1
|
Tai Y, Shang J. Wnt/β-catenin signaling pathway in the tumor progression of adrenocortical carcinoma. Front Endocrinol (Lausanne) 2024; 14:1260701. [PMID: 38269250 PMCID: PMC10806569 DOI: 10.3389/fendo.2023.1260701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon, aggressive endocrine malignancy with a high rate of recurrence, a poor prognosis, and a propensity for metastasis. Currently, only mitotane has received certification from both the US Food and Drug Administration (FDA) and the European Medicines Agency for the therapy of advanced ACC. However, treatment in the advanced periods of the disorders is ineffective and has serious adverse consequences. Completely surgical excision is the only cure but has failed to effectively improve the survival of advanced patients. The aberrantly activated Wnt/β-catenin pathway is one of the catalysts for adrenocortical carcinogenesis. Research has concentrated on identifying methods that can prevent the stimulation of the Wnt/β-catenin pathway and are safe and advantageous for patients in view of the absence of effective treatments and the frequent alteration of the Wnt/β-catenin pathway in ACC. Comprehending the complex connection between the development of ACC and Wnt/β-catenin signaling is essential for accurate pharmacological targets. In this review, we summarize the potential targets between adrenocortical carcinoma and the Wnt/β-catenin signaling pathway. We analyze the relevant targets of drugs or inhibitors that act on the Wnt pathway. Finally, we provide new insights into how drugs or inhibitors may improve the treatment of ACC.
Collapse
Affiliation(s)
- Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, Taiyuan, China
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Ghosh C, Hu J, Kebebew E. Advances in translational research of the rare cancer type adrenocortical carcinoma. Nat Rev Cancer 2023; 23:805-824. [PMID: 37857840 DOI: 10.1038/s41568-023-00623-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2023] [Indexed: 10/21/2023]
Abstract
Adrenocortical carcinoma is a rare malignancy with an annual worldwide incidence of 1-2 cases per 1 million and a 5-year survival rate of <60%. Although adrenocortical carcinoma is rare, such rare cancers account for approximately one third of patients diagnosed with cancer annually. In the past decade, there have been considerable advances in understanding the molecular basis of adrenocortical carcinoma. The genetic events associated with adrenocortical carcinoma in adults are distinct from those of paediatric cases, which are often associated with germline or somatic TP53 mutations and have a better prognosis. In adult primary adrenocortical carcinoma, the main somatic genetic alterations occur in genes that encode proteins involved in the WNT-β-catenin pathway, cell cycle and p53 apoptosis pathway, chromatin remodelling and telomere maintenance pathway, cAMP-protein kinase A (PKA) pathway or DNA transcription and RNA translation pathways. Recently, integrated molecular studies of adrenocortical carcinomas, which have characterized somatic mutations and the methylome as well as gene and microRNA expression profiles, have led to a molecular classification of these tumours that can predict prognosis and have helped to identify new therapeutic targets. In this Review, we summarize these recent translational research advances in adrenocortical carcinoma, which it is hoped could lead to improved patient diagnosis, treatment and outcome.
Collapse
Affiliation(s)
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Electron Kebebew
- Department of Surgery, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Mohan DR, Borges KS, Finco I, LaPensee CR, Rege J, Solon AL, Little DW, Else T, Almeida MQ, Dang D, Haggerty-Skeans J, Apfelbaum AA, Vinco M, Wakamatsu A, Mariani BMP, Amorim LC, Latronico AC, Mendonca BB, Zerbini MCN, Lawlor ER, Ohi R, Auchus RJ, Rainey WE, Marie SKN, Giordano TJ, Venneti S, Fragoso MCBV, Breault DT, Lerario AM, Hammer GD. β-Catenin-Driven Differentiation Is a Tissue-Specific Epigenetic Vulnerability in Adrenal Cancer. Cancer Res 2023; 83:2123-2141. [PMID: 37129912 PMCID: PMC10330305 DOI: 10.1158/0008-5472.can-22-2712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer in which tissue-specific differentiation is paradoxically associated with dismal outcomes. The differentiated ACC subtype CIMP-high is prevalent, incurable, and routinely fatal. CIMP-high ACC possess abnormal DNA methylation and frequent β-catenin-activating mutations. Here, we demonstrated that ACC differentiation is maintained by a balance between nuclear, tissue-specific β-catenin-containing complexes, and the epigenome. On chromatin, β-catenin bound master adrenal transcription factor SF1 and hijacked the adrenocortical super-enhancer landscape to maintain differentiation in CIMP-high ACC; off chromatin, β-catenin bound histone methyltransferase EZH2. SF1/β-catenin and EZH2/β-catenin complexes present in normal adrenals persisted through all phases of ACC evolution. Pharmacologic EZH2 inhibition in CIMP-high ACC expelled SF1/β-catenin from chromatin and favored EZH2/β-catenin assembly, erasing differentiation and restraining cancer growth in vitro and in vivo. These studies illustrate how tissue-specific programs shape oncogene selection, surreptitiously encoding targetable therapeutic vulnerabilities. SIGNIFICANCE Oncogenic β-catenin can use tissue-specific partners to regulate cellular differentiation programs that can be reversed by epigenetic therapies, identifying epigenetic control of differentiation as a viable target for β-catenin-driven cancers.
Collapse
Affiliation(s)
- Dipika R. Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kleiton S. Borges
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R. LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - April L. Solon
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Donald W. Little
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Tobias Else
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Madson Q. Almeida
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Derek Dang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
| | - James Haggerty-Skeans
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
| | - April A. Apfelbaum
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, WA, USA
| | - Michelle Vinco
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alda Wakamatsu
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Beatriz M. P. Mariani
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Larissa Costa Amorim
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Ana Claudia Latronico
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Berenice B. Mendonca
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | | | - Elizabeth R. Lawlor
- Seattle Children’s Research Institute, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ryoma Ohi
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Richard J. Auchus
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Lieutenant Colonel Charles S. Kettles Veterans Affairs Medical Center, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Suely K. N. Marie
- Laboratório de Biologia Molecular e Celular/LIM15, Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Thomas J. Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Sriram Venneti
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Maria Candida Barisson Villares Fragoso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Co-senior authors
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, USA
- Co-senior authors
| |
Collapse
|
4
|
Hescot S, Faron M, Kordahi M, Do Cao C, Naman A, Lamartina L, Hadoux J, Leboulleux S, Pattou F, Aubert S, Scoazec JY, Al Ghuzlan A, Baudin E. Screening for Prognostic Biomarkers in Metastatic Adrenocortical Carcinoma by Tissue Micro Arrays Analysis Identifies P53 as an Independent Prognostic Marker of Overall Survival. Cancers (Basel) 2022; 14:cancers14092225. [PMID: 35565353 PMCID: PMC9099575 DOI: 10.3390/cancers14092225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
Advanced adrenocortical carcinoma (ACC) has poor but heterogeneous prognosis. Apart from Ki67 index, no prognostic or predictive biomarker has been validated in advanced ACC, so far. We aimed at analyzing expression of a large panel of proteins involved in known altered pathways in ACC (cell cycle, Wnt/ß-catenin, methylation) to identify and prioritize potential prognostic or predictive parameters metastatic ACC population. We conducted a retrospective multicentric study. Overall survival (OS) and partial response according to RECIST 1.1 were primary endpoints. TMA was set up and 16 markers were analyzed. Modified ENSAT and GRAS parameters were characterized for prognostic adjustment. Results: We included 66 patients with a mean age at metastatic diagnosis of 48.7 ± 15.5 years. Median survival was 27.8 months. After adjustment to mENSAT-GRAS parameters, p53 and PDxK were prognostic of OS. No potential biomarker has been identified as predictive factor of response. We identified for the first time P53 as an independent prognostic marker of metastatic adrenocortical carcinoma after mENSAT-GRAS parameter adjustment. Prognostic impact of Wnt/ß-catenin alterations was not confirmed in this cohort of metastatic ACC.
Collapse
Affiliation(s)
- Segolene Hescot
- Department of Nuclear Medicine, Institut Curie, 92210 Saint Cloud, France;
| | - Matthieu Faron
- Department of Surgery, Gustave Roussy, 94805 Villejuif, France;
| | - Manal Kordahi
- Department of Pathology, Gustave Roussy, 94805 Villejuif, France; (M.K.); (J.-Y.S.)
| | - Christine Do Cao
- Department of Endocrinology, Centre Hospitalier Universitaire Lille, 59000 Lille, France;
| | - Annabelle Naman
- Department of Endocrine Oncology, Gustave Roussy, 94805 Villejuif, France; (A.N.); (L.L.); (J.H.); (S.L.); (E.B.)
| | - Livia Lamartina
- Department of Endocrine Oncology, Gustave Roussy, 94805 Villejuif, France; (A.N.); (L.L.); (J.H.); (S.L.); (E.B.)
| | - Julien Hadoux
- Department of Endocrine Oncology, Gustave Roussy, 94805 Villejuif, France; (A.N.); (L.L.); (J.H.); (S.L.); (E.B.)
| | - Sophie Leboulleux
- Department of Endocrine Oncology, Gustave Roussy, 94805 Villejuif, France; (A.N.); (L.L.); (J.H.); (S.L.); (E.B.)
| | - Francois Pattou
- Department of General and Endocrine Surgery, Centre Hospitalier Universitaire Lille, Université de Lille, 59000 Lille, France;
| | - Sébastien Aubert
- Institut of Pathology, Centre Hospitalier Universitaire Lille, 59000 Lille, France;
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave Roussy, 94805 Villejuif, France; (M.K.); (J.-Y.S.)
| | - Abir Al Ghuzlan
- Department of Pathology, Gustave Roussy, 94805 Villejuif, France; (M.K.); (J.-Y.S.)
- Correspondence: ; Tel.: +33-142-114-211
| | - Eric Baudin
- Department of Endocrine Oncology, Gustave Roussy, 94805 Villejuif, France; (A.N.); (L.L.); (J.H.); (S.L.); (E.B.)
| |
Collapse
|
5
|
Lavoie JM, Csizmok V, Williamson LM, Culibrk L, Wang G, Marra MA, Laskin J, Jones SJM, Renouf DJ, Kollmannsberger CK. Whole-genome and transcriptome analysis of advanced adrenocortical cancer highlights multiple alterations affecting epigenome and DNA repair pathways. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006148. [PMID: 35483882 PMCID: PMC9059790 DOI: 10.1101/mcs.a006148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
Adrenocortical cancer (ACC) is a rare cancer of the adrenal gland. Several driver mutations have been identified in both primary and metastatic ACCs, but the therapeutic options are still limited. We performed whole-genome and transcriptome sequencing on seven patients with metastatic ACC. Integrative analysis of mutations, RNA expression changes, mutation signature, and homologous recombination deficiency (HRD) analysis was performed. Mutations affecting CTNNB1 and TP53 and frequent loss of heterozygosity (LOH) events were observed in our cohort. Alterations affecting genes involved in cell cycle (RB1, CDKN2A, CDKN2B), DNA repair pathways (MUTYH, BRCA2, ATM, RAD52, MLH1, MSH6), and telomere maintenance (TERF2 and TERT) consisting of somatic and germline mutations, structural variants, and expression outliers were also observed. HRDetect, which aggregates six HRD-associated mutation signatures, identified a subset of cases as HRD. Genomic alterations affecting genes involved in epigenetic regulation were also identified, including structural variants (SWI/SNF genes and histone methyltransferases), and copy gains and concurrent high expression of KDM5A, which may contribute to epigenomic deregulation. Findings from this study highlight HRD and epigenomic pathways as potential therapeutic targets and suggest a subgroup of patients may benefit from a diverse array of molecularly targeted therapies in ACC, a rare disease in urgent need of therapeutic strategies.
Collapse
Affiliation(s)
- Jean-Michel Lavoie
- Department of Medical Oncology, BC Cancer, Surrey, British Columbia V3V 1Z2, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Gang Wang
- Department of Pathology and Laboratory Medicine, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, BC Cancer, Vancouver, British Columbia V5Z 4E6, Canada
| | | |
Collapse
|
6
|
Jang HN, Moon SJ, Jung KC, Kim SW, Kim H, Han D, Kim JH. Mass Spectrometry-Based Proteomic Discovery of Prognostic Biomarkers in Adrenal Cortical Carcinoma. Cancers (Basel) 2021; 13:3890. [PMID: 34359790 PMCID: PMC8345732 DOI: 10.3390/cancers13153890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Adrenal cortical carcinoma (ACC) is an extremely rare disease with a variable prognosis. Current prognostic markers have limitations in identifying patients with a poor prognosis. Herein, we aimed to investigate the prognostic protein biomarkers of ACC using mass-spectrometry-based proteomics. We performed the liquid chromatography-tandem mass spectrometry (LC-MS/MS) using formalin-fixed paraffin-embedded (FFPE) tissues of 45 adrenal tumors. Then, we selected 117 differentially expressed proteins (DEPs) among tumors with different stages using the machine learning algorithm. Next, we conducted a survival analysis to assess whether the levels of DEPs were related to survival. Among 117 DEPs, HNRNPA1, C8A, CHMP6, LTBP4, SPR, NCEH1, MRPS23, POLDIP2, and WBSCR16 were significantly correlated with the survival of ACC. In age- and stage-adjusted Cox proportional hazard regression models, only HNRNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16 expression remained significant. These five proteins were also validated in TCGA data as the prognostic biomarkers. In this study, we found that HNRNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16 were protein biomarkers for predicting the prognosis of ACC.
Collapse
Affiliation(s)
- Han Na Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (H.N.J.); (S.J.M.); (S.W.K.)
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| | - Sun Joon Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (H.N.J.); (S.J.M.); (S.W.K.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03080, Korea
| | - Kyeong Cheon Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul 03080, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (H.N.J.); (S.J.M.); (S.W.K.)
- Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 03080, Korea
| | - Hyeyoon Kim
- Proteomics Core Facility, Biomedical Research Institute Seoul National University Hospital, Seoul 03080, Korea;
| | - Dohyun Han
- Proteomics Core Facility, Biomedical Research Institute Seoul National University Hospital, Seoul 03080, Korea;
| | - Jung Hee Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea; (H.N.J.); (S.J.M.); (S.W.K.)
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
7
|
Little DW, Dumontet T, LaPensee CR, Hammer GD. β-catenin in adrenal zonation and disease. Mol Cell Endocrinol 2021; 522:111120. [PMID: 33338548 PMCID: PMC8006471 DOI: 10.1016/j.mce.2020.111120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/25/2022]
Abstract
The Wnt signaling pathway is a critical mediator of the development and maintenance of several tissues. The adrenal cortex is highly dependent upon Wnt/β-catenin signaling for proper zonation and endocrine function. Adrenocortical cells emerge in the peripheral capsule and subcapsular cortex of the gland as progenitor cells that centripetally differentiate into steroid hormone-producing cells of three functionally distinct concentric zones that respond robustly to various endocrine stimuli. Wnt/β-catenin signaling mediates adrenocortical progenitor cell fate and tissue renewal to maintain the gland throughout life. Aberrant Wnt/β-catenin signaling contributes to various adrenal disorders of steroid production and growth that range from hypofunction and hypoplasia to hyperfunction, hyperplasia, benign adrenocortical adenomas, and malignant adrenocortical carcinomas. Great strides have been made in defining the molecular underpinnings of adrenocortical homeostasis and disease, including the interplay between the capsule and cortex, critical components involved in maintaining the adrenocortical Wnt/β-catenin signaling gradient, and new targets in adrenal cancer. This review seeks to examine these and other recent advancements in understanding adrenocortical Wnt/β-catenin signaling and how this knowledge can inform therapeutic options for adrenal disease.
Collapse
Affiliation(s)
| | - Typhanie Dumontet
- Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Christopher R LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA
| | - Gary D Hammer
- Doctoral Program in Cancer Biology, USA; Training Program in Organogenesis, Center for Cell Plasticity and Organ Design, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, USA; Endocrine Oncology Program, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Kerdivel G, Boeva V. Chromatin Immunoprecipitation Followed by Next-Generation Sequencing (ChIP-Seq) Analysis in Ewing Sarcoma. Methods Mol Biol 2021; 2226:265-284. [PMID: 33326109 DOI: 10.1007/978-1-0716-1020-6_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ChIP-seq is the method of choice for profiling protein-DNA interactions, and notably for characterizing the landscape of transcription factor binding and histone modifications. This technique has been widely used to study numerous aspects of tumor biology and led to the development of several promising cancer therapies. In Ewing sarcoma research, ChIP-seq provided important insights into the mechanism of action of the major oncogenic fusion protein EWSR1-FLI1 and related epigenetic and transcriptional changes. In this chapter, we provide a detailed pipeline to analyze ChIP-seq experiments from the preprocessing of raw data to tertiary analysis of detected binding sites. We also advise on best practice to prepare tumor samples prior to sequencing.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, Paris, France.
| | - Valentina Boeva
- INSERM, U1016, Cochin Institute, CNRS UMR8104, Paris Descartes University, Paris, France. .,Department of Computer Science, ETH Zurich, Institute for Machine Learning, Zurich, Switzerland. .,Swiss Institute of Bioinformatics (SIB), Zürich, Switzerland.
| |
Collapse
|
9
|
Alyateem G, Nilubol N. Current Status and Future Targeted Therapy in Adrenocortical Cancer. Front Endocrinol (Lausanne) 2021; 12:613248. [PMID: 33732213 PMCID: PMC7957049 DOI: 10.3389/fendo.2021.613248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. The current treatment standards include complete surgical resection for localized resectable disease and systemic therapy with mitotane alone or in combination with etoposide, doxorubicin, and cisplatin in patients with advanced ACC. However, the efficacy of systemic therapy in ACC is very limited, with high rates of toxicities. The understanding of altered molecular pathways is critically important to identify effective treatment options that currently do not exist. In this review, we discuss the results of recent advanced in molecular profiling of ACC with the focus on dysregulated pathways from various genomic and epigenetic dysregulation. We discuss the potential translational therapeutic implication of molecular alterations. In addition, we review and summarize the results of recent clinical trials and ongoing trials.
Collapse
|
10
|
Cao Z, Wu W, Wei H, Zhang W, Huang Y, Dong Z. Downregulation of histone-lysine N-methyltransferase EZH2 inhibits cell viability and enhances chemosensitivity in lung cancer cells. Oncol Lett 2020; 21:26. [PMID: 33240432 PMCID: PMC7681225 DOI: 10.3892/ol.2020.12287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
Histone-lysine N-methyltransferase EZH2 (EZH2) is the principle component of the polycomb repressive complex 2 (PRC2)/embryonic ectoderm development protein-EZH2 complex, which promotes tumorigenesis by repressing transcription of tumor suppressor genes. EZH2 is considered a key marker in several types of cancer, such as colorectal and prostate cancer. However, the molecular mechanisms and clinical value of EZH2 in lung cancer have not yet been fully investigated. The aim of the present study was to investigate the functions of EZH2 in lung cancer progression and to determine whether treatment with an EZH2 inhibitor enhanced the chemosensitivity of lung cancer cells to cisplatin (CDDP). At the logarithmic growth phase, A549 cells were treated with a small interfering (si)RNA-EZH2, and cell viability was detected using an MTT assay. The degree of apoptosis and cell cycle were detected using flow cytometry. Cell migration and invasion were detected via wound healing and Transwell Matrigel assays. According to information from the Gene Expression Omnibus database, the results of the present study demonstrated that EZH2 was upregulated in lung cancer. Furthermore, overexpression of EZH2 was associated with poor patient prognosis, while EZH2 knockdown inhibited cell viability and migration, and enhanced apoptosis and chemosensitivity in a lung cancer cell line. EZH2 knockdown and treatment of A549 cells using EZH2 inhibitor elevated the inhibitory effects of CDDP on cell viability and apoptosis. Western blot and reverse transcription-quantitative PCR analyses were performed to assess the expression levels of relative protein and mRNA, respectively, in A549 cells treated with siRNA-EZH2 or with CDDP. Overall, the results of the present study demonstrated that high EZH2 expression was associated with poor prognosis, accompanied with a potential impairment of migration and viability in lung cancer cells. These findings suggest that EZH2 may act as a candidate molecular target for gene therapy, and treatment with EZH2 inhibitor may be used to increase chemosensitivity to CDDP agents in lung cancer.
Collapse
Affiliation(s)
- Ziyang Cao
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| | - Haiting Wei
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| | - Yan Huang
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| | - Zhengwei Dong
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, P.R. China
| |
Collapse
|
11
|
Borges KS, Pignatti E, Leng S, Kariyawasam D, Ruiz-Babot G, Ramalho FS, Taketo MM, Carlone DL, Breault DT. Wnt/β-catenin activation cooperates with loss of p53 to cause adrenocortical carcinoma in mice. Oncogene 2020; 39:5282-5291. [PMID: 32561853 PMCID: PMC7378041 DOI: 10.1038/s41388-020-1358-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/28/2020] [Accepted: 06/04/2020] [Indexed: 12/23/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy with limited therapeutic options. The lack of mouse models that recapitulate the genetics of ACC has hampered progress in the field. We analyzed The Cancer Genome Atlas (TCGA) dataset for ACC and found that patients harboring alterations in both p53/Rb and Wnt/β-catenin signaling pathways show a worse prognosis compared with patients that harbored alterations in only one. To model this, we utilized the Cyp11b2(AS)Cre mouse line to generate mice with adrenocortical-specific Wnt/β-catenin activation, Trp53 deletion, or the combination of both. Mice with targeted Wnt/β-catenin activation or Trp53 deletion showed no changes associated with tumor formation. In contrast, alterations in both pathways led to ACC with pulmonary metastases. Similar to ACCs in humans, these tumors produced increased levels of corticosterone and aldosterone and showed a high proliferation index. Gene expression analysis revealed that mouse tumors exhibited downregulation of Star and Cyp11b1 and upregulation of Ezh2, similar to ACC patients with a poor prognosis. Altogether, these data show that altering both Wnt/β-catenin and p53/Rb signaling is sufficient to drive ACC in mouse. This autochthonous model of ACC represents a new tool to investigate the biology of ACC and to identify new treatment strategies.
Collapse
Affiliation(s)
- Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Emanuele Pignatti
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Sining Leng
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Division of Medical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Dulanjalee Kariyawasam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Fernando Silva Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8506, Japan
| | - Diana L Carlone
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
12
|
Ettaieb M, Kerkhofs T, van Engeland M, Haak H. Past, Present and Future of Epigenetics in Adrenocortical Carcinoma. Cancers (Basel) 2020; 12:cancers12051218. [PMID: 32414074 PMCID: PMC7281315 DOI: 10.3390/cancers12051218] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023] Open
Abstract
DNA methylation profiling has been suggested a reliable technique to distinguish between benign and malignant adrenocortical tumors, a process which with current diagnostic methods remains challenging and lacks diagnostic accuracy of borderline tumors. Accurate distinction between benign and malignant adrenal tumors is of the essence, since ACC is a rare but aggressive endocrine disease with an annual incidence of about 2.0 cases per million people per year. The estimated five-year overall survival rate for ACC patients is <50%. However, available treatment regimens are limited, in which a radical surgical resection is the only curable option. Nevertheless, up to 85% of patients with radical resection show recurrence of the local disease often with concurrent metastases. Adrenolytic therapy with mitotane, administered alone or in combination with cytotoxic agents, is currently the primary (palliative) treatment for patients with advanced ACC and is increasingly used in adjuvant setting to prevent recurrence. Prognostic stratification is important in order to individualize adjuvant therapies. On April 1, 2020, there were 7404 publications on adrenocortical carcinoma (adrenocortical carcinoma) OR adrenocortical carcinoma [MeSH Terms]) OR adrenal cortex cancer[MeSH Terms]) OR adrenal cortical carcinoma [MeSH Terms]) OR adrenal cortex neoplasm [MeSH Terms]) OR adrenocortical cancer [MeSH Terms]), yet the underlying pathophysiology and characteristics of ACC is not fully understood. Knowledge on epigenetic alterations in the process of adrenal tumorigenesis is rapidly increasing and will add to a better understanding of the pathogenesis of ACC. DNA methylation profiling has been heralded as a promising method in the prognostication of ACC. This review summarizes recent findings on epigenetics of ACC and its role in diagnosis, prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Madeleine Ettaieb
- Department of Internal Medicine, Division of Endocrinology, Maxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands;
- Correspondence:
| | - Thomas Kerkhofs
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Manon van Engeland
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 Maastricht, The Netherlands;
| | - Harm Haak
- Department of Internal Medicine, Division of Endocrinology, Maxima Medical Center, 5631 Eindhoven/Veldhoven, The Netherlands;
- Department of Internal Medicine, Division of General Internal Medicine, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
- Department of Health Services Research and CAPHRI School for Public Health and Primary Care, Maastricht University Medical Center, 6229 Maastricht, The Netherlands
| |
Collapse
|
13
|
Rubin B, Pilon C, Pezzani R, Rebellato A, Fallo F. The effects of mitotane and 1α,25-dihydroxyvitamin D 3 on Wnt/beta-catenin signaling in human adrenocortical carcinoma cells. J Endocrinol Invest 2020; 43:357-367. [PMID: 31587178 DOI: 10.1007/s40618-019-01127-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE Mitotane is the only chemotherapeutic agent available for the treatment of adrenocortical carcinoma (ACC), however, the anti-neoplastic efficacy is limited due to several side-effects in vivo. There is, therefore, a need of exploring for new anti-tumoral agents which can be used either alone or in combination with mitotane. The active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) acts as an anti-proliferative agent in human cancer by inhibiting the Wnt/beta-catenin pathway through the vitamin D receptor (VDR). The aim of this study was to study the effects of mitotane and 1α,25(OH)2D3, individually or in combination, in an in vitro model with H295R ACC cells, and to elucidate the molecular events behind their effects involving the Wnt/beta-catenin signaling. METHODS AND RESULTS Multiple concentrations of mitotane and 1α,25(OH)2D3, individually or in combination, were tested on H295R cells for 24-96 h, and the effects analysed by MTT. A reduction in cell growth was observed in a dose/time-dependent manner for both mitotane and 1α,25(OH)2D3. In addition, a combination of clinically sub-therapeutic concentrations of mitotane with 1α,25(OH)2D3, had an additive anti-proliferative effect (Combination Index = 1.02). In a wound healing assay, individual treatments of both mitotane and 1α,25(OH)2D3 reduced the migration ability of H295R cells, with the effect further enhanced on combining both the agents. Western blotting and qRT-PCR analysis showed a modulation of the Wnt/beta-catenin and VDR signaling pathways. CONCLUSION Our results show an additive effect of mitotane and 1α,25(OH)2D3 on the inhibition of H295R ACC cell growth and viability, and suggest that molecular mechanisms of their effects involve a functional link between VDR and Wnt/beta-catenin pathways.
Collapse
Affiliation(s)
- B Rubin
- Endocrine-Metabolic Laboratory, Clinica Medica 3, Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - C Pilon
- Endocrine-Metabolic Laboratory, Clinica Medica 3, Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - R Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padua, Italy
| | - A Rebellato
- Endocrine-Metabolic Laboratory, Clinica Medica 3, Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128, Padua, Italy
| | - F Fallo
- Endocrine-Metabolic Laboratory, Clinica Medica 3, Department of Medicine (DIMED), University of Padova, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
14
|
Mariniello K, Ruiz-Babot G, McGaugh EC, Nicholson JG, Gualtieri A, Gaston-Massuet C, Nostro MC, Guasti L. Stem Cells, Self-Renewal, and Lineage Commitment in the Endocrine System. Front Endocrinol (Lausanne) 2019; 10:772. [PMID: 31781041 PMCID: PMC6856655 DOI: 10.3389/fendo.2019.00772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
The endocrine system coordinates a wide array of body functions mainly through secretion of hormones and their actions on target tissues. Over the last decades, a collective effort between developmental biologists, geneticists, and stem cell biologists has generated a wealth of knowledge related to the contribution of stem/progenitor cells to both organogenesis and self-renewal of endocrine organs. This review provides an up-to-date and comprehensive overview of the role of tissue stem cells in the development and self-renewal of endocrine organs. Pathways governing crucial steps in both development and stemness maintenance, and that are known to be frequently altered in a wide array of endocrine disorders, including cancer, are also described. Crucially, this plethora of information is being channeled into the development of potential new cell-based treatment modalities for endocrine-related illnesses, some of which have made it through clinical trials.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States
- Harvard Stem Cell Institute, Cambridge, MA, United States
| | - Emily C. McGaugh
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James G. Nicholson
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Angelica Gualtieri
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
15
|
Xing Z, Luo Z, Yang H, Huang Z, Liang X. Screening and identification of key biomarkers in adrenocortical carcinoma based on bioinformatics analysis. Oncol Lett 2019; 18:4667-4676. [PMID: 31611976 PMCID: PMC6781718 DOI: 10.3892/ol.2019.10817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. The presently available understanding of the pathogenesis of ACC is incomplete and the treatment options for patients with ACC are limited. Gene marker identification is required for accurate and timely diagnosis of the disease. In order to identify novel candidate genes associated with the occurrence and progression of ACC, the microarray datasets, GSE12368 and GSE19750, were obtained from Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. A protein-protein interaction network (PPI) was constructed to identify significantly altered modules, and module analysis was performed using Search Tool for the Retrieval of Interacting Genes and Cytoscape. A total of 228 DEGs were screened, consisting of 29 up and 199 downregulated genes. The enriched functions and pathways of the DEGs primarily included 'cell division', 'regulation of transcription involved in G1/S transition of mitotic cell cycle', 'G1/S transition of mitotic cell cycle', 'p53 signaling pathway' and 'oocyte meiosis'. A total of 14 hub genes were identified, and biological process analysis revealed that these genes were significantly enriched in cell division and mitotic cell cycle. Furthermore, survival analysis revealed that AURKA, TYMS, GINS1, RACGAP1, RRM2, EZH2, ZWINT, CDK1, CCNB1, NCAPG and TPX2 may be involved in the tumorigenesis, progression or prognosis of ACC. In conclusion, the 14 hub genes identified in the present study may aid researchers in elucidating the molecular mechanisms associated with the tumorigenesis and progression of ACC, and may be powerful and promising candidate biomarkers for the diagnosis and treatment of ACC.
Collapse
Affiliation(s)
- Zengmiao Xing
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Haiyan Yang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenxing Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
16
|
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive, and frequently deadly cancer. Up to 75% of all patients will eventually develop metastatic disease, and our current medical therapies for ACC provide limited - if any - survival benefit. These statistics highlight a crucial need for novel approaches. Recent studies performing comprehensive molecular profiling on ACC have illuminated that ACC is comprised of three clinically distinct molecular subtypes, bearing differential regulation of cell cycle, epigenetics, Wnt/β-catenin signaling, PKA signaling, steroidogenesis and immune cell biology. Furthermore, these studies have spurred the development of molecular subtype-based biomarkers, contextualized outcomes of recent clinical trials, and advanced our understanding of the underlying biology of adrenocortical homeostasis and cancer. In this review, we describe these findings and their implications for new strategies to apply targeted therapies to ACC.
Collapse
|
17
|
EZH2 cooperates with E2F1 to stimulate expression of genes involved in adrenocortical carcinoma aggressiveness. Br J Cancer 2019; 121:384-394. [PMID: 31363169 PMCID: PMC6738105 DOI: 10.1038/s41416-019-0538-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022] Open
Abstract
Background EZH2 is overexpressed and associated with poor prognosis in adrenocortical carcinoma (ACC) and its inhibition reduces growth and aggressiveness of ACC cells in culture. Although EZH2 was identified as the methyltransferase that deposits the repressive H3K27me3 histone mark, it can cooperate with transcription factors to stimulate gene transcription. Methods We used bioinformatics approaches on gene expression data from three cohorts of patients and a mouse model of EZH2 ablation, to identify targets and mode of action of EZH2 in ACC. This was followed by ChIP and functional assays to evaluate contribution of identified targets to ACC pathogenesis. Results We show that EZH2 mostly works as a transcriptional inducer in ACC, through cooperation with the transcription factor E2F1 and identify three positive targets involved in cell cycle regulation and mitosis i.e., RRM2, PTTG1 and ASE1/PRC1. Overexpression of these genes is associated with poor prognosis, suggesting a potential role in acquisition of aggressive ACC features. Pharmacological and siRNA-mediated inhibition of RRM2 blocks cell proliferation, induces apoptosis and inhibits cell migration, suggesting that it may be an interesting target in ACC. Conclusions Altogether, these data show an unexpected role of EZH2 and E2F1 in stimulating expression of genes associated with ACC aggressiveness.
Collapse
|
18
|
Identification of important invasion and proliferation related genes in adrenocortical carcinoma. Med Oncol 2019; 36:73. [PMID: 31321566 DOI: 10.1007/s12032-019-1296-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
|
19
|
Neuman I, Cooke M, Lemiña NA, Kazanietz MG, Cornejo Maciel F. 5-oxo-ETE activates migration of H295R adrenocortical cells via MAPK and PKC pathways. Prostaglandins Other Lipid Mediat 2019; 144:106346. [PMID: 31301403 DOI: 10.1016/j.prostaglandins.2019.106346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 06/06/2019] [Accepted: 06/19/2019] [Indexed: 01/08/2023]
Abstract
The OXE receptor is a GPCR activated by eicosanoids produced by the action of 5-lipoxygenase. We previously found that this membrane receptor participates in the regulation of cAMP-dependent and -independent steroidogenesis in human H295R adrenocortical carcinoma cells. In this study we analyzed the effects of the OXE receptor physiological activator 5-oxo-ETE on the growth and migration of H259R cells. While 5-oxo-ETE did not affect the growth of H295R cells, overexpression of OXE receptor caused an increase in cell proliferation, which was further increased by 5-oxo-ETE and blocked by 5-lipoxygenase inhibition. 5-oxo-ETE increased the migratory capacity of H295R cells in wound healing assays, but it did not induce the production of metalloproteases MMP-1, MMP-2, MMP-9 and MMP-10. The pro-migratory effect of 5-oxo-ETE was reduced by pharmacological inhibition of the MEK/ERK1/2, p38 and PKC pathways. 5-oxo-ETE caused significant activation of ERK and p38. ERK activation by the eicosanoid was reduced by the "pan" PKC inhibitor GF109203X but not by the classical PKC inhibitor Gö6976, suggesting the involvement of novel PKCs in this effect. Although H295R cells display detectable phosphorylation of Ser299 in PKCδ, a readout for the activation of this novel PKC, treatment with 5-oxo-ETE per se was unable to induce additional PKCδ activation. Our results revealed signaling effectors activated by 5-oxo-ETE in H295R cells and may have significant implications for our understanding of OXE receptor in adrenocortical cell pathophysiology.
Collapse
Affiliation(s)
- Isabel Neuman
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; INBIOMED, Instituto de Investigaciones Biomédicas, UBA, CONICET, Buenos Aires, Argentina
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolás Agustín Lemiña
- INBIOMED, Instituto de Investigaciones Biomédicas, UBA, CONICET, Buenos Aires, Argentina
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabiana Cornejo Maciel
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; INBIOMED, Instituto de Investigaciones Biomédicas, UBA, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Pereira SS, Monteiro MP, Antonini SR, Pignatelli D. Apoptosis regulation in adrenocortical carcinoma. Endocr Connect 2019; 8:R91-R104. [PMID: 30978697 PMCID: PMC6510712 DOI: 10.1530/ec-19-0114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Apoptosis evading is a hallmark of cancer. Tumor cells are characterized by having an impaired apoptosis signaling, a fact that deregulates the balance between cell death and survival, leading to tumor development, invasion and resistance to treatment. In general, patients with adrenocortical carcinomas (ACC) have an extremely bad prognosis, which is related to disease progression and significant resistance to treatments. In this report, we performed an integrative review about the disruption of apoptosis in ACC that may underlie the characteristic poor prognosis in these patients. Although the apoptosis has been scarcely studied in ACC, the majority of the deregulation phenomena already described are anti-apoptotic. Most importantly, in a near future, targeting apoptosis modulation in ACC patients may become a promising therapeutic.
Collapse
Affiliation(s)
- Sofia S Pereira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Mariana P Monteiro
- Endocrine, Cardiovascular & Metabolic Research, Department of Anatomy, Multidisciplinary Unit for Biomedical Research (UMIB), Instituto de Ciências Biomédicas Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal
| | - Sonir R Antonini
- Department of Pediatrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Duarte Pignatelli
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
- Department of Endocrinology, Hospital S. João, Porto, Portugal
- Correspondence should be addressed to D Pignatelli:
| |
Collapse
|
21
|
Steroidogenic differentiation and PKA signaling are programmed by histone methyltransferase EZH2 in the adrenal cortex. Proc Natl Acad Sci U S A 2018; 115:E12265-E12274. [PMID: 30541888 DOI: 10.1073/pnas.1809185115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adrenal cortex steroids are essential for body homeostasis, and adrenal insufficiency is a life-threatening condition. Adrenal endocrine activity is maintained through recruitment of subcapsular progenitor cells that follow a unidirectional differentiation path from zona glomerulosa to zona fasciculata (zF). Here, we show that this unidirectionality is ensured by the histone methyltransferase EZH2. Indeed, we demonstrate that EZH2 maintains adrenal steroidogenic cell differentiation by preventing expression of GATA4 and WT1 that cause abnormal dedifferentiation to a progenitor-like state in Ezh2 KO adrenals. EZH2 further ensures normal cortical differentiation by programming cells for optimal response to adrenocorticotrophic hormone (ACTH)/PKA signaling. This is achieved by repression of phosphodiesterases PDE1B, 3A, and 7A and of PRKAR1B. Consequently, EZH2 ablation results in blunted zF differentiation and primary glucocorticoid insufficiency. These data demonstrate an all-encompassing role for EZH2 in programming steroidogenic cells for optimal response to differentiation signals and in maintaining their differentiated state.
Collapse
|
22
|
P53/Rb inhibition induces metastatic adrenocortical carcinomas in a preclinical transgenic model. Oncogene 2017; 36:4445-4456. [PMID: 28368424 DOI: 10.1038/onc.2017.54] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/20/2016] [Accepted: 02/04/2017] [Indexed: 12/14/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer with poor prognosis. Pan-genomic analyses identified p53/Rb and WNT/β-catenin signaling pathways as main contributors to the disease. However, isolated β-catenin constitutive activation failed to induce malignant progression in mouse adrenocortical tumors. Therefore, there still was a need for a relevant animal model to study ACC pathogenesis and to test new therapeutic approaches. Here, we have developed a transgenic mice model with adrenocortical specific expression of SV40 large T-antigen (AdTAg mice), to test the oncogenic potential of p53/Rb inhibition in the adrenal gland. All AdTAg mice develop large adrenal carcinomas that eventually metastasize to the liver and lungs, resulting in decreased overall survival. Consistent with ACC in patients, adrenal tumors in AdTAg mice autonomously produce large amounts of glucocorticoids and spontaneously activate WNT/β-catenin signaling pathway during malignant progression. We show that this activation is associated with downregulation of secreted frizzled related proteins (Sfrp) and Znrf3 that act as inhibitors of the WNT signaling. We also show that mTORC1 pathway activation is an early event during neoplasia expansion and further demonstrate that mTORC1 pathway is activated in ACC patients. Preclinical inhibition of mTORC1 activity induces a marked reduction in tumor size, associated with induction of apoptosis and inhibition of proliferation that results in normalization of corticosterone plasma levels in AdTAg mice. Altogether, these data establish AdTAg mice as the first preclinical model for metastatic ACC.
Collapse
|
23
|
Lu H, Li G, Zhou C, Jin W, Qian X, Wang Z, Pan H, Jin H, Wang X. Regulation and role of post-translational modifications of enhancer of zeste homologue 2 in cancer development. Am J Cancer Res 2016; 6:2737-2754. [PMID: 28042497 PMCID: PMC5199751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023] Open
Abstract
Post-translational modifications (PTMs) are critical molecular events which alter protein conformation after their synthesis and diversity protein properties by modulating their stability, localization, interacting partners or the activity of their substrates, consequently exerting pivotal roles in regulating the functions of many important eukaryotic proteins. It has been well acknowledged that PTMs are of great importance in a broad range of biological processes such as gene regulation, cell proliferation, differentiation and apoptosis, tissue development, diseases, tumor progression and drug resistance. As the core and contributing catalytic subunit of Polycomb repressive complex 2(PRC2), Enhancer of zeste homolog 2 (EZH2) is a master epigenetic regulator, often serving as a highly conserved histone methyltransferase (HMTase) to induce histone H3 lysine 27 trimethylation (H3K27me3) and repress gene transcription and expression. Dysregulated EZH2 expression is frequently associated with cancer development and poor prognosis in a wide variety of cancers. Considered its essential role in carcinogenesis, EZH2 is a potential candidate for cancer targeted therapy. Remarkably, mounting evidence highlights that EZH2 expression, activity and stability can be regulated by PTMs including phosphorylation, acetylation, ubiquitination, sumoylation and GlcNAcylation aside from its well-validated modifications in transcriptional and post-transcriptional levels. However, the precise regulatory mechanisms underlying EZH2 PTMs and whether other types of PTMs orchestrate in EZH2 remain largely unclear. In this review, we summarize current advances in the understanding of EZH2 regulation by PTMs and their associated biological functions during tumorigenesis.
Collapse
Affiliation(s)
- Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Guangliang Li
- Department of Medical Oncology, Zhejiang Cancer HospitalHangzhou, Zhejiang, China
| | - Chenyi Zhou
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Wei Jin
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Xiaoling Qian
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Zhuo Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Hongchuan Jin
- Laboratory of Cancer Biology, Provincial Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| |
Collapse
|
24
|
Leccia F, Batisse-Lignier M, Sahut-Barnola I, Val P, Lefrançois-Martinez AM, Martinez A. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking? Front Endocrinol (Lausanne) 2016; 7:93. [PMID: 27471492 PMCID: PMC4945639 DOI: 10.3389/fendo.2016.00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/04/2016] [Indexed: 12/31/2022] Open
Abstract
Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely "functional," i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing's syndrome (hypercortisolism) or Conn's syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases.
Collapse
Affiliation(s)
- Felicia Leccia
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
| | - Marie Batisse-Lignier
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
- Endocrinology, Diabetology and Metabolic Diseases Department, Centre Hospitalier Universitaire, School of Medicine, Clermont-Ferrand, France
| | | | - Pierre Val
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
| | | | - Antoine Martinez
- UMR6293, GReD, INSERM U1103, CNRS, Clermont Université, Clermont-Ferrand, France
- *Correspondence: Antoine Martinez,
| |
Collapse
|