1
|
Stevenson MJ, Phanor SK, Patel U, Gisselbrecht SS, Bulyk ML, O'Brien LL. Altered binding affinity of SIX1-Q177R correlates with enhanced WNT5A and WNT pathway effector expression in Wilms tumor. Dis Model Mech 2023; 16:dmm050208. [PMID: 37815464 PMCID: PMC10668032 DOI: 10.1242/dmm.050208] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/27/2023] [Indexed: 10/11/2023] Open
Abstract
Wilms tumors present as an amalgam of varying proportions of tissues located within the developing kidney, one being the nephrogenic blastema comprising multipotent nephron progenitor cells (NPCs). The recurring missense mutation Q177R in NPC transcription factors SIX1 and SIX2 is most correlated with tumors of blastemal histology and is significantly associated with relapse. Yet, the transcriptional regulatory consequences of SIX1/2-Q177R that might promote tumor progression and recurrence have not been investigated extensively. Utilizing multiple Wilms tumor transcriptomic datasets, we identified upregulation of the gene encoding non-canonical WNT ligand WNT5A in addition to other WNT pathway effectors in SIX1/2-Q177R mutant tumors. SIX1 ChIP-seq datasets from Wilms tumors revealed shared binding sites for SIX1/SIX1-Q177R within a promoter of WNT5A and at putative distal cis-regulatory elements (CREs). We demonstrate colocalization of SIX1 and WNT5A in Wilms tumor tissue and utilize in vitro assays that support SIX1 and SIX1-Q177R activation of expression from the WNT5A CREs, as well as enhanced binding affinity within the WNT5A promoter that may promote the differential expression of WNT5A and other WNT pathway effectors associated with SIX1-Q177R tumors.
Collapse
Affiliation(s)
- Matthew J. Stevenson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sabrina K. Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Urvi Patel
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lori L. O'Brien
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
2
|
Baiken Y, Markhametova Z, Ashimova A, Zhulamanova A, Nogaibayeva A, Kozina L, Matkarimov B, Aituov B, Gaipov A, Myngbay A. Elevated Levels of Plasma Collagen Triple Helix Repeat Containing 1 (CTHRC1) Is Strongly Associated with eGFR and Albuminuria in Chronic Kidney Disease. Medicina (B Aires) 2023; 59:medicina59040651. [PMID: 37109608 PMCID: PMC10146339 DOI: 10.3390/medicina59040651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Background: Chronic kidney disease (CKD) has various etiologies, making it impossible to fully understand its complex pathophysiology. Elevated levels of plasma creatinine, proteinuria, and albuminuria and declined eGFR are traits observed in CKD patients. The current study attempts to highlight the collagen triple helix repeat containing 1 (CTHRC1) protein as a putative blood biomarker for CKD in addition to existing recognized indicators of CKD progression. Methods: A total of 26 CKD patients and 18 healthy controls were enrolled in this study. Clinical characteristics and complete blood and biochemical analyses were collected, and human ELISA kits were used to detect possible CKD biomarkers. Results: The study’s findings showed that CTHRC1 correlates with key clinical markers of kidney function such as 24 h urine total protein, creatinine, urea, and uric acid. In addition, CTHRC1 demonstrated a strong significant difference (p ≤ 0.0001) between the CKD and control group. Conclusions: Our research demonstrates that the plasma level of CTHRC1 can distinguish between those with CKD and healthy patients. Plasma CTHRC1 levels may aid in the diagnosis of CKD given the current state of knowledge, and these results call for further investigation in a wider, more diverse patient group.
Collapse
|
3
|
Alves MBR, Girardet L, Augière C, Moon KH, Lavoie-Ouellet C, Bernet A, Soulet D, Calvo E, Teves ME, Beauparlant CJ, Droit A, Bastien A, Robert C, Bok J, Hinton BT, Belleannée C. Hedgehog signaling regulates Wolffian duct development through the primary cilium†. Biol Reprod 2023; 108:241-257. [PMID: 36525341 PMCID: PMC9930401 DOI: 10.1093/biolre/ioac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Primary cilia play pivotal roles in embryonic patterning and organogenesis through transduction of the Hedgehog signaling pathway (Hh). Although mutations in Hh morphogens impair the development of the gonads and trigger male infertility, the contribution of Hh and primary cilia in the development of male reproductive ductules, including the epididymis, remains unknown. From a Pax2Cre; IFT88fl/fl knock-out mouse model, we found that primary cilia deletion is associated with imbalanced Hh signaling and morphometric changes in the Wolffian duct (WD), the embryonic precursor of the epididymis. Similar effects were observed following pharmacological blockade of primary cilia formation and Hh modulation on WD organotypic cultures. The expression of genes involved in extracellular matrix, mesenchymal-epithelial transition, canonical Hh and WD development was significantly altered after treatments. Altogether, we identified the primary cilia-dependent Hh signaling as a master regulator of genes involved in WD development. This provides new insights regarding the etiology of sexual differentiation and male infertility issues.
Collapse
Affiliation(s)
- Maíra Bianchi Rodrigues Alves
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Laura Girardet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Céline Augière
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Kyeong Hye Moon
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Camille Lavoie-Ouellet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Agathe Bernet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Denis Soulet
- Faculty of Pharmacy, Department of Neurosciences, CHU de Québec Research Center (CHUL)—Université Laval, Quebec City, QC, Canada
| | - Ezequiel Calvo
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles Joly Beauparlant
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Arnaud Droit
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Alexandre Bastien
- Faculty of Agriculture and Food Sciences, Department of Animal Sciences—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Claude Robert
- Faculty of Agriculture and Food Sciences, Department of Animal Sciences—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
4
|
Shi DL. Planar cell polarity regulators in asymmetric organogenesis during development and disease. J Genet Genomics 2023; 50:63-76. [PMID: 35809777 DOI: 10.1016/j.jgg.2022.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six "core" proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left-right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal-distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, China; Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
5
|
Heterozygous variants in the DVL2 interaction region of DACT1 cause CAKUT and features of Townes-Brocks syndrome 2. Hum Genet 2023; 142:73-88. [PMID: 36066768 PMCID: PMC9839807 DOI: 10.1007/s00439-022-02481-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/16/2022] [Indexed: 01/18/2023]
Abstract
Most patients with congenital anomalies of the kidney and urinary tract (CAKUT) remain genetically unexplained. In search of novel genes associated with CAKUT in humans, we applied whole-exome sequencing in a patient with kidney, anorectal, spinal, and brain anomalies, and identified a rare heterozygous missense variant in the DACT1 (dishevelled binding antagonist of beta catenin 1) gene encoding a cytoplasmic WNT signaling mediator. Our patient's features overlapped Townes-Brocks syndrome 2 (TBS2) previously described in a family carrying a DACT1 nonsense variant as well as those of Dact1-deficient mice. Therefore, we assessed the role of DACT1 in CAKUT pathogenesis. Taken together, very rare (minor allele frequency ≤ 0.0005) non-silent DACT1 variants were detected in eight of 209 (3.8%) CAKUT families, significantly more frequently than in controls (1.7%). All seven different DACT1 missense variants, predominantly likely pathogenic and exclusively maternally inherited, were located in the interaction region with DVL2 (dishevelled segment polarity protein 2), and biochemical characterization revealed reduced binding of mutant DACT1 to DVL2. Patients carrying DACT1 variants presented with kidney agenesis, duplex or (multi)cystic (hypo)dysplastic kidneys with hydronephrosis and TBS2 features. During murine development, Dact1 was expressed in organs affected by anomalies in patients with DACT1 variants, including the kidney, anal canal, vertebrae, and brain. In a branching morphogenesis assay, tubule formation was impaired in CRISPR/Cas9-induced Dact1-/- murine inner medullary collecting duct cells. In summary, we provide evidence that heterozygous hypomorphic DACT1 variants cause CAKUT and other features of TBS2, including anomalies of the skeleton, brain, distal digestive and genital tract.
Collapse
|
6
|
Crucial Convolution: Genetic and Molecular Mechanisms of Coiling during Epididymis Formation and Development in Embryogenesis. J Dev Biol 2022; 10:jdb10020025. [PMID: 35735916 PMCID: PMC9225329 DOI: 10.3390/jdb10020025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
As embryonic development proceeds, numerous organs need to coil, bend or fold in order to establish their final shape. Generally, this occurs so as to maximise the surface area for absorption or secretory functions (e.g., in the small and large intestines, kidney or epididymis); however, mechanisms of bending and shaping also occur in other structures, notably the midbrain–hindbrain boundary in some teleost fish models such as zebrafish. In this review, we will examine known genetic and molecular factors that operate to pattern complex, coiled structures, with a primary focus on the epididymis as an excellent model organ to examine coiling. We will also discuss genetic mechanisms involving coiling in the seminiferous tubules and intestine to establish the final form and function of these coiled structures in the mature organism.
Collapse
|
7
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
8
|
Verbitsky M, Krithivasan P, Batourina E, Khan A, Graham SE, Marasà M, Kim H, Lim TY, Weng PL, Sánchez-Rodríguez E, Mitrotti A, Ahram DF, Zanoni F, Fasel DA, Westland R, Sampson MG, Zhang JY, Bodria M, Kil BH, Shril S, Gesualdo L, Torri F, Scolari F, Izzi C, van Wijk JA, Saraga M, Santoro D, Conti G, Barton DE, Dobson MG, Puri P, Furth SL, Warady BA, Pisani I, Fiaccadori E, Allegri L, Degl'Innocenti ML, Piaggio G, Alam S, Gigante M, Zaza G, Esposito P, Lin F, Simões-e-Silva AC, Brodkiewicz A, Drozdz D, Zachwieja K, Miklaszewska M, Szczepanska M, Adamczyk P, Tkaczyk M, Tomczyk D, Sikora P, Mizerska-Wasiak M, Krzemien G, Szmigielska A, Zaniew M, Lozanovski VJ, Gucev Z, Ionita-Laza I, Stanaway IB, Crosslin DR, Wong CS, Hildebrandt F, Barasch J, Kenny EE, Loos RJ, Levy B, Ghiggeri GM, Hakonarson H, Latos-Bieleńska A, Materna-Kiryluk A, Darlow JM, Tasic V, Willer C, Kiryluk K, Sanna-Cherchi S, Mendelsohn CL, Gharavi AG. Copy Number Variant Analysis and Genome-wide Association Study Identify Loci with Large Effect for Vesicoureteral Reflux. J Am Soc Nephrol 2021; 32:805-820. [PMID: 33597122 PMCID: PMC8017540 DOI: 10.1681/asn.2020050681] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vesicoureteral reflux (VUR) is a common, familial genitourinary disorder, and a major cause of pediatric urinary tract infection (UTI) and kidney failure. The genetic basis of VUR is not well understood. METHODS A diagnostic analysis sought rare, pathogenic copy number variant (CNV) disorders among 1737 patients with VUR. A GWAS was performed in 1395 patients and 5366 controls, of European ancestry. RESULTS Altogether, 3% of VUR patients harbored an undiagnosed rare CNV disorder, such as the 1q21.1, 16p11.2, 22q11.21, and triple X syndromes ((OR, 3.12; 95% CI, 2.10 to 4.54; P=6.35×10-8) The GWAS identified three study-wide significant and five suggestive loci with large effects (ORs, 1.41-6.9), containing canonical developmental genes expressed in the developing urinary tract (WDPCP, OTX1, BMP5, VANGL1, and WNT5A). In particular, 3.3% of VUR patients were homozygous for an intronic variant in WDPCP (rs13013890; OR, 3.65; 95% CI, 2.39 to 5.56; P=1.86×10-9). This locus was associated with multiple genitourinary phenotypes in the UK Biobank and eMERGE studies. Analysis of Wnt5a mutant mice confirmed the role of Wnt5a signaling in bladder and ureteric morphogenesis. CONCLUSIONS These data demonstrate the genetic heterogeneity of VUR. Altogether, 6% of patients with VUR harbored a rare CNV or a common variant genotype conferring an OR >3. Identification of these genetic risk factors has multiple implications for clinical care and for analysis of outcomes in VUR.
Collapse
Affiliation(s)
- Miguel Verbitsky
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Priya Krithivasan
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | | | - Atlas Khan
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Sarah E. Graham
- Department of Internal Medicine, Cardiology, University of Michigan, Ann Arbor, Michigan
| | - Maddalena Marasà
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Hyunwoo Kim
- Department of Urology, Columbia University, New York, New York
| | - Tze Y. Lim
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Patricia L. Weng
- Department of Pediatric Nephrology, University of California, Los Angeles Medical Center and University of California, Los Angeles Medical Center-Santa Monica, Los Angeles, California
| | | | - Adele Mitrotti
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Dina F. Ahram
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Francesca Zanoni
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - David A. Fasel
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Rik Westland
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
- Department of Pediatric Nephrology, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | - Matthew G. Sampson
- Division of Nephrology, Boston Children’s Hospital, Boston, Massachusetts
| | - Jun Y. Zhang
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Monica Bodria
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Byum Hee Kil
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Shirlee Shril
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Loreto Gesualdo
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Fabio Torri
- Department of Pediatric Surgery, Spedali Civili Children’s Hospital of Brescia, Brescia, Italy
| | - Francesco Scolari
- Chair and Division of Nephrology, University and Spedali Civili Hospital, Brescia, Italy
| | - Claudia Izzi
- Division of Nephrology and Department of Obstetrics and Gynecology, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Joanna A.E. van Wijk
- Department of Pediatric Nephrology, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | - Marijan Saraga
- Department of Pediatrics, University Hospital of Split, Split, Croatia
- School of Medicine, University of Split, Split, Croatia
| | - Domenico Santoro
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Conti
- Department of Pediatric Nephrology, Azienda Ospedaliera Universitaria “G. Martino,” Messina, Italy
| | - David E. Barton
- University College Dublin School of Medicine, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
- Department of Clinical Genetics, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Mark G. Dobson
- Department of Clinical Genetics, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
- Department of Pediatric Surgery, Beacon Hospital, University College Dublin, Dublin, Ireland
| | - Susan L. Furth
- Division of Nephrology, Departments of Pediatrics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Bradley A. Warady
- Division of Nephrology, Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Children’s Mercy Kansas City, Kansas City, Missouri
| | - Isabella Pisani
- Nephrology Unit, Parma University Hospital and Department of Medicine and Surgery, Parma University Medical School, Parma, Italy
| | - Enrico Fiaccadori
- Nephrology Unit, Parma University Hospital and Department of Medicine and Surgery, Parma University Medical School, Parma, Italy
| | - Landino Allegri
- Nephrology Unit, Parma University Hospital and Department of Medicine and Surgery, Parma University Medical School, Parma, Italy
| | - Maria Ludovica Degl'Innocenti
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Giorgio Piaggio
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Shumyle Alam
- Department of Pediatric Urology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Maddalena Gigante
- Section of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Gianluigi Zaza
- Renal and Dialysis Unit, Department of Medicine, School of Medicine, University of Verona, Verona, Italy
| | - Pasquale Esposito
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Policlinico San Martino, Genova, Italy
| | - Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University, New York, New York
| | - Ana Cristina Simões-e-Silva
- Department of Pediatrics, Unit of Pediatric Nephrology, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Child Nephrology, Dialysotheraphy and Management of Acute Poisoning, Pomeranian Medical University, Szczecin, Poland
| | - Dorota Drozdz
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Zachwieja
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Szczepanska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Adamczyk
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Daria Tomczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | | | - Grazyna Krzemien
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Poland
| | | | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Vladimir J. Lozanovski
- University Clinic for General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- University Children’s Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | - Zoran Gucev
- University Children’s Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | | | - Ian B. Stanaway
- Department of Biomedical Informatics and Medical Education, University of Washington School of Medicine, Seattle, Washington
| | - David R. Crosslin
- Department of Biomedical Informatics and Medical Education, University of Washington School of Medicine, Seattle, Washington
| | - Craig S. Wong
- Division of Pediatric Nephrology, University of New Mexico Children’s Hospital, Albuquerque, New Mexico
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
- Department of Urology, Columbia University, New York, New York
| | - Eimear E. Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruth J.F. Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Gian Marco Ghiggeri
- Division of Nephrology, Dialysis, Transplantation, and Laboratory on Pathophysiology of Uremia, Istituto G. Gaslini, Genoa, Italy
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, and NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, and NZOZ Center for Medical Genetics GENESIS, Poznan, Poland
| | - John M. Darlow
- Department of Clinical Genetics, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin, Ireland
| | - Velibor Tasic
- University Children’s Hospital, Medical Faculty of Skopje, Skopje, Macedonia
| | - Cristen Willer
- Department of Internal Medicine, Cardiology, University of Michigan, Ann Arbor, Michigan
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, Ann Arbor, Michigan
| | - Krzysztof Kiryluk
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| | | | - Ali G. Gharavi
- Division of Nephrology, Department of Medicine, Columbia University, New York, New York
| |
Collapse
|
9
|
Meng P, Zhu M, Ling X, Zhou L. Wnt signaling in kidney: the initiator or terminator? J Mol Med (Berl) 2020; 98:1511-1523. [PMID: 32939578 PMCID: PMC7591426 DOI: 10.1007/s00109-020-01978-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
The kidney is a key organ in the human body that excretes toxins and sustains the water-electrolyte balance. During embryonic development and disease progression, the kidney undergoes enormous changes in macrostructure, accompanied by a variety of microstructural histological changes, such as glomerular formation and sclerosis, tubule elongation and atrophy, interstitial establishment, and fibrosis progression. All of these rely on the frequent occurrence of cell death and growth. Notably, to overcome disease, some cells regenerate through self-repair or progenitor cell differentiation. However, the signaling mechanisms underlying kidney development and regeneration have not been elucidated. Recently, Wnt signaling has been noted to play an important role. Although it is a well-known developmental signal, the role of Wnt signaling in kidney development and regeneration is not well recognized. In this review, we review the role of Wnt signaling in kidney embryonic development, tissue repair, cell division, and progenitor cell differentiation after injury. Moreover, we briefly highlight advances in our understanding of the pathogenic mechanisms of Wnt signaling in mediating cellular senescence in kidney parenchymal and stem cells, an irreversible arrest of cell proliferation blocking tissue repair and regeneration. We also highlight the therapeutic targets of Wnt signaling in kidney diseases and provide important clues for clinical strategies.
Collapse
Affiliation(s)
- Ping Meng
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Mingsheng Zhu
- Department of Nephrology, The People's Hospital of Gaozhou, Maoming, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, China.
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
10
|
The struggle to equilibrate outer and inner milieus: Renal evolution revisited. Ann Anat 2020; 233:151610. [PMID: 33065247 DOI: 10.1016/j.aanat.2020.151610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022]
Abstract
The journey of life, from primordial protoplasm to a complex vertebrate form, is a tale of survival against incessant alterations in climate, surface topography, food chain, and chemistry of the external environment. Kidneys present with an ensemble embodiment of the adaptations devised by diverse life-forms to cope with such challenges and maintain a chemical equilibrium of water and solutes, both in and outside the body. This minireview revisits renal evolution utilizing the classic: From Fish to Philosopher; the story of our internal environment, by Prof. Homer W. Smith (1895-1962) as a template. Prof. Smith's views exemplified the invention of glomeruli, or its abolishment, as a mechanism to filter water. Moreover, with the need to preserve water, as in reptiles, the loop of Henle was introduced to concentrate urine. When compared to smaller mammals, the larger ones, albeit having loops of Henle of similar lengths, demonstrated a distinct packing of the nephrons in kidneys. Moreover, the renal portal system degenerated in mammals, while still present in other vertebrates. This account will present with a critique of the current concepts of renal evolution while examining how various other factors, including the ones that we know more about now, such as genetic factors, synchronize to achieve renal development. Finally, it will try to assess the validity of ideas laid by Prof. Smith with the knowledge that we possess now, and understand the complex architecture that evolution has imprinted on the kidneys during its struggle to survive over epochs.
Collapse
|
11
|
Nakaya MA, Gudmundsson KO, Komiya Y, Keller JR, Habas R, Yamaguchi TP, Ajima R. Placental defects lead to embryonic lethality in mice lacking the Formin and PCP proteins Daam1 and Daam2. PLoS One 2020; 15:e0232025. [PMID: 32353019 PMCID: PMC7192421 DOI: 10.1371/journal.pone.0232025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/06/2020] [Indexed: 01/30/2023] Open
Abstract
The actin cytoskeleton plays a central role in establishing cell polarity and shape during embryonic morphogenesis. Daam1, a member of the Formin family of actin cytoskeleton regulators, is a Dvl2-binding protein that functions in the Wnt/Planar Cell Polarity (PCP) pathway. To examine the role of the Daam proteins in mammalian development, we generated Daam-deficient mice by gene targeting and found that Daam1, but not Daam2, is necessary for fetal survival. Embryonic development of Daam1 mutants was delayed most likely due to functional defects in the labyrinthine layer of the placenta. Examination of Daam2 and Daam1/2 double mutants revealed that Daam1 and Daam2 are functionally redundant during placental development. Of note, neural tube closure defects (NTD), which are observed in several mammalian PCP mutants, are not observed in Wnt5a or Daam1 single mutants, but arise in Daam1;Wnt5a double mutants. These findings demonstrate a unique function for Daam genes in placental development and are consistent with a role for Daam1 in the Wnt/PCP pathway in mammals.
Collapse
Affiliation(s)
- Masa-aki Nakaya
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Kristibjorn Orri Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Yuko Komiya
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United State of America
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United State of America
| | - Terry P. Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| |
Collapse
|
12
|
The Role of Wnt Signalling in Chronic Kidney Disease (CKD). Genes (Basel) 2020; 11:genes11050496. [PMID: 32365994 PMCID: PMC7290783 DOI: 10.3390/genes11050496] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) encompasses a group of diverse diseases that are associated with accumulating kidney damage and a decline in glomerular filtration rate (GFR). These conditions can be of an acquired or genetic nature and, in many cases, interactions between genetics and the environment also play a role in disease manifestation and severity. In this review, we focus on genetically inherited chronic kidney diseases and dissect the links between canonical and non-canonical Wnt signalling, and this umbrella of conditions that result in kidney damage. Most of the current evidence on the role of Wnt signalling in CKD is gathered from studies in polycystic kidney disease (PKD) and nephronophthisis (NPHP) and reveals the involvement of β-catenin. Nevertheless, recent findings have also linked planar cell polarity (PCP) signalling to CKD, with further studies being required to fully understand the links and molecular mechanisms.
Collapse
|
13
|
Abstract
Congenital abnormalities of the kidney and urinary tract (CAKUT) are a highly diverse group of diseases that together belong to the most common abnormalities detected in the new-born child. Consistent with this diversity, CAKUT are caused by mutations in a large number of genes and present a wide spectrum of phenotypes. In this review, we will focus on duplex kidneys, a relatively frequent form of CAKUT that is often asymptomatic but predisposes to vesicoureteral reflux and hydronephrosis. We will summarise the molecular programs responsible for ureter induction, review the genes that have been identified as risk factors in duplex kidney formation and discuss molecular and cellular mechanisms that may lead to this malformation.
Collapse
Affiliation(s)
- Vladimir M Kozlov
- iBV, Institut de Biologie Valrose, Equipe Labellisée Ligue Contre le Cancer, Université Cote d'Azur, Centre de Biochimie, UFR Sciences, Parc Valrose, Nice Cedex 2, 06108, France
| | - Andreas Schedl
- iBV, Institut de Biologie Valrose, Equipe Labellisée Ligue Contre le Cancer, Université Cote d'Azur, Centre de Biochimie, UFR Sciences, Parc Valrose, Nice Cedex 2, 06108, France
| |
Collapse
|
14
|
Kaissi AA, Kenis V, Shboul M, Grill F, Ganger R, Kircher SG. Tomographic Study of the Malformation Complex in Correlation With the Genotype in Patients With Robinow Syndrome: Review Article. J Investig Med High Impact Case Rep 2020; 8:2324709620911771. [PMID: 32172608 PMCID: PMC7074505 DOI: 10.1177/2324709620911771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/11/2020] [Accepted: 01/26/2020] [Indexed: 11/17/2022] Open
Abstract
We aimed to understand the etiology behind the abnormal craniofacial contour and other clinical presentations in a number of children with Robinow syndrome. Seven children with Robinow syndrome were enrolled in this study (autosomal recessive caused by homozygous mutations in the ROR2 gene on chromosome 9q22, and the autosomal dominant caused by heterozygous mutation in the WNT5A gene on chromosome 3p14). In the autosomal recessive (AR) group, the main clinical presentations were intellectual, disability, poor schooling achievement, episodes of headache/migraine, and poor fine motor coordinative skills, in addition to massive restrictions of the spine biomechanics causing effectively the development of kyposcoliosis and frequent bouts of respiratory infections. Three-dimensional reconstruction computed tomography scan revealed early closure of the metopic and the squamosal sutures of skull bones. Massive spinal malsegmentation and unsegmented spinal bar were noted in the AR group. In addition to severe mesomelia and camptodactyly, in the autosomal dominant (AD) group, no craniosynostosis but few Wormian bones and the spine showed limited malsegemetation, and no mesomelia or camptodactyly have been noted. We wish to stress that little information is available in the literature regarding the exact pathology of the cranial bones, axial, and appendicular malformations in correlation with the variable clinical presentations in patients with the 2 types of Robinow syndrome.
Collapse
Affiliation(s)
- Ali Al Kaissi
- Hanusch Hospital, Vienna, Austria
- Orthopedic Hospital of Speising, Vienna, Austria
| | - Vladimir Kenis
- Pediatric Orthopedic Institute n.a. H. Turner, Saint-Petersburg, Russia
| | | | - Franz Grill
- Orthopedic Hospital of Speising, Vienna, Austria
| | | | | |
Collapse
|
15
|
O'Brien LL, Combes AN, Short KM, Lindström NO, Whitney PH, Cullen-McEwen LA, Ju A, Abdelhalim A, Michos O, Bertram JF, Smyth IM, Little MH, McMahon AP. Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. eLife 2018; 7:e40392. [PMID: 30516471 PMCID: PMC6281319 DOI: 10.7554/elife.40392] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023] Open
Abstract
A normal endowment of nephrons in the mammalian kidney requires a balance of nephron progenitor self-renewal and differentiation throughout development. Here, we provide evidence for a novel action of ureteric branch tip-derived Wnt11 in progenitor cell organization and interactions within the nephrogenic niche, ultimately determining nephron endowment. In Wnt11 mutants, nephron progenitors dispersed from their restricted niche, intermixing with interstitial progenitors. Nephron progenitor differentiation was accelerated, kidneys were significantly smaller, and the nephron progenitor pool was prematurely exhausted, halving the final nephron count. Interestingly, RNA-seq revealed no significant differences in gene expression. Live imaging of nephron progenitors showed that in the absence of Wnt11 they lose stable attachments to the ureteric branch tips, continuously detaching and reattaching. Further, the polarized distribution of several markers within nephron progenitors is disrupted. Together these data highlight the importance of Wnt11 signaling in directing nephron progenitor behavior which determines a normal nephrogenic program.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell ResearchKeck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Alexander N Combes
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
- Department of Anatomy and NeuroscienceThe University of MelbourneMelbourneAustralia
- Murdoch Children’s Research InstituteRoyal Children's HospitalMelbourneAustralia
| | - Kieran M Short
- Department of Anatomy and Neuroscience, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
- Development and Stem Cells Program, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell ResearchKeck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Peter H Whitney
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell ResearchKeck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Luise A Cullen-McEwen
- Department of Anatomy and Neuroscience, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Adler Ju
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
| | - Ahmed Abdelhalim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell ResearchKeck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Odyssé Michos
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell ResearchKeck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - John F Bertram
- Department of Anatomy and Neuroscience, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Ian M Smyth
- Department of Anatomy and Neuroscience, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
- Development and Stem Cells Program, Monash Biomedicine Discovery InstituteMonash UniversityMelbourneAustralia
| | - Melissa H Little
- Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
- Department of Anatomy and NeuroscienceThe University of MelbourneMelbourneAustralia
- Murdoch Children’s Research InstituteRoyal Children's HospitalMelbourneAustralia
- Department of PediatricsUniversity of MelbourneParkvilleAustralia
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell ResearchKeck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
16
|
Yun K, Hurwitz AA, Perantoni AO. Constitutive metanephric mesenchyme-specific expression of interferon-gamma causes renal dysplasia by regulating Sall1 expression. PLoS One 2018; 13:e0197356. [PMID: 29771971 PMCID: PMC5957351 DOI: 10.1371/journal.pone.0197356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 05/01/2018] [Indexed: 11/19/2022] Open
Abstract
Transplacental viral and parasitic infections have been shown to initiate an innate response in the mammalian embryo by increasing the expression of pro-inflammatory cytokines such as interferon-gamma (Ifng). However, the developmental consequences of an activated innate immunity and, in particular, the effects of induction of Ifng expression independent of infection have been largely overlooked. Here, we demonstrate in vivo that the conditional overexpression of Ifng in metanephric mesenchymal (MM) progenitors results in renal agenesis or hypoplasia. Cell death was observed in and around the MM region of E10.5-11.5 mutants where Ifng was constitutively expressed during early kidney development and resulted in a retardation of branching morphogenesis. Furthermore, isolated mutant or normal Ifng-treated metanephroi replicated this phenotype in culture, demonstrating the inherent nature of the aberrant morphogenesis. The expression of renal progenitor marker Sall1 was significantly decreased in the MM of mutant kidneys, suggesting that a reduction in Sall1 may be the cause of cell death in the MM during early kidney development and that, in turn, retards UB branching in the mutants. Therefore, the aberrant induction of Ifng expression, as part of an innate immune response, may contribute to renal agenesis or hypoplasia during early metanephric development by regulating the MM progenitor population.
Collapse
Affiliation(s)
- Kangsun Yun
- National Cancer Institute/NIH, Cancer and Developmental Biology Laboratory, Frederick, MD, United States of America
| | - Arthur A. Hurwitz
- National Cancer Institute/NIH, Laboratory of Molecular Immunoregulation, Frederick, MD, United States of America
| | - Alan O. Perantoni
- National Cancer Institute/NIH, Cancer and Developmental Biology Laboratory, Frederick, MD, United States of America
- * E-mail:
| |
Collapse
|
17
|
Neirijnck Y, Reginensi A, Renkema KY, Massa F, Kozlov VM, Dhib H, Bongers EMHF, Feitz WF, van Eerde AM, Lefebvre V, Knoers NVAM, Tabatabaei M, Schulz H, McNeill H, Schaefer F, Wegner M, Sock E, Schedl A. Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT). Kidney Int 2018; 93:1142-1153. [PMID: 29459093 DOI: 10.1016/j.kint.2017.11.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/26/2017] [Accepted: 11/30/2017] [Indexed: 12/24/2022]
Abstract
Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans.
Collapse
Affiliation(s)
| | | | - Kirsten Y Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Filippo Massa
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | | | - Haroun Dhib
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wout F Feitz
- Department of Urology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Albertien M van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Veronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic-Lerner Research Institute, Cleveland, Ohio, USA
| | - Nine V A M Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mansoureh Tabatabaei
- Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Herbert Schulz
- University of Cologne, Cologne Center for Genomics, Cologne, Germany
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Franz Schaefer
- Division of Pediatric Nephrology, Heidelberg University Center for Pediatrics and Adolescent Medicine, Heidelberg, Germany
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Germany
| | - Andreas Schedl
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, Nice, France.
| |
Collapse
|
18
|
Setyaningsih WAW, Arfian N, Suryadi E, Romi MM, Tranggono U, Sari DCR. Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial-Mesenchymal Transition, and Kidney Tubular Injury in Mice. IRANIAN JOURNAL OF MEDICAL SCIENCES 2018; 43:164-173. [PMID: 29749985 PMCID: PMC5936848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial-mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury. METHODS A hyperuricemia model was performed in male Swiss background mice (3 months old, 30-40 g) with daily intraperitoneal injections of 125 mg/kg body weight (BW) of uric acid. The mice were terminated on day 7 (UA7, n=5) and on day 14 (UA14, n=5). Allopurinol groups (UAl7 and UAl14, each n=5) were added with oral 50 mg/kg BW of allopurinol treatment. The serum uric acid level was quantified, and tubular injury was assessed based on PAS staining. Reverse transcriptase-PCR was done to quantify Wnt5a, Ror2, E-cadherin, and vimentin expressions. IHC staining was done for E-cadherin and collagen I. We used the Shapiro-Wilk for normality testing and one-way ANOVA for variance analysis with a P<0.05 as significance level using SPSS 22 software. RESULTS The hyperuricemia groups had a higher uric acid level, which was associated with a higher tubular injury score. Meanwhile, the allopurinol groups had a significantly lower uric acid level and tubular injury than the uric acid groups. Reverse transcriptase-PCR revealed downregulation of the E-cadherin expression. While vimentin and collagen I expression are upregulated, which was associated with a higher Wnt5a expression. However, the allopurinol groups had reverse results. Immunostaining revealed a reduction in E-cadherin staining in the epithelial cells and collagen I positive staining in the epithelial cells and the interstitial areas. CONCLUSION Hyperuricemia induced tubular injury, which might have been mediated by EMT through the activation of Wnt5a.
Collapse
Affiliation(s)
| | - Nur Arfian
- Department of Anatomy, Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Efrayim Suryadi
- Department of Anatomy, Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Muhammad Mansyur Romi
- Department of Anatomy, Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Untung Tranggono
- Department of Surgery, Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | |
Collapse
|
19
|
Lindström NO, Guo J, Kim AD, Tran T, Guo Q, De Sena Brandine G, Ransick A, Parvez RK, Thornton ME, Baskin L, Grubbs B, McMahon JA, Smith AD, McMahon AP. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney. J Am Soc Nephrol 2018; 29:806-824. [PMID: 29449449 DOI: 10.0.6.145/asn.2017080890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 05/24/2023] Open
Abstract
Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.
Collapse
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | | | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, California; and
| | - Laurence Baskin
- Department of Urology and Pediatrics, University of California San Francisco, San Francisco, California
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, California; and
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Andrew D Smith
- Molecular and Computational Biology, Department of Biological Sciences, and
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine,
| |
Collapse
|
20
|
Lindström NO, Guo J, Kim AD, Tran T, Guo Q, De Sena Brandine G, Ransick A, Parvez RK, Thornton ME, Baskin L, Grubbs B, McMahon JA, Smith AD, McMahon AP. Conserved and Divergent Features of Mesenchymal Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and Mouse Kidney. J Am Soc Nephrol 2018; 29:806-824. [PMID: 29449449 DOI: 10.1681/asn.2017080890] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/27/2017] [Indexed: 01/12/2023] Open
Abstract
Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.
Collapse
Affiliation(s)
- Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Albert D Kim
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | | | - Andrew Ransick
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Matthew E Thornton
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, California; and
| | - Laurence Baskin
- Department of Urology and Pediatrics, University of California San Francisco, San Francisco, California
| | - Brendan Grubbs
- Maternal Fetal Medicine Division, University of Southern California, Los Angeles, California; and
| | - Jill A McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine
| | - Andrew D Smith
- Molecular and Computational Biology, Department of Biological Sciences, and
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine,
| |
Collapse
|
21
|
Wang Y, Zhou CJ, Liu Y. Wnt Signaling in Kidney Development and Disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:181-207. [PMID: 29389516 PMCID: PMC6008255 DOI: 10.1016/bs.pmbts.2017.11.019] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients.
Collapse
Affiliation(s)
- Yongping Wang
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chengji J Zhou
- University of California Davis, Sacramento, CA, United States
| | - Youhua Liu
- National Clinical Research Center of Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China; University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
22
|
Susman MW, Karuna EP, Kunz RC, Gujral TS, Cantú AV, Choi SS, Jong BY, Okada K, Scales MK, Hum J, Hu LS, Kirschner MW, Nishinakamura R, Yamada S, Laird DJ, Jao LE, Gygi SP, Greenberg ME, Ho HYH. Kinesin superfamily protein Kif26b links Wnt5a-Ror signaling to the control of cell and tissue behaviors in vertebrates. eLife 2017; 6:e26509. [PMID: 28885975 PMCID: PMC5590807 DOI: 10.7554/elife.26509] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022] Open
Abstract
Wnt5a-Ror signaling constitutes a developmental pathway crucial for embryonic tissue morphogenesis, reproduction and adult tissue regeneration, yet the molecular mechanisms by which the Wnt5a-Ror pathway mediates these processes are largely unknown. Using a proteomic screen, we identify the kinesin superfamily protein Kif26b as a downstream target of the Wnt5a-Ror pathway. Wnt5a-Ror, through a process independent of the canonical Wnt/β-catenin-dependent pathway, regulates the cellular stability of Kif26b by inducing its degradation via the ubiquitin-proteasome system. Through this mechanism, Kif26b modulates the migratory behavior of cultured mesenchymal cells in a Wnt5a-dependent manner. Genetic perturbation of Kif26b function in vivo caused embryonic axis malformations and depletion of primordial germ cells in the developing gonad, two phenotypes characteristic of disrupted Wnt5a-Ror signaling. These findings indicate that Kif26b links Wnt5a-Ror signaling to the control of morphogenetic cell and tissue behaviors in vertebrates and reveal a new role for regulated proteolysis in noncanonical Wnt5a-Ror signal transduction.
Collapse
Affiliation(s)
- Michael W Susman
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | - Edith P Karuna
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Ryan C Kunz
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | - Taranjit S Gujral
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
- Division of Human BiologyFred Hutchinson Cancer Research CenterSeattleUnited States
| | - Andrea V Cantú
- Department of Obstetrics, Gynecology and Reproductive SciencesCenter for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of CaliforniaSan FranciscoUnited States
| | - Shannon S Choi
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Brigette Y Jong
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Kyoko Okada
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Michael K Scales
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Jennie Hum
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Linda S Hu
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | - Marc W Kirschner
- Department of Systems BiologyHarvard Medical SchoolBostonUnited States
| | - Ryuichi Nishinakamura
- Department of Kidney DevelopmentInstitute of Molecular Embryology and Genetics, Kumamoto UniversityKumamotoJapan
| | - Soichiro Yamada
- Department of Biomedical EngineeringUniversity of CaliforniaDavisUnited States
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive SciencesCenter for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of CaliforniaSan FranciscoUnited States
| | - Li-En Jao
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| | - Steven P Gygi
- Department of Cell BiologyHarvard Medical SchoolBostonUnited States
| | | | - Hsin-Yi Henry Ho
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
- Department of Cell Biology and Human AnatomyUniversity of California, Davis School of MedicineDavisUnited States
| |
Collapse
|
23
|
Yun K, Perantoni AO. Hydronephrosis in the Wnt5a-ablated kidney is caused by an abnormal ureter-bladder connection. Differentiation 2016; 94:1-7. [PMID: 27923152 DOI: 10.1016/j.diff.2016.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
The Wnt5a null mouse is a complex developmental model which, among its several posterior-localized axis defects, exhibits multiple kidney phenotypes, including duplex kidney and loss of the medullary zone. We previously reported that ablation of Wnt5a in nascent mesoderm causes duplex kidney formation as a result of aberrant development of the nephric duct and abnormal extension of intermediate mesoderm. However, these mice also display a loss of the medullary region late in gestation. We have now genetically isolated duplex kidney formation from the medullary defect by specifically targeting the progenitors for both the ureteric bud and metanephric mesenchyme. The conditional mutants fail to form a normal renal medulla but no longer exhibit duplex kidney formation. Approximately 1/3 of the mutants develop hydronephrosis in the kidneys either uni- or bilaterally when using Dll1Cre. The abnormal kidney phenotype becomes prominent at E16.5, which approximates the time when urine production begins in the mouse embryonic kidney, and is associated with a dramatic increase in apoptosis only in mutant kidneys with hydronephrosis. Methylene blue dye injection and histologic examination reveal that aberrant cell death likely results from urine toxicity due to an abnormal ureter-bladder connection. This study shows that Wnt5a is not required for development of the renal medulla and that loss of the renal medullary region in the Wnt5a-deleted kidney is caused by an abnormal ureter-bladder connection.
Collapse
Affiliation(s)
- Kangsun Yun
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alan O Perantoni
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
24
|
Abstract
ROR-family receptor tyrosine kinases form a small subfamily of receptor tyrosine kinases (RTKs), characterized by a conserved, unique domain architecture. ROR RTKs are evolutionary conserved throughout the animal kingdom and act as alternative receptors and coreceptors of WNT ligands. The intracellular signaling cascades activated downstream of ROR receptors are diverse, including but not limited to ROR-Frizzled-mediated activation of planar cell polarity signaling, RTK-like signaling, and antagonistic regulation of WNT/β-Catenin signaling. In line with their diverse repertoire of signaling functions, ROR receptors are involved in the regulation of multiple processes in embryonic development such as development of the axial and paraxial mesoderm, the nervous system and the neural crest, the axial and appendicular skeleton, and the kidney. In humans, mutations in the ROR2 gene cause two distinct developmental syndromes, recessive Robinow syndrome (RRS; MIM 268310) and dominant brachydactyly type B1 (BDB1; MIM 113000). In Robinow syndrome patients and animal models, the development of multiple organs is affected, whereas BDB1 results only in shortening of the distal phalanges of fingers and toes, reflecting the diversity of functions and signaling activities of ROR-family RTKs. In this chapter, we give an overview on ROR receptor structure and function. We discuss their signaling functions and role in vertebrate embryonic development with a focus on those developmental processes that are affected by mutations in the ROR2 gene in human patients.
Collapse
|
25
|
Jacquinet A, Millar D, Lehman A. Etiologies of uterine malformations. Am J Med Genet A 2016; 170:2141-72. [PMID: 27273803 DOI: 10.1002/ajmg.a.37775] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 03/10/2016] [Indexed: 12/11/2022]
Abstract
Ranging from aplastic uterus (including Mayer-Rokitansky-Kuster-Hauser syndrome) to incomplete septate uterus, uterine malformations as a group are relatively frequent in the general population. Specific causes remain largely unknown. Although most occurrences ostensibly seem sporadic, familial recurrences have been observed, which strongly implicate genetic factors. Through the study of animal models, human syndromes, and structural chromosomal variation, several candidate genes have been proposed and subsequently tested with targeted methods in series of individuals with isolated, non-isolated, or syndromic uterine malformations. To date, a few genes have garnered strong evidence of causality, mainly in syndromic presentations (HNF1B, WNT4, WNT7A, HOXA13). Sequencing of candidate genes in series of individuals with isolated uterine abnormalities has been able to suggest an association for several genes, but confirmation of a strong causative effect is still lacking for the majority of them. We review the current state of knowledge about the developmental origins of uterine malformations, with a focus on the genetic variants that have been implicated or associated with these conditions in humans, and we discuss potential reasons for the high rate of negative results. The evidence for various environmental and epigenetic factors is also reviewed. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adeline Jacquinet
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Center for Human Genetics, Centre Hospitalier Universitaire and University of Liège, Liège, Belgium
| | - Debra Millar
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Child and Family Research Institute, Vancouver, Canada
| |
Collapse
|
26
|
Murashima A, Xu B, Hinton BT. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice. Asian J Androl 2016; 17:749-55. [PMID: 26112482 PMCID: PMC4577584 DOI: 10.4103/1008-682x.155540] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT).
Collapse
Affiliation(s)
| | | | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Qi X, Okinaka Y, Nishita M, Minami Y. Essential role of Wnt5a-Ror1/Ror2 signaling in metanephric mesenchyme and ureteric bud formation. Genes Cells 2016; 21:325-34. [PMID: 26840931 DOI: 10.1111/gtc.12342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022]
Abstract
Spatiotemporally regulated interaction between the metanephric mesenchyme (MM) and Wolffian duct (WD) is essential for the induction of a single ureteric bud (UB). The MM then interacts with the tip of the UB to induce outgrowth and branching of the UB, which in turn promotes growth of the adjacent MM. The Ror family receptor tyrosine kinases, Ror1 and Ror2, have been shown to act as receptors for Wnt5a to mediate noncanonical Wnt signaling. Previous studies have shown that Ror2-mutant mice exhibit ectopic formation of the UB, due to abnormal juxtaposition of the MM to the WD. We show here that both Ror1 and Ror2 are expressed in the mesenchyme between the MM and WD during UB formation. Although Ror1-mutant mice show no apparent defects in UB formation, Ror1;Ror2-double-mutant mice exhibit either defects in UB outgrowth and branching morphogenesis, associated with the loss of the MM from the UB domain, or ectopic formation of the UB. We also show genetic interactions between Ror1 and Wnt5a during UB formation. These findings suggest that Wnt5a-Ror1/Ror2 signaling regulates cooperatively the formation of the MM at the proper position to ensure normal development of the UB.
Collapse
Affiliation(s)
- Xiaoyuan Qi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuka Okinaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
28
|
Pietilä I, Prunskaite-Hyyryläinen R, Kaisto S, Tika E, van Eerde AM, Salo AM, Garma L, Miinalainen I, Feitz WF, Bongers EMHF, Juffer A, Knoers NVAM, Renkema KY, Myllyharju J, Vainio SJ. Wnt5a Deficiency Leads to Anomalies in Ureteric Tree Development, Tubular Epithelial Cell Organization and Basement Membrane Integrity Pointing to a Role in Kidney Collecting Duct Patterning. PLoS One 2016; 11:e0147171. [PMID: 26794322 PMCID: PMC4721645 DOI: 10.1371/journal.pone.0147171] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022] Open
Abstract
The Wnts can be considered as candidates for the Congenital Anomaly of Kidney and Urinary Tract, CAKUT diseases since they take part in the control of kidney organogenesis. Of them Wnt5a is expressed in ureteric bud (UB) and its deficiency leads to duplex collecting system (13/90) uni- or bilateral kidney agenesis (10/90), hypoplasia with altered pattern of ureteric tree organization (42/90) and lobularization defects with partly fused ureter trunks (25/90) unlike in controls. The UB had also notably less tips due to Wnt5a deficiency being at E15.5 306 and at E16.5 765 corresponding to 428 and 1022 in control (p<0.02; p<0.03) respectively. These changes due to Wnt5a knock out associated with anomalies in the ultrastructure of the UB daughter epithelial cells. The basement membrane (BM) was malformed so that the BM thickness increased from 46.3 nm to 71.2 nm (p<0.01) at E16.5 in the Wnt5a knock out when compared to control. Expression of a panel of BM components such as laminin and of type IV collagen was also reduced due to the Wnt5a knock out. The P4ha1 gene that encodes a catalytic subunit of collagen prolyl 4-hydroxylase I (C-P4H-I) in collagen synthesis expression and the overall C-P4H enzyme activity were elevated by around 26% due to impairment in Wnt5a function from control. The compound Wnt5a+/-;P4ha1+/- embryos demonstrated Wnt5a-/- related defects, for example local hyperplasia in the UB tree. A R260H WNT5A variant was identified from renal human disease cohort. Functional studies of the consequence of the corresponding mouse variant in comparison to normal ligand reduced Wnt5a-signalling in vitro. Together Wnt5a has a novel function in kidney organogenesis by contributing to patterning of UB derived collecting duct development contributing putatively to congenital disease.
Collapse
Affiliation(s)
- Ilkka Pietilä
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Renata Prunskaite-Hyyryläinen
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Susanna Kaisto
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elisavet Tika
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albertien M. van Eerde
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antti M. Salo
- Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Leonardo Garma
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Wout F. Feitz
- Department of Urology, Radboudumc Amalia Children’s Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ernie M. H. F. Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - André Juffer
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Nine V. A. M. Knoers
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johanna Myllyharju
- Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo J. Vainio
- Laboratory of Developmental Biology, Oulu Centre for Cell-Matrix Research, Biocenter Oulu and Infotech Oulu, and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
29
|
|
30
|
Takasato M, Little MH. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 2015; 142:1937-47. [PMID: 26015537 DOI: 10.1242/dev.104802] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian kidney, the metanephros, is a mesodermal organ classically regarded as arising from the intermediate mesoderm (IM). Indeed, both the ureteric bud (UB), which gives rise to the ureter and the collecting ducts, and the metanephric mesenchyme (MM), which forms the rest of the kidney, derive from the IM. Based on an understanding of the signalling molecules crucial for IM patterning and kidney morphogenesis, several studies have now generated UB or MM, or both, in vitro via the directed differentiation of human pluripotent stem cells. Although these results support the IM origin of the UB and the MM, they challenge the simplistic view of a common progenitor for these two populations, prompting a reanalysis of early patterning events within the IM. Here, we review our understanding of the origin of the UB and the MM in mouse, and discuss how this impacts on kidney regeneration strategies and furthers our understanding of human development.
Collapse
Affiliation(s)
- Minoru Takasato
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
31
|
Wainwright EN, Wilhelm D, Combes AN, Little MH, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol 2015; 404:88-102. [PMID: 26116176 DOI: 10.1016/j.ydbio.2015.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 01/03/2023]
Abstract
ROBO2 plays a key role in regulating ureteric bud (UB) formation in the embryo, with mutations in humans and mice leading to supernumerary kidneys. Previous studies have established that the number and position of UB outgrowths is determined by the domain of metanephric mesenchymal Gdnf expression, which is expanded anteriorly in Robo2 mouse mutants. To clarify how this phenotype arises, we used high-resolution 3D imaging to reveal an increase in the number of nephrogenic cord cells, leading to extension of the metanephric mesenchyme field in Robo2-null mouse embryos. Ex vivo experiments suggested a dependence of this effect on proliferative signals from the Wolffian duct. Loss of Robo2 resulted in a failure of the normal separation of the mesenchyme from the Wolffian duct/ureteric epithelium, suggesting that aberrant juxtaposition of these two compartments in Robo2-null mice exposes the mesenchyme to abnormally high levels of proliferative stimuli. Our data suggest a new model in which SLIT-ROBO signalling acts not by attenuating Gdnf expression or activity, but instead by limiting epithelial/mesenchymal interactions in the nascent metanephros and restricting the extent of the nephrogenic field. These insights illuminate the aetiology of multiplex kidney formation in human individuals with ROBO2 mutations.
Collapse
Affiliation(s)
- Elanor N Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dagmar Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander N Combes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
32
|
Yang J, Cusimano A, Monga JK, Preziosi ME, Pullara F, Calero G, Lang R, Yamaguchi TP, Nejak-Bowen KN, Monga SP. WNT5A inhibits hepatocyte proliferation and concludes β-catenin signaling in liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2194-205. [PMID: 26100214 DOI: 10.1016/j.ajpath.2015.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 03/09/2015] [Accepted: 04/07/2015] [Indexed: 02/08/2023]
Abstract
Activation of Wnt/β-catenin signaling during liver regeneration (LR) after partial hepatectomy (PH) is observed in several species. However, how this pathway is turned off when hepatocyte proliferation is no longer required is unknown. We assessed LR in liver-specific knockouts of Wntless (Wls-LKO), a protein required for Wnt secretion from a cell. When subjected to PH, Wls-LKO showed prolongation of hepatocyte proliferation for up to 4 days compared with littermate controls. This coincided with increased β-catenin-T-cell factor 4 interaction and cyclin-D1 expression. Wls-LKO showed decreased expression and secretion of inhibitory Wnt5a during LR. Wnt5a expression increased between 24 and 48 hours, and Frizzled-2 between 24 and 72 hours, after PH in normal mice. Treatment of primary mouse hepatocytes and liver tumor cells with Wnt5a led to a notable decrease in β-catenin-T-cell factor activity, cyclin-D1 expression, and cell proliferation. Intriguingly, Wnt5a-LKO did not display any prolongation of LR because of compensation by other cells. In addition, Wnt5a-LKO hepatocytes failed to respond to exogenous Wnt5a treatment in culture because of a compensatory decrease in Frizzled-2 expression. In conclusion, we demonstrate Wnt5a to be, by default, a negative regulator of β-catenin signaling and hepatocyte proliferation, both in vitro and in vivo. We also provide evidence that the Wnt5a/Frizzled-2 axis suppresses β-catenin signaling in hepatocytes in an autocrine manner, thereby contributing to timely conclusion of the LR process.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Antonella Cusimano
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Ri.MED Foundation, Palermo, Italy; Institute of Biomedicine and Molecular Immunology Alberto Monroy, National Research Council, Palermo, Italy
| | - Jappmann K Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Morgan E Preziosi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Filippo Pullara
- Ri.MED Foundation, Palermo, Italy; Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard Lang
- Visual Systems Group, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, Maryland
| | - Kari N Nejak-Bowen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
33
|
Signaling during Kidney Development. Cells 2015; 4:112-32. [PMID: 25867084 PMCID: PMC4493451 DOI: 10.3390/cells4020112] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
The kidney plays an essential role during excretion of metabolic waste products, maintenance of key homeostasis components such as ion concentrations and hormone levels. It influences the blood pressure, composition and volume. The kidney tubule system is composed of two distinct cell populations: the nephrons forming the filtering units and the collecting duct system derived from the ureteric bud. Nephrons are composed of glomeruli that filter the blood to the Bowman’s capsule and tubular structures that reabsorb and concentrate primary urine. The collecting duct is a Wolffian duct-derived epithelial tube that concentrates and collects urine and transfers it via the renal pelvis into the bladder. The mammalian kidney function depends on the coordinated development of specific cell types within a precise architectural framework. Due to the availability of modern analysis techniques, the kidney has become a model organ defining the paradigm to study organogenesis. As kidney diseases are a problem worldwide, the understanding of mammalian kidney cells is of crucial importance to develop diagnostic tools and novel therapies. This review focuses on how the pattern of renal development is generated, how the inductive signals are regulated and what are their effects on proliferation, differentiation and morphogenesis.
Collapse
|
34
|
Chiba N, Furukawa KI, Takayama S, Asari T, Chin S, Harada Y, Kumagai G, Wada K, Tanaka T, Ono A, Motomura S, Murakami M, Ishibashi Y. Decreased DNA methylation in the promoter region of the WNT5A and GDNF genes may promote the osteogenicity of mesenchymal stem cells from patients with ossified spinal ligaments. J Pharmacol Sci 2015; 127:467-73. [PMID: 25913759 DOI: 10.1016/j.jphs.2015.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs) isolated from spinal ligaments with ectopic ossification have a propensity toward the osteogenic lineage. To explore epigenetic control of the osteogenic features of MSCs, we treated MSCs obtained from the spinal ligaments of ossification of yellow ligament (OYL) patients and non-OYL patients with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5AdC). We compared the non-OYL groups (untreated and treated with 5AdC) with the OYL groups (untreated and treated with 5AdC) by genome-wide microarray analysis. Next, we used methylated DNA immunoprecipitation combined with quantitative real-time PCR to assess gene methylation. Ninety-eight genes showed expression significantly increased by 5AdC treatment in MSCs from non-OYL patients but not from OYL patients. In contrast, only two genes, GDNF and WNT5A, showed significantly higher expression in OYL MSCs compared with non-OYL MSCs without 5AdC treatment. Both genes were hypermethylated in non-OYL MSCs but not in OYL MSCs. Small interfering RNA targeted to each gene decreased expression of the target gene and also several osteogenic genes. Both small interfering RNAs also suppressed the activity of alkaline phosphatase, a typical marker of osteogenesis. These results suggest that the osteogenic features of MSCs from OYL patients are promoted by unmethylated WNT5A and GDNF genes.
Collapse
Affiliation(s)
- Noriyuki Chiba
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan; Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Ken-Ichi Furukawa
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan.
| | - Shohei Takayama
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Toru Asari
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Shunfu Chin
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Yoshifumi Harada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Gentaro Kumagai
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Kanichiro Wada
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Toshihiro Tanaka
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Atsushi Ono
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Shigeru Motomura
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Manabu Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| |
Collapse
|
35
|
Holley RJ, Tai G, Williamson AJK, Taylor S, Cain SA, Richardson SM, Merry CLR, Whetton AD, Kielty CM, Canfield AE. Comparative quantification of the surfaceome of human multipotent mesenchymal progenitor cells. Stem Cell Reports 2015; 4:473-88. [PMID: 25684225 PMCID: PMC4375938 DOI: 10.1016/j.stemcr.2015.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 12/23/2022] Open
Abstract
Mesenchymal progenitor cells have great therapeutic potential, yet incomplete characterization of their cell-surface interface limits their clinical exploitation. We have employed subcellular fractionation with quantitative discovery proteomics to define the cell-surface interface proteome of human bone marrow mesenchymal stromal/stem cells (MSCs) and human umbilical cord perivascular cells (HUCPVCs). We compared cell-surface-enriched fractions from MSCs and HUCPVCs (three donors each) with adult mesenchymal fibroblasts using eight-channel isobaric-tagging mass spectrometry, yielding relative quantification on >6,000 proteins with high confidence. This approach identified 186 upregulated mesenchymal progenitor biomarkers. Validation of 10 of these markers, including ROR2, EPHA2, and PLXNA2, confirmed upregulated expression in mesenchymal progenitor populations and distinct roles in progenitor cell proliferation, migration, and differentiation. Our approach has delivered a cell-surface proteome repository that now enables improved selection and characterization of human mesenchymal progenitor populations.
Collapse
Affiliation(s)
- Rebecca J Holley
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Guangping Tai
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Andrew J K Williamson
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Samuel Taylor
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Stuart A Cain
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Stephen M Richardson
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Catherine L R Merry
- Faculty of Engineering and Physical Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Anthony D Whetton
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Cay M Kielty
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Ann E Canfield
- Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
36
|
Huang L, Xiao A, Choi SY, Kan Q, Zhou W, Chacon-Heszele MF, Ryu YK, McKenna S, Zuo X, Kuruvilla R, Lipschutz JH. Wnt5a is necessary for normal kidney development in zebrafish and mice. Nephron Clin Pract 2014; 128:80-8. [PMID: 25412793 DOI: 10.1159/000368411] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 09/16/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Wnt5a is important for the development of various organs and postnatal cellular function. Little is known, however, about the role of Wnt5a in kidney development, although WNT5A mutations were identified in patients with Robinow syndrome, a genetic disease which includes developmental defects in kidneys. Our goal in this study was to determine the role of Wnt5a in kidney development. METHODS Whole-mount in situ hybridization was used to establish the expression pattern of Wnt5a during kidney development. Zebrafish with wnt5a knockdown and Wnt5a global knockout mice were used to identify kidney phenotypes. RESULTS In zebrafish, wnt5a knockdown resulted in glomerular cyst formation and dilated renal tubules. In mice, Wnt5a global knockout resulted in pleiotropic, but severe, kidney phenotypes, including agenesis, fused kidney, hydronephrosis and duplex kidney/ureter. CONCLUSIONS Our data demonstrated the important role of Wnt5a in kidney development. Disrupted Wnt5a resulted in kidney cysts in zebrafish and pleiotropic abnormal kidney development in mice.
Collapse
Affiliation(s)
- Liwei Huang
- Department of Medicine, Eastern Virginia Medical School, Norfolk, Va., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wainwright EN, Svingen T, Ng ET, Wicking C, Koopman P. Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Dev Biol 2014; 395:342-54. [DOI: 10.1016/j.ydbio.2014.08.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/20/2014] [Accepted: 08/27/2014] [Indexed: 01/06/2023]
|