1
|
Cipolli M, Boni C, Penzo M, Villa I, Bolamperti S, Baldisseri E, Frattini A, Porta G, Api M, Selicato N, Roccia P, Pollutri D, Busilacchi EM, Poloni A, Caporelli N, D’Amico G, Pegoraro A, Cesaro S, Oyarbide U, Vella A, Lippi G, Corey SJ, Valli R, Polini A, Bezzerri V. Ataluren improves myelopoiesis and neutrophil chemotaxis by restoring ribosome biogenesis and reducing p53 levels in Shwachman-Diamond syndrome cells. Br J Haematol 2024; 204:292-305. [PMID: 37876306 PMCID: PMC10843527 DOI: 10.1111/bjh.19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency and skeletal abnormalities. SDS bone marrow haematopoietic progenitors show increased apoptosis and impairment in granulocytic differentiation. Loss of Shwachman-Bodian-Diamond syndrome (SBDS) expression results in reduced eukaryotic 80S ribosome maturation. Biallelic mutations in the SBDS gene are found in ~90% of SDS patients, ~55% of whom carry the c.183-184TA>CT nonsense mutation. Several translational readthrough-inducing drugs aimed at suppressing nonsense mutations have been developed. One of these, ataluren, has received approval in Europe for the treatment of Duchenne muscular dystrophy. We previously showed that ataluren can restore full-length SBDS protein synthesis in SDS-derived bone marrow cells. Here, we extend our preclinical study to assess the functional restoration of SBDS capabilities in vitro and ex vivo. Ataluren improved 80S ribosome assembly and total protein synthesis in SDS-derived cells, restored myelopoiesis in myeloid progenitors, improved neutrophil chemotaxis in vitro and reduced neutrophil dysplastic markers ex vivo. Ataluren also restored full-length SBDS synthesis in primary osteoblasts, suggesting that its beneficial role may go beyond the myeloid compartment. Altogether, our results strengthened the rationale for a Phase I/II clinical trial of ataluren in SDS patients who harbour the nonsense mutation.
Collapse
Affiliation(s)
- Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Christian Boni
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marianna Penzo
- Department of Medical and Surgical Sciences (DIMEC) AND Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Isabella Villa
- Institute of Endocrine and Metabolic Sciences, Endocrine and Osteometabolic Lab, IRCCS San Raffaele Hospital, Milano, Italy
| | - Simona Bolamperti
- Institute of Endocrine and Metabolic Sciences, Endocrine and Osteometabolic Lab, IRCCS San Raffaele Hospital, Milano, Italy
| | - Elena Baldisseri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Annalisa Frattini
- Institute for Genetic and Biomedical Research (IRGB), UOS Milano CNR, Milano, Italy
- Department of Medicine and Surgery (DMC), Universita' degli Studi dell'Insubria, Varese, Italy
| | - Giovanni Porta
- Department of Medicine and Surgery (DMC), Universita' degli Studi dell'Insubria, Varese, Italy
| | - Martina Api
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Nora Selicato
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Pamela Roccia
- Department of Medicine and Surgery (DMC), Universita' degli Studi dell'Insubria, Varese, Italy
| | - Daniela Pollutri
- Department of Medical and Surgical Sciences (DIMEC) AND Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Antonella Poloni
- Hematology Clinic, Università Politecnica delle Marche, AOU Ospedali Riuniti, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Giovanna D’Amico
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Anna Pegoraro
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Ospedale Donna Bambino, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Usua Oyarbide
- Departments of Cancer Biology and Pediatric Hematology/Oncology and Stem Cell Transplantation, Cleveland Clinic, Cleveland, USA
| | - Antonio Vella
- Unit of Immunology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Seth J Corey
- Departments of Cancer Biology and Pediatric Hematology/Oncology and Stem Cell Transplantation, Cleveland Clinic, Cleveland, USA
| | - Roberto Valli
- Department of Medicine and Surgery (DMC), Universita' degli Studi dell'Insubria, Varese, Italy
| | - Alessandro Polini
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Section of Clinical Biochemistry, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| |
Collapse
|
2
|
Lang M, Carvalho A, Baharoglu Z, Mazel D. Aminoglycoside uptake, stress, and potentiation in Gram-negative bacteria: new therapies with old molecules. Microbiol Mol Biol Rev 2023; 87:e0003622. [PMID: 38047635 PMCID: PMC10732077 DOI: 10.1128/mmbr.00036-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYAminoglycosides (AGs) are long-known molecules successfully used against Gram-negative pathogens. While their use declined with the discovery of new antibiotics, they are now classified as critically important molecules because of their effectiveness against multidrug-resistant bacteria. While they can efficiently cross the Gram-negative envelope, the mechanism of AG entry is still incompletely understood, although this comprehension is essential for the development of new therapies in the face of the alarming increase in antibiotic resistance. Increasing antibiotic uptake in bacteria is one strategy to enhance effective treatments. This review aims, first, to consolidate old and recent knowledge about AG uptake; second, to explore the connection between AG-dependent bacterial stress and drug uptake; and finally, to present new strategies of potentiation of AG uptake for more efficient antibiotic therapies. In particular, we emphasize on the connection between sugar transport and AG potentiation.
Collapse
Affiliation(s)
- Manon Lang
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - André Carvalho
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Zeynep Baharoglu
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| | - Didier Mazel
- Institut Pasteur, Université Paris Cité, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Paris, France
| |
Collapse
|
3
|
Wittenstein A, Caspi M, Rippin I, Elroy-Stein O, Eldar-Finkelman H, Thoms S, Rosin-Arbesfeld R. Nonsense mutation suppression is enhanced by targeting different stages of the protein synthesis process. PLoS Biol 2023; 21:e3002355. [PMID: 37943958 PMCID: PMC10684085 DOI: 10.1371/journal.pbio.3002355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/28/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
The introduction of premature termination codons (PTCs), as a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes. Thus, further efforts are required to improve the clinical outcome of nonsense mutation suppressors. Here, by focusing on enhancing readthrough of pathogenic nonsense mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, we show that disturbing the protein translation initiation complex, as well as targeting other stages of the protein translation machinery, enhances both antibiotic and non-antibiotic-mediated readthrough of nonsense mutations. These findings strongly increase our understanding of the mechanisms involved in nonsense mutation readthrough and facilitate the development of novel therapeutic targets for nonsense suppression to restore protein expression from a large variety of disease-causing mutated transcripts.
Collapse
Affiliation(s)
- Amnon Wittenstein
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Caspi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ido Rippin
- The Department of Human Molecular Genetics & Biochemistry School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Orna Elroy-Stein
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Eldar-Finkelman
- The Department of Human Molecular Genetics & Biochemistry School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sven Thoms
- Biochemistry and Molecular Medicine, Medical School EWL, Bielefeld University, Bielefeld, Germany
| | - Rina Rosin-Arbesfeld
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Saad FA, Siciliano G, Angelini C. Advances in Dystrophinopathy Diagnosis and Therapy. Biomolecules 2023; 13:1319. [PMID: 37759719 PMCID: PMC10526396 DOI: 10.3390/biom13091319] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Dystrophinopathies are x-linked muscular disorders which emerge from mutations in the Dystrophin gene, including Duchenne and Becker muscular dystrophy, and dilated cardiomyopathy. However, Duchenne muscular dystrophy interconnects with bone loss and osteoporosis, which are exacerbated by glucocorticoids therapy. Procedures for diagnosing dystrophinopathies include creatine kinase assay, haplotype analysis, Southern blot analysis, immunological analysis, multiplex PCR, multiplex ligation-dependent probe amplification, Sanger DNA sequencing, and next generation DNA sequencing. Pharmacological therapy for dystrophinopathies comprises glucocorticoids (prednisone, prednisolone, and deflazacort), vamorolone, and ataluren. However, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and β-blockers are the first-line to prevent dilated cardiomyopathy in dystrophinopathy patients. Duchenne muscular dystrophy gene therapy strategies involve gene transfer, exon skipping, exon reframing, and CRISPR gene editing. Eteplirsen, an antisense-oligonucleotide drug for skipping exon 51 from the Dystrophin gene, is available on the market, which may help up to 14% of Duchenne muscular dystrophy patients. There are various FDA-approved exon skipping drugs including ExonDys-51 for exon 51, VyonDys-53 and Viltolarsen for exon 53 and AmonDys-45 for exon 45 skipping. Other antisense oligonucleotide drugs in the pipeline include casimersen for exon 45, suvodirsen for exon 51, and golodirsen for exon 53 skipping. Advances in the diagnosis and therapy of dystrophinopathies offer new perspectives for their early discovery and care.
Collapse
Affiliation(s)
- Fawzy A. Saad
- Department of Gene Therapy, Saad Pharmaceuticals, Juhkentali 8, 10132 Tallinn, Estonia
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Pisa University School of Medicine, Via Paradisa 2, 56100 Pisa, Italy;
| | - Corrado Angelini
- Department of Neurosciences, Padova University School of Medicine, Via Giustiniani 5, 35128 Padova, Italy;
| |
Collapse
|
5
|
Heydemann A, Siemionow M. A Brief Review of Duchenne Muscular Dystrophy Treatment Options, with an Emphasis on Two Novel Strategies. Biomedicines 2023; 11:biomedicines11030830. [PMID: 36979809 PMCID: PMC10044847 DOI: 10.3390/biomedicines11030830] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Despite the full cloning of the Dystrophin cDNA 35 years ago, no effective treatment exists for the Duchenne Muscular Dystrophy (DMD) patients who have a mutation in this gene. Many treatment options have been considered, investigated preclinically and some clinically, but none have circumvented all barriers and effectively treated the disease without burdening the patients with severe side-effects. However, currently, many novel therapies are in the pipelines of research labs and pharmaceutical companies and many of these have progressed to clinical trials. A brief review of these promising therapies is presented, followed by a description of two novel technologies that when utilized together effectively treat the disease in the mdx mouse model. One novel technology is to generate chimeric cells from the patient’s own cells and a normal donor. The other technology is to systemically transplant these cells into the femur via the intraosseous route.
Collapse
Affiliation(s)
- Ahlke Heydemann
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60607, USA
- Correspondence:
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
6
|
Development and Optimisation of Inhalable EGCG Nano-Liposomes as a Potential Treatment for Pulmonary Arterial Hypertension by Implementation of the Design of Experiments Approach. Pharmaceutics 2023; 15:pharmaceutics15020539. [PMID: 36839861 PMCID: PMC9965461 DOI: 10.3390/pharmaceutics15020539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/14/2022] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Epigallocatechin gallate (EGCG), the main ingredient in green tea, holds promise as a potential treatment for pulmonary arterial hypertension (PAH). However, EGCG has many drawbacks, including stability issues, low bioavailability, and a short half-life. Therefore, the purpose of this research was to develop and optimize an inhalable EGCG nano-liposome formulation aiming to overcome EGCG's drawbacks by applying a design of experiments strategy. The aerodynamic behaviour of the optimum formulation was determined using the next-generation impactor (NGI), and its effects on the TGF-β pathway were determined using a cell-based reporter assay. The newly formulated inhalable EGCG liposome had an average liposome size of 105 nm, a polydispersity index (PDI) of 0.18, a zeta potential of -25.5 mV, an encapsulation efficiency of 90.5%, and a PDI after one month of 0.19. These results are in complete agreement with the predicted values of the model. Its aerodynamic properties were as follows: the mass median aerodynamic diameter (MMAD) was 4.41 µm, the fine particle fraction (FPF) was 53.46%, and the percentage of particles equal to or less than 3 µm was 34.3%. This demonstrates that the novel EGCG liposome has all the properties required to be inhalable, and it is expected to be deposited deeply in the lung. The TGFβ pathway is activated in PAH lungs, and the optimum EGCG nano-liposome inhibits TGFβ signalling in cell-based studies and thus holds promise as a potential treatment for PAH.
Collapse
|
7
|
Sapkota D, Florian C, Doherty BM, White KM, Reardon KM, Ge X, Garbow JR, Yuede CM, Cirrito JR, Dougherty JD. Aqp4 stop codon readthrough facilitates amyloid-β clearance from the brain. Brain 2022; 145:2982-2990. [PMID: 36001414 PMCID: PMC10233234 DOI: 10.1093/brain/awac199] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease is initiated by the toxic aggregation of amyloid-β. Immunotherapeutics aimed at reducing amyloid beta are in clinical trials but with very limited success to date. Identification of orthogonal approaches for clearing amyloid beta may complement these approaches for treating Alzheimer's disease. In the brain, the astrocytic water channel Aquaporin 4 is involved in clearance of amyloid beta, and the fraction of Aquaporin 4 found perivascularly is decreased in Alzheimer's disease. Further, an unusual stop codon readthrough event generates a conserved C-terminally elongated variant of Aquaporin 4 (AQP4X), which is exclusively perivascular. However, it is unclear whether the AQP4X variant specifically mediates amyloid beta clearance. Here, using Aquaporin 4 readthrough-specific knockout mice that still express normal Aquaporin 4, we determine that this isoform indeed mediates amyloid beta clearance. Further, with high-throughput screening and counterscreening, we identify small molecule compounds that enhance readthrough of the Aquaporin 4 sequence and validate a subset on endogenous astrocyte Aquaporin 4. Finally, we demonstrate these compounds enhance brain amyloid-β clearance in vivo, which depends on AQP4X. This suggests derivatives of these compounds may provide a viable pharmaceutical approach to enhance clearance of amyloid beta and potentially other aggregating proteins in neurodegenerative disease.
Collapse
Affiliation(s)
- Darshan Sapkota
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Colin Florian
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brookelyn M Doherty
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kelli M White
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kate M Reardon
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xia Ge
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel R Garbow
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John R Cirrito
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Pellegrino S, Terrosu S, Yusupova G, Yusupov M. Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective. Cancers (Basel) 2021; 13:cancers13174392. [PMID: 34503202 PMCID: PMC8430933 DOI: 10.3390/cancers13174392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Unravelling the molecular basis of ribosomal inhibition by small molecules is crucial to characterise the function of potential anticancer drugs. After approval of the ribosome inhibitor homoharringtonine for treatment of CML, it became clear that acting on the rate of protein synthesis can be a valuable way to prevent indefinite growth of cancers. The present review discusses the state-of-the-art structural knowledge of the binding modes of inhibitors targeting the cytosolic ribosome, with the ambition of providing not only an overview of what has been achieved so far, but to stimulate further investigations to yield more potent and specific anticancer drugs. Abstract Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.
Collapse
Affiliation(s)
- Simone Pellegrino
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK
- Correspondence: (S.P.); (M.Y.)
| | - Salvatore Terrosu
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Gulnara Yusupova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
| | - Marat Yusupov
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, 67404 Illkirch, France; (S.T.); (G.Y.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Correspondence: (S.P.); (M.Y.)
| |
Collapse
|
9
|
Sharma J, Du M, Wong E, Mutyam V, Li Y, Chen J, Wangen J, Thrasher K, Fu L, Peng N, Tang L, Liu K, Mathew B, Bostwick RJ, Augelli-Szafran CE, Bihler H, Liang F, Mahiou J, Saltz J, Rab A, Hong J, Sorscher EJ, Mendenhall EM, Coppola CJ, Keeling KM, Green R, Mense M, Suto MJ, Rowe SM, Bedwell DM. A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion. Nat Commun 2021; 12:4358. [PMID: 34272367 PMCID: PMC8285393 DOI: 10.1038/s41467-021-24575-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Premature termination codons (PTCs) prevent translation of a full-length protein and trigger nonsense-mediated mRNA decay (NMD). Nonsense suppression (also termed readthrough) therapy restores protein function by selectively suppressing translation termination at PTCs. Poor efficacy of current readthrough agents prompted us to search for better compounds. An NMD-sensitive NanoLuc readthrough reporter was used to screen 771,345 compounds. Among the 180 compounds identified with readthrough activity, SRI-37240 and its more potent derivative SRI-41315, induce a prolonged pause at stop codons and suppress PTCs associated with cystic fibrosis in immortalized and primary human bronchial epithelial cells, restoring CFTR expression and function. SRI-41315 suppresses PTCs by reducing the abundance of the termination factor eRF1. SRI-41315 also potentiates aminoglycoside-mediated readthrough, leading to synergistic increases in CFTR activity. Combining readthrough agents that target distinct components of the translation machinery is a promising treatment strategy for diseases caused by PTCs. Premature termination codons can cause early translation termination and lead to disease. Here the authors perform a screen to identify compounds with readthrough activity and show that these reduce eRF1 levels to suppress premature termination associated with cystic fibrosis.
Collapse
Affiliation(s)
- Jyoti Sharma
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Microbiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ming Du
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Eric Wong
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Venkateshwar Mutyam
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Yao Li
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Jianguo Chen
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Jamie Wangen
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kari Thrasher
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Lianwu Fu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ning Peng
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Liping Tang
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Kaimao Liu
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | | | | | | | - Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Feng Liang
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Jerome Mahiou
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Josef Saltz
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Andras Rab
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Jeong Hong
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Eric M Mendenhall
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Candice J Coppola
- Department of Biological Sciences, The University of Alabama in Huntsville, Huntsville, AL, USA
| | - Kim M Keeling
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics and Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | | | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Pediatrics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - David M Bedwell
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham (UAB), Birmingham, AL, USA. .,Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| |
Collapse
|
10
|
Sharmin N, Nganwuchu CC, Nasim MT. Targeting the TGF-β signaling pathway for resolution of pulmonary arterial hypertension. Trends Pharmacol Sci 2021; 42:510-513. [PMID: 33966900 DOI: 10.1016/j.tips.2021.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/12/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
Aberrant transforming growth factor-β (TGF-β) signaling activation is linked to pulmonary arterial hypertension (PAH). BMPR2 mutations perturb the balance between bone morphogenetic protein (BMP) and TGF-β pathways, leading to vascular remodeling, narrowing of the lumen of pulmonary vasculature, and clinical symptoms. This forum highlights the association of the TGF-β pathway with pathogenesis and therapeutic approaches.
Collapse
Affiliation(s)
- Nahid Sharmin
- Translational Medicine Laboratory, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK; Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka-1000, Bangladesh
| | - Chinyere Chioma Nganwuchu
- Translational Medicine Laboratory, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Md Talat Nasim
- Translational Medicine Laboratory, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK; Centre for Health, Agriculture, and Socio-economic Advancements (CHASA), Lalmonirhat, Bangladesh.
| |
Collapse
|
11
|
Andreana I, Repellin M, Carton F, Kryza D, Briançon S, Chazaud B, Mounier R, Arpicco S, Malatesta M, Stella B, Lollo G. Nanomedicine for Gene Delivery and Drug Repurposing in the Treatment of Muscular Dystrophies. Pharmaceutics 2021; 13:278. [PMID: 33669654 PMCID: PMC7922331 DOI: 10.3390/pharmaceutics13020278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor life quality, disability and premature death. There are no available therapies to counteract the causes of these diseases and conventional treatments are administered only to mitigate symptoms. Recent understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strategies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite the therapeutic potential of these treatments, once the actives are administered, their instability, susceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery strategies based on nanomedicines holds great promise for MD treatments. This review focuses on nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strategies are highlighted and a critical view in future developments of nanomedicine for neuromuscular diseases is provided.
Collapse
Affiliation(s)
- Ilaria Andreana
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Mathieu Repellin
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Flavia Carton
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
- Department of Health Sciences, University of Eastern Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | - David Kryza
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
- Hospices Civils de Lyon, 69437 Lyon, France
| | - Stéphanie Briançon
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| | - Bénédicte Chazaud
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Rémi Mounier
- Institut NeuroMyoGène, University of Lyon, INSERM U1217, CNRS UMR 5310, 8 Avenue Rockefeller, 69008 Lyon, France; (B.C.); (R.M.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (F.C.); (M.M.)
| | - Barbara Stella
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy;
| | - Giovanna Lollo
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, Université Claude Bernard Lyon 1, CNRS UMR 5007, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France; (I.A.); (M.R.); (D.K.); (S.B.)
| |
Collapse
|
12
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
13
|
Morais P, Adachi H, Yu YT. Suppression of Nonsense Mutations by New Emerging Technologies. Int J Mol Sci 2020; 21:ijms21124394. [PMID: 32575694 PMCID: PMC7352488 DOI: 10.3390/ijms21124394] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Nonsense mutations often result from single nucleotide substitutions that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of a gene. The impact of nonsense mutations is two-fold: (1) the PTC-containing mRNA is degraded by a surveillance pathway called nonsense-mediated mRNA decay (NMD) and (2) protein translation stops prematurely at the PTC codon, and thus no functional full-length protein is produced. As such, nonsense mutations result in a large number of human diseases. Nonsense suppression is a strategy that aims to correct the defects of hundreds of genetic disorders and reverse disease phenotypes and conditions. While most clinical trials have been performed with small molecules, there is an increasing need for sequence-specific repair approaches that are safer and adaptable to personalized medicine. Here, we discuss recent advances in both conventional strategies as well as new technologies. Several of these will soon be tested in clinical trials as nonsense therapies, even if they still have some limitations and challenges to overcome.
Collapse
Affiliation(s)
- Pedro Morais
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, The Netherlands;
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
- Correspondence: ; Tel.: +1-(585)-275-1271; Fax: +1-(585)-275-6007
| |
Collapse
|
14
|
Tarrasó G, Real-Martinez A, Parés M, Romero-Cortadellas L, Puigros L, Moya L, de Luna N, Brull A, Martín MA, Arenas J, Lucia A, Andreu AL, Barquinero J, Vissing J, Krag TO, Pinós T. Absence of p.R50X Pygm read-through in McArdle disease cellular models. Dis Model Mech 2020; 13:dmm.043281. [PMID: 31848135 PMCID: PMC6994938 DOI: 10.1242/dmm.043281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
McArdle disease is an autosomal recessive disorder caused by the absence of muscle glycogen phosphorylase, which leads to blocked muscle glycogen breakdown. We used three different cellular models to evaluate the efficiency of different read-through agents (including amlexanox, Ataluren, RTC13 and G418) in McArdle disease. The first model consisted of HeLa cells transfected with two different GFP-PYGM constructs presenting the Pygm p.R50X mutation (GFP-PYGM p.R50X and PYGM Ex1-GFP p.R50X). The second cellular model was based on the creation of HEK293T cell lines stably expressing the PYGM Ex1-GFP p.R50X construct. As these plasmids encode murine Pygm cDNA without any intron sequence, their transfection in cells would allow for analysis of the efficacy of read-through agents with no concomitant nonsense-mediated decay interference. The third model consisted of skeletal muscle cultures derived from the McArdle mouse model (knock-in for the p.R50X mutation in the Pygm gene). We found no evidence of read-through at detectable levels in any of the models evaluated. We performed a literature search and compared the premature termination codon context sequences with reported positive and negative read-through induction, identifying a potential role for nucleotide positions −9, −8, −3, −2, +13 and +14 (the first nucleotide of the stop codon is assigned as +1). The Pygm p.R50X mutation presents TGA as a stop codon, G nucleotides at positions −1 and −9, and a C nucleotide at −3, which potentially generate a good context for read-through induction, counteracted by the presence of C at −2 and its absence at +4. Summary: Here, we evaluated the efficiency of different read-through agents in McArdle disease cell culture models, revealing that read-through compounds do not restore full-length muscle glycogen phosphorylase.
Collapse
Affiliation(s)
- Guillermo Tarrasó
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Alberto Real-Martinez
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Marta Parés
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Lídia Romero-Cortadellas
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Laura Puigros
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Laura Moya
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Noemí de Luna
- Laboratori de Malalties Neuromusculars, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona 08041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Astrid Brull
- Sorbonne Université, INSERM UMRS_974, Center of Research in Myology, 75013 Paris, France
| | - Miguel Angel Martín
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Joaquin Arenas
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Alejandro Lucia
- Mitochondrial and Neuromuscular Diseases Laboratory, 12 de Octubre Hospital Research Institute (i+12), Madrid 28041, Spain.,Faculty of Sport Sciences, European University, Madrid 28670, Spain
| | - Antoni L Andreu
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| | - Jordi Barquinero
- Gene and Cell Therapy Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Thomas O Krag
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Tomàs Pinós
- Mitochondrial and Neuromuscular Disorders Unit, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid 28029, Spain
| |
Collapse
|
15
|
Serum starvation enhances nonsense mutation readthrough. J Mol Med (Berl) 2019; 97:1695-1710. [PMID: 31786671 DOI: 10.1007/s00109-019-01847-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Of all genetic mutations causing human disease, premature termination codons (PTCs) that result from splicing defaults, insertions, deletions, and point mutations comprise around 30%. From these mutations, around 11% are a substitution of a single nucleotide that change a codon into a premature termination codon. These types of mutations affect several million patients suffering from a large variety of genetic diseases, ranging from relatively common inheritable cancer syndromes to muscular dystrophy or very rare neuro-metabolic disorders. Over the past three decades, genetic and biochemical studies have revealed that certain antibiotics and other synthetic molecules can act as nonsense mutation readthrough-inducing drugs. These compounds bind a specific site on the rRNA and, as a result, the stop codon is misread and an amino acid (that may or may not differ from the wild-type amino acid) is inserted and translation occurs through the premature termination codon. This strategy has great therapeutic potential. Unfortunately, many readthrough agents are toxic and cannot be administered over the extended period usually required for the chronic treatment of genetic diseases. Furthermore, readthrough compounds only restore protein production in very few disease models and the readthrough levels are usually low, typically achieving no more than 5% of normal protein expression. Efforts have been made over the years to overcome these obstacles so that readthrough treatment can become clinically relevant. Here, we present the creation of a stable cell line system that constitutively expresses our dual-reporter vector harboring two cancer initiating nonsense mutations in the adenomatous polyposis coli (APC) gene. This system will be used as an improved screening method for isolation of new nonsense mutation readthrough inducers. Using these cell lines as well as colorectal cancer cell lines, we demonstrate that serum starvation enhances drug-induced readthrough activity, an observation which may prove beneficial in a therapeutic scenario that requires higher levels of the restored protein. KEY MESSAGES: Nonsense mutations affects millions of people worldwide. We have developed a nonsense mutation read-through screening tool. We find that serum starvation enhances antibiotic-induced nonsense mutation read-through. Our results suggest new strategies for enhancing nonsense mutation read-through that may have positive effects on a large number of patients.
Collapse
|
16
|
Chowdhury HM, Sharmin N, Yuzbasioglu Baran M, Long L, Morrell NW, Trembath RC, Nasim MT. BMPRII deficiency impairs apoptosis via the BMPRII-ALK1-BclX-mediated pathway in pulmonary arterial hypertension. Hum Mol Genet 2019; 28:2161-2173. [PMID: 30809644 DOI: 10.1093/hmg/ddz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating cardiovascular disorder characterized by the remodelling of pre-capillary pulmonary arteries. The vascular remodelling observed in PAH patients results from excessive proliferation and apoptosis resistance of pulmonary arterial smooth muscle cells (PASMCs) and pulmonary arterial endothelial cells (PAECs). We have previously demonstrated that mutations in the type II receptor for bone morphogenetic protein (BMPRII) underlie the majority of the familial and inherited forms of the disease. We have further demonstrated that BMPRII deficiency promotes excessive proliferation and attenuates apoptosis in PASMCs, but the underlying mechanisms remain unclear. The major objective of this study is to investigate how BMPRII deficiency impairs apoptosis in PAH. Using multidisciplinary approaches, we demonstrate that deficiency in the expression of BMPRII impairs apoptosis by modulating the alternative splicing of the apoptotic regulator, B-cell lymphoma X (Bcl-x) transcripts: a finding observed in circulating leukocytes and lungs of PAH subjects, hypoxia-induced PAH rat lungs as well as in PASMCs and PAECs. BMPRII deficiency elicits cell specific effects: promoting the expression of Bcl-xL transcripts in PASMCs while inhibiting it in ECs, thus exerting differential apoptotic effects in these cells. The pro-survival effect of BMPRII receptor is mediated through the activin receptor-like kinase 1 (ALK1) but not the ALK3 receptor. Finally, we show that BMPRII interacts with the ALK1 receptor and pathogenic mutations in the BMPR2 gene abolish this interaction. Taken together, dysfunctional BMPRII responsiveness impairs apoptosis via the BMPRII-ALK1-Bcl-xL pathway in PAH. We suggest Bcl-xL as a potential biomarker and druggable target.
Collapse
Affiliation(s)
- H M Chowdhury
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - N Sharmin
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,Department of Pharmaceutical Technology, University of Dhaka, Dhaka, Bangladesh
| | - Merve Yuzbasioglu Baran
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - L Long
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - N W Morrell
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R C Trembath
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, United Kingdom
| | - Md Talat Nasim
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom.,School of Pharmacy and Medical Sciences, University of Bradford, Bradford, United Kingdom.,National Institute for Health Research (NIHR), Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust and King's College London, London, United Kingdom.,Centre for Health Agricultural and Socio-economic Advancements (CHASA), Lalmonirhat, Bangladesh
| |
Collapse
|
17
|
'Stop' in protein synthesis is modulated with exquisite subtlety by an extended RNA translation signal. Biochem Soc Trans 2018; 46:1615-1625. [PMID: 30420414 DOI: 10.1042/bst20180190] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Translational stop codons, UAA, UAG, and UGA, form an integral part of the universal genetic code. They are of significant interest today for their underlying fundamental role in terminating protein synthesis, but also for their potential utilisation for programmed alternative translation events. In diverse organisms, UAA has wide usage, but it is puzzling that the high fidelity UAG is selected against and yet UGA, vulnerable to suppression, is widely used, particularly in those archaeal and bacterial genomes with a high GC content. In canonical protein synthesis, stop codons are interpreted by protein release factors that structurally and functionally mimic decoding tRNAs and occupy the decoding site on the ribosome. The release factors make close contact with the decoding complex through multiple interactions. Correct interactions cause conformational changes resulting in new and enhanced contacts with the ribosome, particularly between specific bases in the mRNA and rRNA. The base following the stop codon (fourth or +4 base) may strongly influence decoding efficiency, facilitating alternative non-canonical events like frameshifting or selenocysteine incorporation. The fourth base is drawn into the decoding site with a compacted stop codon in the eukaryotic termination complex. Surprisingly, mRNA sequences upstream and downstream of this core tetranucleotide signal have a significant influence on the strength of the signal. Since nine bases downstream of the stop codon are within the mRNA channel, their interactions with rRNA, and r-proteins may affect efficiency. With this understanding, it is now possible to design stop signals of desired strength for specific applied purposes.
Collapse
|