1
|
Schöneberg T. Modulating vertebrate physiology by genomic fine-tuning of GPCR functions. Physiol Rev 2025; 105:383-439. [PMID: 39052017 DOI: 10.1152/physrev.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024] Open
Abstract
G protein-coupled receptors (GPCRs) play a crucial role as membrane receptors, facilitating the communication of eukaryotic species with their environment and regulating cellular and organ interactions. Consequently, GPCRs hold immense potential in contributing to adaptation to ecological niches and responding to environmental shifts. Comparative analyses of vertebrate genomes reveal patterns of GPCR gene loss, expansion, and signatures of selection. Integrating these genomic data with insights from functional analyses of gene variants enables the interpretation of genotype-phenotype correlations. This review underscores the involvement of GPCRs in adaptive processes, presenting numerous examples of how alterations in GPCR functionality influence vertebrate physiology or, conversely, how environmental changes impact GPCR functions. The findings demonstrate that modifications in GPCR function contribute to adapting to aquatic, arid, and nocturnal habitats, influencing camouflage strategies, and specializing in particular dietary preferences. Furthermore, the adaptability of GPCR functions provides an effective mechanism in facilitating past, recent, or ongoing adaptations in animal domestication and human evolution and should be considered in therapeutic strategies and drug development.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
- School of Medicine, University of Global Health Equity, Kigali, Rwanda
| |
Collapse
|
2
|
Tophkhane SS, Fu K, Verheyen EM, Richman JM. Craniofacial studies in chicken embryos confirm the pathogenicity of human FZD2 variants associated with Robinow syndrome. Dis Model Mech 2024; 17:dmm050584. [PMID: 38967226 PMCID: PMC11247504 DOI: 10.1242/dmm.050584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
Robinow syndrome is a rare disease caused by variants of seven WNT pathway genes. Craniofacial features include widening of the nasal bridge and jaw hypoplasia. We used the chicken embryo to test whether two missense human FZD2 variants (1301G>T, p.Gly434Val; 425C>T, p.Pro142Lys) were sufficient to change frontonasal mass development. In vivo, the overexpression of retroviruses with wild-type or variant human FZD2 inhibited upper beak ossification. In primary cultures, wild-type and variant human FZD2 significantly inhibited chondrogenesis, with the 425C>T variant significantly decreasing activity of a SOX9 luciferase reporter compared to that for the wild type or 1301G>T. Both variants also increased nuclear shuttling of β-catenin (CTNNB1) and increased the expression of TWIST1, which are inhibitory to chondrogenesis. In canonical WNT luciferase assays using frontonasal mass cells, the variants had dominant-negative effects on wild-type FZD2. In non-canonical assays, the 425C>T variant failed to activate the reporter above control levels and was unresponsive to exogenous WNT5A. This is the first single amino acid change to selectively alter ligand binding in a FZD receptor. Therefore, FZD2 missense variants are pathogenic and could lead to the altered craniofacial morphogenesis seen in Robinow syndrome.
Collapse
Affiliation(s)
- Shruti S. Tophkhane
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katherine Fu
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Joy M. Richman
- Life Sciences Institute and Faculty of Dentistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Hajiali H, Rotherham M, El Haj AJ. Remote Activation of Mechanotransduction via Integrin Alpha-5 via Aptamer-Conjugated Magnetic Nanoparticles Promotes Osteogenesis. Pharmaceutics 2023; 16:21. [PMID: 38258032 PMCID: PMC10821094 DOI: 10.3390/pharmaceutics16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Bone regeneration and repair are complex processes in the adult skeleton, and current research has focused on understanding and controlling these processes. Magnetic nanoparticle (MNP)-based platforms have shown potential in tissue engineering and regenerative medicine through the use of magnetic nanomaterials combined with remotely applied dynamic fields. Previous studies have demonstrated the ability of MNP-induced mechanoactivation to trigger downstream signaling and promote new bone formation. In this study, we aimed to compare the osteogenic induction achieved using the mechanoreceptor targets, Piezo1, Fzd1, Fzd2, and integrin alpha-5. We compared the binding efficacy of different types of agonists (antibodies vs. aptamers) to these receptors. Moreover, we optimized the aptamer concentration (2.5, 5, and 10 μg/mg) for the selected receptor to determine the optimum concentration for promoting bone formation. Our data demonstrated that the mechanoactivation of integrins (CD49e) significantly upregulated the RUNX2 and LEF1 genes compared to other selected receptors. Furthermore, comparing the mechanoactivation of cells using MNPs conjugated with CD49e antibodies and aptamers revealed that MNP-aptamers significantly enhanced the upregulation of LEF1 genes. This suggests that aptamer-mediated mechanoactivation is a promising alternative to antibody-mediated activation. Finally, our results showed that the concentration of the aptamer loaded onto the MNPs strongly influenced the mechanoactivation of the cells. These findings provide valuable insights into the use of MNP platforms for bone regeneration and highlight the potential of aptamers in promoting signaling pathways related to bone formation. The novelty of our study lies in elucidating the unique advantages of aptamers in mediating mechanoactivation, presenting a promising avenue for advancing bone regenerative strategies.
Collapse
Affiliation(s)
- Hadi Hajiali
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| | | | - Alicia J. El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TH, UK
| |
Collapse
|
4
|
Konopelski Snavely SE, Srinivasan S, Dreyer CA, Tan J, Carraway KL, Ho HYH. Non-canonical WNT5A-ROR signaling: New perspectives on an ancient developmental pathway. Curr Top Dev Biol 2023; 153:195-227. [PMID: 36967195 PMCID: PMC11042798 DOI: 10.1016/bs.ctdb.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Deciphering non-canonical WNT signaling has proven to be both fascinating and challenging. Discovered almost 30 years ago, non-canonical WNT ligands signal independently of the transcriptional co-activator β-catenin to regulate a wide range of morphogenetic processes during development. The molecular and cellular mechanisms that underlie non-canonical WNT function, however, remain nebulous. Recent results from various model systems have converged to define a core non-canonical WNT pathway consisting of the prototypic non-canonical WNT ligand, WNT5A, the receptor tyrosine kinase ROR, the seven transmembrane receptor Frizzled and the cytoplasmic scaffold protein Dishevelled. Importantly, mutations in each of these signaling components cause Robinow syndrome, a congenital disorder characterized by profound tissue morphogenetic abnormalities. Moreover, dysregulation of the pathway has also been linked to cancer metastasis. As new knowledge concerning the WNT5A-ROR pathway continues to grow, modeling these mutations will likely provide crucial insights into both the physiological regulation of the pathway and the etiology of WNT5A-ROR-driven diseases.
Collapse
Affiliation(s)
- Sara E Konopelski Snavely
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Srisathya Srinivasan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Courtney A Dreyer
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Jia Tan
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States
| | - Kermit L Carraway
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, School of Medicine, Sacramento, CA, United States
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
5
|
Zhu X, Xu M, Leu NA, Morrisey EE, Millar SE. FZD2 regulates limb development by mediating β-catenin-dependent and -independent Wnt signaling pathways. Dis Model Mech 2023; 16:dmm049876. [PMID: 36867021 PMCID: PMC10073008 DOI: 10.1242/dmm.049876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Human Robinow syndrome (RS) and dominant omodysplasia type 2 (OMOD2), characterized by skeletal limb and craniofacial defects, are associated with heterozygous mutations in the Wnt receptor FZD2. However, as FZD2 can activate both canonical and non-canonical Wnt pathways, its precise functions and mechanisms of action in limb development are unclear. To address these questions, we generated mice harboring a single-nucleotide insertion in Fzd2 (Fzd2em1Smill), causing a frameshift mutation in the final Dishevelled-interacting domain. Fzd2em1Smill mutant mice had shortened limbs, resembling those of RS and OMOD2 patients, indicating that FZD2 mutations are causative. Fzd2em1Smill mutant embryos displayed decreased canonical Wnt signaling in developing limb mesenchyme and disruption of digit chondrocyte elongation and orientation, which is controlled by the β-catenin-independent WNT5A/planar cell polarity (PCP) pathway. In line with these observations, we found that disruption of FZD function in limb mesenchyme caused formation of shortened bone elements and defects in Wnt/β-catenin and WNT5A/PCP signaling. These findings indicate that FZD2 controls limb development by mediating both canonical and non-canonical Wnt pathways and reveal causality of pathogenic FZD2 mutations in RS and OMOD2 patients.
Collapse
Affiliation(s)
- Xuming Zhu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mingang Xu
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - N. Adrian Leu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E. Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E. Millar
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Liegel RP, Michalski MN, Vaidya S, Bittermann E, Finnerty E, Menke CA, Diegel CR, Zhong ZA, Williams BO, Stottmann RW. Successful therapeutic intervention in new mouse models of frizzled 2-associated congenital malformations. Development 2023; 150:dev201038. [PMID: 36789910 PMCID: PMC10112907 DOI: 10.1242/dev.201038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/03/2023] [Indexed: 02/16/2023]
Abstract
Frizzled 2 (FZD2) is a transmembrane Wnt receptor. We previously identified a pathogenic human FZD2 variant in individuals with FZD2-associated autosomal dominant Robinow syndrome. The variant encoded a protein with a premature stop and loss of 17 amino acids, including a region of the consensus dishevelled-binding sequence. To model this variant, we used zygote microinjection and i-GONAD-based CRISPR/Cas9-mediated genome editing to generate a mouse allelic series. Embryos mosaic for humanized Fzd2W553* knock-in exhibited cleft palate and shortened limbs, consistent with patient phenotypes. We also generated two germline mouse alleles with small deletions: Fzd2D3 and Fzd2D4. Homozygotes for each allele exhibit a highly penetrant cleft palate phenotype, shortened limbs compared with wild type and perinatal lethality. Fzd2D4 craniofacial tissues indicated decreased canonical Wnt signaling. In utero treatment with IIIC3a (a DKK inhibitor) normalized the limb lengths in Fzd2D4 homozygotes. The in vivo replication represents an approach for further investigating the mechanism of FZD2 phenotypes and demonstrates the utility of CRISPR knock-in mice as a tool for investigating the pathogenicity of human genetic variants. We also present evidence for a potential therapeutic intervention.
Collapse
Affiliation(s)
- Ryan P. Liegel
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45215, USA
| | - Megan N. Michalski
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Sanika Vaidya
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45215, USA
| | - Elizabeth Bittermann
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45215, USA
| | - Erin Finnerty
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45215, USA
| | - Chelsea A. Menke
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45215, USA
| | - Cassandra R. Diegel
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zhendong A. Zhong
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bart O. Williams
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Rolf W. Stottmann
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45215, USA
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45215, USA
- Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, School of Medicine, Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
7
|
Arabzadeh A, Baghianimoghadam B, Nabian MH, Fallah Y, Ebrahimnasab MM. Dominant omodysplasia-A sporadic case-A new case report and review of the literature. Clin Case Rep 2022; 10:e6187. [PMID: 35937024 PMCID: PMC9347672 DOI: 10.1002/ccr3.6187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/14/2022] [Accepted: 06/03/2022] [Indexed: 11/12/2022] Open
Abstract
Omodysplasia is an extremely rare skeletal dysplasia. Since introducing this phenotype as a new syndrome, ten cases of the autosomal dominant type of this disease have been reported. Here, we present a new patient and review published articles in this field to provide a clinical diagnostic criterion.
Collapse
Affiliation(s)
- Aidin Arabzadeh
- Department of Orthopedic SurgeryTehran University of Medical Sciences, Imam Khomeini Hospital ComplexTehranIran
| | - Behnam Baghianimoghadam
- Department of Orthopedic SurgeryTehran University of Medical Sciences, Imam Khomeini Hospital ComplexTehranIran
| | - Mohammad Hossein Nabian
- Department of Orthopedic Surgery, Shariati HospitalTehran University of Medical SciencesTehranIran
| | - Yousef Fallah
- Department of Orthopedic Surgery, Sina HospitalTehran University of Medical SciencesTehranIran
| | - Mohammad Mehdi Ebrahimnasab
- Department of Orthopedic SurgeryTehran University of Medical Sciences, Imam Khomeini Hospital ComplexTehranIran
| |
Collapse
|
8
|
Zhang C, Jolly A, Shayota BJ, Mazzeu JF, Du H, Dawood M, Soper PC, Ramalho de Lima A, Ferreira BM, Coban-Akdemir Z, White J, Shears D, Thomson FR, Douglas SL, Wainwright A, Bailey K, Wordsworth P, Oldridge M, Lester T, Calder AD, Dumic K, Banka S, Donnai D, Jhangiani SN, Potocki L, Chung WK, Mora S, Northrup H, Ashfaq M, Rosenfeld JA, Mason K, Pollack LC, McConkie-Rosell A, Kelly W, McDonald M, Hauser NS, Leahy P, Powell CM, Boy R, Honjo RS, Kok F, Martelli LR, Filho VO, Genomics England Research Consortium, Muzny DM, Gibbs RA, Posey JE, Liu P, Lupski JR, Sutton VR, Carvalho CM. Novel pathogenic variants and quantitative phenotypic analyses of Robinow syndrome: WNT signaling perturbation and phenotypic variability. HGG ADVANCES 2022; 3:100074. [PMID: 35047859 PMCID: PMC8756549 DOI: 10.1016/j.xhgg.2021.100074] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Robinow syndrome (RS) is a genetically heterogeneous disorder with six genes that converge on the WNT/planar cell polarity (PCP) signaling pathway implicated (DVL1, DVL3, FZD2, NXN, ROR2, and WNT5A). RS is characterized by skeletal dysplasia and distinctive facial and physical characteristics. To further explore the genetic heterogeneity, paralog contribution, and phenotypic variability of RS, we investigated a cohort of 22 individuals clinically diagnosed with RS from 18 unrelated families. Pathogenic or likely pathogenic variants in genes associated with RS or RS phenocopies were identified in all 22 individuals, including the first variant to be reported in DVL2. We retrospectively collected medical records of 16 individuals from this cohort and extracted clinical descriptions from 52 previously published cases. We performed Human Phenotype Ontology (HPO) based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. Individuals with FZD2 variants clustered into two groups with demonstrable phenotypic differences between those with missense and truncating alleles. Probands with biallelic NXN variants clustered together with the majority of probands carrying DVL1, DVL2, and DVL3 variants, demonstrating no phenotypic distinction between the NXN-autosomal recessive and dominant forms of RS. While phenotypically similar diseases on the RS differential matched through HPO analysis, clustering using phenotype similarity score placed RS-associated phenotypes in a unique cluster containing WNT5A, FZD2, and ROR2 apart from non-RS-associated paralogs. Through human phenotype analyses of this RS cohort and OMIM clinical synopses of Mendelian disease, this study begins to tease apart specific biologic roles for non-canonical WNT-pathway proteins.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Angad Jolly
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Medical Scientist Training Program, BCM, Houston, TX 77030, USA
| | - Brian J. Shayota
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Juliana F. Mazzeu
- University of Brasilia, Brasilia 70050, Brazil
- Robinow Syndrome Foundation, Anoka, MN 55303, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Medical Scientist Training Program, BCM, Houston, TX 77030, USA
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | | | | | | | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, UTHealth, Houston, TX 77030, USA
| | - Janson White
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Fraser Robert Thomson
- Cardiothoracic Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | | | - Andrew Wainwright
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Kathryn Bailey
- Pediatric Rheumatology, Nuffield Orthopedic Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7HE, UK
| | - Paul Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, Oxford OX3 7LD, UK
| | - Mike Oldridge
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Tracy Lester
- Oxford Regional Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 7LE, UK
| | - Alistair D. Calder
- Radiology Department, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| | - Katja Dumic
- Department of Pediatric Endocrinology and Diabetes, University Clinical Center Zagreb, Zagreb 10000, Croatia
| | - Siddharth Banka
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9WL, UK
- Manchester Center for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | - Dian Donnai
- Manchester Center for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester M13 9WL, UK
| | | | - Lorraine Potocki
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Wendy K. Chung
- Department of Pediatrics and Medicine, Columbia University, NY 10032, USA
| | - Sara Mora
- GeneDx Inc., Gaithersburg, MD 20878, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Myla Ashfaq
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children’s Memorial Hermann Hospital, Houston, TX 77030, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Kati Mason
- GeneDx Inc., Gaithersburg, MD 20878, USA
- Arnold Palmer Hospital for Children, Orlando, FL 32806, USA
| | | | | | - Wei Kelly
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27708, USA
| | - Marie McDonald
- Division of Medical Genetics, Duke University Medical Center, Durham, NC 27708, USA
| | - Natalie S. Hauser
- Medical Genetics, Inova Fairfax Hospital, Falls Church, VA 22042, USA
| | - Peter Leahy
- Cook Children's Hospital, Fort Worth, TX 76104, USA
| | - Cynthia M. Powell
- Division of Pediatric Genetics and Metabolism, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Raquel Boy
- State University of Rio de Janeiro, Rio de Janeiro 21941, Brazil
| | - Rachel Sayuri Honjo
- Unidade de Genética, Instituto da Criança - Hospital das Clinicas HCFMUSP, Faculdade de Medicina, University of Sao Paulo, São Paulo 05508, Brasil
| | - Fernando Kok
- Mendelics Análise Genômica, São Paulo 04013, Brasil
| | - Lucia R. Martelli
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, São Paulo 05508, Brazil
| | - Vicente Odone Filho
- Instituto de Tratamento do Câncer Infantil, São Paulo University Medical School, Hospital Israelita Albert Einstein, São Paulo 05508, Brasil
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Human Genome Sequencing Center, BCM, Houston, TX 77030, USA
- Department of Pediatrics, BCM, Houston, TX 77030, USA
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, BCM, Houston, TX 77030, USA
- Pacific Northwest Research Institute (PNRI), Seattle, WA 98122, USA
| |
Collapse
|
9
|
Planar cell polarity (PCP) proteins support spermatogenesis through cytoskeletal organization in the testis. Semin Cell Dev Biol 2021; 121:99-113. [PMID: 34059418 DOI: 10.1016/j.semcdb.2021.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Few reports are found in the literature regarding the role of planar cell polarity (PCP) in supporting spermatogenesis in the testis. Yet morphological studies reported decades earlier have illustrated the directional alignment of polarized developing spermatids, most notably step 17-19 spermatids in stage V-early VIII tubules in the testis, across the plane of the epithelium in seminiferous tubules of adult rats. Such morphological features have unequivocally demonstrated the presence of PCP in developing spermatids, analogous to the PCP noted in hair cells of the cochlea in mammals. Emerging evidence in recent years has shown that Sertoli and germ cells express numerous PCP proteins, mostly notably, the core PCP proteins, PCP effectors and PCP signaling proteins. In this review, we discuss recent findings in the field regarding the two core PCP protein complexes, namely the Van Gogh-like 2 (Vangl2)/Prickle (Pk) complex and the Frizzled (Fzd)/Dishevelled (Dvl) complex. These findings have illustrated that these PCP proteins exert their regulatory role to support spermatogenesis through changes in the organization of actin and microtubule (MT) cytoskeletons in Sertoli cells. For instance, these PCP proteins confer PCP to developing spermatids. As such, developing haploid spermatids can be aligned and orderly packed within the limited space of the seminiferous tubules in the testes for the production of sperm via spermatogenesis. Thus, each adult male in the mouse, rat or human can produce an upward of 30, 50 or 300 million spermatozoa on a daily basis, respectively, throughout the adulthood. We also highlight critical areas of research that deserve attention in future studies. We also provide a hypothetical model by which PCP proteins support spermatogenesis based on recent studies in the testis. It is conceivable that the hypothetical model shown here will be updated as more data become available in future years, but this information can serve as the framework by investigators to unravel the role of PCP in spermatogenesis.
Collapse
|
10
|
Guasto A, Cormier-Daire V. Signaling Pathways in Bone Development and Their Related Skeletal Dysplasia. Int J Mol Sci 2021; 22:4321. [PMID: 33919228 PMCID: PMC8122623 DOI: 10.3390/ijms22094321] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
Bone development is a tightly regulated process. Several integrated signaling pathways including HH, PTHrP, WNT, NOTCH, TGF-β, BMP, FGF and the transcription factors SOX9, RUNX2 and OSX are essential for proper skeletal development. Misregulation of these signaling pathways can cause a large spectrum of congenital conditions categorized as skeletal dysplasia. Since the signaling pathways involved in skeletal dysplasia interact at multiple levels and have a different role depending on the time of action (early or late in chondrogenesis and osteoblastogenesis), it is still difficult to precisely explain the physiopathological mechanisms of skeletal disorders. However, in recent years, significant progress has been made in elucidating the mechanisms of these signaling pathways and genotype-phenotype correlations have helped to elucidate their role in skeletogenesis. Here, we review the principal signaling pathways involved in bone development and their associated skeletal dysplasia.
Collapse
Affiliation(s)
- Alessandra Guasto
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France;
- Centre de Référence Pour Les Maladies Osseuses Constitutionnelles, Service de Génétique Clinique, AP-HP, Hôpital Necker-Enfants Malades, 75015 Paris, France
| |
Collapse
|
11
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
12
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
13
|
Sun Y, Wang W, Zhao C. Frizzled Receptors in Tumors, Focusing on Signaling, Roles, Modulation Mechanisms, and Targeted Therapies. Oncol Res 2020; 28:661-674. [PMID: 32998794 PMCID: PMC7962935 DOI: 10.3727/096504020x16014648664459] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt molecules play crucial roles in development and adult homeostasis through their receptors Frizzled proteins (Fzds). Fzds mediate canonical β-catenin pathway and various noncanonical β-catenin-independent pathways. Aberrant Fzd signaling is involved in many diseases including cancer. Wnt/β-catenin is a well-established oncogenic pathway involved in almost every aspect of tumor development. However, Fzd-mediated noncanonical Wnt pathways function as both tumor promoters and tumor suppressors depending on cellular context. Fzd-targeted therapies have proven to be effective on cultured tumor cells, tumor cell xenografts, mouse tumor models, and patient-derived xenografts (PDX). Moreover, Fzd-targeted therapies synergize with chemotherapy in preclinical models. However, the occurrence of fragility fractures in patients treated with Fzd-targeted agents such as OMP-54F28 and OMP-18R5 limits the development of this combination. Along with new insights on signaling, roles, and modulation mechanisms of Fzds in human tumors, more Fzd-related therapeutic targets will be developed.
Collapse
Affiliation(s)
- Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical UniversityShenyangP.R. China
| |
Collapse
|
14
|
Marquez J, Criscione J, Charney RM, Prasad MS, Hwang WY, Mis EK, García-Castro MI, Khokha MK. Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects. J Clin Invest 2020; 130:813-826. [PMID: 31904590 DOI: 10.1172/jci129308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Multipass membrane proteins have a myriad of functions, including transduction of cell-cell signals, ion transport, and photoreception. Insertion of these proteins into the membrane depends on the endoplasmic reticulum (ER) membrane protein complex (EMC). Recently, birth defects have been observed in patients with variants in the gene encoding a member of this complex, EMC1. Patient phenotypes include congenital heart disease, craniofacial malformations, and neurodevelopmental disease. However, a molecular connection between EMC1 and these birth defects is lacking. Using Xenopus, we identified defects in neural crest cells (NCCs) upon emc1 depletion. We then used unbiased proteomics and discovered a critical role for emc1 in WNT signaling. Consistent with this, readouts of WNT signaling and Frizzled (Fzd) levels were reduced in emc1-depleted embryos, while NCC defects could be rescued with β-catenin. Interestingly, other transmembrane proteins were mislocalized upon emc1 depletion, providing insight into additional patient phenotypes. To translate our findings back to humans, we found that EMC1 was necessary for human NCC development in vitro. Finally, we tested patient variants in our Xenopus model and found the majority to be loss-of-function alleles. Our findings define molecular mechanisms whereby EMC1 dysfunction causes disease phenotypes through dysfunctional multipass membrane protein topogenesis.
Collapse
Affiliation(s)
- Jonathan Marquez
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - June Criscione
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Rebekah M Charney
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Maneeshi S Prasad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Woong Y Hwang
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily K Mis
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Martín I García-Castro
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, California, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Mazzeu JF, Brunner HG. 50 years of Robinow syndrome. Am J Med Genet A 2020; 182:2005-2007. [DOI: 10.1002/ajmg.a.61756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Juliana F. Mazzeu
- Faculdade de MedicinaUniversidade de Brasília Brasília Brazil
- Robinow Syndrome Foundation Andover Minnesota USA
| | - Han G. Brunner
- Department of Human Genetics, Radboud Institute for Cognitive Neuroscience DCNRadboud University Medical Center Nijmegen The Netherlands
- Department of Clinical Genetics, GROW School of Developmental Biology and Cancer, and MHEnS School for NeuroscienceMaastricht University Medical Centre Maastricht The Netherlands
| |
Collapse
|
16
|
Bayat A, Dunø M, Kirchhoff M, Jørgensen FS, Nishimura G, Hove HB. Novel Clinical and Radiological Findings in a Family with Autosomal Recessive Omodysplasia. Mol Syndromol 2020; 11:83-89. [PMID: 32655339 DOI: 10.1159/000506384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 01/20/2023] Open
Abstract
Autosomal recessive omodysplasia (GPC6-related) is a rare short-limb skeletal dysplasia caused by biallelic mutations in the GPC6 gene. Affected individuals manifest with rhizomelic short stature, decreased mobility of elbow and knee joints as well as craniofacial anomalies. Both upper and lower limbs are severely affected. These manifestations contrast with normal height and limb shortening restricted to the arms in autosomal dominant omodysplasia (FZD2-related). Here, we report 2 affected brothers of Pakistani descent from Denmark with GPC6-related omodysplasia, aiming to highlight the clinical and radiological findings. A homozygous deletion of exon 6 in the GPC6 gene was detected. The pathognomonic radiological findings were distally tapered humeri and femora as well as severe proximal radioulnar diastasis. On close observations, we identified a recurrent and not previously described type of abnormal patterning in all long bones.
Collapse
Affiliation(s)
- Allan Bayat
- Department of Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Morton Dunø
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Maria Kirchhoff
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Finn S Jørgensen
- Fetal Medicine Unit, Department of Obstetrics and Gynecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Hanne B Hove
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Genetics, The RAREDIS Database Section of Rare Diseases, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
17
|
Huybrechts Y, Mortier G, Boudin E, Van Hul W. WNT Signaling and Bone: Lessons From Skeletal Dysplasias and Disorders. Front Endocrinol (Lausanne) 2020; 11:165. [PMID: 32328030 PMCID: PMC7160326 DOI: 10.3389/fendo.2020.00165] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Skeletal dysplasias are a diverse group of heritable diseases affecting bone and cartilage growth. Throughout the years, the molecular defect underlying many of the diseases has been identified. These identifications led to novel insights in the mechanisms regulating bone and cartilage growth and homeostasis. One of the pathways that is clearly important during skeletal development and bone homeostasis is the Wingless and int-1 (WNT) signaling pathway. So far, three different WNT signaling pathways have been described, which are all activated by binding of the WNT ligands to the Frizzled (FZD) receptors. In this review, we discuss the skeletal disorders that are included in the latest nosology of skeletal disorders and that are caused by genetic defects involving the WNT signaling pathway. The number of skeletal disorders caused by defects in WNT signaling genes and the clinical phenotype associated with these disorders illustrate the importance of the WNT signaling pathway during skeletal development as well as later on in life to maintain bone mass. The knowledge gained through the identification of the genes underlying these monogenic conditions is used for the identification of novel therapeutic targets. For example, the genes underlying disorders with altered bone mass are all involved in the canonical WNT signaling pathway. Consequently, targeting this pathway is one of the major strategies to increase bone mass in patients with osteoporosis. In addition to increasing the insights in the pathways regulating skeletal development and bone homeostasis, knowledge of rare skeletal dysplasias can also be used to predict possible adverse effects of these novel drug targets. Therefore, this review gives an overview of the skeletal and extra-skeletal phenotype of the different skeletal disorders linked to the WNT signaling pathway.
Collapse
|
18
|
Hauer NN, Popp B, Taher L, Vogl C, Dhandapany PS, Büttner C, Uebe S, Sticht H, Ferrazzi F, Ekici AB, De Luca A, Klinger P, Kraus C, Zweier C, Wiesener A, Jamra RA, Kunstmann E, Rauch A, Wieczorek D, Jung AM, Rohrer TR, Zenker M, Doerr HG, Reis A, Thiel CT. Evolutionary conserved networks of human height identify multiple Mendelian causes of short stature. Eur J Hum Genet 2019; 27:1061-1071. [PMID: 30809043 PMCID: PMC6777496 DOI: 10.1038/s41431-019-0362-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Height is a heritable and highly heterogeneous trait. Short stature affects 3% of the population and in most cases is genetic in origin. After excluding known causes, 67% of affected individuals remain without diagnosis. To identify novel candidate genes for short stature, we performed exome sequencing in 254 unrelated families with short stature of unknown cause and identified variants in 63 candidate genes in 92 (36%) independent families. Based on systematic characterization of variants and functional analysis including expression in chondrocytes, we classified 13 genes as strong candidates. Whereas variants in at least two families were detected for all 13 candidates, two genes had variants in 6 (UBR4) and 8 (LAMA5) families, respectively. To facilitate their characterization, we established a clustered network of 1025 known growth and short stature genes, which yielded 29 significantly enriched clusters, including skeletal system development, appendage development, metabolic processes, and ciliopathy. Eleven of the candidate genes mapped to 21 of these clusters, including CPZ, EDEM3, FBRS, IFT81, KCND1, PLXNA3, RASA3, SLC7A8, UBR4, USP45, and ZFHX3. Fifty additional growth-related candidates we identified await confirmation in other affected families. Our study identifies Mendelian forms of growth retardation as an important component of idiopathic short stature.
Collapse
Affiliation(s)
- Nadine N Hauer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Bernt Popp
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Leila Taher
- Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Carina Vogl
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India.,The Knight Cardiovascular Institute, Departments of Medicine, Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Christian Büttner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy
| | - Patrizia Klinger
- Department of Orthopedic Rheumatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Cornelia Kraus
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Antje Wiesener
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig, Leipzig, Germany
| | - Erdmute Kunstmann
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Dagmar Wieczorek
- Institute of Human Genetics, University of Duisburg-Essen, Essen, Germany.,Institute of Human-Genetics, Medical Faculty of University Düsseldorf, Düsseldorf, Germany
| | - Anna-Marie Jung
- Division of Pediatric Endocrinology, Department of General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Tilman R Rohrer
- Division of Pediatric Endocrinology, Department of General Pediatrics and Neonatology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Helmuth-Guenther Doerr
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany
| | - Christian T Thiel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, Erlangen, Germany.
| |
Collapse
|
19
|
Reynolds K, Kumari P, Sepulveda Rincon L, Gu R, Ji Y, Kumar S, Zhou CJ. Wnt signaling in orofacial clefts: crosstalk, pathogenesis and models. Dis Model Mech 2019; 12:12/2/dmm037051. [PMID: 30760477 PMCID: PMC6398499 DOI: 10.1242/dmm.037051] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diverse signaling cues and attendant proteins work together during organogenesis, including craniofacial development. Lip and palate formation starts as early as the fourth week of gestation in humans or embryonic day 9.5 in mice. Disruptions in these early events may cause serious consequences, such as orofacial clefts, mainly cleft lip and/or cleft palate. Morphogenetic Wnt signaling, along with other signaling pathways and transcription regulation mechanisms, plays crucial roles during embryonic development, yet the signaling mechanisms and interactions in lip and palate formation and fusion remain poorly understood. Various Wnt signaling and related genes have been associated with orofacial clefts. This Review discusses the role of Wnt signaling and its crosstalk with cell adhesion molecules, transcription factors, epigenetic regulators and other morphogenetic signaling pathways, including the Bmp, Fgf, Tgfβ, Shh and retinoic acid pathways, in orofacial clefts in humans and animal models, which may provide a better understanding of these disorders and could be applied towards prevention and treatments.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Priyanka Kumari
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Lessly Sepulveda Rincon
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| | - Santosh Kumar
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA .,Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817, USA.,Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
20
|
Warren HE, Louie RJ, Friez MJ, Frías JL, Leroy JG, Spranger JW, Skinner SA, Champaigne NL. Two unrelated patients with autosomal dominant omodysplasia and FRIZZLED2 mutations. Clin Case Rep 2018; 6:2252-2255. [PMID: 30455931 PMCID: PMC6230601 DOI: 10.1002/ccr3.1818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/26/2018] [Accepted: 08/20/2018] [Indexed: 11/08/2022] Open
Abstract
Presented are two patients with autosomal dominant omodysplasia and mutations in the FZD2 gene. The mutations identified have been recently reported, suggesting the possibility of recurrent mutations. The phenotypes of these patients overlap with what has been previously reported, though intellectual disability as seen in our patient is not typical.
Collapse
Affiliation(s)
| | | | | | - Jaime L. Frías
- Department of PediatricsUniversity of South FloridaTampaFlorida
| | | | | | | | | |
Collapse
|
21
|
Nagasaki K, Nishimura G, Kikuchi T, Nyuzuki H, Sasaki S, Ogawa Y, Saitoh A. Nonsense mutations in FZD2 cause autosomal-dominant omodysplasia: Robinow syndrome-like phenotypes. Am J Med Genet A 2018; 176:739-742. [PMID: 29383834 DOI: 10.1002/ajmg.a.38623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/05/2017] [Accepted: 01/07/2018] [Indexed: 11/06/2022]
Abstract
Omodysplasia-2 (OMOD2; OMIM%16475) is a rare autosomal dominant (AD) skeletal dysplasia characterized by shortened humeri, short first metacarpal, craniofacial dysmorphism (frontal bossing, depressed nasal bridge, bifid nasal tip, and long philtrum), and variable degrees of genitourinary anomalies. This clinical phenotype overlaps with that of AD type Robinow syndrome. Recently, a mutation in FZD2 encoding a Frizzled Class Receptor 2 has been identified in a family with AD omodysplasia (an affected girl and her affected mother). Here, we present the second report on a heterozygous novel nonsense FZD2 mutation in OMOD2 or Robinow syndrome-like phenotype. The proband was a 16-year-old boy, who has been followed from infancy to adolescence. He presented with rhizomelic short stature with elbow restriction, mild facial dysmorphism (depressed broad bridge, short nose, anteverted nostrils, long philtrum, and low-set ears), and genital hypoplasia. Radiological examination in infancy showed short, broad humeri with relatively narrow distal ends, mildly broad femora, thick proximal ulnae with hypoplastic, dislocated proximal radii, and short first metacarpals. The abnormal skeletal pattern was persistent in adolescence; however, the humeri and femora became less undermodeled, while the humeri and radii became mildly bowed. Molecular analysis identified a de novo, heterozygous, nonsense mutation (c.1640C>A, p.S547*) in FZD2. The affected codon was next to the previously reported mutation (p.Trp548*). The results indicate that OMOD2 or Robinow syndome-like phenotype can be caused by a heterozygous nonsense FZD2 mutation impairing Wnt signaling. Further molecular studies will permit better clarification of the phenotypic spectrum in patients with OMOD2.
Collapse
Affiliation(s)
- Keisuke Nagasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Gen Nishimura
- Intractable Disease Center, Saitama Medical University Hospital, Saitama, Japan
| | - Toru Kikuchi
- Department of Pediatrics, Saitama Medical University, Saitama, Japan
| | - Hiromi Nyuzuki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sunao Sasaki
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yohei Ogawa
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Division of Pediatrics, Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
22
|
White JJ, Mazzeu JF, Coban-Akdemir Z, Bayram Y, Bahrambeigi V, Hoischen A, van Bon BWM, Gezdirici A, Gulec EY, Ramond F, Touraine R, Thevenon J, Shinawi M, Beaver E, Heeley J, Hoover-Fong J, Durmaz CD, Karabulut HG, Marzioglu-Ozdemir E, Cayir A, Duz MB, Seven M, Price S, Ferreira BM, Vianna-Morgante AM, Ellard S, Parrish A, Stals K, Flores-Daboub J, Jhangiani SN, Gibbs RA, Brunner HG, Sutton VR, Lupski JR, Carvalho CMB. WNT Signaling Perturbations Underlie the Genetic Heterogeneity of Robinow Syndrome. Am J Hum Genet 2018; 102:27-43. [PMID: 29276006 DOI: 10.1016/j.ajhg.2017.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/06/2017] [Indexed: 12/12/2022] Open
Abstract
Locus heterogeneity characterizes a variety of skeletal dysplasias often due to interacting or overlapping signaling pathways. Robinow syndrome is a skeletal disorder historically refractory to molecular diagnosis, potentially stemming from substantial genetic heterogeneity. All current known pathogenic variants reside in genes within the noncanonical Wnt signaling pathway including ROR2, WNT5A, and more recently, DVL1 and DVL3. However, ∼70% of autosomal-dominant Robinow syndrome cases remain molecularly unsolved. To investigate this missing heritability, we recruited 21 families with at least one family member clinically diagnosed with Robinow or Robinow-like phenotypes and performed genetic and genomic studies. In total, four families with variants in FZD2 were identified as well as three individuals from two families with biallelic variants in NXN that co-segregate with the phenotype. Importantly, both FZD2 and NXN are relevant protein partners in the WNT5A interactome, supporting their role in skeletal development. In addition to confirming that clustered -1 frameshifting variants in DVL1 and DVL3 are the main contributors to dominant Robinow syndrome, we also found likely pathogenic variants in candidate genes GPC4 and RAC3, both linked to the Wnt signaling pathway. These data support an initial hypothesis that Robinow syndrome results from perturbation of the Wnt/PCP pathway, suggest specific relevant domains of the proteins involved, and reveal key contributors in this signaling cascade during human embryonic development. Contrary to the view that non-allelic genetic heterogeneity hampers gene discovery, this study demonstrates the utility of rare disease genomic studies to parse gene function in human developmental pathways.
Collapse
Affiliation(s)
- Janson J White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Juliana F Mazzeu
- University of Brasilia, Brasilia 70910, Brazil; Robinow Syndrome Foundation, Anoka, MN 55303, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA
| | - Vahid Bahrambeigi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA; Graduate Program in Diagnostic Genetics, School of Health Professions, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexander Hoischen
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Bregje W M van Bon
- Department of Human Genetics, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Alper Gezdirici
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul 34303, Turkey
| | - Francis Ramond
- Service de Génétique, CHU-Hôpital Nord, 42000 Saint-Etienne, France
| | - Renaud Touraine
- Service de Génétique, CHU-Hôpital Nord, 42000 Saint-Etienne, France
| | - Julien Thevenon
- Inserm UMR 1231 GAD team, Genetics of Developmental Anomalies, Université de Bourgogne-Franche Comté, 21000 Dijon, France; FHU-TRANSLAD, Université de Bourgogne, 21000 CHU Dijon, France; Centre de génétique, Hôpital Couple-Enfant, CHU de Grenoble-Alpes, 38700 La Tronche, France
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erin Beaver
- Mercy Clinic-Kids Genetics, Mercy Children's Hospital St. Louis, St. Louis, MO 63141, USA
| | - Jennifer Heeley
- Mercy Clinic-Kids Genetics, Mercy Children's Hospital St. Louis, St. Louis, MO 63141, USA
| | - Julie Hoover-Fong
- Greenberg Center for Skeletal Dysplasias, McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ceren D Durmaz
- Department of Medical Genetics, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Halil Gurhan Karabulut
- Department of Medical Genetics, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Ebru Marzioglu-Ozdemir
- Department of Medical Genetics, Erzurum Regional and Training Hospital, 25070 Erzurum, Turkey
| | - Atilla Cayir
- Erzurum Training and Research Hospital, Department of Pediatric Endocrinology, 25070 Erzurum, Turkey
| | - Mehmet B Duz
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, 34452 Istanbul, Turkey
| | - Mehmet Seven
- Department of Medical Genetics, Cerrahpasa Medical School, Istanbul University, 34452 Istanbul, Turkey
| | - Susan Price
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford OX3 7LD, UK
| | | | - Angela M Vianna-Morgante
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, Sao Paulo - SP 05508-090, Brazil
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK; Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX1 2LU, UK
| | - Andrew Parrish
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Karen Stals
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Josue Flores-Daboub
- Department of Pediatric Genetics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Han G Brunner
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; Department of Clinical Genetics, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, 6202 AZ Maastricht, the Netherlands
| | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX 77030, USA.
| |
Collapse
|
23
|
Zhang Z, Li Q, Diao M, Liu N, Cheng W, Xiao P, Zou J, Su L, Yu K, Wu J, Li L, Jiang Q. Sporadic Hirschsprung Disease: Mutational Spectrum and Novel Candidate Genes Revealed by Next-generation Sequencing. Sci Rep 2017; 7:14796. [PMID: 29093530 PMCID: PMC5666020 DOI: 10.1038/s41598-017-14835-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022] Open
Abstract
Hirschsprung disease (HSCR) is a common cause of functional colonic obstruction in children. The currently available genetic testing is often inadequate as it mainly focuses on RET and several other genes, accounting for only 15–20% of cases. To identify novel, potentially pathogenic variants, we isolated a panel of genes from a whole-exome sequencing study and from the published mouse aganglionosis phenotypes, enteric nervous system development, and a literature review. The coding exons of 172 genes were analyzed in 83 sporadic patients using next-generation sequencing. Rare stop-gain, splice-site variants, frameshift and in-frame insertions/deletions and non-synonymous variants (conserved and predicted to be deleterious) were prioritized as the most promising variants to have an effect on HSCR and subjected to burden analysis. GeneMANIA interaction database was used to identify protein–protein interaction-based networks. In addition, 6 genes (PTPN13, PHKB, AGL, ZFHX3, LAMA1, and AP3B2) were prioritized for follow-up studies: both their time-space expression patterns in mouse and human colon showed that they are good candidates for predicting pathogenicity. The results of this study broaden the mutational spectrum of HSCR candidate genes, and they provide an insight into the relative contributions of individual genes to this highly heterogeneous disorder.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Qi Li
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Mei Diao
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Na Liu
- MyGenostics Inc, Beijing, China
| | - Wei Cheng
- Department of Surgery, Beijing United Family Hospital, Beijing, China.,Department of Paediatrics and Surgery, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria, Australia
| | - Ping Xiao
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Jizhen Zou
- Department of Pathology, Capital Institute of Pediatrics Affiliated Children's Hospital, Beijing, China
| | - Lin Su
- Reproductive Medicine Center, Clinical College of PLA Affiliated Anhui Medical University, Hefei, China
| | - Kaihui Yu
- Department of Pathophysiology, School of Preclinical Sciences, Guangxi Medical University, Nanning, China
| | - Jian Wu
- MyGenostics Inc, Beijing, China
| | - Long Li
- Department of General Surgery, Capital Institute of Pediatrics, Beijing, China
| | - Qian Jiang
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
24
|
Türkmen S, Spielmann M, Güneş N, Knaus A, Flöttmann R, Mundlos S, Tüysüz B. A Novel de novo FZD2 Mutation in a Patient with Autosomal Dominant Omodysplasia. Mol Syndromol 2017; 8:318-324. [PMID: 29230162 DOI: 10.1159/000479721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
We described a heterozygous de novo mutation (G434V) in the frizzled class receptor 2 (FZD2) gene in a patient with distinct facial features including hypertelorism, bilateral cleft lip/palate, short nose with a broad nasal bridge, microretrognathia, and bilateral shortness of the upper limbs, first metacarpal bones, and middle phalanges of the 5th digits. The findings of our patient were compared to an autosomal dominant omodysplasia (OMOD2) family with FZD2 mutation reported in the literature. OMOD2 is a rare skeletal dysplasia and characterized by facial dysmorphism and shortness of the upper extremities and first metacarpal bones. This is the second report which supports the findings of the first family described and points out that heterozygous FZD2 mutations may be disease-causing for OMOD2.
Collapse
Affiliation(s)
- Seval Türkmen
- Institut für Medizinische Genetik, Charité Universitätsmedizin Berlin, Berlin, Germany.,Labor Berlin Charité Vivantes Berlin, Berlin, Germany
| | - Malte Spielmann
- Institut für Medizinische Genetik, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Nilay Güneş
- Department of Pediatric Genetics, Cerrahpaşa Medical School, Istanbul University, Istanbul, Turkey
| | - Alexej Knaus
- Institut für Medizinische Genetik, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Charité Campus, Berlin, Germany
| | - Ricarda Flöttmann
- Institut für Medizinische Genetik, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institut für Medizinische Genetik, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpaşa Medical School, Istanbul University, Istanbul, Turkey
| |
Collapse
|
25
|
Al-Qattan MM, Abou Al-Shaar H, Alkattan WM. The pathogenesis of congenital radial head dislocation/subluxation. Gene 2016; 586:69-76. [PMID: 27050104 DOI: 10.1016/j.gene.2016.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 01/02/2023]
Abstract
The pathogenesis of congenital radial head dislocation/subluxation is unknown and has not been previously investigated. In this review, we explore the pathogenesis and define five different primary insults: collagen abnormalities, abnormal endochondral ossification of the developing growth plate, abnormalities of forearm ossification outside the growth plate, disproportionate growth of the radius and ulna, and altered HOX D expression/activity. Finally, the clinical relevance of our review is discussed.
Collapse
Affiliation(s)
- Mohammad M Al-Qattan
- Division of Plastic and Hand Surgery at King Saud University, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Hussam Abou Al-Shaar
- Division of Plastic and Hand Surgery at King Saud University, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Wael M Alkattan
- Division of Plastic and Hand Surgery at King Saud University, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Bonafe L, Cormier-Daire V, Hall C, Lachman R, Mortier G, Mundlos S, Nishimura G, Sangiorgi L, Savarirayan R, Sillence D, Spranger J, Superti-Furga A, Warman M, Unger S. Nosology and classification of genetic skeletal disorders: 2015 revision. Am J Med Genet A 2015; 167A:2869-92. [DOI: 10.1002/ajmg.a.37365] [Citation(s) in RCA: 398] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Luisa Bonafe
- Centre des Maladies Moléculaires CHUV; University of Lausanne; Switzerland
| | | | - Christine Hall
- Department of Radiology; Great Ormond Street Hospital; London UK
| | - Ralph Lachman
- International Skeletal Dysplasia Registry; University of California; Los Angeles California
| | - Geert Mortier
- Department of Medical Genetics; Faculty of Medicine and Health Sciences; University of Antwerp and Antwerp University Hospital; Antwerp Belgium
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics; Charité Universitätsmedizin Berlin; Berlin Germany
- Max Planck Institute for Molecular Genetics; Berlin Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT); Berlin Germany
| | - Gen Nishimura
- Department of Radiology; Tokyo Metropolitan Children's Medical Center; Tokyo Japan
| | - Luca Sangiorgi
- Department of Medical Genetics and Skeletal Rare Diseases; IRCCS Rizzoli Orthopaedic Institute (IOR); Bologna Italy
| | - Ravi Savarirayan
- Murdoch Childrens Research Institute and University of Melbourne; Parkville Australia
| | - David Sillence
- Discipline of Genetic Medicine; The Children's Hospital at Westmead Clinical School; Sydney Medical School; University of Sydney; Head Connective Tissue Dysplasia Management Service; The Children's Hospital at Westmead; Sydney Australia
| | | | | | - Matthew Warman
- Orthopaedic Research Laboratories; Boston Children's Hospital Boston
| | - Sheila Unger
- Medical Genetics Service,; CHUV; University of Lausanne; Switzerland
| |
Collapse
|
27
|
|