1
|
Zhao W, Cai Z, Wei C, Ma X, Yu B, Fu X, Zhang T, Gu Y, Zhang J. Functional identification of PGM1 in the regulating development and depositing of inosine monophosphate specific for myoblasts. Front Vet Sci 2023; 10:1276582. [PMID: 38164393 PMCID: PMC10758172 DOI: 10.3389/fvets.2023.1276582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background Inosine monophosphate (IMP) is naturally present in poultry muscle and plays a key role in improving meat flavour. However, IMP deposition is regulated by numerous genes and complex molecular networks. In order to excavate key candidate genes that may regulate IMP synthesis, we performed proteome and metabolome analyses on the leg muscle, compared to the breast muscle control of 180-day-old Jingyuan chickens (hens), which had different IMP content. The key candidate genes identified by a differential analysis were verified to be associated with regulation of IMP-specific deposition. Results The results showed that the differentially expressed (DE) proteins and metabolites jointly involve 14 metabolic pathways, among which the purine metabolic pathway closely related to IMP synthesis and metabolism is enriched with four DE proteins downregulated (with higher expression in breast muscles than in leg muscles), including adenylate kinase 1 (AK1), adenosine monophosphate deaminase 1 (AMPD1), pyruvate kinase muscle isoenzyme 2 (PKM2) and phosphoglucomutase 1 (PGM1), six DE metabolites, Hypoxanthine, Guanosine, L-Glutamine, AICAR, AMP and Adenylsuccinic acid. Analysis of PGM1 gene showed that the high expression of PGM1 promoted the proliferation and differentiation of myoblasts and inhibited the apoptosis of myoblasts. ELISA tests have shown that PGM1 reduced adenosine triphosphate (ATP) and IMP and uric acid (UA), while enhancing the biosynthesis of hypoxanthine (HX). In addition, up-regulation of PGM1 inhibited the expression of purine metabolism pathway related genes, and promoted the IMP de novo and salvage synthesis pathways. Conclusion This study preliminarily explored the mechanism of action of PGM1 in regulating the growth and development of myoblasts and specific IMP deposition in Jingyuan chickens, which provided certain theoretical basis for the development and utilization of excellent traits in Jingyuan chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Han F, Yin S, Wu H, Zhou C, Wang X. Effect on myoblast differentiation by extremely low frequency pulsed electromagnetic fields. J MECH MED BIOL 2022. [DOI: 10.1142/s0219519422400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Ehrlich M. Risks and rewards of big-data in epigenomics research: an interview with Melanie Ehrlich. Epigenomics 2022; 14:351-358. [PMID: 35255735 DOI: 10.2217/epi-2022-0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Melanie Ehrlich, PhD, is a professor in the Tulane Cancer Center, the Tulane Center for Medical Bioinformatics and Genomics and the Hayward Human Genetics Program at Tulane Medical School, New Orleans, LA. She obtained her PhD in molecular biology in 1971 from the State University of New York at Stony Brook and completed postdoctoral research at Albert Einstein College of Medicine in 1972. She has been working on various aspects of epigenetics, starting with DNA methylation, since 1973. Her group made many first findings about DNA methylation (see below). For example, in 1982 and 1983, in collaboration with Charles Gehrke at the University of Missouri, she was the first to report tissue-specific and cancer-specific differences in overall DNA methylation in humans. In 1985, Xian-Yang Zhang and Richard Wang in her lab discovered a class of human DNA sequences specifically hypomethylated in sperm. In 1998, her group was the first to describe extensive losses of DNA methylation in pericentromeric and centromeric DNA repeats in human cancer. Her lab's many publications on the prevalence of both DNA hypermethylation and hypomethylation in the same cancers brought needed balance to our understanding of the epigenetics of cancer and to its clinical implications [1]. Besides working on cancer epigenetics, her research group has helped elucidate cytogenetic and gene expression abnormalities in the immunodeficiency, centromeric and facial anomalies (ICF) syndrome, a rare recessive disease often caused by mutations in DNMT3B. Her group also studied the epigenetics and transcriptomics of facioscapulohumeral muscular dystrophy (FSHD), whose disease locus is a tandem 3.3-kb repeat at subtelomeric 4q (that happens to be hypomethylated in ICF DNA [2]). Her study of FSHD has taken her in the direction of muscle (skeletal muscle, heart and aorta) epigenetics [3-6]. Recently, she has led research that applies epigenetics much more rigorously than usual to the evaluation of genetic variants from genome-wide association studies (GWAS) of osteoporosis and obesity. In continued collaboration with Sriharsa Pradhan at New England Biolabs and Michelle Lacey at Tulane University, she has compared 5-hydroxymethylcytosine and 5-methylcytosine clustering in various human tissues [7] and is studying myoblast methylomes that they generated by a new high-resolution enzymatic technique (enzymatic methyl-seq).
Collapse
Affiliation(s)
- Melanie Ehrlich
- Tulane Cancer Center, Center for Medical Bioinformatics & Genomics, & Hayward Genetics Center, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Construction of adenovirus vector expressing duck sclerostin and its induction effect on myogenic proliferation and differentiation in vitro. Mol Biol Rep 2022; 49:3187-3196. [DOI: 10.1007/s11033-022-07151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
|
5
|
Khilji S, Hamed M, Chen J, Li Q. Dissecting myogenin-mediated retinoid X receptor signaling in myogenic differentiation. Commun Biol 2020; 3:315. [PMID: 32555436 PMCID: PMC7303199 DOI: 10.1038/s42003-020-1043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Deciphering the molecular mechanisms underpinning myoblast differentiation is a critical step in developing the best strategy to promote muscle regeneration in patients suffering from muscle-related diseases. We have previously established that a rexinoid x receptor (RXR)-selective agonist, bexarotene, enhances the differentiation and fusion of myoblasts through a direct regulation of MyoD expression, coupled with an augmentation of myogenin protein. Here, we found that RXR signaling associates with the distribution of myogenin at poised enhancers and a distinct E-box motif. We also found an association of myogenin with rexinoid-responsive gene expression and identified an epigenetic signature related to histone acetyltransferase p300. Moreover, RXR signaling augments residue-specific histone acetylation at enhancers co-occupied by p300 and myogenin. Thus, genomic distribution of transcriptional regulators is an important designate for identifying novel targets as well as developing therapeutics that modulate epigenetic landscape in a selective manner to promote muscle regeneration.
Collapse
Affiliation(s)
- Saadia Khilji
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Munerah Hamed
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Ehrlich KC, Lacey M, Ehrlich M. Epigenetics of Skeletal Muscle-Associated Genes in the ASB, LRRC, TMEM, and OSBPL Gene Families. EPIGENOMES 2020; 4:1. [PMID: 34968235 PMCID: PMC8594701 DOI: 10.3390/epigenomes4010001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023] Open
Abstract
Much remains to be discovered about the intersection of tissue-specific transcription control and the epigenetics of skeletal muscle (SkM), a very complex and dynamic organ. From four gene families, Leucine-Rich Repeat Containing (LRRC), Oxysterol Binding Protein Like (OSBPL), Ankyrin Repeat and Socs Box (ASB), and Transmembrane Protein (TMEM), we chose 21 genes that are preferentially expressed in human SkM relative to 52 other tissue types and analyzed relationships between their tissue-specific epigenetics and expression. We also compared their genetics, proteomics, and descriptions in the literature. For this study, we identified genes with little or no previous descriptions of SkM functionality (ASB4, ASB8, ASB10, ASB12, ASB16, LRRC14B, LRRC20, LRRC30, TMEM52, TMEM233, OSBPL6/ORP6, and OSBPL11/ORP11) and included genes whose SkM functions had been previously addressed (ASB2, ASB5, ASB11, ASB15, LRRC2, LRRC38, LRRC39, TMEM38A/TRIC-A, and TMEM38B/TRIC-B). Some of these genes have associations with SkM or heart disease, cancer, bone disease, or other diseases. Among the transcription-related SkM epigenetic features that we identified were: super-enhancers, promoter DNA hypomethylation, lengthening of constitutive low-methylated promoter regions, and SkM-related enhancers for one gene embedded in a neighboring gene (e.g., ASB8-PFKM, LRRC39-DBT, and LRRC14B-PLEKHG4B gene-pairs). In addition, highly or lowly co-expressed long non-coding RNA (lncRNA) genes probably regulate several of these genes. Our findings give insights into tissue-specific epigenetic patterns and functionality of related genes in a gene family and can elucidate normal and disease-related regulation of gene expression in SkM.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Michelle Lacey
- Department of Mathematics, Tulane University, New Orleans, LA 70118, USA;
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA;
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Abstract
Increasing numbers of studies implicate abnormal DNA methylation in cancer and many non-malignant diseases. This is consistent with numerous findings about differentiation-associated changes in DNA methylation at promoters, enhancers, gene bodies, and sites that control higher-order chromatin structure. Abnormal increases or decreases in DNA methylation contribute to or are markers for cancer formation and tumour progression. Aberrant DNA methylation is also associated with neurological diseases, immunological diseases, atherosclerosis, and osteoporosis. In this review, I discuss DNA hypermethylation in disease and its interrelationships with normal development as well as proposed mechanisms for the origin of and pathogenic consequences of disease-associated hypermethylation. Disease-linked DNA hypermethylation can help drive oncogenesis partly by its effects on cancer stem cells and by the CpG island methylator phenotype (CIMP); atherosclerosis by disease-related cell transdifferentiation; autoimmune and neurological diseases through abnormal perturbations of cell memory; and diverse age-associated diseases by age-related accumulation of epigenetic alterations.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Tulane Cancer Center and Tulane Center for Bioinformatics and Genomics, Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
8
|
Aarabi M, Christensen KE, Chan D, Leclerc D, Landry M, Ly L, Rozen R, Trasler J. Testicular MTHFR deficiency may explain sperm DNA hypomethylation associated with high dose folic acid supplementation. Hum Mol Genet 2019; 27:1123-1135. [PMID: 29360980 DOI: 10.1093/hmg/ddy021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Supplementation with high doses of folic acid, an important mediator of one-carbon transfers for DNA methylation, is used clinically to improve sperm parameters in infertile men. We recently detected an unexpected loss of DNA methylation in the sperm of idiopathic infertile men after 6 months of daily supplementation with 5 mg folic acid (>10× the daily recommended intake-DRI), exacerbated in men homozygous for a common variant in the gene encoding an important enzyme in folate metabolism, methylenetetrahydrofolate reductase (MTHFR 677C>T). To investigate the epigenomic impact and mechanism underlying effects of folic acid on male germ cells, wild-type and heterozygote mice for a targeted inactivation of the Mthfr gene were fed high-dose folic acid (10× the DRI) or control diets (CDs) for 6 months. No changes were detected in general health, sperm counts or methylation of imprinted genes. Reduced representation bisulfite sequencing revealed sperm DNA hypomethylation in Mthfr+/- mice on the 10× diets. Wild-type mice demonstrated sperm hypomethylation only with a very high dose (20×) of folic acid for 12 months. Testicular MTHFR protein levels decreased significantly in wild-type mice on the 20× diet but not in those on the 10× diet, suggesting a possible role for MTHFR deficiency in sperm DNA hypomethylation. In-depth analysis of the folic acid-exposed sperm DNA methylome suggested mouse/human susceptibility of sequences with potential importance to germ cell and embryo development. Our data provide evidence for a similar cross-species response to high dose folic acid supplementation, of sperm DNA hypomethylation, and implicate MTHFR downregulation as a possible mechanism.
Collapse
Affiliation(s)
- Mahmoud Aarabi
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Karen E Christensen
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Donovan Chan
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Daniel Leclerc
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Mylène Landry
- Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Lundi Ly
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Rima Rozen
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.,Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada
| | - Jacquetta Trasler
- Department of Human Genetics, McGill University, Montreal, QC H4A 3J1, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada.,Department of Pediatrics, McGill University, Montreal, QC H4A 3J1, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
9
|
Ehrlich KC, Lacey M, Ehrlich M. Tissue-specific epigenetics of atherosclerosis-related ANGPT and ANGPTL genes. Epigenomics 2019; 11:169-186. [PMID: 30688091 PMCID: PMC6371847 DOI: 10.2217/epi-2018-0150] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: To understand tissue-specific regulation of angiopoietin/angiopoietin-like (ANGPT/ANGPTL) genes (especially the five genes embedded in introns of host genes) and their association with atherosclerosis. Methods: Transcription and epigenomic databases from various normal tissues were examined in the vicinity of ANGPT1, ANGPT2, ANGPTL1, ANGPTL2, ANGPTL3, ANGPTL4 and ANGPTL8. Results: We identified tissue-specific enhancer chromatin regions that are likely to regulate transcription of ANGPT/ANGPTL genes and were intragenic, intergenic or host gene-linked. In addition, we found atherosclerosis-linked differentially methylated regions associated with ANGPT2 and with sequences encoding miR-145, a microRNA that targets ANGPT2 mRNA in cancers. Conclusion: Our findings implicate enhancers as major contributors to tissue-specific expression of ANGPT/ANGPTL genes, which play critical roles in angiogenesis, atherosclerosis, cancer, and inflammatory and metabolic diseases.
Collapse
Affiliation(s)
- Kenneth C Ehrlich
- Center for Bioinformatics & Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Department of Mathematics, Tulane University, New Orleans, LA 70118, USA.,Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Center for Bioinformatics & Genomics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.,Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA.,Hayward Genetics Center Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Di Gioia SA, Shaaban S, Tüysüz B, Elcioglu NH, Chan WM, Robson CD, Ecklund K, Gilette NM, Hamzaoglu A, Tayfun GA, Traboulsi EI, Engle EC. Recessive MYF5 Mutations Cause External Ophthalmoplegia, Rib, and Vertebral Anomalies. Am J Hum Genet 2018; 103:115-124. [PMID: 29887215 DOI: 10.1016/j.ajhg.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/04/2018] [Indexed: 12/23/2022] Open
Abstract
MYF5 is member of the Myc-like basic helix-loop-helix transcription factor family and, in cooperation with other myogenic regulatory factors MYOD and MYF5, is a key regulator of early stages of myogenesis. Here, we report three consanguineous families with biallelic homozygous loss-of-function mutations in MYF5 who define a clinical disorder characterized by congenital ophthalmoplegia with scoliosis and vertebral and rib anomalies. The clinical phenotype overlaps strikingly with that reported in several Myf5 knockout mouse models. Affected members of two families share a haploidentical region that contains a homozygous 10 bp frameshift mutation in exon 1 of MYF5 (c.23_32delAGTTCTCACC [p.Gln8Leufs∗86]) predicted to undergo nonsense-mediated decay. Affected members of the third family harbor a homozygous missense change in exon 1 of MYF5 (c.283C>T [p.Arg95Cys]). Using in vitro assays, we show that this missense mutation acts as a loss-of-function allele by impairing MYF5 DNA binding and nuclear localization. We performed whole-genome sequencing in one affected individual with the frameshift mutation and did not identify additional rare variants in the haploidentical region that might account for differences in severity among the families. These data support the direct role of MYF5 in rib, spine, and extraocular muscle formation in humans.
Collapse
|
11
|
Manandhar D, Song L, Kabadi A, Kwon JB, Edsall LE, Ehrlich M, Tsumagari K, Gersbach CA, Crawford GE, Gordân R. Incomplete MyoD-induced transdifferentiation is associated with chromatin remodeling deficiencies. Nucleic Acids Res 2017; 45:11684-11699. [PMID: 28977539 PMCID: PMC5714206 DOI: 10.1093/nar/gkx773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Our current understanding of cellular transdifferentiation systems is limited. It is oftentimes unknown, at a genome-wide scale, how much transdifferentiated cells differ quantitatively from both the starting cells and the target cells. Focusing on transdifferentiation of primary human skin fibroblasts by forced expression of myogenic transcription factor MyoD, we performed quantitative analyses of gene expression and chromatin accessibility profiles of transdifferentiated cells compared to fibroblasts and myoblasts. In this system, we find that while many of the early muscle marker genes are reprogrammed, global gene expression and accessibility changes are still incomplete when compared to myoblasts. In addition, we find evidence of epigenetic memory in the transdifferentiated cells, with reminiscent features of fibroblasts being visible both in chromatin accessibility and gene expression. Quantitative analyses revealed a continuum of changes in chromatin accessibility induced by MyoD, and a strong correlation between chromatin-remodeling deficiencies and incomplete gene expression reprogramming. Classification analyses identified genetic and epigenetic features that distinguish reprogrammed from non-reprogrammed sites, and suggested ways to potentially improve transdifferentiation efficiency. Our approach for combining gene expression, DNA accessibility, and protein-DNA binding data to quantify and characterize the efficiency of cellular transdifferentiation on a genome-wide scale can be applied to any transdifferentiation system.
Collapse
Affiliation(s)
- Dinesh Manandhar
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Ami Kabadi
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Jennifer B Kwon
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Lee E Edsall
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Melanie Ehrlich
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA.,Tulane Cancer Center, and Center for Bioinformatics and Genomics, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Koji Tsumagari
- Hayward Genetics Center, Tulane Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles A Gersbach
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Department of Pediatrics, Medical Genetics Division, Duke University, Durham, NC 27708, USA
| | - Raluca Gordân
- Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA.,Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Duke University, Durham NC 27708, USA
| |
Collapse
|
12
|
Ponnaluri VKC, Ehrlich KC, Zhang G, Lacey M, Johnston D, Pradhan S, Ehrlich M. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics 2017; 12:123-138. [PMID: 27911668 PMCID: PMC5330441 DOI: 10.1080/15592294.2016.1265713] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study-owing to their myogenic DMRs-overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage.
Collapse
Affiliation(s)
| | - Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | - Michelle Lacey
- Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA, USA
| | - Douglas Johnston
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA
| | | | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA, USA
- Hayward Genetics Center and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
13
|
Ehrlich KC, Paterson HL, Lacey M, Ehrlich M. DNA Hypomethylation in Intragenic and Intergenic Enhancer Chromatin of Muscle-Specific Genes Usually Correlates with their Expression. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:441-455. [PMID: 28018137 PMCID: PMC5168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tissue-specific enhancers are critical for gene regulation. In this study, we help elucidate the contribution of muscle-associated differential DNA methylation to the enhancer activity of highly muscle-specific genes. By bioinformatic analysis of 44 muscle-associated genes, we show that preferential gene expression in skeletal muscle (SkM) correlates with SkM-specific intragenic and intergenic enhancer chromatin and overlapping foci of DNA hypomethylation. Some genes, e.g., CASQ1 and FBXO32, displayed broad regions of both SkM- and heart-specific enhancer chromatin but exhibited focal SkM-specific DNA hypomethylation. Half of the genes had SkM-specific super-enhancers. In contrast to simple enhancer/gene-expression correlations, a super-enhancer was associated with the myogenic MYOD1 gene in both SkM and myoblasts even though SkM has < 1 percent as much MYOD1 expression. Local chromatin differences in this super-enhancer probably contribute to the SkM/myoblast differential expression. Transfection assays confirmed the tissue-specificity of the 0.3-kb core enhancer within MYOD1's super-enhancer and demonstrated its repression by methylation of its three CG dinucleotides. Our study suggests that DNA hypomethylation increases enhancer tissue-specificity and that SkM super-enhancers sometimes are poised for physiologically important, rapid up-regulation.
Collapse
Affiliation(s)
- Kenneth C. Ehrlich
- Program in Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA
| | | | - Michelle Lacey
- Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA,Mathematics Department, Tulane University, New Orleans, LA
| | - Melanie Ehrlich
- Program in Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA,Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA,Hayward Genetics Center, Tulane University Health Sciences Center, New Orleans, LA,To whom all correspondence should be addressed: Melanie Ehrlich, PhD, Hayward Genetics Center, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112; Tele: 504-988-2449; Fax: 504-988-1763;
| |
Collapse
|
14
|
Kim YJ, Tamadon A, Park HT, Kim H, Ku SY. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia 2016; 2:140-155. [PMID: 30775480 PMCID: PMC6372754 DOI: 10.1016/j.afos.2016.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022] Open
Abstract
Sex steroids influence the maintenance and growth of muscles. Decline in androgens, estrogens and progesterone by aging leads to the loss of muscular function and mass, sarcopenia. These steroid hormones can interact with different signaling pathways through their receptors. To date, sex steroid hormone receptors and their exact roles are not completely defined in skeletal and smooth muscles. Although numerous studies focused on the effects of sex steroid hormones on different types of cells, still many unexplained molecular mechanisms in both skeletal and smooth muscle cells remain to be investigated. In this paper, many different molecular mechanisms that are activated or inhibited by sex steroids and those that influence the growth, proliferation, and differentiation of skeletal and smooth muscle cells are reviewed. Also, the similarities of cellular and molecular pathways of androgens, estrogens and progesterone in both skeletal and smooth muscle cells are highlighted. The reviewed signaling pathways and participating molecules can be targeted in the future development of novel therapeutics.
Collapse
Affiliation(s)
- Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, South Korea
| | - Amin Tamadon
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hyun Tae Park
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, Korea University College of Medicine, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, College of Medicine, Seoul National University, Seoul, South Korea
| |
Collapse
|
15
|
Buckley L, Lacey M, Ehrlich M. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics 2016; 8:13-31. [PMID: 26756355 PMCID: PMC4863877 DOI: 10.2217/epi.15.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology.
Collapse
Affiliation(s)
- Lauren Buckley
- Human Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Tulane Cancer Center & Department of Mathematics, Tulane University, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Human Genetics Program, Center for Bioinformatics & Genomics, Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Dey D, Goldhamer DJ, Yu PB. Contributions of muscle-resident progenitor cells to homeostasis and disease. CURRENT MOLECULAR BIOLOGY REPORTS 2015; 1:175-188. [PMID: 29075589 PMCID: PMC5654566 DOI: 10.1007/s40610-015-0025-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adult skeletal muscle maintains a homeostatic state with modest levels of cellular turnover, unlike the skin or blood. However, the muscle is highly sensitive to tissue injury, which unleashes a cascade of regenerative and inflammatory processes. Muscle regeneration involves cross-talk between numerous cytokine signaling axes, and the coordinated activity of multiple muscle-resident and circulating progenitor populations. Satellite cells, closely associated with myofibers, are established as the canonical muscle stem cell, with self-renewal and myofiber-regenerating capacity. However, a heterogeneous group of mesenchymal progenitor cells residing within the muscle interstitium are also highly responsive to muscle injury and exhibit varying degrees of regenerative potential. These cells interact with satellite cells via direct and indirect mechanisms to regulate regeneration or repair. We describe the known phylogenetic and functional relationships of the multiple progenitor populations residing within skeletal muscle, their putative roles in the coordination of injury repair, and their possible contributions to health and disease.
Collapse
Affiliation(s)
- Devaveena Dey
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| | - David J. Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Paul B. Yu
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115-6119, USA
| |
Collapse
|