1
|
Zambrano-Carrasco J, Zou J, Wang W, Sun X, Li J, Su H. Emerging Roles of Cullin-RING Ubiquitin Ligases in Cardiac Development. Cells 2024; 13:235. [PMID: 38334627 PMCID: PMC10854628 DOI: 10.3390/cells13030235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Heart development is a spatiotemporally regulated process that extends from the embryonic phase to postnatal stages. Disruption of this highly orchestrated process can lead to congenital heart disease or predispose the heart to cardiomyopathy or heart failure. Consequently, gaining an in-depth understanding of the molecular mechanisms governing cardiac development holds considerable promise for the development of innovative therapies for various cardiac ailments. While significant progress in uncovering novel transcriptional and epigenetic regulators of heart development has been made, the exploration of post-translational mechanisms that influence this process has lagged. Culling-RING E3 ubiquitin ligases (CRLs), the largest family of ubiquitin ligases, control the ubiquitination and degradation of ~20% of intracellular proteins. Emerging evidence has uncovered the critical roles of CRLs in the regulation of a wide range of cellular, physiological, and pathological processes. In this review, we summarize current findings on the versatile regulation of cardiac morphogenesis and maturation by CRLs and present future perspectives to advance our comprehensive understanding of how CRLs govern cardiac developmental processes.
Collapse
Affiliation(s)
- Josue Zambrano-Carrasco
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Jianqiu Zou
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Wenjuan Wang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (J.Z.-C.); (J.Z.)
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
2
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
|
3
|
Meng Y, Zhong K, Chen S, Huang Y, Wei Y, Wu J, Liu J, Xu Z, Guo J, Liu F, Lu H. Cardiac toxicity assessment of pendimethalin in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112514. [PMID: 34280841 DOI: 10.1016/j.ecoenv.2021.112514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Pendimethalin (PND) is one of the best sellers of selective herbicide in the world and has been frequently detected in the water. However, little is known about its effects on cardiac development. In this study, we used zebrafish to investigate the developmental and cardiac toxicity of PND. We exposed the zebrafish embryos with a serial of concentrations at 3, 4, and 5 mg/L at 5.5-72 h post-fertilization (hpf). We found that PND exposure can reduce the heart rate, survival rate, and body length of zebrafish embryos. Furthermore, we identified many malformations including pericardial and yolk sac edema, spinal deformity, and cardiac looping abnormality. In addition, PND increased the expression of reactive oxygen species and malondialdehyde and reduced the activity of superoxide dismutase (Antioxidant enzymes); We examined the expression of cardiac development-related genes and the apoptosis markers, and found changes of the following marker: vmhc, nppa, tbx5a, nkx2.5, gata4, tbx2b and FoxO1, bax, bcl-2, p53, casp-9, casp-3. Our data showed that activation of Wnt pathway can rescue the cardiac abnormalities caused by PND. Our results provided new evidence for the toxicity of PND and suggested that the PND residual should be treated as a hazard in the environment.
Collapse
Affiliation(s)
- Yunlong Meng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Suping Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - You Wei
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Juan Wu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Juan Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Zhaopeng Xu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China
| | - Jing Guo
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; College of life sciences, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an 343009, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an 343009, Jiangxi, China.
| |
Collapse
|
4
|
Huang Y, Ma J, Meng Y, Wei Y, Xie S, Jiang P, Wang Z, Chen X, Liu Z, Zhong K, Cao Z, Liao X, Xiao J, Lu H. Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114775. [PMID: 32504889 DOI: 10.1016/j.envpol.2020.114775] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Oxadiazon-Butachlor (OB) is a widely used herbicide for controlling most annual weeds in rice fields. However, its potential toxicity in aquatic organisms has not been evaluated so far. We used the zebrafish embryo model to assess the toxicity of OB, and found that it affected early cardiac development and caused extensive cardiac damage. Mechanistically, OB significantly increased oxidative stress in the embryos by inhibiting antioxidant enzymes that resulted in excessive production of reactive oxygen species (ROS), eventually leading to cardiomyocyte apoptosis. In addition, OB also inhibited the WNT signaling pathway and downregulated its target genes includinglef1, axin2 and β-catenin. Reactivation of this pathway by the Wnt activator BML-284 and the antioxidant astaxanthin rescued the embryos form the cardiotoxic effects of OB, indicating that oxidative stress, and inhibition of WNT target genes are the mechanistic basis of OB-induced damage in zebrafish. Our study shows that OB exposure causes cardiotoxicity in zebrafish embryos and may be potentially toxic to other aquatic life and even humans.
Collapse
Affiliation(s)
- Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zehui Liu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
5
|
Meneghetti G, Skobo T, Chrisam M, Fontana CM, Facchinello N, Nazio F, Cecconi F, Bonaldo P, Dalla Valle L. Zebrafish ambra1a and ambra1b Silencing Affect Heart Development. Zebrafish 2020; 17:163-176. [PMID: 32320344 DOI: 10.1089/zeb.2020.1860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In zebrafish, two paralogous genes, activating molecule in beclin-1 (BECN1)-regulated autophagy ambra1a and ambra1b, both required for the autophagic process and during development, encode the protein AMBRA1, a positive regulator of early steps of autophagosome formation. As transcripts for both genes are expressed during embryogenesis in the heart region, in this work, we investigated the effects of ambra1a and ambra1b knockdown on heart development by means of morpholino oligonucleotides (MOs). Silencing of the two proteins by MOs directed against the ATG translation initiation codon affects cardiac morphogenesis, resulting in a small, string-like heart with pericardial edema, whereas treatment with splice-blocking MOs does not lead to overt cardiac phenotypes, thus revealing the relevance of maternally supplied ambra1 transcripts for heart development. Co-injection of both ATG-MOs determines a more severe cardiac phenotype, with prominent pericardial edema. Whole-mount in situ hybridization (WMISH) for myosin light chain 7 (myl7), as well as ambra1 ATG-MO microinjection in zebrafish transgenic line expressing green fluorescent protein in the heart, revealed defects with the heart jogging process followed by imperfect cardiac looping. Moreover, WMISH of homeodomain transcription factor 2 isoform c (pitx2c) transcripts showed both bilateral and reversed pitx2c expression in morphants. The morphants' cardiac phenotypes were effectively rescued by co-injection of MOs with human AMBRA1 (hAMBRA1) messenger RNA (mRNA), pointing at the conservation of Ambra1 functions during evolution. Co-injections of ambra1 ATG-MOs with a hAMBRA1 mRNA mutated in the protein phosphatase 2a (PP2A) binding sites (hAMBRA1PXP) were not able to rescue the cardiac phenotypes, at the difference from wild-type hAMBRA1 mRNA, and treatment of zebrafish embryos with the specific PP2A inhibitor cantharidin resulted in similar developmental cardiac defects. These results suggest a critical role for AMBRA1 in vertebrate heart development, likely involving the binding site for the PP2A phosphatase.
Collapse
Affiliation(s)
| | - Tatjana Skobo
- Department of Biology and University of Padova, Padova, Italy
| | - Martina Chrisam
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | - Francesca Nazio
- Department of Pediatric Hemato-Oncology and Cell and Gene therapy, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesco Cecconi
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | |
Collapse
|
6
|
p63 is a cereblon substrate involved in thalidomide teratogenicity. Nat Chem Biol 2019; 15:1077-1084. [DOI: 10.1038/s41589-019-0366-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
|
7
|
Cul4a promotes zebrafish primitive erythropoiesis via upregulating scl and gata1 expression. Cell Death Dis 2019; 10:388. [PMID: 31101894 PMCID: PMC6525236 DOI: 10.1038/s41419-019-1629-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/27/2022]
Abstract
CUL4A and CUL4B are closely related members in Cullin family and can each assemble a Cullin-RING E3 ligase complex (Cullin-RING Ligase 4A or 4B, CRL4A, or CRL4B) and participate in a variety of biological processes. Previously we showed that zebrafish cul4a, but not cul4b, is essential for cardiac and pectoral fin development. Here, we have identified cul4a as a crucial regulator of primitive erythropoiesis in zebrafish embryonic development. Depletion of cul4a resulted in a striking reduction of erythroid cells due to the inhibition of erythroid differentiation. Transcript levels for early hematopoietic regulatory genes including scl, lmo2, and gata1 are significantly reduced in cul4a-deficient embryos. Mechanistically, we demonstrated that scl and gata1, the central regulators of primitive hematopoiesis for erythroid determination, are transcriptionally upregulated by cul4a. These findings demonstrate an important role for cul4a in primitive erythropoiesis and may bear implications in regeneration medicine of anemia and related diseases.
Collapse
|
8
|
Cul4a as a New Interaction Protein of PARP1 Inhibits Oxidative Stress-Induced H9c2 Cell Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4273261. [PMID: 31178959 PMCID: PMC6501127 DOI: 10.1155/2019/4273261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
Oxidative stress plays a major part in myocardial reperfusion injury. Cul4a is the core protein of CRLs E3 ubiquitin ligase complex; while it is known that Cul4a is responsible for various cancers, its role in cardiac function remains unclear. Hence, we have shown the protective function of Cul4a and its protection mechanism in oxidative stress-induced H9c2 cardiomyocyte apoptosis. Here, oxidative stress was induced by hydrogen peroxide (H2O2), CCK-8 assay and flow cytometry were used to analyze cell viability and apoptosis rate, western blot and immunofluorescence were used to quantitatively analyze the expression of protein, ROS fluorescence kit was used to detect reactive oxygen species (ROS) formation, and coimmunoprecipitation was used to identify protein interaction. In the results, it was found that Cul4a was involved in oxidative stress-induced H9c2 cell apoptosis and could inhibit H2O2-induced ROS generation and H9c2 cell apoptosis. Furthermore, we identified that when combining with PARP1, Cul4a could reduce its expression, and the interaction was enhanced under oxidative stress. In conclusion, our results indicate that Cul4a is a new protective factor involved in oxidative stress-induced cardiomyocyte injury and functions by tying and decreasing overactivated PARP1.
Collapse
|
9
|
Kunkler B, Salamango D, DeBruine ZJ, Ploch C, Dean S, Grossens D, Hledin MP, Marquez GA, Madden J, Schnell A, Short M, Burnatowska-Hledin MA. CUL5 is required for thalidomide-dependent inhibition of cellular proliferation. PLoS One 2018; 13:e0196760. [PMID: 29746508 PMCID: PMC5944951 DOI: 10.1371/journal.pone.0196760] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/19/2018] [Indexed: 11/20/2022] Open
Abstract
Angiogenesis is essential for cancer metastasis, thus the discovery and characterization of molecules that inhibit this process is important. Thalidomide is a teratogenic drug which is known to inhibit angiogenesis and effectively inhibit cancer metastasis, yet the specific cellular targets for its effect are not well known. We discovered that CUL5 (previously identified as VACM-1), a scaffold protein in E3 ligase complexes, is involved in thalidomide-dependent inhibition of endothelial cell growth. Our results show that in human endothelial cells (HUVEC), thalidomide-dependent decrease in cell growth was associated with decreased nuclear localization of CUL5. In HUVEC transfected with anti-VACM-1 siRNA, thalidomide failed to decrease cell growth. Previously it was established that the antiproliferative effect of CUL5 is inhibited in rat endothelial cells (RAMEC) transfected with mutated CUL5 which is constitutively modified by NEDD8, a ubiquitin-like protein. In this study, the antiproliferative response to thalidomide was compromised in RAMEC expressing mutated CUL5. These results suggest that CUL5 protein is involved in the thalidomide-dependent regulation of cellular proliferation in vitro. Consequently, CUL5 may be an important part of the mechanism for thalidomide-dependent inhibition of cellular proliferation, as well as a novel biomarker for predicting a response to thalidomide for the treatment of disorders such as multiple myeloma and HIV infection.
Collapse
Affiliation(s)
- Bryan Kunkler
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Daniel Salamango
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Zachary J DeBruine
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Caitlin Ploch
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Shirley Dean
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - David Grossens
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Michael P Hledin
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Gabriel A Marquez
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Julie Madden
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Abigayle Schnell
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Michael Short
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| | - Maria A Burnatowska-Hledin
- Department of Chemistry, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America.,Department of Biology, Paul A. Schaap Science Center, Hope College, Holland, MI, United States of America
| |
Collapse
|
10
|
Ghosh TK, Aparicio-Sánchez JJ, Buxton S, Ketley A, Mohamed T, Rutland CS, Loughna S, Brook JD. Acetylation of TBX5 by KAT2B and KAT2A regulates heart and limb development. J Mol Cell Cardiol 2017; 114:185-198. [PMID: 29174768 DOI: 10.1016/j.yjmcc.2017.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 11/28/2022]
Abstract
TBX5 plays a critical role in heart and forelimb development. Mutations in TBX5 cause Holt-Oram syndrome, an autosomal dominant condition that affects the formation of the heart and upper-limb. Several studies have provided significant insight into the role of TBX5 in cardiogenesis; however, how TBX5 activity is regulated by other factors is still unknown. Here we report that histone acetyltransferases KAT2A and KAT2B associate with TBX5 and acetylate it at Lys339. Acetylation potentiates its transcriptional activity and is required for nuclear retention. Morpholino-mediated knockdown of kat2a and kat2b transcripts in zebrafish severely perturb heart and limb development, mirroring the tbx5a knockdown phenotype. The phenotypes found in MO-injected embryos were also observed when we introduced mutations in the kat2a or kat2b genes using the CRISPR-Cas system. These studies highlight the importance of KAT2A and KAT2B modulation of TBX5 and their impact on heart and limb development.
Collapse
Affiliation(s)
- Tushar K Ghosh
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - José J Aparicio-Sánchez
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Sarah Buxton
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ami Ketley
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Tasabeeh Mohamed
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Catrin S Rutland
- The School of Veterinary Medicine and Science, Sutton Bonington Campus, Sutton Bonington, University of Nottingham, LE12 5RD, UK
| | - Siobhan Loughna
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - J David Brook
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| |
Collapse
|
11
|
Hu Z, Holzschuh J, Driever W. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos. PLoS One 2015. [PMID: 26225764 PMCID: PMC4520591 DOI: 10.1371/journal.pone.0134299] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes involved in cell cycle control and cell survival.
Collapse
Affiliation(s)
- Zhilian Hu
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, 48109-5646, United States of America
| | - Jochen Holzschuh
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Hauptstrasse 1, 79104, Freiburg, Germany; BIOSS-Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| |
Collapse
|
12
|
Vargesson N. Thalidomide-induced teratogenesis: history and mechanisms. ACTA ACUST UNITED AC 2015; 105:140-56. [PMID: 26043938 PMCID: PMC4737249 DOI: 10.1002/bdrc.21096] [Citation(s) in RCA: 469] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/12/2015] [Indexed: 12/19/2022]
Abstract
Nearly 60 years ago thalidomide was prescribed to treat morning sickness in pregnant women. What followed was the biggest man‐made medical disaster ever, where over 10,000 children were born with a range of severe and debilitating malformations. Despite this, the drug is now used successfully to treat a range of adult conditions, including multiple myeloma and complications of leprosy. Tragically, a new generation of thalidomide damaged children has been identified in Brazil. Yet, how thalidomide caused its devastating effects in the forming embryo remains unclear. However, studies in the past few years have greatly enhanced our understanding of the molecular mechanisms the drug. This review will look at the history of the drug, and the range and type of damage the drug caused, and outline the mechanisms of action the drug uses including recent molecular advances and new findings. Some of the remaining challenges facing thalidomide biologists are also discussed. Birth Defects Research (Part C) 105:140–156, 2015. © 2015 The Authors Birth Defects Research Part C: Embryo Today: Reviews Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Neil Vargesson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, United Kingdom
| |
Collapse
|