1
|
Coleman CR, Pallos J, Arreola-Bustos A, Wang L, Raftery D, Promislow DEL, Martin I. Natural variation in age-related dopamine neuron degeneration is glutathione dependent and linked to life span. Proc Natl Acad Sci U S A 2024; 121:e2403450121. [PMID: 39388265 PMCID: PMC11494315 DOI: 10.1073/pnas.2403450121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss, and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Strains with naturally short-lived animals exhibit a loss of dopamine neurons without generalized neurodegeneration, while animals from long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress, and vulnerability to silencing the familial PD gene parkin. Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (Gcl) overexpression is sufficient to normalize ROS levels, extend life span, and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is reported to occur in the idiopathic PD patient brain through unknown mechanisms. Building on this, we find reduced expression of the Gcl catalytic subunit in both Drosophila strains vulnerable to age-related dopamine neuron loss and in the human brain from familial PD patients harboring the common LRRK2 G2019S mutation. Our study across Drosophila and human PD systems suggests that glutathione synthesis and levels play a conserved role in regulating age-related dopamine neuron health.
Collapse
Affiliation(s)
- Colin R. Coleman
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR 97239
| | - Judit Pallos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR 97239
| | - Alicia Arreola-Bustos
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR 97239
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA98195
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA98109
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA98057
- Department of Biology, University of Washington School of Medicine, Seattle, WA98195
| | - Ian Martin
- Jungers Center for Neurosciences, Department of Neurology, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
2
|
Chen Y, Cui H, Han Z, Xu L, Wang L, Zhang Y, Liu L. LINC00894 Regulates Cerebral Ischemia/Reperfusion Injury by Stabilizing EIF5 and Facilitating ATF4-Mediated Induction of FGF21 and ACOD1 Expression. Neurochem Res 2024; 49:2910-2925. [PMID: 39060766 PMCID: PMC11365926 DOI: 10.1007/s11064-024-04213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The non-coding RNA LINC00894 modulates tumor proliferation and drug resistance. However, its role in brain is still unclear. Using RNA-pull down combined with mass spectrometry and RNA binding protein immunoprecipitation, EIF5 was identified to interact with LINC00894. Furthermore, LINC00894 knockdown decreased EIF5 protein expression, whereas LINC00894 overexpression increased EIF5 protein expression in SH-SY5Y and BE(2)-M17 (M17) neuroblastoma cells. Additionally, LINC00894 affected the ubiquitination modification of EIF5. Adeno-associated virus (AAV) mediated LINC00894 overexpression in the brain inhibited the expression of activated Caspase-3, while increased EIF5 protein level in rats and mice subjected to transient middle cerebral artery occlusion reperfusion (MCAO/R). Meanwhile, LINC00894 knockdown increased the number of apoptotic cells and expression of activated Caspase-3, and its overexpression decreased them in the oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro models. Further, LINC00894 was revealed to regulated ATF4 protein expression in condition of OGD/R and normoxia. LINC00894 knockdown also decreased the expression of glutamate-cysteine ligase catalytic subunit (GCLC) and ATF4, downregulated glutathione (GSH), and the ratio of GSH to oxidized GSH (GSH: GSSG) in vitro. By using RNA-seq combined with qRT-PCR and immunoblot, we identified that fibroblast growth factor 21 (FGF21) and aconitate decarboxylase 1 (ACOD1), as the ATF4 target genes were regulated by LINC00894 in the MCAO/R model. Finally, we revealed that ATF4 transcriptionally regulated FGF21 and ACOD1 expression; ectopic overexpression of FGF21 or ACOD1 in LINC00894 knockdown cells decreased activated Caspase-3 expression in the OGD/R model. Our results demonstrated that LINC00894 regulated cerebral ischemia injury by stabilizing EIF5 and facilitating EIF5-ATF4-dependent induction of FGF21 and ACOD1.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Hengxiang Cui
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, Shanghai Mental Health Center, National Center for Mental Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhuanzhuan Han
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lei Xu
- Department of Emergency Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Lin Wang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Yuefei Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225012, China
| | - Lijun Liu
- Department of Emergency and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, No.1055, San Xiang Road, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
3
|
Hashim KNB, Matsuba Y, Takahashi M, Kamano N, Tooyama I, Saido TC, Hashimoto S. Neuronal glutathione depletion elevates the Aβ42/Aβ40 ratio and tau aggregation in Alzheimer's disease mice. FEBS Lett 2024; 598:1576-1590. [PMID: 38789405 DOI: 10.1002/1873-3468.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) involves reduced glutathione levels, causing oxidative stress and contributing to neuronal cell death. Our prior research identified diminished glutamate-cysteine ligase catalytic subunit (GCLC) as linked to cell death. However, the effect of GCLC on AD features such as amyloid and tau pathology remained unclear. To address this, we investigated amyloid pathology and tau pathology in mice by combining neuron-specific conditional GCLC knockout mice with amyloid precursor protein (App) knockin (KI) or microtubule-associated protein tau (MAPT) KI mice. Intriguingly, GCLC knockout resulted in an increased Aβ42/40 ratio. Additionally, GCLC deficiency in MAPT KI mice accelerated the oligomerization of tau through intermolecular disulfide bonds. These findings suggest that the decline in glutathione levels, due to aging or AD pathology, may contribute to the progression of AD.
Collapse
Affiliation(s)
- Khairun Nisa Binti Hashim
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yukio Matsuba
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Shoko Hashimoto
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
4
|
Coleman CR, Pallos J, Arreola-Bustos A, Wang L, Raftery D, Promislow DEL, Martin I. Natural Variation in Age-Related Dopamine Neuron Degeneration is Glutathione-Dependent and Linked to Life Span. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.580013. [PMID: 38405950 PMCID: PMC10888861 DOI: 10.1101/2024.02.12.580013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Aging is the biggest risk factor for Parkinson's disease (PD), suggesting that age-related changes in the brain promote dopamine neuron vulnerability. It is unclear, however, whether aging alone is sufficient to cause significant dopamine neuron loss and if so, how this intersects with PD-related neurodegeneration. Here, through examining a large collection of naturally varying Drosophila strains, we find a strong relationship between life span and age-related dopamine neuron loss. Naturally short-lived strains exhibit a loss of dopamine neurons but not generalized neurodegeneration, while long-lived strains retain dopamine neurons across age. Metabolomic profiling reveals lower glutathione levels in short-lived strains which is associated with elevated levels of reactive oxygen species (ROS), sensitivity to oxidative stress and vulnerability to silencing the familial PD gene parkin . Strikingly, boosting neuronal glutathione levels via glutamate-cysteine ligase (GCL) overexpression is sufficient to normalize ROS levels, extend life span and block dopamine neurons loss in short-lived backgrounds, demonstrating that glutathione deficiencies are central to neurodegenerative phenotypes associated with short longevity. These findings may be relevant to human PD pathogenesis, where glutathione depletion is frequently reported in idiopathic PD patient brain. Building on this evidence, we detect reduced levels of GCL catalytic and modulatory subunits in brain from PD patients harboring the LRRK2 G2019S mutation, implicating possible glutathione deficits in familial LRRK2-linked PD. Our study across Drosophila and human PD systems suggests that glutathione plays an important role in the influence of aging on PD neurodegeneration.
Collapse
|
5
|
Li Y, Ma S, Wang Z, Shi M, Zeng R, Yao Y. Gclc as a Marker for Injured Distal Nephron in Ischemia-Reperfusion Induced Acute Kidney Injury. J Inflamm Res 2024; 17:527-540. [PMID: 38313210 PMCID: PMC10838515 DOI: 10.2147/jir.s451402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/06/2024] Open
Abstract
Purpose The distal nephron of kidney plays a pivotal role in advancing acute kidney injury (AKI). Understanding the role of distal nephrons in AKI and identifying markers of injured distal nephrons are critical to comprehending the mechanism of renal injury and identifying novel therapeutic targets. Methods We analyzed single-cell RNA sequencing (scRNA-seq) data from mice with AKI induced by ischemia-reperfusion (IR), unilateral ureteral obstruction (UUO), cisplatin (CP), sodium oxalate (SO) and lipopolysaccharide (LPS). Additionally, we analyzed renal transcriptomics samples for AKI. Subsequently, we validated the effectiveness of targeting the biomarker Gclc in vitro and in vivo through metabolomics and immunofluorescence. Results The LOH-Inj and DCT-Inj subtypes were identified through scRNA-seq. Compared to normal distal nephrons, the injured distal nephrons exhibited higher levels of ferroptosis, pro-inflammation, and fibrosis. The expression of ferroptosis-related gene Gclc were high in various AKI models. Furthermore, Gclc was exclusively expressed in the distal nephron and upregulated in the injury subtype. To confirm our findings, we suppressed GCLC expression in the kidneys, resulting to aggravated IR-induced AKI. Inhibition of Gclc promoted damage to primarily renal tubular epithelial cells by promoting inflammatory infiltration, inhibiting glutathione metabolism and exacerbating oxidative stress. Conclusion Our research findings suggest that Gclc is a potential marker for injured distal nephron.
Collapse
Affiliation(s)
- Yinzheng Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shulin Ma
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Zheng Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Mengxia Shi
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Rui Zeng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, 430030, People's Republic of China
- NHC Key Laboratory of Organ Transplantation, Wuhan, 430030, People's Republic of China
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, 430030, People's Republic of China
| | - Ying Yao
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
- Department of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
6
|
Evans JA, Mendonca P, Soliman KFA. Involvement of Nrf2 Activation and NF-kB Pathway Inhibition in the Antioxidant and Anti-Inflammatory Effects of Hesperetin in Activated BV-2 Microglial Cells. Brain Sci 2023; 13:1144. [PMID: 37626501 PMCID: PMC10452655 DOI: 10.3390/brainsci13081144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder leading to cognitive decline and memory loss. The incidence of this disease continues to increase due to the limited number of novel therapeutics that prevent or slow down its progression. Flavonoids have been investigated for their potential effects on cellular damage triggered by excessive reactive oxygen species (ROS) and neuroinflammatory conditions. This study investigated the effect of the flavonoid hesperetin on LPS-activated murine BV-2 microglial cells. Results show that hesperetin reduced nitric oxide levels and increased catalase, glutathione, and superoxide dismutase levels, suggesting its potential to reduce neuroinflammation and oxidative stress. Moreover, RT-PCR arrays showed that hesperetin modulated multiple genes that regulate oxidative stress. Hesperetin downregulated the mRNA expression of ERCC6, NOS2, and NCF1 and upregulated HMOX1 and GCLC. RT-PCR results showed that hesperetin-induced Nrf2 mRNA and protein expression in LPS-activated BV-2 microglial cells is involved in the transcription of several antioxidant genes, suggesting that hesperetin's antioxidant effects may be exerted via the Keap1/Nrf2 signaling pathway. Furthermore, the data demonstrated that hesperetin reduced the gene expression of PD-L1, which is upregulated as an individual ages and during chronic inflammatory processes, and inhibited the expression of genes associated with NF-kB signaling activation, which is overactivated during chronic inflammation. It was concluded from this investigation that hesperetin may have therapeutic potential to prevent or slow down the progression of neurodegenerative diseases, such as Alzheimer's disease, by reducing chronic oxidative stress and modulating neuroinflammation.
Collapse
Affiliation(s)
- Jasmine A. Evans
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA;
| |
Collapse
|
7
|
Davidson EA, Chen Y, Singh S, Orlicky DJ, Thompson B, Wang Y, Charkoftaki G, Furnary TA, Cardone RL, Kibbey RG, Shearn CT, Nebert DW, Thompson DC, Vasiliou V. Endocrine pancreas-specific Gclc gene deletion causes a severe diabetes phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544855. [PMID: 37398356 PMCID: PMC10312708 DOI: 10.1101/2023.06.13.544855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Reduced glutathione (GSH) is an abundant antioxidant that regulates intracellular redox homeostasis by scavenging reactive oxygen species (ROS). Glutamate-cysteine ligase catalytic (GCLC) subunit is the rate-limiting step in GSH biosynthesis. Using the Pax6-Cre driver mouse line, we deleted expression of the Gclc gene in all pancreatic endocrine progenitor cells. Intriguingly, Gclc knockout (KO) mice, following weaning, exhibited an age-related, progressive diabetes phenotype, manifested as strikingly increased blood glucose and decreased plasma insulin levels. This severe diabetes trait is preceded by pathologic changes in islet of weanling mice. Gclc KO weanlings showed progressive abnormalities in pancreatic morphology including: islet-specific cellular vacuolization, decreased islet-cell mass, and alterations in islet hormone expression. Islets from newly-weaned mice displayed impaired glucose-stimulated insulin secretion, decreased insulin hormone gene expression, oxidative stress, and increased markers of cellular senescence. Our results suggest that GSH biosynthesis is essential for normal development of the mouse pancreatic islet, and that protection from oxidative stress-induced cellular senescence might prevent abnormal islet-cell damage during embryogenesis.
Collapse
|
8
|
Wunsch FT, Metzler-Nolte N, Theiss C, Matschke V. Defects in Glutathione System in an Animal Model of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2023; 12:antiox12051014. [PMID: 37237880 DOI: 10.3390/antiox12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progredient neurodegenerative disease characterized by a degeneration of the first and second motor neurons. Elevated levels of reactive oxygen species (ROS) and decreased levels of glutathione, which are important defense mechanisms against ROS, have been reported in the central nervous system (CNS) of ALS patients and animal models. The aim of this study was to determine the cause of decreased glutathione levels in the CNS of the ALS model wobbler mouse. We analyzed changes in glutathione metabolism in the spinal cord, hippocampus, cerebellum, liver, and blood samples of the ALS model, wobbler mouse, using qPCR, Western Blot, HPLC, and fluorometric assays. Here, we show for the first time a decreased expression of enzymes involved in glutathione synthesis in the cervical spinal cord of wobbler mice. We provide evidence for a deficient glutathione metabolism, which is not restricted to the nervous system, but can be seen in various tissues of the wobbler mouse. This deficient system is most likely the reason for an inefficient antioxidative system and, thus, for elevated ROS levels.
Collapse
Affiliation(s)
- Franziska T Wunsch
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
9
|
Hashimoto S, Matsuba Y, Takahashi M, Kamano N, Watamura N, Sasaguri H, Takado Y, Yoshihara Y, Saito T, Saido TC. Neuronal glutathione loss leads to neurodegeneration involving gasdermin activation. Sci Rep 2023; 13:1109. [PMID: 36670138 PMCID: PMC9859798 DOI: 10.1038/s41598-023-27653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Accumulating evidence suggests that glutathione loss is closely associated with the progression of neurodegenerative disorders. Here, we found that the neuronal conditional-knockout (KO) of glutamyl-cysteine-ligase catalytic-subunit (GCLC), a rate-limiting enzyme for glutathione synthesis, induced brain atrophy accompanied by neuronal loss and neuroinflammation. GCLC-KO mice showed activation of C1q, which triggers engulfment of neurons by microglia, and disease-associated-microglia (DAM), suggesting that activation of microglia is linked to the neuronal loss. Furthermore, gasdermins, which regulate inflammatory form of cell death, were upregulated in the brains of GCLC-KO mice, suggesting the contribution of pyroptosis to neuronal cell death in these animals. In particular, GSDME-deficiency significantly attenuated the hippocampal atrophy and changed levels of DAM markers in GCLC-KO mice. Finally, we found that the expression of GCLC was decreased around amyloid plaques in AppNL-G-F AD model mice. AppNL-G-F mouse also exhibited inflammatory events similar to GCLC-KO mouse. We propose a mechanism by which a vicious cycle of oxidative stress and neuroinflammation enhances neurodegenerative processes. Furthermore, GCLC-KO mouse will serve as a useful tool to investigate the molecular mechanisms underlying neurodegeneration and in the development of new treatment strategies to address neurodegenerative diseases.
Collapse
Affiliation(s)
- Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
10
|
Ran S, Gao X, Ma M, Zhang J, Li S, Zhang M, Li S. NaAsO 2 decreases GSH synthesis by inhibiting GCLC and induces apoptosis through Hela cell mitochondrial damage, mediating the activation of the NF-κB/miR-21 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113380. [PMID: 35298964 DOI: 10.1016/j.ecoenv.2022.113380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cervical cancer is the fourth most common cancer in women worldwide, and arsenic has a certain effect in solid tumor chemotherapy. As the rate-limiting enzyme subunit of GSH synthesis, GCLC may be an important target for arsenic to induce apoptosis through mitochondrial apoptosis pathway to exert anti-tumor effect. NF-κB plays an important role in the occurrence and development of cervical cancer and can regulate the expression of GCLC. miR-21 is a potential biomarker of cervical cancer, which can induce apoptosis through ROS regulated the mitochondrial pathway of cells. However, the role of miR-21 in the mitochondrial pathway of cervical cancer cells induced by NaAsO2 through NF-κB/GCLC and GSH synthesis regulated oxidative stress is rarely reported. Therefore, the purpose of this study was to investigate whether NaAsO2 might induce mitochondrial damage and apoptosis of cervical cancer cells through NF-κB/ miR-21 /GCLC induced oxidative stress, and play the anti-tumor role of arsenic as a potential drug for the treatment of cervical cancer. METHODS Hela cells were treated with different concentrations of NaAsO2, D, L-Buthionine-(SR)-sulfoximine (BSO), IκBα inhibitor (BAY 11-7082) and miR-21 Inhibitor. CCK-8 assay, Western Blot, qRT PCR, immunofluorescence, transmission electron microscopy, mitochondrial Membrane Potential Assay Kit with JC-1,2',7'-Dichlorofluorescin diacetate fluorescent probe and Annexin V-FITC were used to measure cell activity, GSH and ROS, mitochondrial morphology and membrane potential (ΔΨm), protein and mRNA expression of GCLC, GCLM, p65, IκBα, p-P65, p-I κBα, Bcl-2, BAX, Caspase3, cleaved-caspase3 and miR-21. RESULTS Compared with the control group, with the gradual increasing dose of NaAsO2, cell viability was considerable reduced, and increased rate of apoptosis, intracellular GSH level was decreased significantly, ROS was increased, mitochondrial structure was damaged, mitochondrial membrane potential ΔΨm and Bcl2/BAX lowered, the expression of Caspase3 and cleaved-caspase3 were significantly increased, resulting in mitochondrial apoptosis. When Hela cells were treated with 15, 20, and 25 μmol/L NaAsO2, the mRNA and protein levels of GCLC and GCLM were reduced, the expression of p65 in the nucleus was increased, the expression of p-p65/p65, p-IκBα/IκBα and miR-21 were significantly increased. When BSO increased the inhibitory effect of NaAsO2 on GCLC, Compared with NaAsO2 group, the ΔΨm and protein of Bcl-2/BAX, caspase3 and cleaved-capsase3 were increased. When BAY 11-7082 combined with NaAsO2 co-treated, compared with the NaAsO2 group, the protein and mRNA expression of GCLC was increased, NaAsO2-increased expression level of miR-21 was suppressed, and the ΔΨm and cell viability were higher. In addition, compared with the combination of NaAsO2 and miR-21NC, the protein expression of GCLC was increased, the ΔΨm and cell viability reduction were alleviated by miR-21 Inhibitor combined with NaAsO2. CONCLUSION NaAsO2 may lead to ROS accumulation in Hela cells and trigger mitochondrial apoptosis. The mechanism may be related to the activation of NF-κB signaling pathway and the promotion of miR-21 expression which leads to the inhibition of GCLC expression and the significant decrease of intracellular reductive GSH synthesis.
Collapse
Affiliation(s)
- Shanshan Ran
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xin Gao
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Mingxiao Ma
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jingyi Zhang
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Sheng Li
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Mengyao Zhang
- Department of Public Health, College of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Ramya V, Shyam KP, Kowsalya E, Balavigneswaran CK, Kadalmani B. Dual Roles of Coconut Oil and Its Major Component Lauric Acid on Redox Nexus: Focus on Cytoprotection and Cancer Cell Death. Front Neurosci 2022; 16:833630. [PMID: 35360165 PMCID: PMC8963114 DOI: 10.3389/fnins.2022.833630] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
It has been reported that coconut oil supplementation can reduce neuroinflammation. However, coconut oils are available as virgin coconut oil (VCO), crude coconut oil (ECO), and refined coconut oil (RCO). The impact of coconut oil extraction process (and its major fatty acid component lauric acid) at cellular antioxidant level, redox homeostasis and inflammation in neural cells is hitherto unexplained. Herein, we have shown the antioxidant levels and cellular effect of coconut oil extracted by various processes in human neuroblastoma cells (SH-SY5Y) cultured in vitro. Results indicate VCO and ECO treated cells displayed better mitochondrial health when compared to RCO. Similar trend was observed for the release of reactive oxygen species (ROS), key oxidative stress response genes (GCLC, HO-1, and Nqo1) and inflammatory genes (IL6, TNFα, and iNOS) in SH-SY5Y cells. Our results signified that both VCO and ECO offer better neural health primarily by maintaining the cellular redox balance. Further, RCO prepared by solvent extraction and chemical refining process lacks appreciable beneficial effect. Then, we extended our study to find out the reasons behind maintaining the cellular redox balance in neuroblastoma cells by VCO and ECO. Our GC-MS results showed that lauric acid (C14:0) (LA) content was the major difference in the fatty acid composition extracted by various processes. Therefore, we evaluated the efficacy of LA in SH-SY5Y cells. The LA showed dose-dependent effect. At IC50 concentration (11.8 μM), LA down regulated the oxidative stress response genes and inflammatory genes. The results clearly indicate that the LA inhibited the neuroinflammation and provided an efficient cellular antioxidant activity, which protects the cells. The efficiency was also evaluated in normal cell line such as fibroblasts (L929) to cross-validate that the results were not false positive. Different concentration of LA on L929 cells showed high compatibility. From our observation, we conclude that VCO and ECO offers better cellular protection owing to their powerful antioxidant system. Therefore, we advocate the inclusion of either VCO and/or ECO in the diet for a healthy lifestyle.
Collapse
Affiliation(s)
- Venkatesan Ramya
- Reproductive Endocrinology and Cancer Biology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | | | - Eshwaran Kowsalya
- Research and Development Division, V.V.D and Sons Private Limited, Thoothukudi, India
| | - Chelladurai Karthikeyan Balavigneswaran
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Balamuthu Kadalmani
- Reproductive Endocrinology and Cancer Biology Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
12
|
Ligaza γ-glutamylocysteiny – od molekularnych mechanizmów regulacji aktywności enzymatycznej do implikacji terapeutycznych. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Glutation (γ-glutamylocysteinyloglicyna, GSH) jest najbardziej rozpowszechnionym tiolowym antyoksydantem wytwarzanym w cytozolu wszystkich komórek ssaków, który pełni ważną rolę ochronną przed stresem oksydacyjnym. GSH jest syntetyzowany de novo przez sekwencyjne działanie dwóch enzymów: ligazy γ-glutamylocysteiny (GCL) i syntetazy glutationowej (GS). GCL katalizuje pierwszy etap biosyntezy GSH, którego produktem jest γ-glutamylocysteina (γ-GC). GCL jest heterodimerycznym enzymem zbudowanym z podjednostki katalitycznej (GCLc) i modulatorowej (GCLm), kodowanych przez dwa różne geny. Podjednostki GCL podlegają złożonej regulacji zarówno na poziomie przed-, jak i potranslacyjnym. Zmiany w ekspresji i aktywności GCL mogą zaburzać poziom GSH i homeostazy redoks. Przyczyną wielu przewlekłych schorzeń związanych ze stresem oksydacyjnym jest upośledzenie aktywności katalitycznej GCL oraz spadek stężenia GSH. Badania przedkliniczne sugerują, że podawanie egzogennej γ-GC podwyższa wewnątrzkomórkowe GSH przez dostarczenie brakującego substratu i może wykazywać potencjał jako terapia uzupełniająca w chorobach związanych z deplecją GSH.
Collapse
|
13
|
Li M, Larsen PA. Primate-specific retrotransposons and the evolution of circadian networks in the human brain. Neurosci Biobehav Rev 2021; 131:988-1004. [PMID: 34592258 DOI: 10.1016/j.neubiorev.2021.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/03/2021] [Accepted: 09/26/2021] [Indexed: 11/26/2022]
Abstract
The circadian rhythm of the human brain is attuned to sleep-wake cycles that entail global alterations in neuronal excitability. This periodicity involves a highly coordinated regulation of gene expression. A growing number of studies are documenting a fascinating connection between primate-specific retrotransposons (Alu elements) and key epigenetic regulatory processes in the primate brain. Collectively, these studies indicate that Alu elements embedded in the human neuronal genome mediate post-transcriptional processes that unite human-specific neuroepigenetic landscapes and circadian rhythm. Here, we review evidence linking Alu retrotransposon-mediated posttranscriptional pathways to circadian gene expression. We hypothesize that Alu retrotransposons participate in the organization of circadian brain function through multidimensional neuroepigenetic pathways. We anticipate that these pathways are closely tied to the evolution of human cognition and their perturbation contributes to the manifestation of human-specific neurological diseases. Finally, we address current challenges and accompanying opportunities in studying primate- and human-specific transposable elements.
Collapse
Affiliation(s)
- Manci Li
- University of Minnesota, St. Paul, MN, 55108, United States
| | - Peter A Larsen
- University of Minnesota, St. Paul, MN, 55108, United States.
| |
Collapse
|
14
|
Zhou XD, Wang JL, Guo DD, Jiang WW, Li ZK, Wang L, Zou Y, Bi MJ, Li Q. Neuroprotective effect of targeted regulatory Nrf2 gene on rats with acute brain injury induced by carbon monoxide poisoning. ENVIRONMENTAL TOXICOLOGY 2021; 36:1742-1757. [PMID: 34032369 DOI: 10.1002/tox.23295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Oxidative stress has been considered as an important cause of neurocyte damage induced by carbon monoxide (CO) poisoning; however, the precise mechanisms are not fully understood. The study aimed to elucidate the molecular mechanism and the neuroprotective effect of targeted regulatory nuclear factor erythroid2-related factor 2 (Nrf2) gene on acute brain injury in CO poisoning rats. An acute CO poisoning rat model was established by CO inhalation in hyperbaric oxygen chamber and followed by the administration of Nrf2 gene-loaded lentivirus. Mitochondrial membrane potential (ΔΨM), the levels of Nrf2, glutamate-cysteine ligase catalytic subunit (GCLC), catalase (CAT) and glutathione peroxidase (GSH-Px), and cell apoptosis were determined in brain tissue in rats. We found that CO poisoning could decrease ΔΨm of cells, slightly increase the expressions of Nrf2 and GCLC at mRNA and protein levels, reduce CAT and GSH-Px, and thus initiate apoptosis process. The Nrf2 gene treatment could obviously enhance the expressions of Nrf2 at mRNA and protein levels, and increase the concentrations of CAT and GSH-Px, maintain the ΔΨm of cells in brain tissue, significantly inhibit cell apoptosis as compared with the CO poisoning group (p < .05). These findings suggest that CO poisoning could induce oxidative stress and impair mitochondrial function of cells in brain tissue. The administration of Nrf2 gene could notably strengthen the antioxidant capacity of cells through regulating the downstream genes of Nrf2/antioxidant responsive element signal pathway, and positively protect cells against brain injury induced by acute severe CO poisoning.
Collapse
Affiliation(s)
- Xu-Dong Zhou
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
| | - Jing-Lin Wang
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Da-Dong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wen-Wen Jiang
- Centre of Integrated Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ze-Kun Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
- Centre of Integrated Chinese and Western Medicine, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Li Wang
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Yong Zou
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Ming-Jun Bi
- Emergency Center, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, China
| | - Qin Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen, China
| |
Collapse
|
15
|
Glutathione in the Nervous System as a Potential Therapeutic Target to Control the Development and Progression of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2021; 10:antiox10071011. [PMID: 34201812 PMCID: PMC8300718 DOI: 10.3390/antiox10071011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare neurological disorder that affects the motor neurons responsible for regulating muscle movement. However, the molecular pathogenic mechanisms of ALS remain poorly understood. A deficiency in the antioxidant tripeptide glutathione (GSH) in the nervous system appears to be involved in several neurodegenerative diseases characterized by the loss of neuronal cells. Impaired antioxidant defense systems, and the accumulation of oxidative damage due to increased dysfunction in GSH homeostasis are known to be involved in the development and progression of ALS. Aberrant GSH metabolism and redox status following oxidative damage are also associated with various cellular organelles, including the mitochondria and nucleus, and are crucial factors in neuronal toxicity induced by ALS. In this review, we provide an overview of the implications of imbalanced GSH homeostasis and its molecular characteristics in various experimental models of ALS.
Collapse
|
16
|
Kinoshita C, Aoyama K. The Role of Non-Coding RNAs in the Neuroprotective Effects of Glutathione. Int J Mol Sci 2021; 22:ijms22084245. [PMID: 33921907 PMCID: PMC8073493 DOI: 10.3390/ijms22084245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
The establishment of antioxidative defense systems might have been mandatory for most living beings with aerobic metabolisms, because oxygen consumption produces adverse byproducts known as reactive oxygen species (ROS). The brain is especially vulnerable to the effect of ROS, since the brain has large amounts of unsaturated fatty acids, which are a target of lipid oxidation, as well as comparably high-energy consumption compared to other organs that results in ROS release from mitochondria. Thus, dysregulation of the synthesis and/or metabolism of antioxidants-particularly glutathione (GSH), which is one of the most important antioxidants in the human body-caused oxidative stress states that resulted in critical diseases, including neurodegenerative diseases in the brain. GSH plays crucial roles not only as an antioxidant but also as an enzyme cofactor, cysteine storage form, the major redox buffer, and a neuromodulator in the central nervous system. The levels of GSH are precisely regulated by uptake systems for GSH precursors as well as GSH biosynthesis and metabolism. The rapid advance of RNA sequencing technologies has contributed to the discovery of numerous non-coding RNAs with a wide range of functions. Recent lines of evidence show that several types of non-coding RNAs, including microRNA, long non-coding RNA and circular RNA, are abundantly expressed in the brain, and their activation or inhibition could contribute to neuroprotection through the regulation of GSH synthesis and/or metabolism. Interestingly, these non-coding RNAs play key roles in gene regulation and growing evidence indicates that non-coding RNAs interact with each other and are co-regulated. In this review, we focus on how the non-coding RNAs modulate the level of GSH and modify the oxidative stress states in the brain.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-1211 (K.A.)
| | - Koji Aoyama
- Correspondence: (C.K.); (K.A.); Tel.: +81-3-3964-3794 (C.K.); +81-3-3964-1211 (K.A.)
| |
Collapse
|
17
|
Abstract
Neurological disorders, including neurodegenerative diseases, have a significant negative impact on both patients and society at large. Since the prevalence of most of these disorders increases with age, the consequences for our aging population are only going to grow. It is now acknowledged that neurological disorders are multi-factorial involving disruptions in multiple cellular systems. While each disorder has specific initiating mechanisms and pathologies, certain common pathways appear to be involved in most, if not all, neurological disorders. Thus, it is becoming increasingly important to identify compounds that can modulate the multiple pathways that contribute to disease development or progression. One of these compounds is the flavonol fisetin. Fisetin has now been shown in preclinical models to be effective at preventing the development and/or progression of multiple neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, stroke (both ischemic and hemorrhagic) and traumatic brain injury as well as to reduce age-associated changes in the brain. These beneficial effects stem from its actions on multiple pathways associated with the different neurological disorders. These actions include its well characterized anti-inflammatory and anti-oxidant effects as well as more recently described effects on the regulated cell death oxytosis/ferroptosis pathway, the gut microbiome and its senolytic activity. Therefore, the growing body of pre-clinical data, along with fisetin’s ability to modulate a large number of pathways associated with brain dysfunction, strongly suggest that it would be worthwhile to pursue its therapeutic effects in humans.
Collapse
Affiliation(s)
- Pamela Maher
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA
| |
Collapse
|
18
|
Kim SW, Kim Y, Kim SE, An JY. Ferroptosis-Related Genes in Neurodevelopment and Central Nervous System. BIOLOGY 2021; 10:35. [PMID: 33419148 PMCID: PMC7825574 DOI: 10.3390/biology10010035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Ferroptosis, first introduced as a new form of regulated cell death induced by erastin, is accompanied by the accumulation of iron and lipid peroxides, thus it can be inhibited either by iron chelators or by lipophilic antioxidants. In the past decade, multiple studies have introduced the potential importance of ferroptosis in many human diseases, including cancer and neurodegenerative diseases. In this review, we will discuss the genetic association of ferroptosis with neurological disorders and development of the central nervous system.
Collapse
Affiliation(s)
- Soo-Whee Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (S.-W.K.); (Y.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (S.-W.K.); (Y.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (S.-W.K.); (Y.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| | - Joon-Yong An
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea; (S.-W.K.); (Y.K.)
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
19
|
Maher P, Currais A, Schubert D. Using the Oxytosis/Ferroptosis Pathway to Understand and Treat Age-Associated Neurodegenerative Diseases. Cell Chem Biol 2020; 27:1456-1471. [PMID: 33176157 PMCID: PMC7749085 DOI: 10.1016/j.chembiol.2020.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
Oxytosis was first described over 30 years ago in nerve cells as a non-excitotoxic pathway for glutamate-induced cell death. The key steps of oxytosis, including glutathione depletion, lipoxygenase activation, reactive oxygen species accumulation, and calcium influx, were identified using a combination of chemical and genetic tools. A pathway with the same characteristics as oxytosis was identified in transformed fibroblasts in 2012 and named ferroptosis. Importantly, the pathophysiological changes seen in oxytosis and ferroptosis are also observed in multiple neurodegenerative diseases as well as in the aging brain. This led to the hypothesis that this pathway could be used as a screening tool to identify novel drug candidates for the treatment of multiple age-associated neurological disorders, including Alzheimer's disease (AD). Using this approach, we have identified several AD drug candidates, one of which is now in clinical trials, as well as new target pathways for AD.
Collapse
Affiliation(s)
- Pamela Maher
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Antonio Currais
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - David Schubert
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
20
|
Maher P. Modulation of the Neuroprotective and Anti-inflammatory Activities of the Flavonol Fisetin by the Transition Metals Iron and Copper. Antioxidants (Basel) 2020; 9:E1113. [PMID: 33187316 PMCID: PMC7696754 DOI: 10.3390/antiox9111113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations occur in the homeostasis of the transition metals iron (Fe2+) and copper (Cu2+) during aging and these are further amplified in neurodegenerative diseases, including Alzheimer's disease (AD). These observations suggest that the most effective drug candidates for AD might be those that can reduce these alterations. The flavonoid fisetin has both neuroprotective and anti-inflammatory activity both in vitro and in vivo and can bind both iron and copper suggesting that its chelating activity might play a role in its beneficial effects. To test this idea, the effects of iron and copper on both the neuroprotective and anti-inflammatory activities of fisetin were examined. It is shown that while fisetin can reduce the potentiation of cell death by iron and copper in response to treatments that lower glutathione levels, it is much less effective when the metals are combined with other inducers of oxidative stress. In addition, iron but not copper reduces the anti-inflammatory effects of fisetin in a dose-dependent manner. These effects correlate with the ability of iron but not copper to block the induction of the antioxidant transcription factor, Nrf2, by fisetin. In contrast, although the flavanone sterubin also binds iron, the metal has no effect on sterubin's ability to induce Nrf2 or protect cells from toxic or pro-inflammatory insults. Together, these results suggest that while iron and copper binding could contribute to the beneficial effects of neuroprotective compounds in the context of neurodegenerative diseases, the consequences of this binding need to be fully examined for each compound.
Collapse
Affiliation(s)
- Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
West RJH, Ugbode C, Fort-Aznar L, Sweeney ST. Neuroprotective activity of ursodeoxycholic acid in CHMP2B Intron5 models of frontotemporal dementia. Neurobiol Dis 2020; 144:105047. [PMID: 32801000 PMCID: PMC7491204 DOI: 10.1016/j.nbd.2020.105047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is one of the most prevalent forms of early-onset dementia. It represents part of the FTD-Amyotrophic Lateral Sclerosis (ALS) spectrum, a continuum of genetically and pathologically overlapping disorders. FTD-causing mutations in CHMP2B, a gene encoding a core component of the heteromeric ESCRT-III Complex, lead to perturbed endosomal-lysosomal and autophagic trafficking with impaired proteostasis. While CHMP2B mutations are rare, dysfunctional endosomal-lysosomal signalling is common across the FTD-ALS spectrum. Using our established Drosophila and mammalian models of CHMP2BIntron5 induced FTD we demonstrate that the FDA-approved compound Ursodeoxycholic Acid (UDCA) conveys neuroprotection, downstream of endosomal-lysosomal dysfunction in both Drosophila and primary mammalian neurons. UDCA exhibited a dose dependent rescue of neuronal structure and function in Drosophila pan-neuronally expressing CHMP2BIntron5. Rescue of CHMP2BIntron5 dependent dendritic collapse and apoptosis with UDCA in rat primary neurons was also observed. UDCA failed to ameliorate aberrant accumulation of endosomal and autophagic organelles or ubiquitinated neuronal inclusions in both models. We demonstrate the neuroprotective activity of UDCA downstream of endosomal-lysosomal and autophagic dysfunction, delineating the molecular mode of action of UDCA and highlighting its potential as a therapeutic for the treatment of FTD-ALS spectrum disorders.
Collapse
Affiliation(s)
- Ryan J H West
- Sheffield Institute for Translational Neuroscience, University of Sheffield, S10 2HQ, UK; Neuroscience Institute, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Chris Ugbode
- Department of Biology, University of York, York YO10 5DD, UK
| | | | - Sean T Sweeney
- Department of Biology, University of York, York YO10 5DD, UK.
| |
Collapse
|
22
|
Li X, Zhang J, Zhang X, Dong M. Puerarin suppresses MPP +/MPTP-induced oxidative stress through an Nrf2-dependent mechanism. Food Chem Toxicol 2020; 144:111644. [PMID: 32763437 DOI: 10.1016/j.fct.2020.111644] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
In this study, we hypothesized that anti-parkinsonian effect of puerarin is attributable to its antioxidant properties via Nrf2-dependent glutathione (GSH) biosynthesis mechanism. Experimentally, we found that puerarin attenuated 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress through elevating biosynthetic capacity of GSH in PC12 cells. Mechanistically, puerarin suppressed Fyn phosphorylation by GSK-3β-dependent mechanism in MPP+-challenged PC12 cells. Furthermore, puerarin induced accumulation of Nrf2 in the nucleus via inhibiting its nuclear exclusion. In parallel, puerarin up-regulated antioxidant response element (ARE)-driven catalytic subunits from glutamate cysteine ligase (GCLc) expression at levels of transcription and translation. Most interestingly, pharmacological inhibitor of GSK-3β or Fyn shRNA blocked puerarin-induced Nrf2 activation in MPP+-challenged PC12 cells. Concomitantly, puerarin ameliorated motor deficits and inhibited oxidative stress in the ventral midbrain in MPTP-intoxicated wild-type (WT) mice, but failed to attenuate MPTP neurotoxicity and up-regulate GCLc gene in Nrf2-knockout (Nrf2-/-) mice, suggesting that anti-parkinsonian effect of puerarin was dependent on Nrf2. Additionally, puerarin regulated Fyn and GSK-3β phosphorylation in the ventral midbrain in MPTP-intoxicated WT mice. Collectively, the results of the study provide molecular insights into the potential therapeutic action of puerarin in Parkinson's disease, suggesting that puerarin may be a promising candidate for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoming Li
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Jing Zhang
- Department of Hematology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Xiaojie Zhang
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar, 161006, China.
| |
Collapse
|
23
|
Maher PA. Using Plants as a Source of Potential Therapeutics for the Treatment of Alzheimer's Disease. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:365-373. [PMID: 32607095 PMCID: PMC7309672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with the numbers expected to increase dramatically as our society ages. There are no treatments to cure, prevent, or slow down the progression of the disease. Age is the single greatest risk factor for AD. However, to date, AD drug discovery efforts have generally not taken this fact into consideration. Multiple changes associated with brain aging, including neuroinflammation and oxidative stress, are important contributors to disease development and progression. Thus, due to the multifactorial nature of AD, the one target strategy to fight the disease needs to be replaced by a more general approach using pleiotropic compounds to deal with the complexity of the disease. In this perspectives piece, our alternative approach to AD drug development based on the biology of aging is described. Starting with plants or plant-derived natural products, we have used a battery of cell-based screening assays that reflect multiple, age-associated toxicity pathways to identify compounds that can target the aspects of aging that contribute to AD pathology. We have found that this combination of assays provides a replicable, cost- and time-effective screening approach that has to date yielded one compound in clinical trials for AD (NCT03838185) and several others that show significant promise.
Collapse
Affiliation(s)
- Pamela A. Maher
- To whom all correspondence should be addressed: Pamela A. Maher, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037; Tel: 858-453-4100 x1932;
| |
Collapse
|
24
|
Intertwined ROS and Metabolic Signaling at the Neuron-Astrocyte Interface. Neurochem Res 2020; 46:23-33. [PMID: 31989468 DOI: 10.1007/s11064-020-02965-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/23/2022]
Abstract
Metabolism and redox signalling share critical nodes in the nervous system. In the last years, a series of major findings have challenged the current vision on how neural reactive oxygen species (ROS) are produced and handled in the nervous system. Once regarded as deleterious by-products, ROS are now shown to be essential for a metabolic and redox crosstalk. In turn, this coupling defines neural viability and function to control behaviour or leading to neurodegeneration when compromised. Findings like a different assembly of mitochondrial respiratory supercomplexes in neurons and astrocytes stands behind a divergent production of ROS in either cell type, more prominent in astrocytes. ROS levels are however tightly controlled by an antioxidant machinery in astrocytes, assumed as more efficient than that of neurons, to regulate redox signalling. By exerting this control in ROS abundance, metabolic functions are finely tuned in both neural cells. Further, a higher engagement of mitochondrial respiration and oxidative function in neurons, underpinned by redox equivalents supplied from the pentose phosphate pathway and from glia, differs from the otherwise strong glycolytic capacity of astrocytes. Here, we recapitulate major findings on how ROS and metabolism differ between neural cells but merge to define reciprocal signalling pathways, ultimately defining neural function and fate.
Collapse
|
25
|
Scuto M, Di Mauro P, Ontario ML, Amato C, Modafferi S, Ciavardelli D, Trovato Salinaro A, Maiolino L, Calabrese V. Nutritional Mushroom Treatment in Meniere's Disease with Coriolus versicolor: A Rationale for Therapeutic Intervention in Neuroinflammation and Antineurodegeneration. Int J Mol Sci 2019; 21:E284. [PMID: 31906226 PMCID: PMC6981469 DOI: 10.3390/ijms21010284] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/25/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022] Open
Abstract
Meniere's disease (MD) represents a clinical syndrome characterized by episodes of spontaneous vertigo, associated with fluctuating, low to medium frequencies sensorineural hearing loss (SNHL), tinnitus, and aural fullness affecting one or both ears. To date, the cause of MD remains substantially unknown, despite increasing evidence suggesting that oxidative stress and neuroinflammation may be central to the development of endolymphatic hydrops and consequent otholitic degeneration and displacement in the reuniting duct, thus originating the otolithic crisis from vestibular otolithic organs utricle or saccule. As a starting point to withstand pathological consequences, cellular pathways conferring protection against oxidative stress, such as vitagenes, are also induced, but at a level not sufficient to prevent full neuroprotection, which can be reinforced by exogenous nutritional approaches. One emerging strategy is supplementation with mushrooms. Mushroom preparations, used in traditional medicine for thousands of years, are endowed with various biological actions, including antioxidant, immunostimulatory, hepatoprotective, anticancer, as well as antiviral effects. For example, therapeutic polysaccharopeptides obtained from Coriolus versicolor are commercially well established. In this study, we examined the hypothesis that neurotoxic insult represents a critical primary mediator operating in MD pathogenesis, reflected by quantitative increases of markers of oxidative stress and cellular stress response in the peripheral blood of MD patients. We evaluated systemic oxidative stress and cellular stress response in MD patients in the absence and in the presence of treatment with a biomass preparation from Coriolus. Systemic oxidative stress was estimated by measuring, in plasma, protein carbonyls, hydroxynonenals (HNE), and ultraweak luminescence, as well as by lipidomics analysis of active biolipids, such as lipoxin A4 and F2-isoprostanes, whereas in lymphocytes we determined heat shock proteins 70 (Hsp72), heme oxygenase-1 (HO-1), thioredoxin (Trx), and γ-GC liase to evaluate the systemic cellular stress response. Increased levels of carbonyls, HNE, luminescence, and F2-isoprostanes were found in MD patients with respect to the MD plus Coriolus-treated group. This was paralleled by a significant (p < 0.01) induction, after Coriolus treatment, of vitagenes such as HO-1, Hsp70, Trx, sirtuin-1, and γ-GC liase in lymphocyte and by a significant (p < 0.05) increase in the plasma ratio-reduced glutathione (GSH) vs. oxidized glutathione (GSSG). In conclusion, patients affected by MD are under conditions of systemic oxidative stress, and the induction of vitagenes after mushroom supplementation indicates a maintained response to counteract intracellular pro-oxidant status. The present study also highlights the importance of investigating MD as a convenient model of cochlear neurodegenerative disease. Thus, searching innovative and more potent inducers of the vitagene system can allow the development of pharmacological strategies capable of enhancing the intrinsic reserve of vulnerable neurons, such as ganglion cells to maximize antidegenerative stress responses and thus providing neuroprotection.
Collapse
Affiliation(s)
- Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Paola Di Mauro
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Chiara Amato
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Domenico Ciavardelli
- School of Human and Scocial Science, “Kore” University of Enna, Via Salvatore Mazza 1, 94100 Enna, Italy;
- Centro Scienze dell’Invecchiamento e Medicina Traslazionale-CeSI-Met, via Luigi Polacchi 11, 66100 Chieti, Italy
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica. Via Santa Sofia, 97, 95123 Catania, Italy; (M.S.); (M.L.O.); (S.M.); (A.T.S.)
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| | - Vittorio Calabrese
- Department of Medical and Surgery Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (P.D.M.); (C.A.); (V.C.)
| |
Collapse
|
26
|
Rat mRNA expression profiles associated with inhibition of ischemic acute kidney injury by losartan. Biosci Rep 2019; 39:BSR20181774. [PMID: 30877184 PMCID: PMC6454018 DOI: 10.1042/bsr20181774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/01/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Objective: Losartan was reported to inhibit the progression of acute kidney injury (AKI), but little is known about the underlying pharmacological mechanisms. In the present study, the mRNA expression profiles in ischemic AKI rat kidney altered by losartan treatment were analyzed by next-generation deep sequencing technology.Methods: Ischemia and reperfusion treatment was applied to induce AKI in Sprague-Dawley (SD) rats. The urea and creatinine contents in rat blood were measured. H&E staining was performed to evaluate the histological alteration of rat kidney tissues under a microscope. The TUNEL method was applied to analyze apoptosis in rat kidney tissues. The mRNA profiles in rat kidney were analyzed using next-generation deep sequencing. Differential gene expression was confirmed by quantitative qRT-PCR.Results: The rat model of AKI induced by ischemia and reperfusion showed significant increases in urea and creatinine levels, accompanied by a disrupted kidney tubular structure and renal cell apoptosis. Losartan treatment effectively inhibited the changes in urea and creatinine, tubular structure, and apoptosis in AKI rat kidney. A large number of mRNAs were found to be differentially expressed in the kidneys of AKI rats treated with losartan, which are involved in multiple processes and signaling pathways. The expression of nine differentially expressed genes such as monocyte chemoattractant protein-1 (CCL2) and suppressor of cytokine signaling 3 (SOCS3) was confirmed by qRT-PCR and Western blot.Conclusion: Losartan caused significant alterations in the gene expression profile in AKI rat kidney, which mediated its anti-AKI effects.
Collapse
|
27
|
Han Y, Nan S, Fan J, Chen Q, Zhang Y. Inonotus obliquus polysaccharides protect against Alzheimer's disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects. Int J Biol Macromol 2019; 131:769-778. [PMID: 30878614 DOI: 10.1016/j.ijbiomac.2019.03.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
Inonotus obliquus polysaccharide (IOPS) was initially separated and purified via precipitation from an aqueous extract with 80% alcohol, a DEAE-52 cellulose anion exchange column, and a Sephadex G-100 gel permeation chromatography system. IOPS was found to have a molecular weight of 111.9 kDa. In L-glutamic acid (L-Glu)-damaged HT22 cells, a 3-h pre-incubation with IOPS enhanced cell viability, inhibited apoptosis and caspase-3 activity, reduced the release of lactate dehydrogenase, restored the dissipated mitochondrial membrane potential, and suppressed the excess accumulation of intracellular reactive oxygen species. Compared with L-Glu-exposed cells, IOPS pre-treated cells exhibited reduced levels of Bcl-2 associated X protein (Bax) and Kelch-like ECH-associated protein 1 (Keap1) and enhanced levels of B-cell lymphoma-2 (Bcl-2), NF-E2p45-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase-1 (SOD-1), and cysteine ligase catalytic subunit. In amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, an 8-week course of IOPS improved the pathological behaviors related to memory and cognition, reduced the deposition of β-amyloid peptides and neuronal fiber tangles induced by enhanced phosphor-Tau in the brain, and modulated the levels of anti- and pro-oxidative stress enzymes. Additionally, IOPS enhanced the expression levels of Nrf2 and its downstream proteins, including HO-1 and SOD-1, in the brains of APP/PS1 mice. The present study successfully demonstrated the protective effect of IOPS against AD and revealed the possible mechanism underlying the ability of IOPS to modulate oxidative stress, especially Nrf2 signaling, and mediate mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yanqiu Han
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Qiuhui Chen
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China.
| |
Collapse
|
28
|
Fernandez-Fernandez S, Bobo-Jimenez V, Requejo-Aguilar R, Gonzalez-Fernandez S, Resch M, Carabias-Carrasco M, Ros J, Almeida A, Bolaños JP. Hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function. Redox Biol 2018; 19:52-61. [PMID: 30107295 PMCID: PMC6092450 DOI: 10.1016/j.redox.2018.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 01/19/2023] Open
Abstract
Loss of brain glutathione has been associated with cognitive decline and neuronal death during aging and neurodegenerative diseases. However, whether decreased glutathione precedes or follows neuronal dysfunction has not been unambiguously elucidated. Previous attempts to address this issue were approached by fully eliminating glutathione, a strategy causing abrupt lethality or premature neuronal death that led to multiple interpretations. To overcome this drawback, here we aimed to moderately decrease glutathione content by genetically knocking down the rate-limiting enzyme of glutathione biosynthesis in mouse neurons in vivo. Biochemical and morphological analyses of the brain revealed a modest glutathione decrease and redox stress throughout the hippocampus, although neuronal dendrite disruption and glial activation was confined to the hippocampal CA1 layer. Furthermore, the behavioral characterization exhibited signs consistent with cognitive impairment. These results indicate that the hippocampal neurons require a large pool of glutathione to sustain dendrite integrity and cognitive function.
Collapse
Affiliation(s)
| | - Veronica Bobo-Jimenez
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Spain
| | - Raquel Requejo-Aguilar
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain; Córdoba Maimónides Institute for Biomedical Research (IMIBIC), University of Cordoba, Spain
| | | | - Monica Resch
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain
| | | | - Joaquim Ros
- Departamento de Ciències Mèdiques Bàsiques, IRBLleida, Universitat de Lleida, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Spain; CIBERFES, Instituto de Salud Carlos, III, Madrid, Spain.
| |
Collapse
|