (stage I/II P = 0.013, stage III P = 0.004), and low KPC1 expression was significantly associated with poor overall survival in stage IV melanoma (n = 137; HR 1.810; P = 0.006). Furthermore, our data showed that high miR-155-5p expression, which is controlled by DNA methylation at its promoter region (TCGA; Pearson's r -0.455; P < 0.001), is significantly associated with KPC1 downregulation (JWCI; P = 0.028, TCGA; P = 0.003).Conclusions: This study revealed novel epigenetic regulation of KPC1 associated with NF-κB pathway activation, promoting metastatic melanoma progression. These findings suggest the potential utility of KPC1 and its epigenetic regulation as theranostic targets. Clin Cancer Res; 23(16); 4831-42. ©2017 AACR.
Collapse
Affiliation(s)
- Yuuki Iida
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Aaron Ciechanover
- The David and Janet Polak Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | - Diego M Marzese
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Keisuke Hata
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Matias Bustos
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Shigeshi Ono
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Jinhua Wang
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Matthew P Salomon
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Kevin Tran
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Stella Lam
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Sandy Hsu
- John Wayne Cancer Institute Genome Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Nellie Nelson
- John Wayne Cancer Institute Genome Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| | - Yelena Kravtsova-Ivantsiv
- The David and Janet Polak Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Bat-Galim, Haifa, Israel
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dave S B Hoon
- Division of Molecular Oncology, Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California. .,John Wayne Cancer Institute Genome Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, California
| |
Collapse
|
46
|
Micevic G, Theodosakis N, Bosenberg M. Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenetics 2017; 9:34. [PMID: 28396701 PMCID: PMC5381063 DOI: 10.1186/s13148-017-0332-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation is an epigenetic hallmark of melanoma, known to play important roles in melanoma formation and progression. Recent advances in genome-wide methylation methods have provided the means to identify differentially methylated genes, methylation signatures, and potential biomarkers. However, despite considerable effort and advances in cataloging methylation changes in melanoma, many questions remain unanswered. The aim of this review is to summarize recent developments, emerging trends, and important unresolved questions in the field of aberrant DNA methylation in melanoma. In addition to reviewing recent developments, we carefully synthesize the findings in an effort to provide a framework for understanding the current state and direction of the field. To facilitate clarity, we divided the review into DNA methylation changes in melanoma, biomarker opportunities, and therapeutic developments. We hope this review contributes to accelerating the utilization of the diagnostic, prognostic, and therapeutic potential of DNA methylation for the benefit of melanoma patients.
Collapse
Affiliation(s)
- Goran Micevic
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Nicholas Theodosakis
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Marcus Bosenberg
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06520 USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
47
|
Zhong W, Hu C. [Tumor Cells and Micro-environment in Brain Metastases]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2017; 19:626-35. [PMID: 27666556 PMCID: PMC5972957 DOI: 10.3779/j.issn.1009-3419.2016.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
近年来,随着早期诊断的方法的出现及精准治疗的应用,肺癌患者的生存及生活质量都得到很大改善。然而,对于肺癌的脑转移病灶,目前仍缺乏一个理想的治疗方案,严重影响了该部分患者生存状态。了解肿瘤细胞如何在中枢神经系统定植、生长和侵袭等相关生物学行为及其产生机制对预防及治疗肿瘤细胞脑转移病灶具有重大的意义。“种子-土壤”这一假说可以很好的解释这一过程,这一假说的关键即肿瘤细胞可与中枢神经系统微环境各组成之间产生相互适应性变化,正是这种相互作用决定了脑转移病灶的发生发展。本文就脑转移肿瘤细胞、脑转移肿瘤微环境及他们之间的相互作用进行综述,旨在为脑转移病灶的治疗提供新的思路。
Collapse
Affiliation(s)
- Wen Zhong
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
48
|
Epigenetic signatures of invasive status in populations of marine invertebrates. Sci Rep 2017; 7:42193. [PMID: 28205577 PMCID: PMC5311950 DOI: 10.1038/srep42193] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/06/2017] [Indexed: 12/27/2022] Open
Abstract
Epigenetics, as a DNA signature that affects gene expression and enables rapid reaction of an organism to environmental changes, is likely involved in the process of biological invasions. DNA methylation is an epigenetic mechanism common to plants and animals for regulating gene expression. In this study we show, for the first time in any marine species, significant reduction of global methylation levels during the expansive phase of a pygmy mussel (Xenostrobus securis) recent invasion in Europe (two-year old), while in older introductions such epigenetic signature of invasion was progressively reduced. Decreased methylation was interpreted as a rapid way of increasing phenotypic plasticity that would help invasive populations to thrive. This epigenetic signature of early invasion was stronger than the expected environmental signature of environmental stress in younger populations sampled from ports, otherwise detected in a much older population (>90 year old) of the also invasive tubeworm Ficopomatus enigmaticus established in similar locations. Higher epigenetic than genetic diversity found in X. securis was confirmed from F. enigmaticus samples. As reported for introduced plants and vertebrates, epigenetic variation could compensate for relatively lower genetic variation caused by founder effects. These phenomena were compared with epigenetic mechanisms involved in metastasis, as parallel processes of community (biological invasion) and organism (cancer) invasions.
Collapse
|
49
|
Bustos MA, Salomon MP, Nelson N, Hsu SC, DiNome ML, Hoon DSB, Marzese DM. Genome-wide chromatin accessibility, DNA methylation and gene expression analysis of histone deacetylase inhibition in triple-negative breast cancer. GENOMICS DATA 2017; 12:14-16. [PMID: 28239551 PMCID: PMC5318344 DOI: 10.1016/j.gdata.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Triple-negative breast cancer (TNBC), especially the subset with a basal phenotype, represents the most aggressive subtype of breast cancer. Unlike other solid tumors, TNBCs harbor a low number of driver mutations. Conversely, we and others have demonstrated a significant impact of epigenetic alterations, including DNA methylation and histone post-translational modifications, affecting TNBCs. Due to the promising results in pre-clinical studies, histone deacetylase inhibitors (HDACi) are currently being tested in several clinical trials for breast cancer and other solid tumors. However, the genome-wide epigenetic and transcriptomic implications of HDAC inhibition are still poorly understood. Here, we provide detailed information about the design of a multi-platform dataset that describes the epigenomic and transcriptomic effects of HDACi. This dataset includes genome-wide chromatin accessibility (assessed by ATAC-Sequencing), DNA methylation (assessed by Illumina HM450K BeadChip) and gene expression (assessed by RNA-Sequencing) analyses before and after HDACi treatment of HCC1806 and MDA-MB-231, two human TNBC cell lines with basal-like phenotype.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Matthew P Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Nellie Nelson
- Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Sandy C Hsu
- Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Maggie L DiNome
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA; Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| |
Collapse
|
50
|
Chatterjee A, Stockwell PA, Ahn A, Rodger EJ, Leichter AL, Eccles MR. Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis. Oncotarget 2017; 8:6085-6101. [PMID: 28030832 PMCID: PMC5351615 DOI: 10.18632/oncotarget.14042] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Epigenetic alterations are increasingly implicated in metastasis, whereas very few genetic mutations have been identified as authentic drivers of cancer metastasis. Yet, to date, few studies have identified metastasis-related epigenetic drivers, in part because a framework for identifying driver epigenetic changes in metastasis has not been established. Using reduced representation bisulfite sequencing (RRBS), we mapped genome-wide DNA methylation patterns in three cutaneous primary and metastatic melanoma cell line pairs to identify metastasis-related epigenetic drivers. Globally, metastatic melanoma cell lines were hypomethylated compared to the matched primary melanoma cell lines. Using whole genome RRBS we identified 75 shared (10 hyper- and 65 hypomethylated) differentially methylated fragments (DMFs), which were associated with 68 genes showing significant methylation differences. One gene, Early B Cell Factor 3 (EBF3), exhibited promoter hypermethylation in metastatic cell lines, and was validated with bisulfite sequencing and in two publicly available independent melanoma cohorts (n = 40 and 458 melanomas, respectively). We found that hypermethylation of the EBF3 promoter was associated with increased EBF3 mRNA levels in metastatic melanomas and subsequent inhibition of DNA methylation reduced EBF3 expression. RNAi-mediated knockdown of EBF3 mRNA levels decreased proliferation, migration and invasion in primary and metastatic melanoma cell lines. Overall, we have identified numerous epigenetic changes characterising metastatic melanoma cell lines, including EBF3-induced aggressive phenotypic behaviour with elevated EBF3 expression in metastatic melanoma, suggesting that EBF3 promoter hypermethylation may be a candidate epigenetic driver of metastasis.
Collapse
Affiliation(s)
- Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Antonio Ahn
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Anna L Leichter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|