1
|
Hartley IR, Roszko KL. Treatment Advances in Tumor-Induced Osteomalacia. Calcif Tissue Int 2025; 116:24. [PMID: 39755803 DOI: 10.1007/s00223-024-01317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/12/2024] [Indexed: 01/06/2025]
Abstract
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by hypersecretion of fibroblast growth factor 23 (FGF23) by typically benign phosphaturic mesenchymal tumors (PMTs). FGF23 excess causes chronic hypophosphatemia through renal phosphate losses and decreased production of 1,25-dihydroxy-vitamin-D. TIO presents with symptoms of chronic hypophosphatemia including fatigue, bone pain, weakness, and fractures. Definitive treatment is surgical resection of the PMT with wide margins. Other therapeutic options are necessary when the tumor is unable to be localized, not amenable to complete resection, or when the patient is not a good surgical candidate. Alternative ablative approaches such as radiotherapy, radiofrequency ablation, and cryoablation, have been used with variable success and limited follow up. Medical management is warranted both prior to definitive therapy and in non-operable cases to improve symptoms and allow for bone remineralization. Oral phosphate and calcitriol were the mainstay of medical therapy, however, the development of burosumab, a monoclonal blocking antibody to FGF23, has introduced an approved therapy that improves hypophosphatemia and symptoms in patients with TIO. In select cases, cinacalcet can be an effective adjuvant to phosphate and calcitriol. Continued monitoring for tumor growth is necessary while on medical therapy. Infigratinib, a selective FGFR tyrosine-kinase inhibitor targeting a causative tumoral fusion protein, can reverse the biochemical findings of TIO and possibly reduce tumor mass; however, its use is constrained by serious side effects. Overall, innovations in medical and interventional treatments have broadened therapeutic options for patients with PMTs, particularly in cases where a curative surgical resection is not possible.
Collapse
Affiliation(s)
- Iris R Hartley
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA
| | - Kelly L Roszko
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Windrich J, Ney GM, Rosenberg PS, Kim J, Zenker M, Stewart DR, Kratz CP. Cancer in Multilineage Mosaic RASopathies due to Pathogenic Variants in HRAS or KRAS: A Systematic Review and Meta-analysis. Clin Cancer Res 2024; 30:5116-5121. [PMID: 39287844 PMCID: PMC11565173 DOI: 10.1158/1078-0432.ccr-24-1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE To determine the cancer risk and spectrum in patients with multilineage mosaic RASopathies with pathogenic variants (PV) in HRAS or KRAS. EXPERIMENTAL DESIGN We conducted a systematic literature review to identify multilineage mosaic RASopathy cases with a PV in HRAS or KRAS to create a retrospective cohort. We calculated cumulative incidence, cancer-free survival, and hazard rates for cancer and standardized incidence rates (SIR). RESULTS This study identified 69 patients. Of these, 17% had cancer, including rhabdomyosarcoma (RMS) located in the urogenital region (n = 7), skin cancer (n = 3), Wilms tumor (n = 1), and bladder cancer (n = 1). Cumulative cancer incidence by age 20 was 20% (95% confidence interval, 4%-37%). The annual cancer hazard rate peaked at 14% within the first 2 years of life. The highest SIR was found for RMS (SIR = 800; 95% confidence interval, 300-1648). CONCLUSIONS This is the first investigation of cancer risk in KRAS or HRAS PV-positive mosaic RASopathies to date. The high incidence and SIR values found highlight the need for rigorous RMS surveillance in young children and skin cancer surveillance in adults with this high-risk condition.
Collapse
Affiliation(s)
- Jonas Windrich
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Gina M. Ney
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Philip S. Rosenberg
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland
| | - Christian P. Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Gazzin A, Fornari F, Cardaropoli S, Carli D, Tartaglia M, Ferrero GB, Mussa A. Exploring New Drug Repurposing Opportunities for MEK Inhibitors in RASopathies: A Comprehensive Review of Safety, Efficacy, and Future Perspectives of Trametinib and Selumetinib. Life (Basel) 2024; 14:731. [PMID: 38929714 PMCID: PMC11204468 DOI: 10.3390/life14060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.
Collapse
Affiliation(s)
- Andrea Gazzin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Federico Fornari
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Simona Cardaropoli
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | | | - Alessandro Mussa
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
4
|
Gu J, Ge C, Joshi G, Most M, Tai R. Phosphaturic mesenchymal tumor: two cases highlighting differences in clinical and radiologic presentation. Skeletal Radiol 2024; 53:995-1002. [PMID: 37792035 DOI: 10.1007/s00256-023-04462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 08/27/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
Phosphaturic mesenchymal tumors are rare, usually benign neoplasms that occur in the soft tissue or bone and are the cause of nearly all cases of tumor-induced osteomalacia. Tumor-induced osteomalacia due to phosphaturic mesenchymal tumor is a challenging diagnosis to make-patients present with variable clinical and radiologic findings and the culprit neoplasm is often small and can occur anywhere head to toe. We present two cases of phosphaturic mesenchymal tumor in the scapular body and plantar foot. In both cases, the patient endured years of debilitating symptoms before a tissue diagnosis was eventually reached. Descriptions of clinical presentation, laboratory workup, surgical resection, and imaging characteristics, with a focus on CT, MRI, and functional imaging, are provided to assist with the diagnosis and management of this rare entity. A brief review of current literature and discussion of the differential diagnoses of phosphaturic mesenchymal tumor is also provided.
Collapse
Affiliation(s)
- Joey Gu
- Department of Medicine, Roger Williams Medical Center, Providence, RI, USA.
| | - Connie Ge
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ganesh Joshi
- University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mathew Most
- University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Orthopedic Oncology, Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan Tai
- University of Massachusetts Chan Medical School, Worcester, MA, USA
- Division of Musculoskeletal Imaging and Intervention, Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
5
|
Morren MA, Fodstad H, Brems H, Bedoni N, Guenova E, Jacot-Guillarmod M, Busiah K, Giuliano F, Gilliet M, Atallah I. Mosaic RASopathies concept: different skin lesions, same systemic manifestations? J Med Genet 2024; 61:411-419. [PMID: 38290824 DOI: 10.1136/jmg-2023-109306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 12/30/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND Cutaneous epidermal nevi are genotypically diverse mosaic disorders. Pathogenic hotspot variants in HRAS, KRAS, and less frequently, NRAS and BRAF may cause isolated keratinocytic epidermal nevi and sebaceous nevi or several different syndromes when associated with extracutaneous anomalies. Therefore, some authors suggest the concept of mosaic RASopathies to group these different disorders. METHODS In this paper, we describe three new cases of syndromic epidermal nevi caused by mosaic HRAS variants: one associating an extensive keratinocytic epidermal nevus with hypomastia, another with extensive mucosal involvement and a third combining a small sebaceous nevus with seizures and intellectual deficiency. Moreover, we performed extensive literature of all cases of syndromic epidermal nevi and related disorders with confirmed pathogenic postzygotic variants in HRAS, KRAS, NRAS or BRAF. RESULTS Most patients presented with bone, ophthalmological or neurological anomalies. Rhabdomyosarcoma, urothelial cell carcinoma and pubertas praecox are also repeatedly reported. KRAS pathogenic variants are involved in 50% of the cases, especially in sebaceous nevi, oculoectodermal syndrome and encephalocraniocutaneous lipomatosis. They are frequently associated with eye and brain anomalies. Pathogenic variants in HRAS are rather present in syndromic keratinocytic epidermal nevi and phacomatosis pigmentokeratotica. CONCLUSION This review delineates genotype/phenotype correlations of syndromic epidermal nevi with somatic RAS and BRAF pathogenic variants and may help improve their follow-up.
Collapse
Affiliation(s)
- Marie-Anne Morren
- Pediatric Dermatology Unit, Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Heidi Fodstad
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Hilde Brems
- Department of Human Genetics, University of Leuven, Leuven, Belgium
| | - Nicola Bedoni
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Martine Jacot-Guillarmod
- Pediatric Gynecology Unit, Department of Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kanetee Busiah
- Pediatric Endocrinology, Diabetology, and Obesity Unit, Department of Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Michel Gilliet
- Dermatology and Venereology Department, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Isis Atallah
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Ito N, Hidaka N, Kato H. Acquired Forms of Fibroblast Growth Factor 23-Related Hypophosphatemic Osteomalacia. Endocrinol Metab (Seoul) 2024; 39:255-261. [PMID: 38467164 PMCID: PMC11066443 DOI: 10.3803/enm.2023.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a pivotal humoral factor for the regulation of serum phosphate levels and was first identified in patients with autosomal dominant hypophosphatemic rickets and tumor-induced osteomalacia (TIO), the most common form of acquired FGF23-related hypophosphatemic rickets/osteomalacia (FGF23rHR). After the identification of FGF23, many other inherited and acquired forms of FGF23rHR were reported. In this review article, the detailed features of each acquired FGF23rHR are discussed, including TIO, ectopic FGF23 syndrome with malignancy, fibrous dysplasia/McCune-Albright syndrome, Schimmelpenning-Feuerstein-Mims syndrome/cutaneous skeletal hypophosphatemia syndrome, intravenous iron preparation-induced FGF23rHR, alcohol consumption-induced FGF23rHR, and post-kidney transplantation hypophosphatemia. Then, an approach for the differential diagnosis and therapeutic options for each disorder are concisely introduced. Currently, the majority of endocrinologists might only consider TIO when encountering patients with acquired FGF23rHR; an adequate differential diagnosis can reduce medical costs and invasive procedures such as positron emission tomography/computed tomography and venous sampling to identify FGF23-producing tumors. Furthermore, some acquired FGF23rHRs, such as intravenous iron preparation/alcohol consumption-induced FGF23rHR, require only cessation of drugs or alcohol to achieve full recovery from osteomalacia.
Collapse
Affiliation(s)
- Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoko Hidaka
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Hajime Kato
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
- Osteoporosis Center, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
7
|
Abebe L, Phung K, Robinson ME, Waldner R, Carsen S, Smit K, Tice A, Lazier J, Armour C, Page M, Dover S, Rauch F, Koujok K, Ward LM. Burosumab for the treatment of cutaneous-skeletal hypophosphatemia syndrome. Bone Rep 2024; 20:101725. [PMID: 38229908 PMCID: PMC10790024 DOI: 10.1016/j.bonr.2023.101725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
Cutaneous-skeletal hypophosphatemia syndrome (CSHS) is a rare bone disorder featuring fibroblast growth factor-23 (FGF23)-mediated hypophosphatemic rickets. We report a 2-year, 10-month-old girl with CSHS treated with burosumab, a novel human monoclonal antibody targeting FGF23. This approach was associated with rickets healing, improvement in growth and lower limb deformity, and clinically significant benefit to her functional mobility and motor development. This case report provides evidence for the effective use of FGF23-neutralizing antibody therapy beyond the classic FGF23-mediated disorders of X-linked hypophosphatemia and tumor-induced osteomalacia.
Collapse
Affiliation(s)
- Lillian Abebe
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Kim Phung
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
| | - Marie-Eve Robinson
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Division of Endocrinology and Metabolism, Department of Pediatrics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Richelle Waldner
- Department of Pediatrics, University of Alberta, 116 St & 85 Av, Edmonton, AB T6G 2R3, Canada
| | - Sasha Carsen
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Department of surgery, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Kevin Smit
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Department of surgery, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Andrew Tice
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Department of surgery, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Joanna Lazier
- Department of Genetics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Medical Genetics and Genomics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
| | - Christine Armour
- Department of Genetics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Medical Genetics and Genomics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
| | - Marika Page
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Saunya Dover
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Frank Rauch
- Shriners Hospital for Children, 1003 Decarie Blvd, Montréal, QC H4A 0A9, Canada
- Department of Pediatrics, Faculty of Medicine and Health Sciences, McGill University, 805 rue Sherbrooke O, Montréal, Quebec H3A 0B9, Canada
| | - Khaldoun Koujok
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Medical Imaging, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | - Leanne M. Ward
- The Ottawa Pediatric Bone Health Research Group, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
- Department of Pediatrics, Faculty of Medicine, University of Ottawa, 550 Cumberland St, Ottawa, ON K1N 6N5, Canada
- Division of Endocrinology and Metabolism, Department of Pediatrics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| |
Collapse
|
8
|
Schmidt J, Kaulfuß S, Ott H, Gaubert M, Reintjes N, Bremmer F, Dreha-Kulaczewski S, Stroebel P, Yigit G, Wollnik B. Expansion of the complex genotypic and phenotypic spectrum of FGFR2-associated neurocutaneous syndromes. Hum Genet 2024; 143:159-168. [PMID: 38265560 PMCID: PMC10881730 DOI: 10.1007/s00439-023-02634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024]
Abstract
The fibroblast growth factor receptors comprise a family of related but individually distinct tyrosine kinase receptors. Within this family, FGFR2 is a key regulator in many biological processes, e.g., cell proliferation, tumorigenesis, metastasis, and angiogenesis. Heterozygous activating non-mosaic germline variants in FGFR2 have been linked to numerous autosomal dominantly inherited disorders including several craniosynostoses and skeletal dysplasia syndromes. We report on a girl with cutaneous nevi, ocular malformations, macrocephaly, mild developmental delay, and the initial clinical diagnosis of Schimmelpenning-Feuerstein-Mims syndrome, a very rare mosaic neurocutaneous disorder caused by postzygotic missense variants in HRAS, KRAS, and NRAS. Exome sequencing of blood and affected skin tissue identified the mosaic variant c.1647=/T > G p.(Asn549=/Lys) in FGFR2, upstream of the RAS signaling pathway. The variant is located in the tyrosine kinase domain of FGFR2 in a region that regulates the activity of the receptor and structural mapping and functional characterization revealed that it results in constitutive receptor activation. Overall, our findings indicate FGFR2-associated neurocutaneous syndrome as the accurate clinical-molecular diagnosis for the reported individual, and thereby expand the complex genotypic and phenotypic spectrum of FGFR-associated disorders. We conclude that molecular analysis of FGFR2 should be considered in the genetic workup of individuals with the clinical suspicion of a mosaic neurocutaneous condition, as the knowledge of the molecular cause might have relevant implications for genetic counseling, prognosis, tumor surveillance and potential treatment options.
Collapse
Affiliation(s)
- Julia Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.
| | - Silke Kaulfuß
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Hagen Ott
- Department of Pediatric Dermatology, Children's Hospital Auf Der Bult, Academic Hospital, Hannover, Germany
| | - Marianne Gaubert
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
| | - Nadine Reintjes
- Institute of Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Felix Bremmer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Philipp Stroebel
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
9
|
Zuntini R, Cattani C, Pedace L, Miele E, Caraffi SG, Gardini S, Ficarelli E, Pizzi S, Radio FC, Barone A, Piana S, Bertolini P, Corradi D, Marinelli M, Longo C, Motolese A, Zuffardi O, Tartaglia M, Garavelli L. Case Report: Sequential postzygotic HRAS mutation and gains of the paternal chromosome 11 carrying the mutated allele in a patient with epidermal nevus and rhabdomyosarcoma: evidence of a multiple-hit mechanism involving HRAS in oncogenic transformation. Front Genet 2023; 14:1231434. [PMID: 37636262 PMCID: PMC10447906 DOI: 10.3389/fgene.2023.1231434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
We report a 7-year-old boy born with epidermal nevi (EN) arranged according to Blaschko's lines involving the face and head, right upper limb, chest, and left lower limb, who developed a left paratesticular embryonal rhabdomyosarcoma at 18 months of age. Parallel sequencing identified a gain-of-function variant (c.37G>C, p.Gly13Arg) of HRAS in both epidermal nevus and tumor but not in leukocytes or buccal mucosal epithelial cells, indicating its postzygotic origin. The variant accounted for 33% and 92% of the total reads in the nevus and tumor DNA specimens, respectively, supporting additional somatic hits in the latter. DNA methylation (DNAm) profiling of the tumor documented a signature consistent with embryonal rhabdomyosarcoma and CNV array analysis inferred from the DNAm arrays and subsequent MLPA analysis demonstrated copy number gains of the entire paternal chromosome 11 carrying the mutated HRAS allele, likely as the result of paternal unidisomy followed by subsequent gain(s) of the paternal chromosome in the tumor. Other structural rearrangements were observed in the tumours, while no additional pathogenic variants affecting genes with role in the RAS-MAPK and PI3K-AKT-MTOR pathways were identified. Our findings provide further evidence of the contribution of "gene dosage" to the multistep process driving cell transformation associated with hyperactive HRAS function.
Collapse
Affiliation(s)
- Roberta Zuntini
- Medical Genetics Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Chiara Cattani
- Medical Genetics Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Lucia Pedace
- Department of Pediatric Hematology, Oncology and Cellular and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology, Oncology and Cellular and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Stefano Gardini
- Dermatology Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Elena Ficarelli
- Dermatology Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Francesca Clementina Radio
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Angelica Barone
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Simonetta Piana
- Department of Oncology and Advanced Technologies, Pathology Unit, Azienda USL, IRCCS, Arcispedale S Maria Nuova, Reggio Emilia, Italy
| | - Patrizia Bertolini
- Paediatric Hematology Oncology Unit, University Hospital of Parma, Parma, Italy
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology, University of Parma, Parma, Italy
| | - Maria Marinelli
- Medical Genetics Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Advanced Technologies, Unit of Dermatology, Azienda USL, IRCCS, Arcispedale S Maria Nuova, Reggio Emilia, Italy
| | - Alberico Motolese
- Dermatology Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Research Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL, IRCCS, Arcispedale Santa Maria Nuova, Reggio Emilia, Italy
| |
Collapse
|
10
|
Kim YS, Park GS, Chung YJ, Lee JH. Whole-exome sequencing of secondary tumors arising from nevus sebaceous revealed additional genomic alterations besides RAS mutations. J Dermatol 2023; 50:1072-1075. [PMID: 36938660 DOI: 10.1111/1346-8138.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 03/21/2023]
Abstract
Nevus sebaceous (NS) is a congenital hamartoma associated with an increased risk of secondary neoplasms in approximately 10%-20% of patients. However, additional genomic alterations underlying tumorigenesis in NS lesions have not been clarified. We performed whole-exome sequencing of archived tumor tissues (n = 8; six basal cell carcinomas and two trichoepitheliomas) and matched germline tissues (n = 7) with from seven patients with secondary tumors arising from NS. We also analyzed NS lesions without secondary tumors (n = 8). Somatic mutations and copy number alterations (CNAs) were analyzed. We identified a median of 129 somatic mutations (corresponding to 2.6/Mb in target regions, range 26-336) for eight tumors, while a median of 118 somatic mutations (2.3/Mb, range 1-196) for eight NS lesions. Known RAS hotspot mutations were found in seven of the eight tumors (six for HRAS p.G13R and one for HRAS p.Q61R) and in six of the eight NS lesions (four for HRAS p.G13R, one for KRAS p.G12C, and one KRAS p.G12D). Except RAS mutations, several putative driver mutations were detected in tumors: TP53 p.F134L/p.R213*, MYCN p.P59L, OR2Z1 p.P167S, PTPN14 p.Q768*, and SMO p.W535L. As for CNAs, two tumors harbored copy-loss in regions encompassing PTCH1 gene. However, eight NS lesions did not harbor both putative driver mutations and CNAs. In conclusion, our study revealed that secondary tumors arising from NS harbor known RAS hotspot mutations and additional genomic alterations, including putative driver mutations and PTCH1 copy-loss. These results could help to define the high-risk group for tumor development in patients with NS and provide evidence for prophylactic resection.
Collapse
Affiliation(s)
- Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Gyeong Sin Park
- Department of Hospital Pathology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeun-Jun Chung
- Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
11
|
Ovejero D, Michel Z, Cataisson C, Saikali A, Galisteo R, Yuspa SH, Collins MT, de Castro LF. Murine models of HRAS-mediated cutaneous skeletal hypophosphatemia syndrome suggest bone as the FGF23 excess source. J Clin Invest 2023; 133:e159330. [PMID: 36943390 PMCID: PMC10145192 DOI: 10.1172/jci159330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a mosaic RASopathy characterized by the association of dysplastic skeletal lesions, congenital skin nevi of epidermal and/or melanocytic origin, and FGF23-mediated hypophosphatemia. The primary physiological source of circulating FGF23 is bone cells. However, several reports have suggested skin lesions as the source of excess FGF23 in CSHS. Consequently, without convincing evidence of efficacy, many patients with CSHS have undergone painful removal of cutaneous lesions in an effort to normalize blood phosphate levels. This study aims to elucidate whether the source of FGF23 excess in CSHS is RAS mutation-bearing bone or skin lesions. Toward this end, we analyzed the expression and activity of Fgf23 in two mouse models expressing similar HRAS/Hras activating mutations in a mosaic-like fashion in either bone or epidermal tissue. We found that HRAS hyperactivity in bone, not skin, caused excess of bioactive intact FGF23, hypophosphatemia, and osteomalacia. Our findings support RAS-mutated dysplastic bone as the primary source of physiologically active FGF23 excess in patients with CSHS. This evidence informs the care of patients with CSHS, arguing against the practice of nevi removal to decrease circulating, physiologically active FGF23.
Collapse
Affiliation(s)
- Diana Ovejero
- Musculoskeletal Research Unit, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Zachary Michel
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Amanda Saikali
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Rebeca Galisteo
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Michael T. Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| | - Luis F. de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Sugarman J, Maruri A, Hamilton DJ, Tabatabai L, Luca D, Cimms T, Krolczyk S, Roberts MS, Carpenter TO. The efficacy and safety of burosumab in two patients with cutaneous skeletal hypophosphatemia syndrome. Bone 2023; 166:116598. [PMID: 36341949 DOI: 10.1016/j.bone.2022.116598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 11/02/2022]
Abstract
Cutaneous skeletal hypophosphatemia syndrome (CSHS) is an ultra-rare mosaic disorder manifesting as skeletal dysplasia and FGF23-mediated hypophosphatemia, with some experiencing extra-osseous/extra-cutaneous manifestations, including both benign and malignant neoplasms. Like other disorders of FGF23-mediated hypophosphatemia including X-linked hypophosphatemia (XLH) and tumor-induced osteomalacia (TIO), patients with CSHS have low serum phosphorus and active 1,25-dihydroxyvitamin D levels. Current treatment options for patients with CSHS include multiple daily doses of oral phosphorus and one or more daily doses of active vitamin D analog to correct the deficits. Recently, the fully human monoclonal antibody against FGF23 burosumab received US approval for the treatment of XLH and TIO, two rare diseases characterized by FGF23-mediated hypophosphatemia leading to rickets and osteomalacia. Given the similarities between the pathobiologies of these disorders and CSHS, we investigated the impact of burosumab on two patients, one pediatric and one adult, with CSHS who participated in separate, but similarly designed trials. In both the pediatric and adult patients, burosumab therapy was well-tolerated and contributed to clinically meaningful improvements in disease outcomes including normalization of phosphorus metabolism and markers of bone health, and improvements in skeletal abnormalities, fractures, and physical function. Reported adverse events were minimal, with only mild injection site reactions attributed to burosumab therapy. Together, these findings suggest that burosumab therapy is a promising therapeutic option for patients with CSHS.
Collapse
Affiliation(s)
- Jeffrey Sugarman
- University of California, San Francisco, San Francisco, CA, USA.
| | - Ann Maruri
- Westside Pediatrics Focus Research and Development, 1477 N 2000 W, Clinton, UT 84015, USA
| | - Dale J Hamilton
- Houston Methodist Hospital and Research Institute; WCM Affiliate, Houston, TX, USA
| | - Laila Tabatabai
- Houston Methodist Hospital and Research Institute; WCM Affiliate, Houston, TX, USA
| | - Diana Luca
- Ultragenyx Pharmaceutical Inc., Novato, CA, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Hypophosphatemic rickets typically presents in infancy or early childhood with skeletal deformities and growth plate abnormalities. The most common causes are genetic (such as X-linked hypophosphatemia), and these typically will result in lifelong hypophosphatemia and osteomalacia. Knowledge of phosphate metabolism, including the effects of fibroblast growth factor 23 (FGF23) (an osteocyte produced hormone that downregulates renal phosphate reabsorption and 1,25-dihydroxyvitamin-D (1,25(OH)2D) production), is critical to determining the underlying genetic or acquired causes of hypophosphatemia and to facilitate appropriate treatment. Serum phosphorus should be measured in any child or adult with musculoskeletal complaints suggesting rickets or osteomalacia. Clinical evaluation incudes thorough history, physical examination, laboratory investigations, genetic analysis (especially in the absence of a guiding family history), and imaging to establish etiology and to monitor severity and treatment course. The treatment depends on the underlying cause, but often includes active forms of vitamin D combined with phosphate salts, or anti-FGF23 antibody treatment (burosumab) for X-linked hypophosphatemia. The purpose of this article is to explore the approach to evaluating hypophosphatemic rickets and its treatment options.
Collapse
Affiliation(s)
- Sarah A Ackah
- Department of Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Erik A Imel
- Department of Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
14
|
Carli D, Resta N, Ferrero GB, Ruggieri M, Mussa A. Mosaic RASopathies: A review of disorders caused by somatic pathogenic variants in the genes of the RAS/MAPK pathway. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:520-529. [PMID: 36461154 DOI: 10.1002/ajmg.c.32021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/04/2022]
Abstract
Mosaic RASopathies are a heterogeneous group of diseases characterized by the presence at birth or early onset of congenital anomalies, cutaneous and vascular anomalies, segmental overgrowth, and increased cancer risk. They are caused by somatic pathogenic variants of the genes belonging the RAt Sarcoma Mitogen-activated protein kinase (RAS/MAPK) pathway causing its hyperactivation. Here, we review the clinical and molecular characteristics of this heterogeneous group of diseases, including the possibilities of molecular diagnosis and new therapeutic perspectives.
Collapse
Affiliation(s)
- Diana Carli
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,Pediatric Onco-Hematology, Regina Margherita Children's Hospital, Città della Salute e della Scienza di Torino, Torino, Italy
| | - Nicoletta Resta
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari "Aldo Moro", Bari, Italy
| | | | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, University of Torino, Torino, Italy.,Pediatric Clinical Genetics Unit, Regina Margherita Children's Hospital, Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
15
|
Carli D, Cardaropoli S, Tessaris D, Coppo P, La Selva R, Cesario C, Lepri FR, Pullano V, Palumbo M, Ramenghi U, Brusco A, Medico E, De Sanctis L, Ferrero GB, Mussa A. Successful treatment with MEK-inhibitor in a patient with NRAS-related cutaneous skeletal hypophosphatemia syndrome. Genes Chromosomes Cancer 2022; 61:740-746. [PMID: 35999193 PMCID: PMC9826313 DOI: 10.1002/gcc.23092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 01/11/2023] Open
Abstract
Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic mosaic NRAS variants and characterized by melanocytic/sebaceous naevi, eye, and brain malformations, and FGF23-mediated hypophosphatemic rickets. The MEK inhibitor Trametinib, acting on the RAS/MAPK pathway, is a candidate for CSHS therapy. A 4-year-old boy with seborrheic nevus, eye choristoma, multiple hamartomas, brain malformation, pleural lymphangioma and chylothorax developed severe hypophosphatemic rickets unresponsive to phosphate supplementation. The c.182A > G;p.(Gln61Arg) somatic NRAS variant found in DNA from nevus biopsy allowed diagnosing CSHS. We administered Trametinib for 15 months investigating the transcriptional effects at different time points by whole blood RNA-seq. Treatment resulted in prompt normalization of phosphatemia and phosphaturia, catch-up growth, chylothorax regression, improvement of bone mineral density, reduction of epidermal nevus and hamartomas. Global RNA sequencing on peripheral blood mononucleate cells showed transcriptional changes under MEK inhibition consisting in a strong sustained downregulation of signatures related to RAS/MAPK, PI3 kinase, WNT and YAP/TAZ pathways, reverting previously defined transcriptomic signatures. CSHS was effectively treated with a MEK inhibitor with almost complete recovery of rickets and partial regression of the phenotype. We identified "core" genes modulated by MEK inhibition potentially serving as surrogate markers of Trametinib action.
Collapse
Affiliation(s)
- Diana Carli
- Department of Public Health and PediatricsUniversity of TorinoTorinoItaly,Pediatric Onco‐Hematology, Stem Cell Transplantation and Cell Therapy DivisionRegina Margherita Children's Hospital, Città Della Salute e Della Scienza di TorinoTorinoItaly
| | - Simona Cardaropoli
- Department of Public Health and PediatricsUniversity of TorinoTorinoItaly
| | - Daniele Tessaris
- Pediatric Endocrinology UnitRegina Margherita Children's Hospital, Città Della Salute e Della Scienza di TorinoTorinoItaly
| | - Paola Coppo
- Pediatric Endocrinology UnitRegina Margherita Children's Hospital, Città Della Salute e Della Scienza di TorinoTorinoItaly
| | - Roberta La Selva
- Pediatric Dermatology UnitRegina Margherita Children's Hospital, Città Della Salute e Della Scienza di TorinoTorinoItaly
| | - Claudia Cesario
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Romana Lepri
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | | | - Martina Palumbo
- Laboratory of OncogenomicsCandiolo Cancer Institute, FPO‐IRCCSCandioloItaly
| | - Ugo Ramenghi
- Department of Public Health and PediatricsUniversity of TorinoTorinoItaly
| | - Alfredo Brusco
- Department of Medical SciencesUniversity of TorinoTorinoItaly,Medical Genetics UnitCittà della Salute e della Scienza University HospitalTorinoItaly
| | - Enzo Medico
- Laboratory of OncogenomicsCandiolo Cancer Institute, FPO‐IRCCSCandioloItaly,Department of OncologyUniversity of TorinoTorinoItaly
| | - Luisa De Sanctis
- Department of Public Health and PediatricsUniversity of TorinoTorinoItaly,Pediatric Endocrinology UnitRegina Margherita Children's Hospital, Città Della Salute e Della Scienza di TorinoTorinoItaly
| | | | - Alessandro Mussa
- Department of Public Health and PediatricsUniversity of TorinoTorinoItaly,Pediatric Clinical Genetics UnitRegina Margherita Children HospitalTorinoItaly
| |
Collapse
|
16
|
Shore RM. Disorders of phosphate homeostasis in children, part 2: hypophosphatemic and hyperphosphatemic disorders. Pediatr Radiol 2022; 52:2290-2305. [PMID: 35536416 DOI: 10.1007/s00247-022-05373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Phosphorus, predominantly in the form of inorganic phosphate PO4-3, has many essential physiological functions. In the skeleton, phosphate and calcium form the mineral component and phosphate is also essential in regulating function of skeletal cells. Considerable advances have been made in our understanding of phosphate homeostasis since the recognition of fibroblast growth factor-23 (FGF23) as a bone-derived phosphaturic hormone. This second part of a two-part review of disorders of phosphate homeostasis in children covers hypophosphatemic and hyperphosphatemic disorders that are of interest to the pediatric radiologist, emphasizing, but not limited to, those related to abnormalities of FGF23 signaling.
Collapse
Affiliation(s)
- Richard M Shore
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL, 60611, USA.
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
17
|
Park JJ, Choate K. Assessing Cutaneous Mosaicism at the Molecular Level. J Invest Dermatol 2022; 142:2306-2312. [PMID: 35985765 DOI: 10.1016/j.jid.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
Mosaicism results from postzygotic alterations during embryogenesis leading to genetically distinct populations of cells within individuals and has been historically recognized by phenotypes with visible, often patterned manifestations. Before the advent of molecular profiling assays and high-throughput sequencing, it was challenging to study mosaicism in human disease; however, the study of mosaic disorders has recently revealed unexpected and novel pathways for disease pathogenesis. In this paper, we will review the techniques for discovery of disease-causing alleles using Proteus syndrome; phakomatosis pigmentokeratotica; linear porokeratosis; and vacuoles, E1 enzyme, X-linked, autoinflammatory somatic syndrome as models. These tools represent powerful approaches for dissecting the genetic basis for human disorders.
Collapse
Affiliation(s)
- Jonathan J Park
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA; Medical Scientist Training Program, Yale University, New Haven, Connecticut, USA
| | - Keith Choate
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut, USA; Department of Dermatology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
18
|
Wasilewska K, Gambin T, Rydzanicz M, Szczałuba K, Płoski R. Postzygotic mutations and where to find them - Recent advances and future implications in the field of non-neoplastic somatic mosaicism. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108426. [PMID: 35690331 DOI: 10.1016/j.mrrev.2022.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.
Collapse
Affiliation(s)
- Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland.
| |
Collapse
|
19
|
Pathogenesis of FGF23-Related Hypophosphatemic Diseases Including X-linked Hypophosphatemia. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since phosphate is indispensable for skeletal mineralization, chronic hypophosphatemia causes rickets and osteomalacia. Fibroblast growth factor 23 (FGF23), which is mainly produced by osteocytes in bone, functions as the central regulator of phosphate metabolism by increasing the renal excretion of phosphate and suppressing the production of 1,25-dihydroxyvitamin D. The excessive action of FGF23 results in hypophosphatemic diseases, which include a number of genetic disorders such as X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia (TIO). Phosphate-regulating gene homologous to endopeptidase on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), ectonucleotide pyrophosphatase phosphodiesterase-1, and family with sequence similarity 20c, the inactivating variants of which are responsible for FGF23-related hereditary rickets/osteomalacia, are highly expressed in osteocytes, similar to FGF23, suggesting that they are local negative regulators of FGF23. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by cleavage-resistant variants of FGF23, and iron deficiency increases serum levels of FGF23 and the manifestation of symptoms in ADHR. Enhanced FGF receptor (FGFR) signaling in osteocytes is suggested to be involved in the overproduction of FGF23 in XLH and autosomal recessive hypophosphatemic rickets type 1, which are caused by the inactivation of PHEX and DMP1, respectively. TIO is caused by the overproduction of FGF23 by phosphaturic tumors, which are often positive for FGFR. FGF23-related hypophosphatemia may also be associated with McCune-Albright syndrome, linear sebaceous nevus syndrome, and the intravenous administration of iron. This review summarizes current knowledge on the pathogenesis of FGF23-related hypophosphatemic diseases.
Collapse
|
20
|
Merz LM, Buerger F, Ziegelasch N, Zenker M, Wieland I, Lipek T, Wallborn T, Terliesner N, Prenzel F, Siekmeyer M, Dittrich K. A Case Report: First Long-Term Treatment With Burosumab in a Patient With Cutaneous-Skeletal Hypophosphatemia Syndrome. Front Endocrinol (Lausanne) 2022; 13:866831. [PMID: 35600592 PMCID: PMC9120998 DOI: 10.3389/fendo.2022.866831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022] Open
Abstract
Epidermal nevus syndromes encompass a highly heterogeneous group of systemic disorders, characterized by epidermal nevi, and a spectrum of neuromuscular, ocular, and bone abnormalities. Cutaneous-skeletal hypophosphatemia syndrome (CSHS) constitutes a specific sub-entity in which elevated levels of fibroblast growth factor-23 cause hypophosphatemic rickets that are, to date, not amenable to causal therapy. Here, we report the first long-term follow-up of causal treatment with burosumab in a 3-year-old female patient with CSHS. 4 weeks after initiation of burosumab treatment, serum phosphate normalized to age-appropriate levels. Furthermore, long-term follow-up of 42 months revealed significant improvement of linear growth and gross physical functions, including respiratory insufficiency. Radiographic rickets severity as well as subjective bone pain were strongly reduced, and no side effects were observed over the course of treatment. In summary, we, here, report about a successful treatment of hypophosphatemic rickets in CSHS with burosumab over the time course of 42 months. In our patient, burosumab showed convincing efficacy and safety profile, without any loss of effect or increase of dose.
Collapse
Affiliation(s)
- Lea Maria Merz
- Department of Pediatric Nephrology and Pulmonology, University Hospital Leipzig, Leipzig, Germany
- *Correspondence: Lea Maria Merz,
| | - Florian Buerger
- Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Niels Ziegelasch
- Department of Pediatric Nephrology and Pulmonology, University Hospital Leipzig, Leipzig, Germany
| | - Martin Zenker
- Faculty of Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Ilse Wieland
- Faculty of Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Tobias Lipek
- Department of Pediatric Nephrology and Pulmonology, University Hospital Leipzig, Leipzig, Germany
| | - Tillmann Wallborn
- Department of Pediatric Nephrology, St. Georg Hospital, Leipzig, Germany
| | - Nicolas Terliesner
- Department of Pediatric Nephrology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Freerk Prenzel
- Department of Pediatric Nephrology and Pulmonology, University Hospital Leipzig, Leipzig, Germany
| | - Manuela Siekmeyer
- Department of Pediatric Nephrology and Pulmonology, University Hospital Leipzig, Leipzig, Germany
| | - Katalin Dittrich
- Department of Pediatric Nephrology and Pulmonology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D. Rickets guidance: part I-diagnostic workup. Pediatr Nephrol 2022; 37:2013-2036. [PMID: 34910242 PMCID: PMC9307538 DOI: 10.1007/s00467-021-05328-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/22/2023]
Abstract
Rickets is a disease of the growing child arising from alterations in calcium and phosphate homeostasis resulting in impaired apoptosis of hypertrophic chondrocytes in the growth plate. Its symptoms depend on the patients' age, duration of disease, and underlying disorder. Common features include thickened wrists and ankles due to widened metaphyses, growth failure, bone pain, muscle weakness, waddling gait, and leg bowing. Affected infants often show delayed closure of the fontanelles, frontal bossing, and craniotabes. The diagnosis of rickets is based on the presence of these typical clinical symptoms and radiological findings on X-rays of the wrist or knee, showing metaphyseal fraying and widening of growth plates, in conjunction with elevated serum levels of alkaline phosphatase. Nutritional rickets due to vitamin D deficiency and/or dietary calcium deficiency is the most common cause of rickets. Currently, more than 20 acquired or hereditary causes of rickets are known. The latter are due to mutations in genes involved in vitamin D metabolism or action, renal phosphate reabsorption, or synthesis, or degradation of the phosphaturic hormone fibroblast growth factor 23 (FGF23). There is a substantial overlap in the clinical features between the various entities, requiring a thorough workup using biochemical analyses and, if necessary, genetic tests. Part I of this review focuses on the etiology, pathophysiology and clinical findings of rickets followed by the presentation of a diagnostic approach for correct diagnosis. Part II focuses on the management of rickets, including new therapeutic approaches based on recent clinical practice guidelines.
Collapse
Affiliation(s)
- Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andrea Grund
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Hannover Medical School, Pediatric Research Center, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charitè Berlin, Germany
| |
Collapse
|
22
|
Abstract
This article reviews the clinical findings of epidermal nevi and their associated syndromes and provides an update on their pathogenic genetic changes as well as targeted therapies detailed to date.
Collapse
|
23
|
Khadora M, Mughal MZ. Burosumab treatment in a child with cutaneous skeletal hypophosphatemia syndrome: A case report. Bone Rep 2021; 15:101138. [PMID: 34660853 PMCID: PMC8502709 DOI: 10.1016/j.bonr.2021.101138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022] Open
Abstract
Cutaneous skeletal hypophosphatemia syndrome (CSHS) is a rare disorder caused by somatic mosaicism for the gain of function RAS mutations . Affected patients have segmental epidermal nevi, dysplastic cortical bony lesions, and fibroblast growth factor-23 (FGF23)–mediated hypophosphatemic rickets. Herein, we describe a case of an Emirati girl with CSHS, whose hypophosphatemic rickets and osteomalcic pseudofractures and dysplastic bony lesions failed to recover due to poor adherence to treatment with oral phosphate supplements and alfacalcidol (conventional treatment). Treatment with burosumab, a fully human immunoglobulin G1 monoclonal antibody against FGF23 for 12 months, led to normalization of serum inorganic phosphate and alkaline phosphatase levels, radiographic healing of rickets, partial healing of pseudofractures, improvement in 6-minute walk test, and the physical scale of the Pediatric Quality of Life Inventory. We conclude that burosumab is effective in treatment of CSHS, however results of the ongoing phase 2 trial in adults (NCT02304367) are awaited. Cutaneous skeletal hypophosphatemia syndrome (CSHS) is caused by somatic gain-of-function RAS mutations. It is associated with fibroblast growth factor-23 (FGF23) mediated hypophosphatemic rickets. Burosumab, a monoclonal antibody to FGF23 may have a role in the treatment of CSHS.
Collapse
Affiliation(s)
- Manal Khadora
- Department of Pediatric Endocrinology, Latifa Hospital, Oud Metha Road, Al Jaddaf, Dubai, United Arab Emirates
| | - M Zulf Mughal
- Department of Pediatric Endocrinology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK.,Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
24
|
Luo Q, Zhang Q, Shen J, Guan W, Li M, Zhang J, Tan Z. Expanding mutational spectrum of HRAS by a patient with Schimmelpenning-Feuerstein-Mims syndrome. J Dermatol 2021; 48:1273-1276. [PMID: 34109654 DOI: 10.1111/1346-8138.15922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
As one of the epidermal nevus syndromes, Schimmelpenning-Feuerstein-Mims (SFM) is characterized by craniofacial nevus sebaceous (NS) and extracutaneous abnormalities (e.g., brain, eyes, and bone). Here, we report a case of a 4-year-old boy who presented with significant skin abnormalities (NS in the scalp, extensive epidermal nevus along Blaschko's lines), ocular abnormalities (strabismus), central nervous system abnormalities (seizure and mental retardation), lymphatic dysplasia (chylous pleural and pericardial effusion), cardiac abnormalities (patent foramen ovale), urogenital system abnormalities (cryptorchidism, hypospadias), and a tumor predisposition (embryonal rhabdomyosarcoma). DNA samples from NS, rhabdomyosarcoma, and peripheral blood leukocytes were analyzed by next-generation sequencing. A novel mutation in the HRAS gene (c.38G>T; p.Gly13Val) was detected in a mosaic state in NS, rhabdomyosarcoma, and peripheral blood leukocytes, with different ratio of heterozygous mutation (HRAS c.38G>T) of 39.90% (9412/23 588 reads), 73.03% (205 562/281 468 reads), and 14.16% (15 837/111 842 reads), respectively. By predicting the impact of the mutation on the biological function of protein, we found that the novel HRAS mutation (c.38G>T; p.Gly13Val) had the highest damaging scores among other HRAS mutations reported so far. This is the first reported SFM syndrome patient with novel mosaic HRAS mutation, which may help to expand the mutational spectrum of HRAS and better understand the role of HRAS in the disease.
Collapse
Affiliation(s)
- Qi Luo
- Department of Pediatric Hematology-Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Zhang
- Department of Pediatric Hematology-Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinwen Shen
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Guan
- Department of Pathology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Zhang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Tan
- Department of Pediatric Hematology-Oncology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Hasenfratz M, Mellert K, Marienfeld R, von Baer A, Schultheiss M, Roitman PD, Aponte-Tinao LA, Lehner B, Möller P, Mechtersheimer G, Barth TFE. Profiling of three H3F3A-mutated and denosumab-treated giant cell tumors of bone points to diverging pathways during progression and malignant transformation. Sci Rep 2021; 11:5709. [PMID: 33707617 PMCID: PMC7952552 DOI: 10.1038/s41598-021-85319-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/18/2021] [Indexed: 12/20/2022] Open
Abstract
Giant cell tumor of bone (GCTB) is a locally aggressive lesion of intermediate malignancy. Malignant transformation of GCTB is a rare event. In 2013, the humanized monoclonal antibody against receptor activator of nuclear factor-κb-Ligand (RANKL) denosumab was approved for treatment of advanced GCTB. Since then, several reports have questioned the role of denosumab during occasional malignant transformation of GCTB. We report on three patients with H3F3A-mutated GCTBs, treated with denosumab. The tissue samples were analysed by histomorphology, immunohistochemistry, and in two instances by next generation panel sequencing of samples before and after treatment. One patient had a mutation of ARID2 in the recurrence of the GCTB under treatment with denosumab. One patient developed a pleomorphic sarcoma and one an osteoblastic osteosarcoma during treatment. Sequencing revealed a persisting H3F3A mutation in the osteosarcoma while the pleomorphic sarcoma lost the H3F3A mutation; however, a FGFR1 mutation, both in the recurrence and in the pleomorphic sarcoma persisted. In addition, the pleomorphic sarcoma showed an AKT2 and a NRAS mutation. These data are inconclusive concerning the role denosumab plays in the event of malignant progression/transformation of GCTB and point to diverging pathways of tumor progression of GCTB associated with this treatment.
Collapse
Affiliation(s)
- Marc Hasenfratz
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kevin Mellert
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ralf Marienfeld
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Alexandra von Baer
- Department of Trauma and Orthopaedic Surgery, University of Ulm, Ulm, Germany
| | - Markus Schultheiss
- Department of Trauma and Orthopaedic Surgery, University of Ulm, Ulm, Germany
| | - P D Roitman
- Pathology Department, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - L A Aponte-Tinao
- Institute of Orthopaedics ''Carlos E. Ottolenghi'', Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Burkhard Lehner
- Department of Orthopaedics and Trauma, University of Heidelberg, Heidelberg, Germany
| | - Peter Möller
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | - Thomas F E Barth
- Institute of Pathology, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
26
|
Shrivastava T, Hwang JL, Munshi L, Batra KK, Ahuja K. A case report of mesenchymal scapular FGF secreting tumor: Importance of follow up in tumor induced osteomalacia. Radiol Case Rep 2021; 16:989-993. [PMID: 33664928 PMCID: PMC7900011 DOI: 10.1016/j.radcr.2021.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/03/2023] Open
Abstract
A 46-year-old Asian male with history of atraumatic fracture of femur (requiring the use of a walker), muscle cramps and loosening teeth presents to Endocrine clinic. He had elevated parathyroid hormone, severely low phosphorus, elevated bone-specific ALP, with normal serum and urine calcium. He was found to have elevated FGF 23 levels, but initial functional and anatomic imaging was negative for any localizing tumor. With persistent follow-up and serial imaging, after 3 years, a 2.2 cm right scapular mass was found on MRI. Since it was also visualized on PET/CT, this was suspected to be the cause of his severe hypophosphatemia. He underwent surgical excision and pathology revealed a phosphaturic mesenchymal tumor after excision. Tumor induced osteomalacia is a rare, acquired paraneoplastic syndrome in which a tumor that secretes FGF23 leads to decreased renal phosphate reabsorption, resulting in hypophosphatemia, and bone demineralization. Diagnosis is challenging as common presenting symptoms are nonspecific, but when followed up closely with proper diagnostic modalities, identification & removal of the culprit lesion is usually curative.
Collapse
Affiliation(s)
- Trilok Shrivastava
- John H. Stroger Hospital of Cook County, Chicago, IL, USA
- Corresponding author.
| | | | | | | | - Kriti Ahuja
- John H. Stroger Hospital of Cook County, Chicago, IL, USA
| |
Collapse
|
27
|
Koumakis E, Cormier C, Roux C, Briot K. The Causes of Hypo- and Hyperphosphatemia in Humans. Calcif Tissue Int 2021; 108:41-73. [PMID: 32285168 DOI: 10.1007/s00223-020-00664-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Phosphate homeostasis involves several major organs that are the skeleton, the intestine, the kidney, and parathyroid glands. Major regulators of phosphate homeostasis are parathormone, fibroblast growth factor 23, 1,25-dihydroxyvitamin D, which respond to variations of serum phosphate levels and act to increase or decrease intestinal absorption and renal tubular reabsorption, through the modulation of expression of transcellular transporters at the intestinal and/or renal tubular level. Any acquired or genetic dysfunction in these major organs or regulators may induce hypo- or hyperphosphatemia. The causes of hypo- and hyperphosphatemia are numerous. This review develops the main causes of acquired and genetic hypo- and hyperphosphatemia.
Collapse
Affiliation(s)
- Eugénie Koumakis
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.
| | - Catherine Cormier
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Christian Roux
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Karine Briot
- Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Reference Center for Rare Genetic Bone Disorders, OSCAR Filière, Rheumatology Department, Cochin Hospital, AP-HP Centre-Paris University, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
28
|
Florenzano P, Hartley IR, Jimenez M, Roszko K, Gafni RI, Collins MT. Tumor-Induced Osteomalacia. Calcif Tissue Int 2021; 108:128-142. [PMID: 32504138 DOI: 10.1007/s00223-020-00691-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome caused by tumoral production of fibroblast growth factor 23 (FGF23). The hallmark biochemical features include hypophosphatemia due to renal phosphate wasting, inappropriately normal or frankly low 1,25-dihydroxy-vitamin D, and inappropriately normal or elevated FGF23. TIO is caused by typically small, slow growing, benign phosphaturic mesenchymal tumors (PMTs) that are located almost anywhere in the body from the skull to the feet, in soft tissue or bone. The recent identification of fusion genes in a significant subset of PMTs has provided important insights into PMT tumorigenesis. Although management of this disease may seem straightforward, considering that complete resection of the tumor leads to its cure, locating these often-tiny tumors is frequently a challenge. For this purpose, a stepwise, systematic approach is required. It starts with thorough medical history and physical examination, followed by functional imaging, and confirmation of identified lesions by anatomical imaging. If the tumor resection is not possible, medical therapy with phosphate and active vitamin D is indicated. Novel therapeutic approaches include image-guided tumor ablation and medical treatment with the anti-FGF23 antibody burosumab or the pan-FGFR tyrosine kinase inhibitor, BGJ398/infigratinib. Great progress has been made in the diagnosis and treatment of TIO, and more is likely to come, turning this challenging, debilitating disease into a gratifying cure for patients and their providers.
Collapse
Affiliation(s)
- Pablo Florenzano
- Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 362, Cuarto piso, Santiago, Chile.
| | - Iris R Hartley
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Skeletal Disorders and Mineral Homeostasis Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Macarena Jimenez
- Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 362, Cuarto piso, Santiago, Chile
| | - Kelly Roszko
- Skeletal Disorders and Mineral Homeostasis Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Rachel I Gafni
- Skeletal Disorders and Mineral Homeostasis Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
- Skeletal Disorders and Mineral Homeostasis Section, NIDCR, NIH, 30 Convent Drive, Building 30, Room 228, MSC 4320, Bethesda, MD, 20892-4320, USA.
| |
Collapse
|
29
|
Abstract
Great strides over the past few decades have increased our understanding of the pathophysiology of hypophosphatemic disorders. Phosphate is critically important to a variety of physiologic processes, including skeletal growth, development and mineralization, as well as DNA, RNA, phospholipids, and signaling pathways. Consequently, hypophosphatemic disorders have effects on multiple systems, and may cause a variety of nonspecific signs and symptoms. The acute effects of hypophosphatemia include neuromuscular symptoms and compromise. However, the dominant effects of chronic hypophosphatemia are the effects on musculoskeletal function including rickets, osteomalacia and impaired growth during childhood. While the most common causes of chronic hypophosphatemia in children are congenital, some acquired conditions also result in hypophosphatemia during childhood through a variety of mechanisms. Improved understanding of the pathophysiology of these congenital conditions has led to novel therapeutic approaches. This article will review the pathophysiologic causes of congenital hypophosphatemia, their clinical consequences and medical therapy.
Collapse
Affiliation(s)
- Erik Allen Imel
- Division of Endocrinology, Departments of Medicine and Pediatrics, Indiana University School of Medicine, 1120 West Michigan Street, Gatch Building Room 365, Indianapolis, IN, 46112, USA.
| |
Collapse
|
30
|
Ma Y, Lv H, Wang J, Tan J. Heterozygous mutation of SLC34A1 in patients with hypophosphatemic kidney stones and osteoporosis: a case report. J Int Med Res 2020; 48:300060519896146. [PMID: 32216560 PMCID: PMC7133400 DOI: 10.1177/0300060519896146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hypophosphatemic kidney stones with osteoporosis is a rare disease clinically. Mutations in the solute carrier family 34 member 1 gene (SLC34A1), encoding NaPi-IIa, are considered to be associated with this disease. In this report, a 38-year-old Chinese woman was diagnosed with hypophosphatemic kidney stones with osteoporosis. Her clinical features were recorded, and biochemical tests and DNA sequencing were performed of the proband and her parents. Sequencing revealed that she inherited the c.1753T>C SLC34A1 mutation from her mother. This mutation in exon 13 of SLC34A1 causes a substitution of serine with proline (p. S585P) at position 585 of NaPi-IIa. This is a novel mutation that has not previously been reported, and which shows autosomal dominant inheritance. It is expected to lead to changes in protein function, and we believe that it is the cause of pathology in our patient.
Collapse
Affiliation(s)
- Yuping Ma
- Department of Endocrinology and Metabolism, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Haihong Lv
- Department of Endocrinology and Metabolism, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Jue Wang
- Department of Endocrinology and Metabolism, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| | - Jiaojiao Tan
- Department of Endocrinology and Metabolism, The First Hospital of Lanzhou University, Lanzhou, Gansu, P.R. China
| |
Collapse
|
31
|
Abstract
FGF23 is a phosphotropic hormone produced by the bone. FGF23 works by binding to the FGF receptor-Klotho complex. Klotho is expressed in several limited tissues including the kidney and parathyroid glands. This tissue-restricted expression of Klotho is believed to determine the target organs of FGF23. FGF23 reduces serum phosphate by suppressing the expression of type 2a and 2c sodium-phosphate cotransporters in renal proximal tubules. FGF23 also decreases 1,25-dihydroxyvitamin D levels by regulating the expression of vitamin D-metabolizing enzymes, which results in reduced intestinal phosphate absorption. Excessive actions of FGF23 cause several types of hypophosphatemic rickets/osteomalacia characterized by impaired mineralization of bone matrix. In contrast, deficient actions of FGF23 result in hyperphosphatemic tumoral calcinosis with high 1,25-dihydroxyvitamin D levels. These results indicate that FGF23 is a physiological regulator of phosphate and vitamin D metabolism and indispensable for the maintenance of serum phosphate levels.
Collapse
|
32
|
Litaiem N, Chabchoub I, Bacha T, Slouma M, Zeglaoui F, Khachemoune A. Rickets in association with skin diseases and conditions: A review with emphasis on screening and prevention. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:339-350. [PMID: 32645757 DOI: 10.1111/phpp.12590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/01/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rickets is a common disease worldwide. In the developed world, its prevalence dramatically decreased but still diagnosed in at-risk populations. The skin plays a critical role in vitamin D synthesis. Therefore, several skin diseases, especially keratinization disorders, could lead to impaired vitamin D metabolism and vitamin D deficient rickets. OBJECTIVE The article aimed to summarize the current knowledge of skin diseases and conditions associated with rickets. METHODS To examine the association between rickets and skin diseases, we performed a systematic review of the literature using PubMed database. The search included studies published from the database inception to August 2019. RESULTS A total number of 75 articles were included. Identified conditions associated with rickets were ichthyosis being a more common skin diseases, alopecia, epidermal and melanocytic nevi, xeroderma pigmentosum, mastocytosis, psoriasis, and atopic dermatitis. Three types of rickets were identified: vitamin D-dependent rickets, hypocalcemic vitamin D-dependent rickets type 2, and hypophosphatemic rickets. Cutaneous skeletal hypophosphatemia syndrome is a newly described and under-recognized condition. It is defined by the association of epidermal or melanocytic nevi, hypophosphatemic rickets, and elevated levels of fibroblast growth factor 23. Rickets in patients with ichthyosis was mainly due to impaired ability of ichthyotic skin to synthesize vitamin D, poor UV penetration of the skin caused by keratinocyte proliferation, and dark phototype. The latter may be considered a risk factor for rickets in patients with ichthyosis. CONCLUSION Despite its rarity, these associations should be properly recognized by dermatologists. Early diagnosis of rickets is important to prevent growth retardation and skeletal deformities.
Collapse
Affiliation(s)
- Noureddine Litaiem
- Department of Dermatology, Charles Nicolle Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Ines Chabchoub
- Department of Dermatology, Charles Nicolle Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Takwa Bacha
- Department of Dermatology, Charles Nicolle Hospital, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis el Manar, Tunis, Tunisia
| | - Maroua Slouma
- Faculty of Medicine of Tunis, University of Tunis el Manar, Tunis, Tunisia
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
| | - Faten Zeglaoui
- Department of Dermatology, Charles Nicolle Hospital, Tunis, Tunisia
- Department of Rheumatology, Military Hospital, Tunis, Tunisia
| | - Amor Khachemoune
- State University of New York Downstate and Veterans Affairs Medical Center, Brooklyn, NY, USA
| |
Collapse
|
33
|
Mestach L, Polubothu S, Calder A, Denayer E, Gholam K, Legius E, Levtchenko E, Van Laethem A, Brems H, Kinsler VA, Morren MA. Keratinocytic epidermal nevi associated with localized fibro-osseous lesions without hypophosphatemia. Pediatr Dermatol 2020; 37:890-895. [PMID: 32662096 DOI: 10.1111/pde.14254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 05/07/2020] [Accepted: 05/30/2020] [Indexed: 11/28/2022]
Abstract
Keratinocytic epidermal nevi (KEN) are characterized clinically by permanent hyperkeratosis in the distribution of Blaschko's lines and histologically by hyperplasia of epidermal keratinocytes. KEN with underlying RAS mutations have been associated with hypophosphatemic rickets and dysplastic bone lesions described as congenital cutaneous skeletal hypophosphatemia syndrome. Here, we describe two patients with keratinocytic epidermal nevi, in one associated with a papular nevus spilus, who presented with distinct localized congenital fibro-osseous lesions in the lower leg, diagnosed on both radiology and histology as osteofibrous dysplasia, in the absence of hypophosphatemia or rickets, or significantly raised FGF23 levels but with distinct mosaic HRAS mutations. This expands the spectrum of cutaneous/skeletal mosaic RASopathies and alerts clinicians to the importance of evaluating for bony disease even in the absence of bone profile abnormalities.
Collapse
Affiliation(s)
- Lien Mestach
- Department of Dermatology, University Hospitals of Leuven, Leuven, Belgium
| | - Satyamaanasa Polubothu
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK.,Paediatric Dermatology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Alistair Calder
- Paediatric Radiology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Ellen Denayer
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Karolina Gholam
- Paediatric Dermatology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Eric Legius
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Elena Levtchenko
- Pediatric Nephrology, University Hospitals of Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - An Van Laethem
- Department of Dermatology, University Hospitals of Leuven, Leuven, Belgium
| | - Hilde Brems
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
| | - Veronica A Kinsler
- Genetics and Genomic Medicine, UCL GOS Institute of Child Health, London, UK.,Paediatric Dermatology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Marie-Anne Morren
- Department of Dermatology, University Hospitals of Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Castel P, Rauen KA, McCormick F. The duality of human oncoproteins: drivers of cancer and congenital disorders. Nat Rev Cancer 2020; 20:383-397. [PMID: 32341551 PMCID: PMC7787056 DOI: 10.1038/s41568-020-0256-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
Abstract
Human oncoproteins promote transformation of cells into tumours by dysregulating the signalling pathways that are involved in cell growth, proliferation and death. Although oncoproteins were discovered many years ago and have been widely studied in the context of cancer, the recent use of high-throughput sequencing techniques has led to the identification of cancer-associated mutations in other conditions, including many congenital disorders. These syndromes offer an opportunity to study oncoprotein signalling and its biology in the absence of additional driver or passenger mutations, as a result of their monogenic nature. Moreover, their expression in multiple tissue lineages provides insight into the biology of the proto-oncoprotein at the physiological level, in both transformed and unaffected tissues. Given the recent paradigm shift in regard to how oncoproteins promote transformation, we review the fundamentals of genetics, signalling and pathogenesis underlying oncoprotein duality.
Collapse
Affiliation(s)
- Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Katherine A Rauen
- MIND Institute, Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
de la Cerda-Ojeda F, González-Rodríguez JD, Madariaga L, Martínez-Díaz-Guerra G, Matoses-Ruipérez ML. Hypophosphataemic Rickets: Similar Phenotype of Different Diseases. Adv Ther 2020; 37:80-88. [PMID: 32236875 DOI: 10.1007/s12325-019-01182-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 12/13/2022]
Abstract
Hypophosphataemic rickets (HR) is a group of rare disorders caused by excessive renal phosphate wasting in which the participation of fibroblast growth factor 23 (FGF23) can be prominent. These diseases pose therapeutic challenges with important consequences for growth and bone development in childhood, with higher risk of fractures and poorer bone healing, dental problems, and nephrolithiasis or nephrocalcinosis. In some cases, the diagnostic delay can be very long; laboratory findings and an exhaustive anamnesis could help distinguish between various pathologies, and FGF23 values-although currently not routinely measured-have implications for the differential diagnosis. Genetic testing is encouraged, especially in sporadic or insidious cases. In this review we discuss the clinical features of HR, with a particular emphasis on the differential diagnosis and the therapeutic implications.
Collapse
|
36
|
Welfringer-Morin A, Pinto G, Baujat G, Vial Y, Hadj-Rabia S, Bodemer C, Boccara O. Hypophosphatemic rickets: A rare complication of congenital melanocytic nevus syndrome. Pediatr Dermatol 2020; 37:541-544. [PMID: 32157705 DOI: 10.1111/pde.14139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report the case of a child who presented with a giant melanocytic nevus with numerous satellite nevi at birth and developed hypophosphatemic rickets due to excessive secretion of the FGF23 hormone. A NRAS c.182A>G (Q61R) mutation was identified in the lesional skin. The functional outcome was favorable with medical treatment.
Collapse
Affiliation(s)
- Anne Welfringer-Morin
- Dermatology and Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), APHP, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Université de Paris, Paris, France
| | - Graziella Pinto
- Department of Endocrinology and Diabetology, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Université de Paris, Paris, France
| | - Geneviève Baujat
- Department of Genetics, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Necker-Enfants Malades, Université de Paris, Paris, France
| | - Yoann Vial
- Department of Genetics, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France.,INSERM UMR S1131, Institut Universitaire d'Hématologie, Université de Paris, Paris, France
| | - Smail Hadj-Rabia
- Dermatology and Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), APHP, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Université de Paris, Paris, France
| | - Christine Bodemer
- Dermatology and Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), APHP, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Université de Paris, Paris, France
| | - Olivia Boccara
- Dermatology and Reference Center for Genodermatoses and Rare Skin Diseases (MAGEC), APHP, Institut Imagine, Hôpital Universitaire Necker-Enfants Malades, Université de Paris, Paris, France
| |
Collapse
|
37
|
de Castro LF, Ovejero D, Boyce AM. DIAGNOSIS OF ENDOCRINE DISEASE: Mosaic disorders of FGF23 excess: Fibrous dysplasia/McCune-Albright syndrome and cutaneous skeletal hypophosphatemia syndrome. Eur J Endocrinol 2020; 182:R83-R99. [PMID: 32069220 PMCID: PMC7104564 DOI: 10.1530/eje-19-0969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
Fibrous dysplasia/McCune-Albright Syndrome (FD/MAS), arising from gain-of-function mutations in Gαs, and cutaneous skeletal hypophosphatemia syndrome (CSHS), arising from gain-of-function mutations in the Ras/MAPK pathway, are strikingly complex, mosaic diseases with overlapping phenotypes. Both disorders are defined by mosaic skin and bone involvement, and both are complicated by increased FGF23 production. These similarities have frequently led to mis-diagnoses, primarily in patients with CSHS who are often assumed to have FD/MAS. The intriguing similarities in skeletal involvement in these genetically distinct disorders have led to novel insights into FGF23 physiology, making an understanding of FD/MAS and CSHS relevant to both clinicians and researchers interested in bone and endocrine disorders. This review will give an overview of FD/MAS and CSHS, focusing on the roles of mosaicism and FGF23 in the pathogenesis and clinical presentation of these disorders.
Collapse
Affiliation(s)
- Luis F de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Diana Ovejero
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
- Musculoskeletal Research Unit, Hospital del Mar Institute of Medical Investigation (IMIM), Barcelona, Spain
- National Research Council, Institute of Clinical Physiology, Lecce, Italy
| | - Alison M Boyce
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Abstract
Genodermatoses are inherited disorders presenting with cutaneous manifestations with or without the involvement of other systems. The majority of these disorders, particularly in cases that present with a cutaneous patterning, may be explained in the context of genetic mosaicism. Despite the barriers to the genetic analysis of mosaic disorders, next-generation sequencing has led to a substantial progress in understanding their pathogenesis, which has significant implications for the clinical management and genetic counseling. Advances in paired and deep sequencing technologies in particular have made the study of mosaic disorders more feasible. In this review, we provide an overview of genetic mosaicism as well as mosaic cutaneous disorders and the techniques required to study them.
Collapse
Affiliation(s)
- Shayan Cheraghlou
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Young Lim
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Keith A Choate
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA; Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
39
|
Hawley S, Shaw NJ, Delmestri A, Prieto-Alhambra D, Cooper C, Pinedo-Villanueva R, Javaid MK. Prevalence and Mortality of Individuals With X-Linked Hypophosphatemia: A United Kingdom Real-World Data Analysis. J Clin Endocrinol Metab 2020; 105:5626435. [PMID: 31730177 PMCID: PMC7025948 DOI: 10.1210/clinem/dgz203] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND X-linked hypophosphatemia (XLH) is a rare multisystemic disease with a prominent musculoskeletal phenotype. We aim here to improve understanding of the prevalence of XLH across the life course and of overall survival among people with XLH. METHODS This was a population-based cohort study using a large primary care database in the United Kingdom (UK) from 1995 to 2016. XLH cases were matched by age, gender, and practice to up to 4 controls. Trends in prevalence over the study period were estimated (stratified by age) and survival among cases was compared with that of controls. FINDINGS From 522 potential cases, 122 (23.4%) were scored as at least possible XLH, while 62 (11.9%) were classified as highly likely or likely (conservative definition). In main analyses, prevalence (95% CI) increased from 3.1 (1.5-6.7) per million in 1995-1999 to 14.0 (10.8-18.1) per million in 2012-2016. Corresponding estimates using the conservative definition were 3.0 (1.4-6.5) to 8.1 (5.8-11.4). Nine (7.4%) of the possible cases died during follow-up, at median age of 64 years. Fourteen (2.9%) of the controls died at median age of 72.5 years. Mortality was significantly increased in those with possible XLH compared with controls (hazard ratio [HR] 2.93; 95% CI, 1.24-6.91). Likewise, among those with likely or highly likely XLH (HR 6.65; 1.44-30.72). CONCLUSIONS We provide conservative estimates of the prevalence of XLH in children and adults within the UK. There was an unexpected increase in mortality in later life, which may have implications for other fibroblast growth factor 23-related disorders.
Collapse
Affiliation(s)
- Samuel Hawley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Nick J Shaw
- Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham, UK
- Institute of Metabolism & Systems Research, University of Birmingham, Birmingham, UK
| | - Antonella Delmestri
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Daniel Prieto-Alhambra
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- GREMPAL Research Group, Idiap Jordi Gol and CIBERFes, Universitat Autònoma de Barcelona and Instituto de Salud Carlos III, Barcelona, Spain
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Rafael Pinedo-Villanueva
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - M Kassim Javaid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
- Correspondence: Muhammad Kassim Javaid, MBBS, BMedSci, FRCP. PhD, The Botnar Research Centre, NDORMS, University of Oxford, Windmill Road, Oxford, OX3 7YD, UK. E-mail:
| |
Collapse
|
40
|
Florenzano P, Cipriani C, Roszko KL, Fukumoto S, Collins MT, Minisola S, Pepe J. Approach to patients with hypophosphataemia. Lancet Diabetes Endocrinol 2020; 8:163-174. [PMID: 31924563 DOI: 10.1016/s2213-8587(19)30426-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022]
Abstract
Phosphate metabolism is an evolving area of basic and clinical research. In the past 15 years, knowledge on disturbances of phosphate homoeostasis has expanded, as has the discovery of new targeted therapies. Hypophosphataemia might be the biochemical finding in several diseases, and its clinical evaluation should initially focus on the assessment of pathophysiological mechanisms leading to low serum phosphate concentrations. Clinical consequences of hypophosphataemia can involve multiple organ systems and vary depending on several factors, the most important being the underlying disorder. This Review focuses on the approach to patients with hypophosphataemia and how underlying pathophysiological mechanisms should be understood in the evaluation of differential diagnosis. We define an algorithm for the assessment of hypophosphataemia and review the most up-to-date literature on specific therapies. Continuous research in this area will result in a better understanding and management of patients with hypophosphataemia.
Collapse
Affiliation(s)
- Pablo Florenzano
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; Skeletal Diseases and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Cristiana Cipriani
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Rome, Italy.
| | - Kelly L Roszko
- Skeletal Diseases and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Seiji Fukumoto
- Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Michael T Collins
- Skeletal Diseases and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Salvatore Minisola
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Rome, Italy
| | - Jessica Pepe
- Department of Internal Medicine and Medical Disciplines, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
41
|
Sahoo SK, Kushwaha P, Bharti N, Khedgikar V, Trivedi R, Agrawal V, Ahmad N, Zaidi G, Pal L, Ito N, Bhatia E. Elevated FGF23 in a patient with hypophosphatemic osteomalacia associated with neurofibromatosis type 1. Bone 2019; 129:115055. [PMID: 31476437 DOI: 10.1016/j.bone.2019.115055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/10/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Abstract
CONTEXT The mechanism behind hypophosphatemia in the setting of neurofibromatosis type 1 (NF1) is not known. We describe a possible role of fibroblast growth factor-23 (FGF23) in the pathophysiology of hypophosphatemia in a patient with NF1. CASE DESCRIPTION A 34-year woman with NF1 presented with severe hypophosphatemia, osteomalacia, and elevated plasma FGF23. The patient had considerable improvement on replacement of oral phosphate. Two Ga68 DOTANOC PET-CT scans over a period of 2 years failed to detect any localized uptake. Immuno-staining for FGF23 was absent in the neural-derived tumour cells of the neurofibromas in the proband. CONCLUSION The patient with NF1 had elevated circulating FGF23. Tumour cells in the neurofibroma tissues did not stain for FGF23 on IHC. It is unlikely for neurofibromas to contribute to high circulating FGF23 levels in the proband.
Collapse
Affiliation(s)
- Saroj Kumar Sahoo
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Priyanka Kushwaha
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Niharika Bharti
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Vikram Khedgikar
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Vinita Agrawal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Naseer Ahmad
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Ghazala Zaidi
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Lily Pal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Nobuaki Ito
- Division of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Eesh Bhatia
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
42
|
Garren B, Stephan M, Hogue JS. NRAS associated RASopathy and embryonal rhabdomyosarcoma. Am J Med Genet A 2019; 182:195-200. [PMID: 31697451 DOI: 10.1002/ajmg.a.61395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 01/29/2023]
Abstract
RASopathies are a group of phenotypically overlapping disorders that arise from dysregulation of the RAS/MAPK pathway. These disorders include Noonan syndrome, Costello syndrome, cardiofaciocutaneous syndrome, and neurofibromatosis-Type 1. While somatic mutations in the three human Ras genes (KRAS, HRAS, and NRAS) are a common finding in a variety of cancers, germline mutations in each of the these genes cause developmental RASopathy phenotypes with mutations in specific genes typically correlating with specific phenotypes. We present the case of a germline heterozygous NRAS mutation producing a severe phenotype involving embryonal rhabdomyosarcoma, severe intellectual disability, and numerous melanocytic nevi in addition to more typical manifestations of Noonan syndrome. Additionally, the specific p.G12R NRAS mutation in this case is a common somatic mutation in cancer cells, and analysis of previously reported NRAS-RASopathy cases suggests that mutations at traditionally oncogenic codons are associated with elevated cancer risk not present with mutations at other sites.
Collapse
Affiliation(s)
- Benjamin Garren
- Department of Pediatrics, Madigan Army Medical Center, Tacoma, Washington
| | - Mark Stephan
- Department of Pediatrics, Madigan Army Medical Center, Tacoma, Washington
| | - Jacob S Hogue
- Department of Pediatrics, Madigan Army Medical Center, Tacoma, Washington
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW To review the differential diagnosis of low bone mineral density (BMD). RECENT FINDINGS Osteoporosis is the most common cause of low BMD in adults; however, non-osteoporotic causes of low BMD should be considered in the differential diagnosis of patients with low BMD. Mild osteogenesis imperfecta, osteomalacia, and mineral and bone disorder of chronic kidney disease as well as several other rare diseases can be characterized by low BMD. This review summarizes the differential diagnosis of low BMD. It is important to differentiate osteoporosis from other causes of low BMD since treatment regimens can vary tremendously between these different disease processes. In fact, some treatments for osteoporosis could worsen or exacerbate the mineral abnormalities in other causes of low BMD.
Collapse
Affiliation(s)
- Smita Jha
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Section on Congenital Disorders, National Institutes of Health Clinical Center, 10 Center Drive, Bldg. 10-CRC, Room 1-5362, MSC-1504, Bethesda, MD, 20892, USA.
| | - Marquis Chapman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kelly Roszko
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
44
|
Abstract
Fibroblast growth factor 23 (FGF23), one of the endocrine fibroblast growth factors, is a principal regulator in the maintenance of serum phosphorus concentration. Binding to its cofactor αKlotho and a fibroblast growth factor receptor is essential for its activity. Its regulation and interaction with other factors in the bone-parathyroid-kidney axis is complex. FGF23 reduces serum phosphorus concentration through decreased reabsorption of phosphorus in the kidney and by decreasing 1,25 dihydroxyvitamin D (1,25(OH)2D) concentrations. Various FGF23-mediated disorders of renal phosphate wasting share similar clinical and biochemical features. The most common of these is X-linked hypophosphatemia (XLH). Additional disorders of FGF23 excess include autosomal dominant hypophosphatemic rickets, autosomal recessive hypophosphatemic rickets, fibrous dysplasia, and tumor-induced osteomalacia. Treatment is challenging, requiring careful monitoring and titration of dosages to optimize effectiveness and to balance side effects. Conventional therapy for XLH and other disorders of FGF23-mediated hypophosphatemia involves multiple daily doses of oral phosphate salts and active vitamin D analogs, such as calcitriol or alfacalcidol. Additional treatments may be used to help address side effects of conventional therapy such as thiazides to address hypercalciuria or nephrocalcinosis, and calcimimetics to manage hyperparathyroidism. The recent development and approval of an anti-FGF23 antibody, burosumab, for use in XLH provides a novel treatment option.
Collapse
Affiliation(s)
- Anisha Gohil
- Indiana University School of Medicine, Riley Hospital for Children, Fellow, Endocrinology and Diabetes, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, USA, E-mail:
| | - Erik A Imel
- Indiana University School of Medicine, Riley Hospital for Children, Associate Professor of Medicine and Pediatrics, 1120 West Michigan Street, CL 459, Indianapolis, IN 46202, USA
| |
Collapse
|
45
|
Imel EA, Biggin A, Schindeler A, Munns CF. FGF23, Hypophosphatemia, and Emerging Treatments. JBMR Plus 2019; 3:e10190. [PMID: 31485552 PMCID: PMC6715782 DOI: 10.1002/jbm4.10190] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 01/03/2023] Open
Abstract
FGF23 is an important hormonal regulator of phosphate homeostasis. Together with its co-receptor Klotho, it modulates phosphate reabsorption and both 1α-hydroxylation and 24-hydroxylation in the renal proximal tubules. The most common FGF23-mediated hypophosphatemia is X-linked hypophosphatemia (XLH), caused by mutations in the PHEX gene. FGF23-mediated forms of hypophosphatemia are characterized by phosphaturia and low or low-normal calcitriol concentrations, and unlike nutritional rickets, these cannot be cured with nutritional vitamin D supplementation. Autosomal dominant and autosomal recessive forms of FGF23-mediated hypophosphatemias show a similar pathophysiology, despite a variety of different underlying genetic causes. An excess of FGF23 activity has also been associated with a number of other conditions causing hypophosphatemia, including tumor-induced osteomalacia, fibrous dysplasia of the bone, and cutaneous skeletal hypophosphatemia syndrome. Historically phosphate supplementation and therapy using analogs of highly active vitamin D (eg, calcitriol, alfacalcidol, paricalcitol, eldecalcitol) have been used to manage conditions involving hypophosphatemia; however, recently a neutralizing antibody for FGF23 (burosumab) has emerged as a promising treatment agent for FGF23-mediated disorders. This review discusses the progression of clinical trials for burosumab for the treatment of XLH and its recent availability for clinical use. Burosumab may have potential for treating other conditions associated with FGF23 overactivity, but these are not yet supported by trial data. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Erik A Imel
- Division of EndocrinologyIndiana University School of Medicine, Indianapolis, INUSA
| | - Andrew Biggin
- The University of Sydney Children's Hospital Westmead Clinical School, University of SydneySydneyAustralia
- Department of EndocrinologyThe Children's Hospital at WestmeadWestmeadAustralia
| | - Aaron Schindeler
- The University of Sydney Children's Hospital Westmead Clinical School, University of SydneySydneyAustralia
- Orthopaedic Research Unit, The Children's Hospital at WestmeadWestmeadAustralia
| | - Craig F Munns
- The University of Sydney Children's Hospital Westmead Clinical School, University of SydneySydneyAustralia
- Department of EndocrinologyThe Children's Hospital at WestmeadWestmeadAustralia
| |
Collapse
|
46
|
Cáceres JJ, Paccanaro A. Disease gene prediction for molecularly uncharacterized diseases. PLoS Comput Biol 2019; 15:e1007078. [PMID: 31276496 PMCID: PMC6636748 DOI: 10.1371/journal.pcbi.1007078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 07/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Network medicine approaches have been largely successful at increasing our knowledge of molecularly characterized diseases. Given a set of disease genes associated with a disease, neighbourhood-based methods and random walkers exploit the interactome allowing the prediction of further genes for that disease. In general, however, diseases with no known molecular basis constitute a challenge. Here we present a novel network approach to prioritize gene-disease associations that is able to also predict genes for diseases with no known molecular basis. Our method, which we have called Cardigan (ChARting DIsease Gene AssociatioNs), uses semi-supervised learning and exploits a measure of similarity between disease phenotypes. We evaluated its performance at predicting genes for both molecularly characterized and uncharacterized diseases in OMIM, using both weighted and binary interactomes, and compared it with state-of-the-art methods. Our tests, which use datasets collected at different points in time to replicate the dynamics of the disease gene discovery process, prove that Cardigan is able to accurately predict disease genes for molecularly uncharacterized diseases. Additionally, standard leave-one-out cross validation tests show how our approach outperforms state-of-the-art methods at predicting genes for molecularly characterized diseases by 14%-65%. Cardigan can also be used for disease module prediction, where it outperforms state-of-the-art methods by 87%-299%.
Collapse
Affiliation(s)
- Juan J. Cáceres
- Centre for Systems and Synthetic Biology & Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Alberto Paccanaro
- Centre for Systems and Synthetic Biology & Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
47
|
Abstract
The discoveries of new genes underlying genetic skin diseases have occurred at a rapid pace, supported by advances in DNA sequencing technologies. These discoveries have translated to an improved understanding of disease mechanisms at a molecular level and identified new therapeutic options based on molecular targets. This article highlights just a few of these recent discoveries for a diverse group of skin diseases, including tuberous sclerosis complex, ichthyoses, overgrowth syndromes, interferonopathies, and basal cell nevus syndrome, and how this has translated into novel targeted therapies and improved patient care.
Collapse
|
48
|
Chacon‐Camacho OF, Lopez‐Moreno D, Morales‐Sanchez MA, Hofmann E, Pacheco‐Quito M, Wieland I, Cortes‐Gonzalez V, Villanueva‐Mendoza C, Zenker M, Zenteno JC. Expansion of the phenotypic spectrum and description of molecular findings in a cohort of patients with oculocutaneous mosaic RASopathies. Mol Genet Genomic Med 2019; 7:e625. [PMID: 30891959 PMCID: PMC6503218 DOI: 10.1002/mgg3.625] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Postzygotic KRAS, HRAS, NRAS, and FGFR1 mutations result in a group of mosaic RASopathies characterized by related developmental anomalies in eye, skin, heart, and brain. These oculocutaneous disorders include oculoectodermal syndrome (OES) encephalo-cranio-cutaneous lipomatosis (ECCL), and Schimmelpenning-Feuerstein-Mims syndrome (SFMS). Here, we report the results of the clinical and molecular characterization of a novel cohort of patients with oculocutaneous mosaic RASopathies. METHODS Two OES, two ECCL, and two SFMS patients were ascertained in the study. In addition, two subjects with unilateral isolated epibulbar dermoids were also enrolled. Molecular analysis included PCR amplification and Sanger sequencing of KRAS, HRAS, NRAS, and FGFR1 genes in DNA obtained from biopsies (skin/epibulbar dermoids), buccal mucosa, and blood leukocytes. Massive parallel sequencing was employed in two cases with low-level mosaicism. RESULTS In DNA from biopsies, mosaicism for pathogenic variants, including KRAS p.Ala146Thr in two OES subjects, FGFR1 p.Asn546Lys and KRAS p.Ala146Val in ECCL patients, and KRAS p.Gly12Asp in both SFMS patients, was demonstrated. No mutations were shown in DNA from conjunctival lesions in two subjects with isolated epibubar dermoids. CONCLUSION Our study allowed the expansion of the clinical spectrum of mosaic RASopathies and supports that mosaicism for recurrent mutations in KRAS and FGFR1 is a commonly involved mechanism in these rare oculocutaneous anomalies.
Collapse
Affiliation(s)
| | - Daniel Lopez‐Moreno
- Department of GeneticsInstitute of Ophthalmology “Conde de Valenciana”Mexico CityMexico
| | | | - Enriqueta Hofmann
- Department of GlaucomaInstitute of Ophthalmology “Conde de Valenciana”Mexico CityMexico
| | | | - Ilse Wieland
- Institute of Human Genetics, University HospitalMagdeburgGermany
| | - Vianney Cortes‐Gonzalez
- Department of GeneticsHospital "Dr. Luis Sanchez Bulnes", Asociación para Evitar la Ceguera en MéxicoMexico CityMexico
| | - Cristina Villanueva‐Mendoza
- Department of GeneticsHospital "Dr. Luis Sanchez Bulnes", Asociación para Evitar la Ceguera en MéxicoMexico CityMexico
| | - Martin Zenker
- Institute of Human Genetics, University HospitalMagdeburgGermany
| | - Juan Carlos Zenteno
- Department of GeneticsInstitute of Ophthalmology “Conde de Valenciana”Mexico CityMexico
- Department of Biochemistry, Faculty of MedicineUNAMMexico CityMexico
| |
Collapse
|
49
|
Posey JE, O'Donnell-Luria AH, Chong JX, Harel T, Jhangiani SN, Coban Akdemir ZH, Buyske S, Pehlivan D, Carvalho CMB, Baxter S, Sobreira N, Liu P, Wu N, Rosenfeld JA, Kumar S, Avramopoulos D, White JJ, Doheny KF, Witmer PD, Boehm C, Sutton VR, Muzny DM, Boerwinkle E, Günel M, Nickerson DA, Mane S, MacArthur DG, Gibbs RA, Hamosh A, Lifton RP, Matise TC, Rehm HL, Gerstein M, Bamshad MJ, Valle D, Lupski JR. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet Med 2019; 21:798-812. [PMID: 30655598 PMCID: PMC6691975 DOI: 10.1038/s41436-018-0408-7] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 12/05/2018] [Indexed: 12/16/2022] Open
Abstract
Identifying genes and variants contributing to rare disease phenotypes and Mendelian conditions informs biology and medicine, yet potential phenotypic consequences for variation of >75% of the ~20,000 annotated genes in the human genome are lacking. Technical advances to assess rare variation genome-wide, particularly exome sequencing (ES), enabled establishment in the United States of the National Institutes of Health (NIH)-supported Centers for Mendelian Genomics (CMGs) and have facilitated collaborative studies resulting in novel "disease gene" discoveries. Pedigree-based genomic studies and rare variant analyses in families with suspected Mendelian conditions have led to the elucidation of hundreds of novel disease genes and highlighted the impact of de novo mutational events, somatic variation underlying nononcologic traits, incompletely penetrant alleles, phenotypes with high locus heterogeneity, and multilocus pathogenic variation. Herein, we highlight CMG collaborative discoveries that have contributed to understanding both rare and common diseases and discuss opportunities for future discovery in single-locus Mendelian disorder genomics. Phenotypic annotation of all human genes; development of bioinformatic tools and analytic methods; exploration of non-Mendelian modes of inheritance including reduced penetrance, multilocus variation, and oligogenic inheritance; construction of allelic series at a locus; enhanced data sharing worldwide; and integration with clinical genomics are explored. Realizing the full contribution of rare disease research to functional annotation of the human genome, and further illuminating human biology and health, will lay the foundation for the Precision Medicine Initiative.
Collapse
Affiliation(s)
- Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Anne H O'Donnell-Luria
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jessica X Chong
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Tamar Harel
- Department of Genetic and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Shalini N Jhangiani
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Steven Buyske
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Department of Statistics, Rutgers University, Piscataway, NJ, USA
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Samantha Baxter
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratory, Houston, TX, USA
| | - Nan Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sushant Kumar
- Computational Biology and Bioinformatics Program, Yale University Medical School, New Haven, CT, USA
| | - Dimitri Avramopoulos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Kimberly F Doheny
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Dane Witmer
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
- Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Corinne Boehm
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna M Muzny
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric Boerwinkle
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA
| | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Shrikant Mane
- Yale Center for Genome Analysis, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Richard P Lifton
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Tara C Matise
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Heidi L Rehm
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Gerstein
- Computational Biology and Bioinformatics Program, Yale University Medical School, New Haven, CT, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
50
|
Ulrich M, Tinschert S, Siebert E, Franke I, Tüting T, Ulrich J, Schanze D, Wieland I, Zenker M. Detection of a multilineage mosaic NRAS mutation c.181C>A (p.Gln61Lys) in an individual with a complex congenital nevus syndrome. Pigment Cell Melanoma Res 2018; 32:470-473. [DOI: 10.1111/pcmr.12761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian Ulrich
- Institute of Human Genetics University Hospital Otto‐von‐Guericke‐University Magdeburg Germany
| | - Sigrid Tinschert
- Medical Faculty Carl Gustav Carus Technical University of Dresden Dresden Germany
- Division of Human Genetics Medical University of Innsbruck Innsbruck Austria
| | | | - Ingolf Franke
- Department of Dermatology University Hospital Magdeburg Magdeburg Germany
| | - Thomas Tüting
- Department of Dermatology University Hospital Magdeburg Magdeburg Germany
| | - Jens Ulrich
- Klinik für Dermatologie und Venerologie Harzklinikum Dorothea Christiane Erxleben Quedlinburg Germany
| | - Denny Schanze
- Institute of Human Genetics University Hospital Otto‐von‐Guericke‐University Magdeburg Germany
| | - Ilse Wieland
- Institute of Human Genetics University Hospital Otto‐von‐Guericke‐University Magdeburg Germany
| | - Martin Zenker
- Institute of Human Genetics University Hospital Otto‐von‐Guericke‐University Magdeburg Germany
| |
Collapse
|