1
|
Fox A, Oliva J, Vangipurapu R, Sverdrup FM. SIX transcription factors are necessary for the activation of DUX4 expression in facioscapulohumeral muscular dystrophy. Skelet Muscle 2024; 14:30. [PMID: 39627769 PMCID: PMC11613756 DOI: 10.1186/s13395-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is a common and progressive muscle wasting disease that is characterized by muscle weakness often first noticed in the face, the shoulder girdle and upper arms before progressing to the lower limb muscles. FSHD is caused by the misexpression of the Double Homeobox 4 (DUX4) transcription factor in skeletal muscle. While epigenetic derepression of D4Z4 macrosatellite repeats underlies DUX4 misexpression, our understanding of the complex transcriptional activation of DUX4 is incomplete. METHODS To identify potential DUX4-regulatory factors, we used small interfering RNAs (siRNAs) to knockdown SIX family transcription factors (SIX1, 2, 4, 5) in patient-derived FSHD1 and FSHD2 myoblasts that were differentiated to form multinucleated myotubes. Quantitative real-time polymerase chain reaction was used to measure changes in DUX4 mRNA, DUX4 target gene expression and myogenic markers. Staining for SIX1 and SIX2 with specific antibodies was performed in FSHD myoblasts and myotubes. To assess reciprocal effects of DUX4 on SIX1, 2, and 4 expression, we utilized a doxycycline-inducible DUX4 myoblast cell line. RESULT We show that SIX1, 2 and 4 transcription factors, regulators of embryonic development, muscle differentiation, regeneration and homeostasis, are necessary for myogenic differentiation-dependent DUX4 expression in FSHD muscle cells. Using siRNA, we demonstrate SIX1, SIX2, and SIX4 to be critical factors involved in the induction of DUX4 transcription in differentiating FSHD myotubes in vitro. siRNA dual knockdown of SIX1 and SIX2 resulted in a ~ 98% decrease of DUX4 and DUX4 target genes, suggesting that SIX1 and SIX2 are the most critical in promoting DUX4 expression. Importantly, we show that DUX4 downregulates SIX RNA levels, suggesting negative feedback regulation. CONCLUSIONS In this study, we identified a family of developmental regulators that promote aberrant DUX4 expression in FSHD1 and FSHD2 differentiating muscle cells. Our findings highlight the critical involvement of SIX transcription factors (SIX1, 2, 4) in the pathogenesis of FSHD by serving as necessary factors that function in the promotion of DUX4 expression following epigenetic derepression of the D4Z4 repeats.
Collapse
Affiliation(s)
- Amelia Fox
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Oliva
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Rajanikanth Vangipurapu
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Francis M Sverdrup
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
3
|
Arends T, Tsuchida H, Adeyemi RO, Tapscott SJ. DUX4-induced HSATII transcription causes KDM2A/B-PRC1 nuclear foci and impairs DNA damage response. J Cell Biol 2024; 223:e202303141. [PMID: 38451221 PMCID: PMC10919155 DOI: 10.1083/jcb.202303141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/02/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hiroshi Tsuchida
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Richard O. Adeyemi
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Kong X, Nguyen NV, Li Y, Sakr JS, Williams K, Sharifi S, Chau J, Bayrakci A, Mizuno S, Takahashi S, Kiyono T, Tawil R, Mortazavi A, Yokomori K. Engineered FSHD mutations results in D4Z4 heterochromatin disruption and feedforward DUX4 network activation. iScience 2024; 27:109357. [PMID: 38510139 PMCID: PMC10951985 DOI: 10.1016/j.isci.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is linked to contraction of D4Z4 repeats on chromosome 4q with SMCHD1 mutations acting as a disease modifier. D4Z4 heterochromatin disruption and abnormal upregulation of the transcription factor DUX4, encoded in the D4Z4 repeat, are the hallmarks of FSHD. However, defining the precise effect of D4Z4 contraction has been difficult because D4Z4 repeats are primate-specific and DUX4 expression is very rare in highly heterogeneous patient myocytes. We generated isogenic mutant cell lines harboring D4Z4 and/or SMCHD1 mutations in a healthy human skeletal myoblast line. We found that the mutations affect D4Z4 heterochromatin differently, and that SMCHD1 mutation or disruption of DNA methylation stabilizes otherwise variegated DUX4 target activation in D4Z4 contraction mutant cells, demonstrating the critical role of modifiers. Our study revealed amplification of the DUX4 signal through downstream targets, H3.X/Y and LEUTX. Our results provide important insights into how rare DUX4 expression leads to FSHD pathogenesis.
Collapse
Affiliation(s)
- Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Nam Viet Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Yumeng Li
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jasmine Shaaban Sakr
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kate Williams
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Sheila Sharifi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Jonathan Chau
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Altay Bayrakci
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ali Mortazavi
- Department of Development and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
5
|
Cohen J, Huang S, Koczwara KE, Woods KT, Ho V, Woodman KG, Arbiser JL, Daman K, Lek M, Emerson CP, DeSimone AM. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. Cell Death Dis 2023; 14:749. [PMID: 37973788 PMCID: PMC10654915 DOI: 10.1038/s41419-023-06257-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/10/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Kristen T Woods
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | | | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Li Weibo Institute for Rare Disease Research University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Modalis Therapeutics, Waltham, MA, USA.
| |
Collapse
|
6
|
Knox RN, Eidahl JO, Wallace L, Choudury S, Rashnonejad A, Daman K, Guggenbiller M, Saad N, Hoover ME, Zhang L, Branson OE, Emerson CP, Freitas MA, Harper SQ. Post-Translational Modifications of the DUX4 Protein Impact Toxic Function in FSHD Cell Models. Ann Neurol 2023; 94:398-413. [PMID: 37186119 PMCID: PMC10777487 DOI: 10.1002/ana.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Facioscapulohumeral muscular dystrophy (FSHD) is caused by abnormal de-repression of the myotoxic transcription factor DUX4. Although the transcriptional targets of DUX4 are known, the regulation of DUX4 protein and the molecular consequences of this regulation are unclear. Here, we used in vitro models of FSHD to identify and characterize DUX4 post-translational modifications (PTMs) and their impact on the toxic function of DUX4. METHODS We immunoprecipitated DUX4 protein and performed mass spectrometry to identify PTMs. We then characterized DUX4 PTMs and potential enzyme modifiers using mutagenesis, proteomics, and biochemical assays in HEK293 and human myoblast cell lines. RESULTS We identified 17 DUX4 amino acids with PTMs, and generated 55 DUX4 mutants designed to prevent or mimic PTMs. Five mutants protected cells against DUX4-mediated toxicity and reduced the ability of DUX4 to transactivate FSHD biomarkers. These mutagenesis results suggested that DUX4 toxicity could be counteracted by serine/threonine phosphorylation and/or inhibition of arginine methylation. We therefore sought to identify modifying enzymes that could play a role in regulating DUX4 PTMs. We found several enzymes capable of modifying DUX4 protein in vitro, and confirmed that protein kinase A (PKA) and protein arginine methyltransferase (PRMT1) interact with DUX4. INTERPRETATION These results support that DUX4 is regulated by PTMs and set a foundation for developing FSHD drug screens based mechanistically on DUX4 PTMs and modifying enzymes. ANN NEUROL 2023;94:398-413.
Collapse
Affiliation(s)
- Renatta N. Knox
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63108
| | - Jocelyn O. Eidahl
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Lindsay Wallace
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Sarah Choudury
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Katelyn Daman
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Matthew Guggenbiller
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Nizar Saad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Michael E. Hoover
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Liwen Zhang
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Owen E. Branson
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Charles P. Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655
- Li Weibo Institute for Rare Disease Research, University of Massachusetts Chan Medical School, Worcester, MA 01655
| | - Michael A. Freitas
- Department of Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Scott Q. Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Šikrová D, Testa AM, Willemsen I, van den Heuvel A, Tapscott SJ, Daxinger L, Balog J, van der Maarel SM. SMCHD1 and LRIF1 converge at the FSHD-associated D4Z4 repeat and LRIF1 promoter yet display different modes of action. Commun Biol 2023; 6:677. [PMID: 37380887 DOI: 10.1038/s42003-023-05053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/17/2023] [Indexed: 06/30/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic derepression of the 4q-linked D4Z4 macrosatellite repeat resulting in inappropriate expression of the D4Z4 repeat-encoded DUX4 gene in skeletal muscle. In 5% of FSHD cases, D4Z4 chromatin relaxation is due to germline mutations in one of the chromatin modifiers SMCHD1, DNMT3B or LRIF1. The mechanism of SMCHD1- and LRIF1-mediated D4Z4 repression is not clear. We show that somatic loss-of-function of either SMCHD1 or LRIF1 does not result in D4Z4 chromatin changes and that SMCHD1 and LRIF1 form an auxiliary layer of D4Z4 repressive mechanisms. We uncover that SMCHD1, together with the long isoform of LRIF1, binds to the LRIF1 promoter and silences LRIF1 expression. The interdependency of SMCHD1 and LRIF1 binding differs between D4Z4 and the LRIF1 promoter, and both loci show different transcriptional responses to either early developmentally or somatically perturbed chromatin function of SMCHD1 and LRIF1.
Collapse
Affiliation(s)
- Darina Šikrová
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Alessandra M Testa
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
- Department of Biomedical Sciences, University of Padua, 35100, Padua, Italy
| | - Iris Willemsen
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333ZC, Leiden, The Netherlands.
| |
Collapse
|
8
|
Mocciaro E, Giambruno R, Micheloni S, Cernilogar FM, Andolfo A, Consonni C, Pannese M, Ferri G, Runfola V, Schotta G, Gabellini D. WDR5 is required for DUX4 expression and its pathological effects in FSHD muscular dystrophy. Nucleic Acids Res 2023; 51:5144-5161. [PMID: 37021550 PMCID: PMC10250208 DOI: 10.1093/nar/gkad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent neuromuscular disorders. The disease is linked to copy number reduction and/or epigenetic alterations of the D4Z4 macrosatellite on chromosome 4q35 and associated with aberrant gain of expression of the transcription factor DUX4, which triggers a pro-apoptotic transcriptional program leading to muscle wasting. As today, no cure or therapeutic option is available to FSHD patients. Given its centrality in FSHD, blocking DUX4 expression with small molecule drugs is an attractive option. We previously showed that the long non protein-coding RNA DBE-T is required for aberrant DUX4 expression in FSHD. Using affinity purification followed by proteomics, here we identified the chromatin remodeling protein WDR5 as a novel DBE-T interactor and a key player required for the biological activity of the lncRNA. We found that WDR5 is required for the expression of DUX4 and its targets in primary FSHD muscle cells. Moreover, targeting WDR5 rescues both cell viability and myogenic differentiation of FSHD patient cells. Notably, comparable results were obtained by pharmacological inhibition of WDR5. Importantly, WDR5 targeting was safe to healthy donor muscle cells. Our results support a pivotal role of WDR5 in the activation of DUX4 expression identifying a druggable target for an innovative therapeutic approach for FSHD.
Collapse
Affiliation(s)
- Emanuele Mocciaro
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Roberto Giambruno
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Stefano Micheloni
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Annapaola Andolfo
- ProMeFa, Proteomics and Metabolomics Facility, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Consonni
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maria Pannese
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Giulia Ferri
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Valeria Runfola
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
9
|
Nip Y, Bennett SR, Smith AA, Jones TI, Jones PL, Tapscott SJ. Human DUX4 and porcine DUXC activate similar early embryonic programs in pig muscle cells: implications for preclinical models of FSHD. Hum Mol Genet 2023; 32:1864-1874. [PMID: 36728804 PMCID: PMC10196675 DOI: 10.1093/hmg/ddad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/10/2023] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Human DUX4 and its mouse ortholog Dux are normally expressed in the early embryo-the 4-cell or 2-cell cleavage stage embryo, respectively-and activate a portion of the first wave of zygotic gene expression. DUX4 is epigenetically suppressed in nearly all somatic tissue, whereas facioscapulohumeral dystrophy (FSHD)-causing mutations result in its aberrant expression in skeletal muscle, transcriptional activation of the early embryonic program and subsequent muscle pathology. Although DUX4 and Dux both activate an early totipotent transcriptional program, divergence of their DNA binding domains limits the use of DUX4 expressed in mice as a preclinical model for FSHD. In this study, we identify the porcine DUXC messenger ribonucleic acid expressed in early development and show that both pig DUXC and human DUX4 robustly activate a highly similar early embryonic program in pig muscle cells. These results support further investigation of pig preclinical models for FSHD.
Collapse
Affiliation(s)
- Yee Nip
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Sean R Bennett
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Andrew A Smith
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Takako I Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA 98105, USA
| |
Collapse
|
10
|
Spens AE, Sutliff NA, Bennett SR, Campbell AE, Tapscott SJ. Human DUX4 and mouse Dux interact with STAT1 and broadly inhibit interferon-stimulated gene induction. eLife 2023; 12:e82057. [PMID: 37092726 PMCID: PMC10195082 DOI: 10.7554/elife.82057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/21/2023] [Indexed: 04/25/2023] Open
Abstract
DUX4 activates the first wave of zygotic gene expression in the early embryo. Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral dystrophy (FSHD), whereas expression in cancers suppresses IFNγ induction of major histocompatibility complex class I (MHC class I) and contributes to immune evasion. We show that the DUX4 protein interacts with STAT1 and broadly suppresses expression of IFNγ-stimulated genes by decreasing bound STAT1 and Pol-II recruitment. Transcriptional suppression of interferon-stimulated genes (ISGs) requires conserved (L)LxxL(L) motifs in the carboxyterminal region of DUX4 and phosphorylation of STAT1 Y701 enhances interaction with DUX4. Consistent with these findings, expression of endogenous DUX4 in FSHD muscle cells and the CIC-DUX4 fusion containing the DUX4 CTD in a sarcoma cell line inhibit IFNγ induction of ISGs. Mouse Dux similarly interacted with STAT1 and suppressed IFNγ induction of ISGs. These findings identify an evolved role of the DUXC family in modulating immune signaling pathways with implications for development, cancers, and FSHD.
Collapse
Affiliation(s)
- Amy E Spens
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Nicholas A Sutliff
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sean R Bennett
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Amy E Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusDenverUnited States
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Neurology, University of WashingtonSeattleUnited States
| |
Collapse
|
11
|
Cohen J, Huang S, Koczwara K, Ho V, Woodman K, Lek A, Arbiser J, Lek M, DeSimone A. Flavones provide resistance to DUX4-induced toxicity via an mTor-independent mechanism. RESEARCH SQUARE 2023:rs.3.rs-2452222. [PMID: 36778471 PMCID: PMC9915774 DOI: 10.21203/rs.3.rs-2452222/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common of the muscular dystrophies, affecting nearly 1 in 8000 individuals, and is a cause of profound disability. Genetically, FSHD is linked to the contraction and/or epigenetic de-repression of the D4Z4 repeat array on chromosome 4, thereby allowing expression of the DUX4 gene in skeletal muscle. If the DUX4 transcript incorporates a stabilizing polyadenylation site the myotoxic DUX4 protein will be synthesized, resulting in muscle wasting. The mechanism of toxicity remains unclear, as many DUX4-induced cytopathologies have been described, however cell death does primarily occur through caspase 3/7-dependent apoptosis. To date, most FSHD therapeutic development has focused on molecular methods targeting DUX4 expression or the DUX4 transcript, while therapies targeting processes downstream of DUX4 activity have received less attention. Several studies have demonstrated that inhibition of multiple signal transduction pathways can ameliorate DUX4-induced toxicity, and thus compounds targeting these pathways have the potential to be developed into FSHD therapeutics. To this end, we have screened a group of small molecules curated based on their reported activity in relevant pathways and/or structural relationships with known toxicity-modulating molecules. We have identified a panel of five compounds that function downstream of DUX4 activity to inhibit DUX4-induced toxicity. Unexpectedly, this effect was mediated through an mTor-independent mechanism that preserved expression of ULK1 and correlated with an increase in a marker of active cellular autophagy. This identifies these flavones as compounds of interest for therapeutic development, and potentially identifies the autophagy pathway as a target for therapeutics.
Collapse
|
12
|
Brennan CM, Hill AS, St. Andre M, Li X, Madeti V, Breitkopf S, Garren S, Xue L, Gilbert T, Hadjipanayis A, Monetti M, Emerson CP, Moccia R, Owens J, Christoforou N. DUX4 expression activates JNK and p38 MAP kinases in myoblasts. Dis Model Mech 2022; 15:dmm049516. [PMID: 36196640 PMCID: PMC10655719 DOI: 10.1242/dmm.049516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by misexpression of the DUX4 transcription factor in skeletal muscle that results in transcriptional alterations, abnormal phenotypes and cell death. To gain insight into the kinetics of DUX4-induced stresses, we activated DUX4 expression in myoblasts and performed longitudinal RNA sequencing paired with proteomics and phosphoproteomics. This analysis revealed changes in cellular physiology upon DUX4 activation, including DNA damage and altered mRNA splicing. Phosphoproteomic analysis uncovered rapid widespread changes in protein phosphorylation following DUX4 induction, indicating that alterations in kinase signaling might play a role in DUX4-mediated stress and cell death. Indeed, we demonstrate that two stress-responsive MAP kinase pathways, JNK and p38, are activated in response to DUX4 expression. Inhibition of each of these pathways ameliorated DUX4-mediated cell death in myoblasts. These findings uncover that the JNK pathway is involved in DUX4-mediated cell death and provide additional insights into the role of the p38 pathway, a clinical target for the treatment of FSHD.
Collapse
Affiliation(s)
- Christopher M. Brennan
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
- WRDM Postdoctoral Program, Pfizer Inc., Cambridge, MA 02139, USA
| | - Abby S. Hill
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | | | - Xianfeng Li
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | - Vijaya Madeti
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Susanne Breitkopf
- Proteomics Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Seth Garren
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Liang Xue
- Machine Learning and Computational Science, Pfizer Inc., Cambridge, MA 02139, USA
| | - Tamara Gilbert
- High Content Imaging Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Angela Hadjipanayis
- NGS Technology Center, Inflammation and Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Mara Monetti
- Proteomics Technology Center, Internal Medicine Research Unit, Pfizer, Cambridge, MA 02139, USA
| | - Charles P. Emerson
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Robert Moccia
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
13
|
Williams K, Yokomori K, Mortazavi A. Heterogeneous Skeletal Muscle Cell and Nucleus Populations Identified by Single-Cell and Single-Nucleus Resolution Transcriptome Assays. Front Genet 2022; 13:835099. [PMID: 35646075 PMCID: PMC9136090 DOI: 10.3389/fgene.2022.835099] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Single-cell RNA-seq (scRNA-seq) has revolutionized modern genomics, but the large size of myotubes and myofibers has restricted use of scRNA-seq in skeletal muscle. For the study of muscle, single-nucleus RNA-seq (snRNA-seq) has emerged not only as an alternative to scRNA-seq, but as a novel method providing valuable insights into multinucleated cells such as myofibers. Nuclei within myofibers specialize at junctions with other cell types such as motor neurons. Nuclear heterogeneity plays important roles in certain diseases such as muscular dystrophies. We survey current methods of high-throughput single cell and subcellular resolution transcriptomics, including single-cell and single-nucleus RNA-seq and spatial transcriptomics, applied to satellite cells, myoblasts, myotubes and myofibers. We summarize the major myonuclei subtypes identified in homeostatic and regenerating tissue including those specific to fiber type or at junctions with other cell types. Disease-specific nucleus populations were found in two muscular dystrophies, FSHD and Duchenne muscular dystrophy, demonstrating the importance of performing transcriptome studies at the single nucleus level in muscle.
Collapse
Affiliation(s)
- Katherine Williams
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
14
|
Ashoti A, Limone F, van Kranenburg M, Alemany A, Baak M, Vivié J, Piccioni F, Dijkers PF, Creyghton M, Eggan K, Geijsen N. Considerations and practical implications of performing a phenotypic CRISPR/Cas survival screen. PLoS One 2022; 17:e0263262. [PMID: 35176052 PMCID: PMC8853573 DOI: 10.1371/journal.pone.0263262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Genome-wide screens that have viability as a readout have been instrumental to identify essential genes. The development of gene knockout screens with the use of CRISPR-Cas has provided a more sensitive method to identify these genes. Here, we performed an exhaustive genome-wide CRISPR/Cas9 phenotypic rescue screen to identify modulators of cytotoxicity induced by the pioneer transcription factor, DUX4. Misexpression of DUX4 due to a failure in epigenetic repressive mechanisms underlies facioscapulohumeral muscular dystrophy (FHSD), a complex muscle disorder that thus far remains untreatable. As the name implies, FSHD generally starts in the muscles of the face and shoulder girdle. Our CRISPR/Cas9 screen revealed no key effectors other than DUX4 itself that could modulate DUX4 cytotoxicity, suggesting that treatment efforts in FSHD should be directed towards direct modulation of DUX4 itself. Our screen did however reveal some rare and unexpected genomic events, that had an important impact on the interpretation of our data. Our findings may provide important considerations for planning future CRISPR/Cas9 phenotypic survival screens.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Cell Survival
- Gene Expression Regulation
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Muscle Cells/metabolism
- Muscle Cells/pathology
- Muscular Dystrophy, Facioscapulohumeral/genetics
- Muscular Dystrophy, Facioscapulohumeral/metabolism
- Muscular Dystrophy, Facioscapulohumeral/pathology
- Myoblasts/metabolism
- Myoblasts/pathology
Collapse
Affiliation(s)
- Ator Ashoti
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- * E-mail: (AA); (FL); (NG); (KE)
| | - Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University Cambridge, MA, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- * E-mail: (AA); (FL); (NG); (KE)
| | - Melissa van Kranenburg
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Anna Alemany
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Mirna Baak
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Judith Vivié
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- Single Cell Discoveries, Utrecht, The Netherlands
| | | | - Pascale F. Dijkers
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Menno Creyghton
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University Cambridge, MA, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
- * E-mail: (AA); (FL); (NG); (KE)
| | - Niels Geijsen
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Utrecht, The Netherlands
- * E-mail: (AA); (FL); (NG); (KE)
| |
Collapse
|
15
|
Mocciaro E, Runfola V, Ghezzi P, Pannese M, Gabellini D. DUX4 Role in Normal Physiology and in FSHD Muscular Dystrophy. Cells 2021; 10:3322. [PMID: 34943834 PMCID: PMC8699294 DOI: 10.3390/cells10123322] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
In the last decade, the sequence-specific transcription factor double homeobox 4 (DUX4) has gone from being an obscure entity to being a key factor in important physiological and pathological processes. We now know that expression of DUX4 is highly regulated and restricted to the early steps of embryonic development, where DUX4 is involved in transcriptional activation of the zygotic genome. While DUX4 is epigenetically silenced in most somatic tissues of healthy humans, its aberrant reactivation is associated with several diseases, including cancer, viral infection and facioscapulohumeral muscular dystrophy (FSHD). DUX4 is also translocated, giving rise to chimeric oncogenic proteins at the basis of sarcoma and leukemia forms. Hence, understanding how DUX4 is regulated and performs its activity could provide relevant information, not only to further our knowledge of human embryonic development regulation, but also to develop therapeutic approaches for the diseases associated with DUX4. Here, we summarize current knowledge on the cellular and molecular processes regulated by DUX4 with a special emphasis on FSHD muscular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Davide Gabellini
- Gene Expression and Muscular Dystrophy Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, 20132 Milano, Italy; (E.M.); (V.R.); (P.G.); (M.P.)
| |
Collapse
|
16
|
Banerji CRS, Panamarova M, Zammit PS. DUX4 expressing immortalized FSHD lymphoblastoid cells express genes elevated in FSHD muscle biopsies, correlating with the early stages of inflammation. Hum Mol Genet 2021; 29:2285-2299. [PMID: 32242220 PMCID: PMC7424723 DOI: 10.1093/hmg/ddaa053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 02/04/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an incurable disorder linked to ectopic expression of DUX4. However, DUX4 is notoriously difficult to detect in FSHD muscle cells, while DUX4 target gene expression is an inconsistent biomarker for FSHD skeletal muscle biopsies, displaying efficacy only on pathologically inflamed samples. Immune gene misregulation occurs in FSHD muscle, with DUX4 target genes enriched for those associated with inflammatory processes. However, there lacks an assessment of the FSHD immune cell transcriptome, and its contribution to gene expression in FSHD muscle biopsies. Here, we show that EBV-immortalized FSHD lymphoblastoid cell lines express DUX4 and both early and late DUX4 target genes. Moreover, a biomarker of 237 up-regulated genes derived from FSHD lymphoblastoid cell lines is elevated in FSHD muscle biopsies compared to controls. The FSHD Lymphoblast score is unaltered between FSHD myoblasts/myotubes and their controls however, implying a non-myogenic cell source in muscle biopsies. Indeed, the FSHD Lymphoblast score correlates with the early stages of muscle inflammation identified by histological analysis on muscle biopsies, while our two late DUX4 target gene expression biomarkers associate with macroscopic inflammation detectable via MRI. Thus, FSHD lymphoblastoid cell lines express DUX4 and early and late DUX4 target genes, therefore, muscle-infiltrated immune cells may contribute the molecular landscape of FSHD muscle biopsies.
Collapse
Affiliation(s)
- Christopher R S Banerji
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Maryna Panamarova
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Peter S Zammit
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
17
|
DeSalvo J, Ban Y, Li L, Sun X, Jiang Z, Kerr DA, Khanlari M, Boulina M, Capecchi MR, Partanen JM, Chen L, Kondo T, Ornitz DM, Trent JC, Eid JE. ETV4 and ETV5 drive synovial sarcoma through cell cycle and DUX4 embryonic pathway control. J Clin Invest 2021; 131:141908. [PMID: 33983905 DOI: 10.1172/jci141908] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial sarcoma is an aggressive malignancy with no effective treatments for patients with metastasis. The synovial sarcoma fusion SS18-SSX, which recruits the SWI/SNF-BAF chromatin remodeling and polycomb repressive complexes, results in epigenetic activation of FGF receptor (FGFR) signaling. In genetic FGFR-knockout models, culture, and xenograft synovial sarcoma models treated with the FGFR inhibitor BGJ398, we show that FGFR1, FGFR2, and FGFR3 were crucial for tumor growth. Transcriptome analyses of BGJ398-treated cells and histological and expression analyses of mouse and human synovial sarcoma tumors revealed prevalent expression of two ETS factors and FGFR targets, ETV4 and ETV5. We further demonstrate that ETV4 and ETV5 acted as drivers of synovial sarcoma growth, most likely through control of the cell cycle. Upon ETV4 and ETV5 knockdown, we observed a striking upregulation of DUX4 and its transcriptional targets that activate the zygotic genome and drive the atrophy program in facioscapulohumeral dystrophy patients. In addition to demonstrating the importance of inhibiting all three FGFRs, the current findings reveal potential nodes of attack for the cancer with the discovery of ETV4 and ETV5 as appropriate biomarkers and molecular targets, and activation of the embryonic DUX4 pathway as a promising approach to block synovial sarcoma tumors.
Collapse
Affiliation(s)
- Joanna DeSalvo
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | - Yuguang Ban
- Sylvester Comprehensive Cancer Center, and.,Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Luyuan Li
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | | | - Zhijie Jiang
- University of Miami Center for Computational Science, Coral Gables, Florida, USA
| | | | | | - Maria Boulina
- Analytical Imaging Core Facility, Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mario R Capecchi
- Department of Human Genetics, Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | - Juha M Partanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Lin Chen
- Center of Bone Metabolism and Repair, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jonathan C Trent
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| | - Josiane E Eid
- Department of Medicine, Division of Medical Oncology.,Sylvester Comprehensive Cancer Center, and
| |
Collapse
|
18
|
Lek A, Zhang Y, Woodman KG, Huang S, DeSimone AM, Cohen J, Ho V, Conner J, Mead L, Kodani A, Pakula A, Sanjana N, King OD, Jones PL, Wagner KR, Lek M, Kunkel LM. Applying genome-wide CRISPR-Cas9 screens for therapeutic discovery in facioscapulohumeral muscular dystrophy. Sci Transl Med 2021; 12:12/536/eaay0271. [PMID: 32213627 DOI: 10.1126/scitranslmed.aay0271] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/23/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
The emergence of CRISPR-Cas9 gene-editing technologies and genome-wide CRISPR-Cas9 libraries enables efficient unbiased genetic screening that can accelerate the process of therapeutic discovery for genetic disorders. Here, we demonstrate the utility of a genome-wide CRISPR-Cas9 loss-of-function library to identify therapeutic targets for facioscapulohumeral muscular dystrophy (FSHD), a genetically complex type of muscular dystrophy for which there is currently no treatment. In FSHD, both genetic and epigenetic changes lead to misexpression of DUX4, the FSHD causal gene that encodes the highly cytotoxic DUX4 protein. We performed a genome-wide CRISPR-Cas9 screen to identify genes whose loss-of-function conferred survival when DUX4 was expressed in muscle cells. Genes emerging from our screen illuminated a pathogenic link to the cellular hypoxia response, which was revealed to be the main driver of DUX4-induced cell death. Application of hypoxia signaling inhibitors resulted in increased DUX4 protein turnover and subsequent reduction of the cellular hypoxia response and cell death. In addition, these compounds proved successful in reducing FSHD disease biomarkers in patient myogenic lines, as well as improving structural and functional properties in two zebrafish models of FSHD. Our genome-wide perturbation of pathways affecting DUX4 expression has provided insight into key drivers of DUX4-induced pathogenesis and has identified existing compounds with potential therapeutic benefit for FSHD. Our experimental approach presents an accelerated paradigm toward mechanistic understanding and therapeutic discovery of a complex genetic disease, which may be translatable to other diseases with well-established phenotypic selection assays.
Collapse
Affiliation(s)
- Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA. .,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yuanfan Zhang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.,First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.,Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Alec M DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.,Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - James Conner
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lillian Mead
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Andrew Kodani
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Neville Sanjana
- New York Genome Center, New York, NY 10013, USA.,Department of Biology, New York University, New York, NY 10003, USA
| | - Oliver D King
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Kathryn R Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Louis M Kunkel
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA. .,Department of Pediatrics and Genetics, Harvard Medical School, Boston, MA 02115, USA.,Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Brennan CM, Emerson CP, Owens J, Christoforou N. p38 MAPKs - roles in skeletal muscle physiology, disease mechanisms, and as potential therapeutic targets. JCI Insight 2021; 6:e149915. [PMID: 34156029 PMCID: PMC8262482 DOI: 10.1172/jci.insight.149915] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
p38 MAPKs play a central role in orchestrating the cellular response to stress and inflammation and in the regulation of myogenesis. Potent inhibitors of p38 MAPKs have been pursued as potential therapies for several disease indications due to their antiinflammatory properties, although none have been approved to date. Here, we provide a brief overview of p38 MAPKs, including their role in regulating myogenesis and their association with disease progression. Finally, we discuss targeting p38 MAPKs as a therapeutic approach for treating facioscapulohumeral muscular dystrophy and other muscular dystrophies by addressing multiple pathological mechanisms in skeletal muscle.
Collapse
Affiliation(s)
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jane Owens
- Rare Disease Research Unit, Pfizer Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
20
|
Karpukhina A, Galkin I, Ma Y, Dib C, Zinovkin R, Pletjushkina O, Chernyak B, Popova E, Vassetzky Y. Analysis of genes regulated by DUX4 via oxidative stress reveals potential therapeutic targets for treatment of facioscapulohumeral dystrophy. Redox Biol 2021; 43:102008. [PMID: 34030118 PMCID: PMC8163973 DOI: 10.1016/j.redox.2021.102008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022] Open
Abstract
Muscles of patients with facioscapulohumeral dystrophy (FSHD) are characterized by sporadic DUX4 expression and oxidative stress which is at least partially induced by DUX4 protein. Nevertheless, targeting oxidative stress with antioxidants has a limited impact on FSHD patients, and the exact role of oxidative stress in the pathology of FSHD, as well as its interplay with the DUX4 expression, remain unclear. Here we set up a screen for genes that are upregulated by DUX4 via oxidative stress with the aim to target these genes rather than the oxidative stress itself. Immortalized human myoblasts expressing DUX4 (MB135-DUX4) have an increased level of reactive oxygen species (ROS) and exhibit differentiation defects which can be reduced by treating the cells with classic (Tempol) or mitochondria-targeted antioxidants (SkQ1). The transcriptome analysis of antioxidant-treated MB135 and MB135-DUX4 myoblasts allowed us to identify 200 genes with expression deregulated by DUX4 but normalized upon antioxidant treatment. Several of these genes, including PITX1, have been already associated with FSHD and/or muscle differentiation. We confirmed that PITX1 was indeed deregulated in MB135-DUX4 cells and primary FSHD myoblasts and revealed a redox component in PITX1 regulation. PITX1 silencing partially reversed the differentiation defects of MB135-DUX4 myoblasts. Our approach can be used to identify and target redox-dependent genes involved in human diseases. Double homeobox transcription factor DUX4 misregulates hundreds of genes and induces oxidative stress in human myoblasts. ROS, notably those of mitochondrial origin, contribute to the differentiation defects in myoblasts expressing DUX4. A subset of genes is deregulated by DUX4 indirectly, via oxidative stress. A strategy to identify the genes deregulated by DUX4 via oxidative stress was developed. PITX1 is deregulated by DUX4 via oxidative stress and can be targeted to improve myogenesis in DUX4-expressing myoblasts.
Collapse
Affiliation(s)
- Anna Karpukhina
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France; Koltzov Institute of Developmental Biology, 117334, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, MSU, 119992, Moscow, Russia
| | - Ivan Galkin
- Belozersky Institute of Physico-Chemical Biology, 119992, Moscow, Russia
| | - Yinxing Ma
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
| | - Carla Dib
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France
| | - Roman Zinovkin
- Belozersky Institute of Physico-Chemical Biology, 119992, Moscow, Russia
| | - Olga Pletjushkina
- Belozersky Institute of Physico-Chemical Biology, 119992, Moscow, Russia
| | - Boris Chernyak
- Belozersky Institute of Physico-Chemical Biology, 119992, Moscow, Russia
| | - Ekaterina Popova
- Belozersky Institute of Physico-Chemical Biology, 119992, Moscow, Russia
| | - Yegor Vassetzky
- CNRS UMR9018, Université Paris-Saclay, Institut Gustave Roussy, 94805, Villejuif, France; Koltzov Institute of Developmental Biology, 117334, Moscow, Russia.
| |
Collapse
|
21
|
Chau J, Kong X, Viet Nguyen N, Williams K, Ball M, Tawil R, Kiyono T, Mortazavi A, Yokomori K. Relationship of DUX4 and target gene expression in FSHD myocytes. Hum Mutat 2021; 42:421-433. [PMID: 33502067 DOI: 10.1002/humu.24171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/11/2020] [Accepted: 01/23/2021] [Indexed: 12/27/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is associated with the upregulation of the DUX4 transcription factor and its target genes. However, low-frequency DUX4 upregulation in patient myocytes is difficult to detect and examining the relationship and dynamics of DUX4 and target gene expression has been challenging. Using RNAScope in situ hybridization with highly specific probes, we detect the endogenous DUX4 and target gene transcripts in situ in patient skeletal myotubes during 13-day differentiation in vitro. We found that the endogenous DUX4 transcripts primarily localize as foci in one or two nuclei as compared with the accumulation of the recombinant DUX4 transcripts in the cytoplasm. We also found the continuous increase of DUX4 and target gene-positive myotubes after Day 3, arguing against its expected immediate cytotoxicity. Interestingly, DUX4 and target gene expression become discordant later in differentiation with the increase of DUX4-positive/target gene-negative as well as DUX4-negative/target gene-positive myotubes. Depletion of DUX4-activated transcription factors, DUXA and LEUTX, specifically repressed a DUX4-target gene, KDM4E, later in differentiation, suggesting that after the initial activation by DUX4, target genes themselves contribute to the maintenance of downstream gene expression. Together, the study provides important new insights into the dynamics of the DUX4 transcriptional network in FSHD patient myocytes.
Collapse
Affiliation(s)
- Jonathan Chau
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Nam Viet Nguyen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Katherine Williams
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California, USA
| | - Miya Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| | - Rabi Tawil
- Department of Neurology, Neuromuscular Disease Unit, University of Rochester Medical Center, Rochester, New York, USA
| | - Tohru Kiyono
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa City, Chiba, Japan
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
22
|
Cohen J, DeSimone A, Lek M, Lek A. Therapeutic Approaches in Facioscapulohumeral Muscular Dystrophy. Trends Mol Med 2021; 27:123-137. [PMID: 33092966 PMCID: PMC8048701 DOI: 10.1016/j.molmed.2020.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/13/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common types of muscular dystrophy, affecting roughly one in 8000 individuals. The complex underlying genetics and poor mechanistic understanding has caused a bottleneck in therapeutic development. Until the discovery of DUX4 and its causal role in FSHD, most trials were untargeted with limited results. Emerging approaches can learn from these early trials to increase their chance of success. Here, we explore the evolution of FSHD clinical trials from nonspecific anabolic or anti-inflammatory/oxidant strategies to cutting-edge molecular therapies targeting DUX4, and we discuss the importance of clinical outcome measures. With combined advances across multiple facets of FSHD research, the field is now poised to accelerate the process of therapeutic discovery and testing.
Collapse
Affiliation(s)
- Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Alec DeSimone
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Friedel CC, Whisnant AW, Djakovic L, Rutkowski AJ, Friedl MS, Kluge M, Williamson JC, Sai S, Vidal RO, Sauer S, Hennig T, Grothey A, Milić A, Prusty BK, Lehner PJ, Matheson NJ, Erhard F, Dölken L. Dissecting Herpes Simplex Virus 1-Induced Host Shutoff at the RNA Level. J Virol 2021; 95:e01399-20. [PMID: 33148793 PMCID: PMC7925104 DOI: 10.1128/jvi.01399-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/23/2020] [Indexed: 02/02/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) induces a profound host shutoff during lytic infection. The virion host shutoff (vhs) protein plays a key role in this process by efficiently cleaving host and viral mRNAs. Furthermore, the onset of viral DNA replication is accompanied by a rapid decline in host transcriptional activity. To dissect relative contributions of both mechanisms and elucidate gene-specific host transcriptional responses throughout the first 8 h of lytic HSV-1 infection, we used transcriptome sequencing of total, newly transcribed (4sU-labeled) and chromatin-associated RNA in wild-type (WT) and Δvhs mutant infection of primary human fibroblasts. Following virus entry, vhs activity rapidly plateaued at an elimination rate of around 30% of cellular mRNAs per hour until 8 h postinfection (p.i.). In parallel, host transcriptional activity dropped to 10 to 20%. While the combined effects of both phenomena dominated infection-induced changes in total RNA, extensive gene-specific transcriptional regulation was observable in chromatin-associated RNA and was surprisingly concordant between WT and Δvhs infections. Both induced strong transcriptional upregulation of a small subset of genes that were poorly expressed prior to infection but already primed by H3K4me3 histone marks at their promoters. Most interestingly, analysis of chromatin-associated RNA revealed vhs-nuclease-activity-dependent transcriptional downregulation of at least 150 cellular genes, in particular of many integrin adhesome and extracellular matrix components. This was accompanied by a vhs-dependent reduction in protein levels by 8 h p.i. for many of these genes. In summary, our study provides a comprehensive picture of the molecular mechanisms that govern cellular RNA metabolism during the first 8 h of lytic HSV-1 infection.IMPORTANCE The HSV-1 virion host shutoff (vhs) protein efficiently cleaves both host and viral mRNAs in a translation-dependent manner. In this study, we model and quantify changes in vhs activity, as well as virus-induced global loss of host transcriptional activity, during productive HSV-1 infection. In general, HSV-1-induced alterations in total RNA levels were dominated by these two global effects. In contrast, chromatin-associated RNA depicted gene-specific transcriptional changes. This revealed highly concordant transcriptional changes in WT and Δvhs infections, confirmed DUX4 as a key transcriptional regulator in HSV-1 infection, and identified vhs-dependent transcriptional downregulation of the integrin adhesome and extracellular matrix components. The latter explained seemingly gene-specific effects previously attributed to vhs-mediated mRNA degradation and resulted in a concordant loss in protein levels by 8 h p.i. for many of the respective genes.
Collapse
Affiliation(s)
- Caroline C Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Adam W Whisnant
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lara Djakovic
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | - Marie-Sophie Friedl
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Kluge
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - James C Williamson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Somesh Sai
- Max Delbrück Center for Molecular Medicine/Berlin Institute of Health, Berlin, Germany
| | - Ramon Oliveira Vidal
- Max Delbrück Center for Molecular Medicine/Berlin Institute of Health, Berlin, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine/Berlin Institute of Health, Berlin, Germany
| | - Thomas Hennig
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Arnhild Grothey
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Andrea Milić
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Bhupesh K Prusty
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Paul J Lehner
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas J Matheson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Florian Erhard
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Lars Dölken
- Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| |
Collapse
|
24
|
Himeda CL, Jones TI, Jones PL. Targeted epigenetic repression by CRISPR/dSaCas9 suppresses pathogenic DUX4-fl expression in FSHD. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 20:298-311. [PMID: 33511244 PMCID: PMC7806950 DOI: 10.1016/j.omtm.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by incomplete silencing of the disease locus, leading to pathogenic misexpression of DUX4 in skeletal muscle. Previously, we showed that CRISPR inhibition could successfully target and repress DUX4 in FSHD myocytes. However, an effective therapy will require both efficient delivery of therapeutic components to skeletal muscles and long-term repression of the disease locus. Thus, we re-engineered our platform to allow in vivo delivery of more potent epigenetic repressors. We designed an FSHD-optimized regulatory cassette to drive skeletal muscle-specific expression of dCas9 from Staphylococcus aureus fused to HP1α, HP1γ, the MeCP2 transcriptional repression domain, or the SUV39H1 SET domain. Targeting each regulator to the DUX4 promoter/exon 1 increased chromatin repression at the locus, specifically suppressing DUX4 and its target genes in FSHD myocytes and in a mouse model of the disease. Importantly, minimizing the regulatory cassette and using the smaller Cas9 ortholog allowed our therapeutic cassettes to be effectively packaged into adeno-associated virus (AAV) vectors for in vivo delivery. By engineering a muscle-specific epigenetic CRISPR platform compatible with AAV vectors for gene therapy, we have laid the groundwork for clinical use of dCas9-based chromatin effectors in skeletal muscle disorders.
Collapse
Affiliation(s)
- Charis L. Himeda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Takako I. Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Peter L. Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
- Corresponding author Peter L. Jones, Department of Pharmacology, Center for Molecular Medicine/MS-0318, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
25
|
Rashnonejad A, Amini-Chermahini G, Taylor NK, Wein N, Harper SQ. Designed U7 snRNAs inhibit DUX4 expression and improve FSHD-associated outcomes in DUX4 overexpressing cells and FSHD patient myotubes. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:476-486. [PMID: 33510937 PMCID: PMC7807095 DOI: 10.1016/j.omtn.2020.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) arises from epigenetic changes that de-repress the DUX4 gene in muscle. The full-length DUX4 protein causes cell death and muscle toxicity, and therefore we hypothesize that FSHD therapies should center on inhibiting full-length DUX4 expression. In this study, we developed a strategy to accomplish DUX4 inhibition using U7-small nuclear RNA (snRNA) antisense expression cassettes (called U7-asDUX4). These non-coding RNAs were designed to inhibit production or maturation of the full-length DUX4 pre-mRNA by masking the DUX4 start codon, splice sites, or polyadenylation signal. In so doing, U7-asDUX4 snRNAs operate similarly to antisense oligonucleotides. However, in contrast to oligonucleotides, which are limited by poor uptake in muscle and a requirement for lifelong repeated dosing, U7-asDUX4 snRNAs can be packaged within myotropic gene therapy vectors and may require only a single administration when delivered to post-mitotic cells in vivo. We tested several U7-asDUX4s that reduced DUX4 expression in vitro and improved DUX4-associated outcomes. Inhibition of DUX4 expression via U7-snRNAs could be a new prospective gene therapy approach for FSHD or be used in combination with other strategies, like RNAi therapy, to maximize DUX4 silencing in individuals with FSHD.
Collapse
Affiliation(s)
- Afrooz Rashnonejad
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Gholamhossein Amini-Chermahini
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Noah K Taylor
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Scott Q Harper
- Center for Gene Therapy, The Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
DeSimone AM, Cohen J, Lek M, Lek A. Cellular and animal models for facioscapulohumeral muscular dystrophy. Dis Model Mech 2020; 13:dmm046904. [PMID: 33174531 PMCID: PMC7648604 DOI: 10.1242/dmm.046904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common forms of muscular dystrophy and presents with weakness of the facial, scapular and humeral muscles, which frequently progresses to the lower limbs and truncal areas, causing profound disability. Myopathy results from epigenetic de-repression of the D4Z4 microsatellite repeat array on chromosome 4, which allows misexpression of the developmentally regulated DUX4 gene. DUX4 is toxic when misexpressed in skeletal muscle and disrupts several cellular pathways, including myogenic differentiation and fusion, which likely underpins pathology. DUX4 and the D4Z4 array are strongly conserved only in primates, making FSHD modeling in non-primate animals difficult. Additionally, its cytotoxicity and unusual mosaic expression pattern further complicate the generation of in vitro and in vivo models of FSHD. However, the pressing need to develop systems to test therapeutic approaches has led to the creation of multiple engineered FSHD models. Owing to the complex genetic, epigenetic and molecular factors underlying FSHD, it is difficult to engineer a system that accurately recapitulates every aspect of the human disease. Nevertheless, the past several years have seen the development of many new disease models, each with their own associated strengths that emphasize different aspects of the disease. Here, we review the wide range of FSHD models, including several in vitro cellular models, and an array of transgenic and xenograft in vivo models, with particular attention to newly developed systems and how they are being used to deepen our understanding of FSHD pathology and to test the efficacy of drug candidates.
Collapse
Affiliation(s)
- Alec M DeSimone
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Justin Cohen
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Monkol Lek
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| | - Angela Lek
- Yale School of Medicine, Department of Genetics, New Haven, CT 06510, USA
| |
Collapse
|
27
|
Shadle SC, Bennett SR, Wong CJ, Karreman NA, Campbell AE, van der Maarel SM, Bass BL, Tapscott SJ. DUX4-induced bidirectional HSATII satellite repeat transcripts form intranuclear double-stranded RNA foci in human cell models of FSHD. Hum Mol Genet 2020; 28:3997-4011. [PMID: 31630170 DOI: 10.1093/hmg/ddz242] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 12/29/2022] Open
Abstract
The DUX4 transcription factor is normally expressed in the cleavage-stage embryo and regulates genes involved in embryonic genome activation. Misexpression of DUX4 in skeletal muscle, however, is toxic and causes facioscapulohumeral muscular dystrophy (FSHD). We recently showed DUX4-induced toxicity is due, in part, to the activation of the double-stranded RNA (dsRNA) response pathway and the accumulation of intranuclear dsRNA foci. Here, we determined the composition of DUX4-induced dsRNAs. We found that a subset of DUX4-induced dsRNAs originate from inverted Alu repeats embedded within the introns of DUX4-induced transcripts and from DUX4-induced dsRNA-forming intergenic transcripts enriched for endogenous retroviruses, Alu and LINE-1 elements. However, these repeat classes were also represented in dsRNAs from cells not expressing DUX4. In contrast, pericentric human satellite II (HSATII) repeats formed a class of dsRNA specific to the DUX4 expressing cells. Further investigation revealed that DUX4 can initiate the bidirectional transcription of normally heterochromatin-silenced HSATII repeats. DUX4-induced HSATII RNAs co-localized with DUX4-induced nuclear dsRNA foci and with intranuclear aggregation of EIF4A3 and ADAR1. Finally, gapmer-mediated knockdown of HSATII transcripts depleted DUX4-induced intranuclear ribonucleoprotein aggregates and decreased DUX4-induced cell death, suggesting that HSATII-formed dsRNAs contribute to DUX4 toxicity.
Collapse
Affiliation(s)
- Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA 91805, USA
| | - Sean R Bennett
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chao-Jen Wong
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nancy A Karreman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Brenda L Bass
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
28
|
Le Gall L, Sidlauskaite E, Mariot V, Dumonceaux J. Therapeutic Strategies Targeting DUX4 in FSHD. J Clin Med 2020; 9:E2886. [PMID: 32906621 PMCID: PMC7564105 DOI: 10.3390/jcm9092886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common muscle dystrophy typically affecting patients within their second decade. Patients initially exhibit asymmetric facial and humeral muscle damage, followed by lower body muscle involvement. FSHD is associated with a derepression of DUX4 gene encoded by the D4Z4 macrosatellite located on the subtelomeric part of chromosome 4. DUX4 is a highly regulated transcription factor and its expression in skeletal muscle contributes to multiple cellular toxicities and pathologies ultimately leading to muscle weakness and atrophy. Since the discovery of the FSHD candidate gene DUX4, many cell and animal models have been designed for therapeutic approaches and clinical trials. Today there is no treatment available for FSHD patients and therapeutic strategies targeting DUX4 toxicity in skeletal muscle are being actively investigated. In this review, we will discuss different research areas that are currently being considered to alter DUX4 expression and toxicity in muscle tissue and the cell and animal models designed to date.
Collapse
Affiliation(s)
- Laura Le Gall
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (L.L.G.); (E.S.); (V.M.)
| | - Eva Sidlauskaite
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (L.L.G.); (E.S.); (V.M.)
| | - Virginie Mariot
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (L.L.G.); (E.S.); (V.M.)
| | - Julie Dumonceaux
- NIHR Biomedical Research Centre, University College London, Great Ormond Street Institute of Child Health and Great Ormond Street Hospital NHS Trust, London WC1N 1EH, UK; (L.L.G.); (E.S.); (V.M.)
- Northern Ireland Center for Stratified/Personalised Medicine, Biomedical Sciences Research Institute, Ulster University, Derry~Londonderry, Northern Ireland BT47 6SB, UK
| |
Collapse
|
29
|
Chaudhari N, Rickard AM, Roy S, Dröge P, Makhija H. A non-viral genome editing platform for site-specific insertion of large transgenes. Stem Cell Res Ther 2020; 11:380. [PMID: 32883366 PMCID: PMC7650303 DOI: 10.1186/s13287-020-01890-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The precise, functional and safe insertion of large DNA payloads into host genomes offers versatility in downstream genetic engineering-associated applications, spanning cell and gene therapies, therapeutic protein production, high-throughput cell-based drug screening and reporter cell lines amongst others. Employing viral- and non-viral-based genome engineering tools to achieve specific insertion of large DNA-despite being successful in E. coli and animal models-still pose challenges in the human system. In this study, we demonstrate the applicability of our lambda integrase-based genome insertion tool for human cell and gene therapy applications that require insertions of large functional genes, as exemplified by the integration of a functional copy of the F8 gene and a Double Homeobox Protein 4 (DUX4)-based reporter cassette for potential hemophilia A gene therapy and facioscapulohumeral muscular dystrophy (FSHD)-based high-throughput drug screening purposes, respectively. Thus, we present a non-viral genome insertion tool for safe and functional delivery of large seamless DNA cargo into the human genome that can enable novel designer cell-based therapies. METHODS Previously, we have demonstrated the utility of our phage λ-integrase platform to generate seamless vectors and subsequently achieve functional integration of large-sized DNA payloads at defined loci in the human genome. To further explore this tool for therapeutic applications, we used pluripotent human embryonic stem cells (hESCs) to integrate large seamless vectors comprising a 'gene of interest'. Clonal cell populations were screened for the correct integration events and further characterized by southern blotting, gene expression and protein activity assays. In the case of our hemophilia A-related study, clones were differentiated to confirm that the targeted locus is active after differentiation and actively express and secrete Factor VIII. RESULTS The two independent approaches demonstrated specific and functional insertions of a full-length blood clotting F8 expression cassette of ~ 10 kb and of a DUX4 reporter cassette of ~ 7 kb in hESCs. CONCLUSION We present a versatile tool for site-specific human genome engineering with large transgenes for cell/gene therapies and other synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Namrata Chaudhari
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore
| | - Amanda M Rickard
- Genea Biocells, 11099 North Torrey Pines Road, Suite 210, La Jolla, CA, 92037, USA
| | - Suki Roy
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore
| | - Peter Dröge
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore.
| | - Harshyaa Makhija
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
30
|
Greco A, Goossens R, van Engelen B, van der Maarel SM. Consequences of epigenetic derepression in facioscapulohumeral muscular dystrophy. Clin Genet 2020; 97:799-814. [PMID: 32086799 PMCID: PMC7318180 DOI: 10.1111/cge.13726] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), a common hereditary myopathy, is caused either by the contraction of the D4Z4 macrosatellite repeat at the distal end of chromosome 4q to a size of 1 to 10 repeat units (FSHD1) or by mutations in D4Z4 chromatin modifiers such as Structural Maintenance of Chromosomes Hinge Domain Containing 1 (FSHD2). These two genotypes share a phenotype characterized by progressive and often asymmetric muscle weakening and atrophy, and common epigenetic alterations of the D4Z4 repeat. All together, these epigenetic changes converge the two genetic forms into one disease and explain the derepression of the DUX4 gene, which is otherwise kept epigenetically silent in skeletal muscle. DUX4 is consistently transcriptionally upregulated in FSHD1 and FSHD2 skeletal muscle cells where it is believed to exercise a toxic effect. Here we provide a review of the recent literature describing the progress in understanding the complex genetic and epigenetic architecture of FSHD, with a focus on one of the consequences that these epigenetic changes inflict, the DUX4-induced immune deregulation cascade. Moreover, we review the latest therapeutic strategies, with particular attention to the potential of epigenetic correction of the FSHD locus.
Collapse
Affiliation(s)
- Anna Greco
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of Experimental Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Remko Goossens
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | | |
Collapse
|
31
|
Jiang S, Williams K, Kong X, Zeng W, Nguyen NV, Ma X, Tawil R, Yokomori K, Mortazavi A. Single-nucleus RNA-seq identifies divergent populations of FSHD2 myotube nuclei. PLoS Genet 2020; 16:e1008754. [PMID: 32365093 PMCID: PMC7224571 DOI: 10.1371/journal.pgen.1008754] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/14/2020] [Accepted: 04/03/2020] [Indexed: 12/22/2022] Open
Abstract
FSHD is characterized by the misexpression of DUX4 in skeletal muscle. Although DUX4 upregulation is thought to be the pathogenic cause of FSHD, DUX4 is lowly expressed in patient samples, and analysis of the consequences of DUX4 expression has largely relied on artificial overexpression. To better understand the native expression profile of DUX4 and its targets, we performed bulk RNA-seq on a 6-day differentiation time-course in primary FSHD2 patient myoblasts. We identify a set of 54 genes upregulated in FSHD2 cells, termed FSHD-induced genes. Using single-cell and single-nucleus RNA-seq on myoblasts and differentiated myotubes, respectively, we captured, for the first time, DUX4 expressed at the single-nucleus level in a native state. We identified two populations of FSHD myotube nuclei based on low or high enrichment of DUX4 and FSHD-induced genes ("FSHD-Lo" and "FSHD Hi", respectively). FSHD-Hi myotube nuclei coexpress multiple DUX4 target genes including DUXA, LEUTX and ZSCAN4, and also upregulate cell cycle-related genes with significant enrichment of E2F target genes and p53 signaling activation. We found more FSHD-Hi nuclei than DUX4-positive nuclei, and confirmed with in situ RNA/protein detection that DUX4 transcribed in only one or two nuclei is sufficient for DUX4 protein to activate target genes across multiple nuclei within the same myotube. DUXA (the DUX4 paralog) is more widely expressed than DUX4, and depletion of DUXA suppressed the expression of LEUTX and ZSCAN4 in late, but not early, differentiation. The results suggest that the DUXA can take over the role of DUX4 to maintain target gene expression. These results provide a possible explanation as to why it is easier to detect DUX4 target genes than DUX4 itself in patient cells and raise the possibility of a self-sustaining network of gene dysregulation triggered by the limited DUX4 expression.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Katherine Williams
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Xiangduo Kong
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Weihua Zeng
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Nam Viet Nguyen
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Xinyi Ma
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
| | - Rabi Tawil
- Neuromuscular Disease Unit, Department of Neurology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail: (KY); (AM)
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- * E-mail: (KY); (AM)
| |
Collapse
|
32
|
Jones TI, Chew GL, Barraza-Flores P, Schreier S, Ramirez M, Wuebbles RD, Burkin DJ, Bradley RK, Jones PL. Transgenic mice expressing tunable levels of DUX4 develop characteristic facioscapulohumeral muscular dystrophy-like pathophysiology ranging in severity. Skelet Muscle 2020; 10:8. [PMID: 32278354 PMCID: PMC7149937 DOI: 10.1186/s13395-020-00227-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND All types of facioscapulohumeral muscular dystrophy (FSHD) are caused by the aberrant activation of the somatically silent DUX4 gene, the expression of which initiates a cascade of cellular events ultimately leading to FSHD pathophysiology. Typically, progressive skeletal muscle weakness becomes noticeable in the second or third decade of life, yet there are many individuals who are genetically FSHD but develop symptoms much later in life or remain relatively asymptomatic throughout their lives. Conversely, FSHD may clinically present prior to 5-10 years of age, ultimately manifesting as a severe early-onset form of the disease. These phenotypic differences are thought to be due to the timing and levels of DUX4 misexpression. METHODS FSHD is a dominant gain-of-function disease that is amenable to modeling by DUX4 overexpression. We have recently created a line of conditional DUX4 transgenic mice, FLExDUX4, that develop a myopathy upon induction of human DUX4-fl expression in skeletal muscle. Here, we use the FLExDUX4 mouse crossed with the skeletal muscle-specific and tamoxifen-inducible line ACTA1-MerCreMer to generate a highly versatile bi-transgenic mouse model with chronic, low-level DUX4-fl expression and cumulative mild FSHD-like pathology that can be reproducibly induced to develop more severe pathology via tamoxifen induction of DUX4-fl in skeletal muscles. RESULTS We identified conditions to generate FSHD-like models exhibiting reproducibly mild, moderate, or severe DUX4-dependent pathophysiology and characterized progression of pathology. We assayed DUX4-fl mRNA and protein levels, fitness, strength, global gene expression, and histopathology, all of which are consistent with an FSHD-like myopathic phenotype. Importantly, we identified sex-specific and muscle-specific differences that should be considered when using these models for preclinical studies. CONCLUSIONS The ACTA1-MCM;FLExDUX4 bi-transgenic mouse model has mild FSHD-like pathology and detectable muscle weakness. The onset and progression of more severe DUX4-dependent pathologies can be controlled via tamoxifen injection to increase the levels of mosaic DUX4-fl expression, providing consistent and readily screenable phenotypes for assessing therapies targeting DUX4-fl mRNA and/or protein and are useful to investigate certain conserved downstream FSHD-like pathophysiology. Overall, this model supports that DUX4 expression levels in skeletal muscle directly correlate with FSHD-like pathology by numerous metrics.
Collapse
Affiliation(s)
- Takako I. Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Guo-Liang Chew
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Current Address: The Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Pamela Barraza-Flores
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Spencer Schreier
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Monique Ramirez
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Ryan D. Wuebbles
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Dean J. Burkin
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Peter L. Jones
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV 89557 USA
| |
Collapse
|
33
|
Monforte M, Laschena F, Ottaviani P, Bagnato MR, Pichiecchio A, Tasca G, Ricci E. Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging. J Cachexia Sarcopenia Muscle 2019; 10:1258-1265. [PMID: 31668022 PMCID: PMC6903444 DOI: 10.1002/jcsm.12473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/14/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is one of the most frequent late-onset muscular dystrophies, characterized by progressive fatty replacement and degeneration involving single muscles in an asynchronous manner. With clinical trials at the horizon in this disease, the knowledge of its natural history is of paramount importance to understand the impact of new therapies. The aim of this study was to assess disease progression in FSHD using qualitative muscle magnetic resonance imaging, with a focus on the evolution of hyperintense lesions identified on short-tau inversion recovery (STIR+) sequences, hypothesized to be markers of active muscle injury. METHODS One hundred genetically confirmed consecutive FSHD patients underwent lower limb muscle magnetic resonance imaging at baseline and after 365 ± 60 days in this prospective longitudinal study. T1 weighted (T1w) and STIR sequences were used to assess fatty replacement using a semiquantitative visual score and muscle oedema. The baseline and follow-up scans of each patient were also evaluated by unblinded direct comparison to detect the changes not captured by the scoring system. RESULTS Forty-nine patients showed progression on T1w sequences after 1 year, and 30 patients showed at least one new STIR+ lesion. Increased fat deposition at follow-up was observed in 13.9% STIR+ and in only 0.21% STIR- muscles at baseline (P < 0.001). Overall, 89.9% of the muscles that showed increased fatty replacement were STIR+ at baseline and 7.8% were STIR+ at 12 months. A higher number of STIR+ muscles at baseline was associated with radiological worsening (odds ratio 1.17, 95% confidence interval 1.06-1.30, P = 0.003). CONCLUSIONS Our study confirms that STIR+ lesions represent prognostic biomarkers in FSHD and contributes to delineate its radiological natural history, providing useful information for clinical trial design. Given the peculiar muscle-by-muscle involvement in FSHD, MRI represents an invaluable tool to explore the modalities and rate of disease progression.
Collapse
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Brain and Behavioral Department, University of Pavia, Pavia, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
34
|
DeSimone AM, Leszyk J, Wagner K, Emerson CP. Identification of the hyaluronic acid pathway as a therapeutic target for facioscapulohumeral muscular dystrophy. SCIENCE ADVANCES 2019; 5:eaaw7099. [PMID: 31844661 PMCID: PMC6905861 DOI: 10.1126/sciadv.aaw7099] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic derepression of the germline/embryonic transcription factor DUX4 in skeletal muscle. However, the etiology of muscle pathology is not fully understood, as DUX4 misexpression is not tightly correlated with disease severity. Using a DUX4-inducible cell model, we show that multiple DUX4-induced molecular pathologies that have been observed in patient-derived disease models are mediated by the signaling molecule hyaluronic acid (HA), which accumulates following DUX4 induction. These pathologies include formation of RNA granules, FUS aggregation, DNA damage, caspase activation, and cell death. We also observe previously unidentified pathologies including mislocalization of mitochondria and the DUX4- and HA-binding protein C1QBP. These pathologies are prevented by 4-methylumbelliferone, an inhibitor of HA biosynthesis. Critically, 4-methylumbelliferone does not disrupt DUX4-C1QBP binding and has only a limited effect on DUX4 transcriptional activity, establishing that HA signaling has a central function in pathology and is a target for FSHD therapeutics.
Collapse
Affiliation(s)
- Alec M. DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - John Leszyk
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Kathryn Wagner
- Center for Genetic Muscle Disorders, Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Charles P. Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
35
|
Chew GL, Campbell AE, De Neef E, Sutliff NA, Shadle SC, Tapscott SJ, Bradley RK. DUX4 Suppresses MHC Class I to Promote Cancer Immune Evasion and Resistance to Checkpoint Blockade. Dev Cell 2019; 50:658-671.e7. [PMID: 31327741 PMCID: PMC6736738 DOI: 10.1016/j.devcel.2019.06.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 04/22/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022]
Abstract
Advances in cancer immunotherapies make it critical to identify genes that modulate antigen presentation and tumor-immune interactions. We report that DUX4, an early embryonic transcription factor that is normally silenced in somatic tissues, is re-expressed in diverse solid cancers. Both cis-acting inherited genetic variation and somatically acquired mutations in trans-acting repressors contribute to DUX4 re-expression in cancer. Although many DUX4 target genes encode self-antigens, DUX4-expressing cancers were paradoxically characterized by reduced markers of anti-tumor cytolytic activity and lower major histocompatibility complex (MHC) class I gene expression. We demonstrate that DUX4 expression blocks interferon-γ-mediated induction of MHC class I, implicating suppressed antigen presentation in DUX4-mediated immune evasion. Clinical data in metastatic melanoma confirmed that DUX4 expression was associated with significantly reduced progression-free and overall survival in response to anti-CTLA-4. Our results demonstrate that cancers can escape immune surveillance by reactivating a normal developmental pathway and identify a therapeutically relevant mechanism of cell-intrinsic immune evasion.
Collapse
Affiliation(s)
- Guo-Liang Chew
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Emma De Neef
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Nicholas A Sutliff
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Neurology, University of Washington, Seattle, WA 98195, USA.
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
36
|
Amini Chermahini G, Rashnonejad A, Harper SQ. RNAscope in situ hybridization-based method for detecting DUX4 RNA expression in vitro. RNA (NEW YORK, N.Y.) 2019; 25:1211-1217. [PMID: 31209064 PMCID: PMC6800509 DOI: 10.1261/rna.070177.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is among the most common forms of muscular dystrophy. FSHD is caused by aberrant expression of the toxic DUX4 gene in muscle. Detecting endogenous DUX4 in patient tissue using conventional methods can be challenging, due to the low level of DUX4 expression. Therefore, developing simple and trustworthy DUX4 detection methods is an important need in the FSHD field. Here, we describe such a method, which uses the RNAscope assay, an RNA in situ hybridization (ISH) technology. We show that a custom-designed RNAscope assay can detect overexpressed DUX4 mRNA in transfected HEK293 cells and endogenous DUX4 mRNA in FSHD patient-derived myotubes. The RNAscope assay was highly sensitive for tracking reductions in DUX4 mRNA following treatment with our therapeutic mi405 microRNA, suggesting that RNAscope-based DUX4 expression assays could be developed as a prospective outcome measure in therapy trials. This study could set the stage for optimizing and developing a new, rapid RNA ISH-based molecular diagnostic assay for future clinical use in the FSHD field.
Collapse
Affiliation(s)
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Scott Q Harper
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205, USA
| |
Collapse
|
37
|
Mueller AL, O'Neill A, Jones TI, Llach A, Rojas LA, Sakellariou P, Stadler G, Wright WE, Eyerman D, Jones PL, Bloch RJ. Muscle xenografts reproduce key molecular features of facioscapulohumeral muscular dystrophy. Exp Neurol 2019; 320:113011. [PMID: 31306642 DOI: 10.1016/j.expneurol.2019.113011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/17/2019] [Accepted: 07/09/2019] [Indexed: 12/07/2022]
Abstract
Aberrant expression of DUX4, a gene unique to humans and primates, causes Facioscapulohumeral Muscular Dystrophy-1 (FSHD), yet the pathogenic mechanism is unknown. As transgenic overexpression models have largely failed to replicate the genetic changes seen in FSHD, many studies of endogenously expressed DUX4 have been limited to patient biopsies and myogenic cell cultures, which never fully differentiate into mature muscle fibers. We have developed a method to xenograft immortalized human muscle precursor cells from patients with FSHD and first-degree relative controls into the tibialis anterior muscle compartment of immunodeficient mice, generating human muscle xenografts. We report that FSHD cells mature into organized and innervated human muscle fibers with minimal contamination of murine myonuclei. They also reconstitute the satellite cell niche within the xenografts. FSHD xenografts express DUX4 and DUX4 downstream targets, retain the 4q35 epigenetic signature of their original donors, and express a novel protein biomarker of FSHD, SLC34A2. Ours is the first scalable, mature in vivo human model of FSHD. It should be useful for studies of the pathogenic mechanism of the disease as well as for testing therapeutic strategies targeting DUX4 expression.
Collapse
Affiliation(s)
- Amber L Mueller
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Andrea O'Neill
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Takako I Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States of America
| | - Anna Llach
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America
| | - Luis Alejandro Rojas
- Fulcrum Therapeutics, 26 Landsdowne St., Cambridge, MA 02139, United States of America
| | - Paraskevi Sakellariou
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America; FAME Laboratory Department of Exercise Science, University of Thessaly, Karies, Trikala 42100, Greece
| | - Guido Stadler
- Department of Cell Biology, UT Southwestern Medical Center Dallas, TX 75390, United States of America
| | - Woodring E Wright
- Department of Cell Biology, UT Southwestern Medical Center Dallas, TX 75390, United States of America
| | - David Eyerman
- Fulcrum Therapeutics, 26 Landsdowne St., Cambridge, MA 02139, United States of America
| | - Peter L Jones
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, United States of America
| | - Robert J Bloch
- Department of Physiology, University of Maryland, Baltimore, 655 W, Baltimore St., Baltimore, MD 21201, United States of America.
| |
Collapse
|
38
|
van den Heuvel A, Mahfouz A, Kloet SL, Balog J, van Engelen BGM, Tawil R, Tapscott SJ, van der Maarel SM. Single-cell RNA sequencing in facioscapulohumeral muscular dystrophy disease etiology and development. Hum Mol Genet 2019; 28:1064-1075. [PMID: 30445587 DOI: 10.1093/hmg/ddy400] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterized by sporadic de-repression of the transcription factor DUX4 in skeletal muscle. DUX4 activates a cascade of muscle disrupting events, eventually leading to muscle atrophy and apoptosis. Yet, how sporadic DUX4 expression leads to the generalized muscle wasting remains unclear. Transcriptome analyses have systematically been challenged by the majority of nuclei being DUX4neg, weakening the DUX4 transcriptome signature. Moreover, DUX4 has been shown to be expressed in a highly dynamic burst-like manner, likely resulting in the detection of the downstream cascade of events long after DUX4 expression itself has faded. Identifying the FSHD transcriptome in individual cells and unraveling the cascade of events leading to FSHD development may therefore provide important insights in the disease process. We employed single-cell RNA sequencing, combined with pseudotime trajectory modeling, to study FSHD disease etiology and cellular progression in human primary myocytes. We identified a small FSHD-specific cell population in all tested patient-derived cultures and detected new genes associated with DUX4 de-repression. We furthermore generated an FSHD cellular progression model, reflecting both the early burst-like DUX4 expression as well as the downstream activation of various FSHD-associated pathways, which allowed us to correlate DUX4 expression signature dynamics with that of regulatory complexes, thereby facilitating the prioritization of epigenetic targets for DUX4 silencing. Single-cell transcriptomics combined with pseudotime modeling thus holds valuable information on FSHD disease etiology and progression that can potentially guide biomarker and target selection for therapy.
Collapse
Affiliation(s)
- Anita van den Heuvel
- Department of Human Genetics, Leiden University Medical Center, ZC Leiden, Zuid-Holland, The Netherlands
| | - Ahmed Mahfouz
- Leiden Computational Biology Center, Leiden University Medical Center, ZC Leiden, Zuid-Holland, The Netherlands.,Bioinformatics Lab, Delft University of Technology, XE Delft, Zuid-Holland, The Netherlands
| | - Susan L Kloet
- Department of Human Genetics, Leiden University Medical Center, ZC Leiden, Zuid-Holland, The Netherlands
| | - Judit Balog
- Department of Human Genetics, Leiden University Medical Center, ZC Leiden, Zuid-Holland, The Netherlands
| | - Baziel G M van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, HR Nijmegen, Gelderland, The Netherlands
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, ZC Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
39
|
Campbell AE, Belleville AE, Resnick R, Shadle SC, Tapscott SJ. Facioscapulohumeral dystrophy: activating an early embryonic transcriptional program in human skeletal muscle. Hum Mol Genet 2019; 27:R153-R162. [PMID: 29718206 DOI: 10.1093/hmg/ddy162] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is the third most prevalent muscular dystrophy. A progressive disease, it presents clinically as weakness and wasting of the face, shoulder and upper arm muscles, with later involvement of the trunk and lower extremities. FSHD develops through complex genetic and epigenetic events that converge on a common mechanism of toxicity with mis-expression of the transcription factor double homeobox 4 (DUX4). There is currently no treatment available for FSHD. However, the consensus that ectopic DUX4 expression in skeletal muscle is the root cause of FSHD pathophysiology has allowed research efforts to turn toward cultivating a deeper understanding of DUX4 biology and the pathways that underlie FSHD muscle pathology, and to translational studies aimed at developing targeted therapeutics using ever more sophisticated cell and animal-based models of FSHD. This review summarizes recent advances in our understanding of FSHD, including the regulation and activity of DUX4 in its normal developmental roles as well as its pathological contexts. We highlight how these advances raise new questions and challenges for the field as it moves into the next decade of FSHD research.
Collapse
Affiliation(s)
- Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea E Belleville
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Rebecca Resnick
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA.,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Neurology, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Jagannathan S, Ogata Y, Gafken PR, Tapscott SJ, Bradley RK. Quantitative proteomics reveals key roles for post-transcriptional gene regulation in the molecular pathology of facioscapulohumeral muscular dystrophy. eLife 2019; 8:41740. [PMID: 30644821 PMCID: PMC6349399 DOI: 10.7554/elife.41740] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/14/2019] [Indexed: 12/13/2022] Open
Abstract
DUX4 is a transcription factor whose misexpression in skeletal muscle causes facioscapulohumeral muscular dystrophy (FSHD). DUX4’s transcriptional activity has been extensively characterized, but the DUX4-induced proteome remains undescribed. Here, we report concurrent measurement of RNA and protein levels in DUX4-expressing cells via RNA-seq and quantitative mass spectrometry. DUX4 transcriptional targets were robustly translated, confirming the likely clinical relevance of proposed FSHD biomarkers. However, a multitude of mRNAs and proteins exhibited discordant expression changes upon DUX4 expression. Our dataset revealed unexpected proteomic, but not transcriptomic, dysregulation of diverse molecular pathways, including Golgi apparatus fragmentation, as well as extensive post-transcriptional buffering of stress-response genes. Key components of RNA degradation machineries, including UPF1, UPF3B, and XRN1, exhibited suppressed protein, but not mRNA, levels, explaining the build-up of aberrant RNAs that characterizes DUX4-expressing cells. Our results provide a resource for the FSHD community and illustrate the importance of post-transcriptional processes in DUX4-induced pathology.
Collapse
Affiliation(s)
- Sujatha Jagannathan
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Yuko Ogata
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Philip R Gafken
- Proteomics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
41
|
Giesige CR, Wallace LM, Heller KN, Eidahl JO, Saad NY, Fowler AM, Pyne NK, Al-Kharsan M, Rashnonejad A, Chermahini GA, Domire JS, Mukweyi D, Garwick-Coppens SE, Guckes SM, McLaughlin KJ, Meyer K, Rodino-Klapac LR, Harper SQ. AAV-mediated follistatin gene therapy improves functional outcomes in the TIC-DUX4 mouse model of FSHD. JCI Insight 2018; 3:123538. [PMID: 30429376 DOI: 10.1172/jci.insight.123538] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an autosomal dominant or digenic disorder linked to derepression of the toxic DUX4 gene in muscle. There is currently no pharmacological treatment. The emergence of DUX4 enabled development of cell and animal models that could be used for basic and translational research. Since DUX4 is toxic, animal model development has been challenging, but progress has been made, revealing that tight regulation of DUX4 expression is critical for creating viable animals that develop myopathy. Here, we report such a model - the tamoxifen-inducible FSHD mouse model called TIC-DUX4. Uninduced animals are viable, born in Mendelian ratios, and overtly indistinguishable from WT animals. Induced animals display significant DUX4-dependent myopathic phenotypes at the molecular, histological, and functional levels. To demonstrate the utility of TIC-DUX4 mice for therapeutic development, we tested a gene therapy approach aimed at improving muscle strength in DUX4-expressing muscles using adeno-associated virus serotype 1.Follistatin (AAV1.Follistatin), a natural myostatin antagonist. This strategy was not designed to modulate DUX4 but could offer a mechanism to improve muscle weakness caused by DUX4-induced damage. AAV1.Follistatin significantly increased TIC-DUX4 muscle mass and strength even in the presence of DUX4 expression, suggesting that myostatin inhibition may be a promising approach to treat FSHD-associated weakness. We conclude that TIC-DUX4 mice are a relevant model to study DUX4 toxicity and, importantly, are useful in therapeutic development studies for FSHD.
Collapse
Affiliation(s)
- Carlee R Giesige
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Lindsay M Wallace
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kristin N Heller
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jocelyn O Eidahl
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nizar Y Saad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Allison M Fowler
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Nettie K Pyne
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mustafa Al-Kharsan
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Afrooz Rashnonejad
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | | | - Jacqueline S Domire
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Diana Mukweyi
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sara E Garwick-Coppens
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Susan M Guckes
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - K John McLaughlin
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Kathrin Meyer
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Louise R Rodino-Klapac
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Scott Q Harper
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
Lim JW, Wong CJ, Yao Z, Tawil R, van der Maarel SM, Miller DG, Tapscott SJ, Filippova GN. Small noncoding RNAs in FSHD2 muscle cells reveal both DUX4- and SMCHD1-specific signatures. Hum Mol Genet 2018; 27:2644-2657. [PMID: 29741619 PMCID: PMC6048983 DOI: 10.1093/hmg/ddy173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 02/06/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by insufficient epigenetic repression of D4Z4 macrosatellite repeat where DUX4, an FSHD causing gene is embedded. There are two forms of FSHD, FSHD1 with contraction of D4Z4 repeat and FSHD2 with chromatin compaction defects mostly due to SMCHD1 mutation. Previous reports showed DUX4-induced gene expression changes as well as changes in microRNA expression in FSHD muscle cells. However, a genome wide analysis of small noncoding RNAs that might be regulated by DUX4 or by mutations in SMCHD1 has not been reported yet. Here, we identified several types of small noncoding RNAs including known microRNAs that are differentially expressed in FSHD2 muscle cells compared to control. Although fewer small RNAs were differentially expressed during muscle differentiation in FSHD2 cells compared to controls, most of the known myogenic microRNAs, such as miR1, miR133a and miR206 were induced in both FSHD2 and control muscle cells during differentiation. Our small RNA sequencing data analysis also revealed both DUX4- and SMCHD1-specific changes in FSHD2 muscle cells. Six FSHD2 microRNAs were affected by DUX4 overexpression in control myoblasts, whereas increased expression of tRNAs and 5S rRNAs in FSHD2 muscle cells was largely recapitulated in SMCHD1-depleted control myoblasts. Altogether, our studies suggest that the small noncoding RNA transcriptome changes in FSHD2 might be different from those in FSHD1 and that these differences may provide new diagnostic and therapeutic tools specific to FSHD2.
Collapse
Affiliation(s)
- Jong-Won Lim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Chao-Jen Wong
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Zizhen Yao
- MAT Department, Allen Brain Institute, Seattle, WA 98109, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester, Rochester, NY 14642, USA
| | | | - Daniel G Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98109, USA
| | - Stephen J Tapscott
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Galina N Filippova
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
43
|
Mitsuhashi H, Ishimaru S, Homma S, Yu B, Honma Y, Beermann ML, Miller JB. Functional domains of the FSHD-associated DUX4 protein. Biol Open 2018; 7:bio.033977. [PMID: 29618456 PMCID: PMC5936065 DOI: 10.1242/bio.033977] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aberrant expression of the full-length isoform of DUX4 (DUX4-FL) appears to underlie pathogenesis in facioscapulohumeral muscular dystrophy (FSHD). DUX4-FL is a transcription factor and ectopic expression of DUX4-FL is toxic to most cells. Previous studies showed that DUX4-FL-induced pathology requires intact homeodomains and that transcriptional activation required the C-terminal region. In this study, we further examined the functional domains of DUX4 by generating mutant, deletion, and fusion variants of DUX4. We compared each construct to DUX4-FL for (i) activation of a DUX4 promoter reporter, (ii) expression of the DUX4-FL target gene ZSCAN4, (iii) effect on cell viability, (iv) activation of endogenous caspases, and (v) level of protein ubiquitination. Each construct produced a similarly sized effect (or lack of effect) in each assay. Thus, the ability to activate transcription determined the extent of change in multiple molecular and cellular properties that may be relevant to FSHD pathology. Transcriptional activity was mediated by the C-terminal 80 amino acids of DUX4-FL, with most activity located in the C-terminal 20 amino acids. We also found that non-toxic constructs with both homeodomains intact could act as inhibitors of DUX4-FL transcriptional activation, likely due to competition for promoter sites. This article has an associated First Person interview with the first author of the paper. Summary: Aberrant expression of DUX4 underlies facioscapulohumeral muscular dystrophy. This study identified functional domains of DUX4 and demonstrated that multiple pathological changes are related to DUX4-mediated transcriptional activation.
Collapse
Affiliation(s)
- Hiroaki Mitsuhashi
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1207, Japan
| | - Satoshi Ishimaru
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1207, Japan
| | - Sachiko Homma
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Bryant Yu
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Yuki Honma
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1207, Japan
| | - Mary Lou Beermann
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jeffrey Boone Miller
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
44
|
Nakka K, Ghigna C, Gabellini D, Dilworth FJ. Diversification of the muscle proteome through alternative splicing. Skelet Muscle 2018; 8:8. [PMID: 29510724 PMCID: PMC5840707 DOI: 10.1186/s13395-018-0152-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/15/2018] [Indexed: 12/16/2022] Open
Abstract
Background Skeletal muscles express a highly specialized proteome that allows the metabolism of energy sources to mediate myofiber contraction. This muscle-specific proteome is partially derived through the muscle-specific transcription of a subset of genes. Surprisingly, RNA sequencing technologies have also revealed a significant role for muscle-specific alternative splicing in generating protein isoforms that give specialized function to the muscle proteome. Main body In this review, we discuss the current knowledge with respect to the mechanisms that allow pre-mRNA transcripts to undergo muscle-specific alternative splicing while identifying some of the key trans-acting splicing factors essential to the process. The importance of specific splicing events to specialized muscle function is presented along with examples in which dysregulated splicing contributes to myopathies. Though there is now an appreciation that alternative splicing is a major contributor to proteome diversification, the emergence of improved “targeted” proteomic methodologies for detection of specific protein isoforms will soon allow us to better appreciate the extent to which alternative splicing modifies the activity of proteins (and their ability to interact with other proteins) in the skeletal muscle. In addition, we highlight a continued need to better explore the signaling pathways that contribute to the temporal control of trans-acting splicing factor activity to ensure specific protein isoforms are expressed in the proper cellular context. Conclusions An understanding of the signal-dependent and signal-independent events driving muscle-specific alternative splicing has the potential to provide us with novel therapeutic strategies to treat different myopathies. Electronic supplementary material The online version of this article (10.1186/s13395-018-0152-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiran Nakka
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Claudia Ghigna
- Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Davide Gabellini
- Unit of Gene Expression and Muscular Dystrophy, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, DIBIT2, 5A3-44, via Olgettina 58, 20132, Milan, Italy.
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada. .,Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Rd, Mailbox 511, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
45
|
Banerji CRS, Panamarova M, Hebaishi H, White RB, Relaix F, Severini S, Zammit PS. PAX7 target genes are globally repressed in facioscapulohumeral muscular dystrophy skeletal muscle. Nat Commun 2017; 8:2152. [PMID: 29255294 PMCID: PMC5735185 DOI: 10.1038/s41467-017-01200-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/25/2017] [Indexed: 11/09/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a prevalent, incurable myopathy, linked to hypomethylation of D4Z4 repeats on chromosome 4q causing expression of the DUX4 transcription factor. However, DUX4 is difficult to detect in FSHD muscle biopsies and it is debatable how robust changes in DUX4 target gene expression are as an FSHD biomarker. PAX7 is a master regulator of myogenesis that rescues DUX4-mediated apoptosis. Here, we show that suppression of PAX7 target genes is a hallmark of FSHD, and that it is as major a signature of FSHD muscle as DUX4 target gene expression. This is shown using meta-analysis of over six FSHD muscle biopsy gene expression studies, and validated by RNA-sequencing on FSHD patient-derived myoblasts. DUX4 also inhibits PAX7 from activating its transcriptional target genes and vice versa. Furthermore, PAX7 target gene repression can explain oxidative stress sensitivity and epigenetic changes in FSHD. Thus, PAX7 target gene repression is a hallmark of FSHD that should be considered in the investigation of FSHD pathology and therapy. Facioscapulohumeral muscular dystrophy is a myopathy linked to ectopic expression of the DUX4 transcription factor. The authors show that the suppression of targets genes of the myogenesis regulator PAX7 is a signature of FSHD, and might explain oxidative stress sensitivity and epigenetic changes.
Collapse
Affiliation(s)
- Christopher R S Banerji
- Randall Centre of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK. .,Department of Computer Science, University College London, London, WC1E 6BT, UK. .,Centre of Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London, WC1E 6BT, UK. .,Statistical Cancer Genomics, Paul O'Gorman Building, UCL Cancer Institute, University College London, London, WC1E 6BT, UK.
| | - Maryna Panamarova
- Randall Centre of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Husam Hebaishi
- Randall Centre of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Robert B White
- Randall Centre of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK.,School of Anatomy, Physiology & Human Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Frédéric Relaix
- Paris Est-Creteil University, IMRB U955, Faculté de médecine 8 rue du Général Sarrail, 94000, Créteil, France
| | - Simone Severini
- Department of Computer Science, University College London, London, WC1E 6BT, UK.,Institute of Natural Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, 200240, Shanghai, China
| | - Peter S Zammit
- Randall Centre of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK.
| |
Collapse
|
46
|
Campbell AE, Oliva J, Yates MP, Zhong JW, Shadle SC, Snider L, Singh N, Tai S, Hiramuki Y, Tawil R, van der Maarel SM, Tapscott SJ, Sverdrup FM. BET bromodomain inhibitors and agonists of the beta-2 adrenergic receptor identified in screens for compounds that inhibit DUX4 expression in FSHD muscle cells. Skelet Muscle 2017; 7:16. [PMID: 28870238 PMCID: PMC5584331 DOI: 10.1186/s13395-017-0134-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 11/24/2022] Open
Abstract
Background Facioscapulohumeral dystrophy (FSHD) is a progressive muscle disease caused by mutations that lead to epigenetic derepression and inappropriate transcription of the double homeobox 4 (DUX4) gene in skeletal muscle. Drugs that enhance the repression of DUX4 and prevent its expression in skeletal muscle cells therefore represent candidate therapies for FSHD. Methods We screened an aggregated chemical library enriched for compounds with epigenetic activities and the Pharmakon 1600 library composed of compounds that have reached clinical testing to identify molecules that decrease DUX4 expression as monitored by the levels of DUX4 target genes in FSHD patient-derived skeletal muscle cell cultures. Results Our screens identified several classes of molecules that include inhibitors of the bromodomain and extra-terminal (BET) family of proteins and agonists of the beta-2 adrenergic receptor. Further studies showed that compounds from these two classes suppress the expression of DUX4 messenger RNA (mRNA) by blocking the activity of bromodomain-containing protein 4 (BRD4) or by increasing cyclic adenosine monophosphate (cAMP) levels, respectively. Conclusions These data uncover pathways involved in the regulation of DUX4 expression in somatic cells, provide potential candidate classes of compounds for FSHD therapeutic development, and create an important opportunity for mechanistic studies that may uncover additional therapeutic targets. Electronic supplementary material The online version of this article (doi:10.1186/s13395-017-0134-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy E Campbell
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Jonathan Oliva
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Matthew P Yates
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Jun Wen Zhong
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Sean C Shadle
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98105, USA
| | - Lauren Snider
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Nikita Singh
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Shannon Tai
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA
| | - Yosuke Hiramuki
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rabi Tawil
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Silvère M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. .,Department of Neurology, University of Washington, Seattle, WA, 98105, USA.
| | - Francis M Sverdrup
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University, Saint Louis, MO, 63104, USA.
| |
Collapse
|
47
|
Bosnakovski D, Gearhart MD, Toso EA, Recht OO, Cucak A, Jain AK, Barton MC, Kyba M. p53-independent DUX4 pathology in cell and animal models of facioscapulohumeral muscular dystrophy. Dis Model Mech 2017; 10:1211-1216. [PMID: 28754837 PMCID: PMC5665455 DOI: 10.1242/dmm.030064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a genetically dominant myopathy caused by mutations that disrupt repression of the normally silent DUX4 gene, which encodes a transcription factor that has been shown to interfere with myogenesis when misexpressed at very low levels in myoblasts and to cause cell death when overexpressed at high levels. A previous report using adeno-associated virus to deliver high levels of DUX4 to mouse skeletal muscle demonstrated severe pathology that was suppressed on a p53-knockout background, implying that DUX4 acted through the p53 pathway. Here, we investigate the p53 dependence of DUX4 using various in vitro and in vivo models. We find that inhibiting p53 has no effect on the cytoxicity of DUX4 on C2C12 myoblasts, and that expression of DUX4 does not lead to activation of the p53 pathway. DUX4 does lead to expression of the classic p53 target gene Cdkn1a (p21) but in a p53-independent manner. Meta-analysis of 5 publicly available data sets of DUX4 transcriptional profiles in both human and mouse cells shows no evidence of p53 activation, and further reveals that Cdkn1a is a mouse-specific target of DUX4. When the inducible DUX4 mouse model is crossed onto the p53-null background, we find no suppression of the male-specific lethality or skin phenotypes that are characteristic of the DUX4 transgene, and find that primary myoblasts from this mouse are still killed by DUX4 expression. These data challenge the notion that the p53 pathway is central to the pathogenicity of DUX4. Summary: DUX4 is thought to mediate cytopathology through p53. Here, DUX4 is shown to kill primary myoblasts and promote pathological phenotypes in the iDUX4[2.7] mouse model on the p53-null background, calling into question this notion.
Collapse
Affiliation(s)
- Darko Bosnakovski
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,University Goce Delcev - Stip, Faculty of Medical Sciences, Krste Misirkov b.b., 2000 Stip, Republic of Macedonia
| | - Micah D Gearhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Erik A Toso
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Olivia O Recht
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Anja Cucak
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA.,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA .,Department of Pediatrics, University of Minnesota, 312 Church St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
48
|
Conservation and innovation in the DUX4-family gene network. Nat Genet 2017; 49:935-940. [PMID: 28459454 PMCID: PMC5446306 DOI: 10.1038/ng.3846] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/22/2017] [Indexed: 12/13/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD; OMIM #158900, #158901) is caused by mis-expression of the DUX4 transcription factor in skeletal muscle1. Animal models of FSHD are hampered by incomplete knowledge of the conservation of the DUX4 transcriptional program in other species2–5. Despite divergence of their binding motifs, both mouse Dux and human DUX4 activate genes associated with cleavage-stage embryos, including MERV-L and ERVL-MaLR retrotransposons, in mouse and human muscle cells respectively. When expressed in mouse cells, human DUX4 maintained modest activation of cleavage-stage genes driven by conventional promoters, but did not activate MERV-L-promoted genes. These findings indicate that the ancestral DUX4-factor regulated genes characteristic of cleavage-stage embryos driven by conventional promoters, whereas divergence of the DUX4/Dux homeodomains correlates with retrotransposon specificity. These results provide insight into how species balance conservation of a core transcriptional program with innovation at retrotransposon promoters and provide a basis for animal models that recreate the FSHD transcriptome.
Collapse
|
49
|
DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genet 2017; 13:e1006658. [PMID: 28273136 PMCID: PMC5362247 DOI: 10.1371/journal.pgen.1006658] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/22/2017] [Accepted: 02/26/2017] [Indexed: 12/19/2022] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of DUX4 in skeletal muscle cells. DUX4 is a transcription factor that activates genes normally associated with stem cell biology and its mis-expression in FSHD cells results in apoptosis. To identify genes and pathways necessary for DUX4-mediated apoptosis, we performed an siRNA screen in an RD rhabdomyosarcoma cell line with an inducible DUX4 transgene. Our screen identified components of the MYC-mediated apoptotic pathway and the double-stranded RNA (dsRNA) innate immune response pathway as mediators of DUX4-induced apoptosis. Further investigation revealed that DUX4 expression led to increased MYC mRNA, accumulation of nuclear dsRNA foci, and activation of the dsRNA response pathway in both RD cells and human myoblasts. Nuclear dsRNA foci were associated with aggregation of the exon junction complex component EIF4A3. The elevation of MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates in FSHD muscle cells suggest that these processes might contribute to FSHD pathophysiology. Facioscapulohumeral dystrophy (FSHD) is a common form of muscular dystrophy which is currently untreatable. It is caused by the inappropriate expression in skeletal muscle of the gene DUX4 that encodes a transcription factor normally expressed in some stem cells. When DUX4 is expressed in cultured human or mouse skeletal muscle cells, it activates a program of cell death. Knowing the molecular basis for the cell death induced by DUX4 is important to determine the mechanism of muscle damage in FSHD. We used a molecular screening approach to identify genes and pathways necessary for DUX4 to induce the cell death program. We found that DUX4 activated a known MYC-induced cell death pathway, at least in part through stabilization of MYC mRNA. We also found that DUX4 expression led to an accumulation of double stranded RNAs (dsRNAs) that induced a cell death pathway evolved to protect against viral infections. This dsRNA accumulation was accompanied by aggregation of the EIF4A3 protein, a factor involved in mRNA surveillance and decay, which may provide a partial mechanism for how DUX4 can inhibit RNA quality control pathways in cells. Because FSHD muscle cells have increased MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates, we conclude that these processes might contribute to FSHD pathophysiology.
Collapse
|
50
|
Ansseau E, Vanderplanck C, Wauters A, Harper SQ, Coppée F, Belayew A. Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD). Genes (Basel) 2017; 8:genes8030093. [PMID: 28273791 PMCID: PMC5368697 DOI: 10.3390/genes8030093] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/02/2023] Open
Abstract
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent hereditary myopathies and is generally characterized by progressive muscle atrophy affecting the face, scapular fixators; upper arms and distal lower legs. The FSHD locus maps to a macrosatellite D4Z4 repeat array on chromosome 4q35. Each D4Z4 unit contains a DUX4 gene; the most distal of which is flanked by a polyadenylation site on FSHD-permissive alleles, which allows for production of stable DUX4 mRNAs. In addition, an open chromatin structure is required for DUX4 gene transcription. FSHD thus results from a gain of function of the toxic DUX4 protein that normally is only expressed in germ line and stem cells. Therapeutic strategies are emerging that aim to decrease DUX4 expression or toxicity in FSHD muscle cells. We review here the heterogeneity of DUX4 mRNAs observed in muscle and stem cells; and the use of antisense oligonucleotides (AOs) targeting the DUX4 mRNA to interfere either with transcript cleavage/polyadenylation or intron splicing. We show in primary cultures that DUX4-targeted AOs suppress the atrophic FSHD myotube phenotype; but do not improve the disorganized FSHD myotube phenotype which could be caused by DUX4c over-expression. Thus; DUX4c might constitute another therapeutic target in FSHD.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Scott Q Harper
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| |
Collapse
|