1
|
Chen Y, Wei X, Ci X, Ji Y, Zhang J. Dysregulation of mitochondria, apoptosis and mitophagy in Leber's hereditary optic neuropathy with MT-ND1 3635G>A mutation. Gene 2024; 930:148853. [PMID: 39147111 DOI: 10.1016/j.gene.2024.148853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/14/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternal inherited disorder, primarily due to mitochondrial DNA (mtDNA) mutations. This investigation aimed to assess the pathogenicity of m.3635G>A alteration known to confer susceptibility to LHON. The disruption of electrostatic interactions among S110 of the MT-ND1 and the side chain of E4, along with the carbonyl backbone of M1 in the NDUFA1, was observed in complex I of cybrids with m.3635G>A. This disturbance affected the complex I assembly activity by changing the mitochondrial respiratory chain composition and function. In addition, the affected cybrids exhibited notable deficiencies in complex I activities, including impaired mitochondrial respiration and depolarization of its membrane potential. Apoptosis was also stimulated in the mutant group, as witnessed by the secretion of cytochrome c and activation of PARP, caspase 3, 7, and 9 compared to the control. Furthermore, the mutant group exhibited decreased levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PINK1/Parkin-dependent mitophagy. Overall, the current study has confirmed the crucial involvement of the alteration of the m.3635G>A gene in the development of LHON. These findings contribute to a deeper comprehension of the pathophysiological mechanisms underlying LHON, providing a fundamental basis for further research.
Collapse
Affiliation(s)
- Yingqi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoyang Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
2
|
Jin L, Gan D, He W, Wu N, Xiang S, Wei Y, Eriani G, Ji Y, Guan MX, Wang M. Mitochondrial tRNA Glu 14693A>G Mutation, an "Enhancer" to the Phenotypic Expression of Leber's Hereditary Optic Neuropathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2401856. [PMID: 39264244 DOI: 10.1002/advs.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Leber's hereditary optic neuropathy (LHON), a maternally inherited ocular disease, is predominantly caused by mitochondrial DNA (mtDNA) mutations. Mitochondrial tRNA variants are hypothesized to amplify the pathogenic impact of three primary mutations. However, the exact mechanisms remained unclear. In the present study, the synergistic effect of the tRNAGlu 14693A>G and ND6 14484T>C mutations in three Chinese families affected by LHON is investigated. The m.14693A>G mutation nearly abolishes the pseudouridinylation at position 55 of tRNAGlu, leading to structural abnormalities, decreased stability, aberrant mitochondrial protein synthesis, and increased autophagy. In contrast, the ND6 14484T>C mutation predominantly impairs complex I function, resulting in heightened apoptosis and virtually no induction of mitochondrial autophagy compared to control cell lines. The presence of dual mutations in the same cell lines exhibited a coexistence of both upregulated cellular stress responses to mitochondrial damage, indicating a scenario of autophagy and mutation dysregulation within these dual-mutant cell lines. The data proposes a novel hypothesis that mitochondrial tRNA gene mutations generally lead to increased mitochondrial autophagy, while mutations in genes encoding mitochondrial proteins typically induce apoptosis, shedding light on the intricate interplay between different genetic factors in the manifestation of LHON.
Collapse
Affiliation(s)
- Lihao Jin
- Center for Genetic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| | - Dingyi Gan
- Center for Genetic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| | - Wentao He
- Center for Genetic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| | - Na Wu
- Center for Genetic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| | - Shuchenlu Xiang
- Center for Genetic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| | - Yinsheng Wei
- Center for Genetic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, UPR9002 Centre National de la Recherche Scientifique, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 2 allée Konrad Roentgen, Strasbourg, 67084, France
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| | - Min-Xin Guan
- Center for Genetic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| | - Meng Wang
- Center for Genetic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International institutes of Medicine, Zhejiang University, Yiwu, 322000, China
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
3
|
Zhang J, Li W, Liu Z, Chen Y, Wei X, Peng L, Xu M, Ji Y. Defective post-transcriptional modification of tRNA disrupts mitochondrial homeostasis in Leber's hereditary optic neuropathy. J Biol Chem 2024; 300:107728. [PMID: 39214298 PMCID: PMC11421333 DOI: 10.1016/j.jbc.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is a rare, maternally inherited eye disease, predominantly due to the degeneration of retinal ganglion cells (RGCs). It is associated with a mitochondrial DNA (mtDNA) point mutation. Our previous study identified that the m.15927G > A homoplasmic mutation damaged the highly conserved base pairing (28C-42G) in anticodon stem of tRNAThr, caused deficient t6A modification and significantly decreased efficiency in aminoacylation and steady-state levels of tRNAThr, and led to mitochondrial dysfunction. Meanwhile, mechanisms underlying mtDNA mutations regulate intracellular signaling related to mitochondrial and cellular integrity are less explored. Here, we manifested that defective nucleotide modification induced by the m.15927G > A mutation interfered with the expression of nuclear genes involved in cytoplasmic proteins essential for oxidative phosphorylation system (OXPHOS), thereby impacting the assemble and integrity of OXPHOS complexes. As a result of these mitochondrial dysfunctions, there was an imbalance in mitochondrial dynamics, particularly distinguished by an increased occurrence of mitochondrial fission. Excessive fission compromised the autophagy process, including the initiation phase, formation, and maturation of autophagosomes. Both Parkin-mediated mitophagy and receptor-dependent mitophagy were significantly impaired in cybrids haboring the m.15927G > A mutation. These changes facilitated intrinsic apoptosis, as indicated by increased cytochrome c release and elevated levels of apoptosis-associated proteins (e.g., BAK, BAX, cleaved caspase 9, cleaved caspase 3, and cleaved PARP) in the mutant cybrids. This study demonstrates that the m.15927G > A mutation contributes to LHON by dysregulating OXPHOS biogenesis, aberrant quality control, increased autophagy, inhibited mitophagy, and abnormal apoptosis.
Collapse
MESH Headings
- Optic Atrophy, Hereditary, Leber/metabolism
- Optic Atrophy, Hereditary, Leber/genetics
- Optic Atrophy, Hereditary, Leber/pathology
- Humans
- Mitochondria/metabolism
- Mitochondria/genetics
- Mitochondria/pathology
- Mitophagy
- Homeostasis
- RNA Processing, Post-Transcriptional
- DNA, Mitochondrial/metabolism
- DNA, Mitochondrial/genetics
- Oxidative Phosphorylation
- RNA, Transfer, Thr/metabolism
- RNA, Transfer, Thr/genetics
- Mitochondrial Dynamics
- Apoptosis
- Point Mutation
- Autophagy
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
Collapse
Affiliation(s)
- Juanjuan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wenxu Li
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhen Liu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingqi Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyang Wei
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Peng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Pasqualotto BA, Nelson A, Deheshi S, Sheldon CA, Vogl AW, Rintoul GL. Impaired mitochondrial morphological plasticity and failure of mitophagy associated with the G11778A mutation of LHON. Biochem Biophys Res Commun 2024; 721:150119. [PMID: 38768545 DOI: 10.1016/j.bbrc.2024.150119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
Mitochondrial dynamics were examined in human dermal fibroblasts biopsied from a confirmed Leber's Hereditary Optic Neuropathy (LHON) patient with a homoplasmic G11778A mutation of the mitochondrial genome. Expression of the G11778A mutation did not impart any discernible difference in mitochondrial network morphology using widefield fluorescence microscopy. However, at the ultrastructural level, cells expressing this mutation exhibited an impairment of mitochondrial morphological plasticity when forced to utilize oxidative phosphorylation (OXPHOS) by transition to glucose-free, galactose-containing media. LHON fibroblasts also displayed a transient increase in mitophagy upon transition to galactose media. These results provide new insights into the consequences of the G11778A mutation of LHON and the pathological mechanisms underlying this disease.
Collapse
Affiliation(s)
- Bryce A Pasqualotto
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Alexa Nelson
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Samineh Deheshi
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada
| | - Claire A Sheldon
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Canada
| | - A Wayne Vogl
- Life Sciences Institute and the Department of Cellular & Physiological Sciences, University of British Columbia, Canada
| | - Gordon L Rintoul
- Centre for Cell Biology, Development, and Disease, and the Department of Biological Sciences, Simon Fraser University, Canada.
| |
Collapse
|
5
|
Vrisakis JL, Fraser CL, Shahnam A, Nindra U, Grimison P. A case for the use of chemotherapy in hereditary mitochondrial optic neuropathies: Successful administration of cisplatin/etoposide in a male patient with testicular seminoma and Leber's hereditary optic neuropathy. Clin Case Rep 2024; 12:e9045. [PMID: 38979087 PMCID: PMC11228619 DOI: 10.1002/ccr3.9045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/22/2024] [Indexed: 07/10/2024] Open
Abstract
We report on the successful use of chemotherapy for treatment of stage 2B testicular seminoma in a carrier of the Leber's hereditary optic neuropathy 11778 mitochondrial mutation. Neurotoxic chemotherapy may not prompt disease conversion.
Collapse
Affiliation(s)
- Jean-Luc Vrisakis
- Department of Medicine Royal Prince Alfred Hospital Sydney New South Wales Australia
| | - Clare L Fraser
- Department of Medicine and Health, Save Sight Institute University of Sydney Sydney New South Wales Australia
- Department of Ophthalmology Sydney and Sydney Eye Hospital Sydney New South Wales Australia
| | - Adel Shahnam
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Udit Nindra
- Cancer Therapy Centre Liverpool Hospital Sydney New South Wales Australia
| | - Peter Grimison
- Department of Medical Oncology Chris O'Brien Lifehouse Sydney New South Wales Australia
- Department of Medicine and Health, Sydney Medical School University of Sydney Sydney New South Wales Australia
| |
Collapse
|
6
|
Yu W, Wu W, Zhao D, Zhang R, Shao K, Liu H, Yan C, Lin P. Idebenone ameliorates statin-induced myotoxicity in atherosclerotic ApoE-/- mice by reducing oxidative stress and improving mitochondrial function. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167157. [PMID: 38582266 DOI: 10.1016/j.bbadis.2024.167157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Statins are the first line of choice for the treatment for atherosclerosis, but their use can cause myotoxicity, a common side effect that may require dosage reduction or discontinuation. The exact mechanism of statin-induced myotoxicity is unknown. Previous research has demonstrated that the combination of idebenone and statin yielded superior anti-atherosclerotic outcomes. Here, we investigated the mechanism of statin-induced myotoxicity in atherosclerotic ApoE-/- mice and whether idebenone could counteract it. After administering simvastatin to ApoE-/- mice, we observed a reduction in plaque formation as well as a decrease in their exercise capacity. We observed elevated levels of lactic acid and creatine kinase, along with a reduction in the cross-sectional area of muscle fibers, an increased presence of ragged red fibers, heightened mitochondrial crista lysis, impaired mitochondrial complex activity, and decreased levels of CoQ9 and CoQ10. Two-photon fluorescence imaging revealed elevated H2O2 levels in the quadriceps, indicating increased oxidative stress. Proteomic analysis indicated that simvastatin inhibited the tricarboxylic acid cycle. Idebenone treatment not only further reduced plaque formation but also ameliorated the impaired exercise capacity caused by simvastatin. Our study represents the inaugural comprehensive investigation into the mechanisms underlying statin-induced myotoxicity. We have demonstrated that statins inhibit CoQ synthesis, impair mitochondrial complex functionality, and elevate oxidative stress, ultimately resulting in myotoxic effects. Furthermore, our research marks the pioneering identification of idebenone's capability to mitigate statin-induced myotoxicity by attenuating oxidative stress, thereby safeguarding mitochondrial complex functionality. The synergistic use of idebenone and statin not only enhances the effectiveness against atherosclerosis but also mitigates statin-induced myotoxicity.
Collapse
Affiliation(s)
- Wenfei Yu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China; University of Health and Rehabilitation Sciences, No. 17, Shandong Road, Shinan district, Qingdao City, Shandong Province, China
| | - Wenjing Wu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Dandan Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Rui Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Kai Shao
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266000, China
| | - Haoyang Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China.
| |
Collapse
|
7
|
Sukhorukov VN, Khotina VA, Kalmykov VA, Zhuravlev AD, Sinyov VV, Popov DY, Vinokurov AY, Sobenin IA, Orekhov AN. Mitochondrial Genome Editing: Exploring the Possible Relationship of the Atherosclerosis-Associated Mutation m.15059G>A With Defective Mitophagy. J Lipid Atheroscler 2024; 13:166-183. [PMID: 38826184 PMCID: PMC11140244 DOI: 10.12997/jla.2024.13.2.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 06/04/2024] Open
Abstract
Objective The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, pro-inflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis. Methods The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TC-HSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Pro-inflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy. Results In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation. Conclusion The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.
Collapse
Affiliation(s)
- Vasily N. Sukhorukov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vladislav A. Kalmykov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Alexander D. Zhuravlev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
| | - Daniil Y. Popov
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Andrey Y. Vinokurov
- Cell Physiology and Pathology Laboratory of R&D Center of Biomedical Photonics, Orel State University, Orel, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, Russian Medical Research Center of Cardiology, Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, Moscow, Russia
- Institute for Atherosclerosis Research, Moscow, Russia
| |
Collapse
|
8
|
Wang JY, Zhang LH, Hong YH, Cai LN, Storey KB, Zhang JY, Zhang SS, Yu DN. How Does Mitochondrial Protein-Coding Gene Expression in Fejervarya kawamurai (Anura: Dicroglossidae) Respond to Extreme Temperatures? Animals (Basel) 2023; 13:3015. [PMID: 37835622 PMCID: PMC10571990 DOI: 10.3390/ani13193015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Unusual climates can lead to extreme temperatures. Fejervarya kawamurai, one of the most prevalent anurans in the paddy fields of tropical and subtropical regions in Asia, is sensitive to climate change. The present study focuses primarily on a single question: how do the 13 mitochondrial protein-coding genes (PCGs) respond to extreme temperature change compared with 25 °C controls? Thirty-eight genes including an extra tRNA-Met gene were identified and sequenced from the mitochondrial genome of F. kawamurai. Evolutionary relationships were assessed within the Dicroglossidae and showed that Dicroglossinae is monophyletic and F. kawamurai is a sister group to the clade of (F. multistriata + F. limnocharis). Transcript levels of mitochondrial genes in liver were also evaluated to assess responses to 24 h exposure to low (2 °C and 4 °C) or high (40 °C) temperatures. Under 2 °C, seven genes showed significant changes in liver transcript levels, among which transcript levels of ATP8, ND1, ND2, ND3, ND4, and Cytb increased, respectively, and ND5 decreased. However, exposure to 4 °C for 24 h was very different in that the expressions of ten mitochondrial protein-coding genes, except ND1, ND3, and Cytb, were significantly downregulated. Among them, the transcript level of ND5 was most significantly downregulated, decreasing by 0.28-fold. Exposure to a hot environment at 40 °C for 24 h resulted in a marked difference in transcript responses with strong upregulation of eight genes, ranging from a 1.52-fold increase in ND4L to a 2.18-fold rise in Cytb transcript levels, although COI and ND5 were reduced to 0.56 and 0.67, respectively, compared with the controls. Overall, these results suggest that at 4 °C, F. kawamurai appears to have entered a hypometabolic state of hibernation, whereas its mitochondrial oxidative phosphorylation was affected at both 2 °C and 40 °C. The majority of mitochondrial PCGs exhibited substantial changes at all three temperatures, indicating that frogs such as F. kawamurai that inhabit tropical or subtropical regions are susceptible to ambient temperature changes and can quickly employ compensating adjustments to proteins involved in the mitochondrial electron transport chain.
Collapse
Affiliation(s)
- Jing-Yan Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Li-Hua Zhang
- Taishun County Forestry Bureau, Wenzhou 325000, China
| | - Yue-Huan Hong
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ling-Na Cai
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jia-Yong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Shu-Sheng Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Wuyanling National Nature Reserve, Wenzhou 325500, China
| | - Dan-Na Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
9
|
Yu W, Li Z, Wu W, Zhao D, Yan C, Lin P. Insights into the mechanisms of telbivudine-induced myopathy associated with mitochondrial dysfunction. Chem Biol Interact 2023; 383:110692. [PMID: 37659625 DOI: 10.1016/j.cbi.2023.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
As a nucleotide analogue (NA), telbivudine was widely used in the treatment for chronic hepatitis B (CHB) by interfering with reverse transcriptase of hepatitis B virus. However, the use of NAs for hepatitis B treatment has been accompanied by numerous reports highlighting the occurrence of neuromyopathy, particularly in the case of telbivudine. This study aimed to investigate the underlying mechanisms responsible for telbivudine-induced myopathy. We established animal and cell models of telbivudine-induced myopathy using C57BL/6 mice and C2C12 cells, respectively. Our findings revealed that telbivudine significantly reduced mitochondrial DNA (mtDNA) copy number and caused increase of oxidative stress. Telbivudine treatment significantly inhibited mitochondrial complex I and IV expression, impairing the oxidative phosphorylation function of the respiratory chain. Modified Gomori trichrome (MGT) staining of the muscle sections displayed an increase in ragged red fibers (RRFs), indicating abnormal mitochondrial accumulation. In conclusion, our study provides compelling evidence suggesting that telbivudine-induced myopathy is associated with mitochondrial toxicity and impaired energy metabolism. The observed muscle pathology, depletion of mtDNA, elevation of oxidative stress and altered mitochondrial function support the hypothesis that telbivudine disrupts mitochondrial homeostasis, ultimately leading to muscle damage. This may be also a common mechanism for NAs to cause neuromyopathy.
Collapse
Affiliation(s)
- Wenfei Yu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China; University of Health and Rehabilitation Sciences, No. 17, Shandong Road, Shinan District, Qingdao City, Shandong Province, China
| | - Zhuxun Li
- Shandong University Cheeloo College of Medicine, Jinan, 250012, Shandong Province, China
| | - Wenjing Wu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Dandan Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
10
|
Blagov AV, Summerhill VI, Sukhorukov VN, Popov MA, Grechko AV, Orekhov AN. Type 1 diabetes mellitus: Inflammation, mitophagy, and mitochondrial function. Mitochondrion 2023; 72:11-21. [PMID: 37453498 DOI: 10.1016/j.mito.2023.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a T-cell-mediated autoimmune disease characterized by the damage of insulin-secreting β-cells in the pancreatic islets of Langerhans. To date, its etiology is not fully understood, despite decades of active search for root causes, and that underlines the complexity of the disease pathogenesis. It was found that mitophagy plays a regulatory role in the development of autoimmune response during T1DM pathogenesis by preventing the accumulation of defective/dysfunctional mitochondria in pancreatic cells. Mitochondrial dysfunction due to impaired mitophagy with the release of mitochondrial reactive oxygen species (mtROS) and mitochondrial DNA (mtDNA) contributes to initiating an inflammatory response by elevating pro-inflammatory cytokines and interacting with receptors like those involved in the pathogen-associated response. Moreover, mtROS and mtDNA activate pathways leading to the development of chronic inflammation, which is tightly implicated in T1DM autoimmunity. In this review, we summarized the evidence highlighting the functional role of mitophagy and mitochondria in the development of immune response and chronic inflammation during T1DM pathogenesis. Several anti-inflammatory and mitophagy-related treatment options have been explored.
Collapse
Affiliation(s)
- Alexander V Blagov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia.
| | - Volha I Summerhill
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia; Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| | - Mikhail A Popov
- Department of Cardiac Surgery, Moscow Regional Research and Clinical Institute (MONIKI), 61/2, Shchepkin Street, Moscow 129110, Russia.
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 14-3, Solyanka Street, Moscow 109240, Russia.
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 8, Baltiiskaya Street, Moscow 125315, Russia; Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, Moscow 121609, Russia.
| |
Collapse
|
11
|
She R, Liu D, Liao J, Wang G, Ge J, Mei Z. Mitochondrial dysfunctions induce PANoptosis and ferroptosis in cerebral ischemia/reperfusion injury: from pathology to therapeutic potential. Front Cell Neurosci 2023; 17:1191629. [PMID: 37293623 PMCID: PMC10244524 DOI: 10.3389/fncel.2023.1191629] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 06/10/2023] Open
Abstract
Ischemic stroke (IS) accounts for more than 80% of the total stroke, which represents the leading cause of mortality and disability worldwide. Cerebral ischemia/reperfusion injury (CI/RI) is a cascade of pathophysiological events following the restoration of blood flow and reoxygenation, which not only directly damages brain tissue, but also enhances a series of pathological signaling cascades, contributing to inflammation, further aggravate the damage of brain tissue. Paradoxically, there are still no effective methods to prevent CI/RI, since the detailed underlying mechanisms remain vague. Mitochondrial dysfunctions, which are characterized by mitochondrial oxidative stress, Ca2+ overload, iron dyshomeostasis, mitochondrial DNA (mtDNA) defects and mitochondrial quality control (MQC) disruption, are closely relevant to the pathological process of CI/RI. There is increasing evidence that mitochondrial dysfunctions play vital roles in the regulation of programmed cell deaths (PCDs) such as ferroptosis and PANoptosis, a newly proposed conception of cell deaths characterized by a unique form of innate immune inflammatory cell death that regulated by multifaceted PANoptosome complexes. In the present review, we highlight the mechanisms underlying mitochondrial dysfunctions and how this key event contributes to inflammatory response as well as cell death modes during CI/RI. Neuroprotective agents targeting mitochondrial dysfunctions may serve as a promising treatment strategy to alleviate serious secondary brain injuries. A comprehensive insight into mitochondrial dysfunctions-mediated PCDs can help provide more effective strategies to guide therapies of CI/RI in IS.
Collapse
Affiliation(s)
- Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Guozuo Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
12
|
Ren B, Guan MX, Zhou T, Cai X, Shan G. Emerging functions of mitochondria-encoded noncoding RNAs. Trends Genet 2023; 39:125-139. [PMID: 36137834 DOI: 10.1016/j.tig.2022.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 01/27/2023]
Abstract
Mitochondria, organelles that harbor their own circular genomes, are critical for energy production and homeostasis maintenance in eukaryotic cells. Recent studies discovered hundreds of mitochondria-encoded noncoding RNAs (mt-ncRNAs), including novel subtypes of mitochondria-encoded circular RNAs (mecciRNAs) and mitochondria-encoded double-stranded RNAs (mt-dsRNAs). Here, we discuss the emerging field of mt-ncRNAs by reviewing their expression patterns, biogenesis, metabolism, regulatory roles, and functional mechanisms. Many mt-ncRNAs have regulatory roles in cellular physiology, and some are associated with, or even act as, causal factors in human diseases. We also highlight developments in technologies and methodologies and further insights into future perspectives and challenges in studying these noncoding RNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Bingbing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou 310052, China; Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Tianhua Zhou
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, China
| | - Xiujun Cai
- Cancer Center, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Zhejiang University, Hangzhou 310016, China; Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Zhejiang University, Hangzhou 310016, China
| | - Ge Shan
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Cancer Center, Zhejiang University, Hangzhou 310058, China; Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Department of Clinical Laboratory, The First Affiliated Hospital of USTC, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
13
|
Dong XC, Liu C, Zhuo GC, Ding Y. Potential Roles of mtDNA Mutations in PCOS-IR: A Review. Diabetes Metab Syndr Obes 2023; 16:139-149. [PMID: 36760584 PMCID: PMC9884460 DOI: 10.2147/dmso.s393960] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disease that affecting females in reproductive age. Insulin resistance (IR), an important molecular basis for PCOS, accounts for at least 75% of women carrying this syndrome. Although there have been many studies on PCOS-IR, the detailed mechanisms are not fully understood. As essential hub for energy generation, mitochondria are critical to insulin secretion and normal function, whereas mutations in mitochondrial DNA (mtDNA) result in mitochondrial dysfunctions contributing to the pathophysiology of PCOS-IR via the regulation of balance of oxidative stress (OS), energy deficiency, or hormone metabolism. In the current review, we summarize the clinical and molecular features of PCOS-IR and discuss molecular mechanisms related to mtDNA mutations.
Collapse
Affiliation(s)
- Xiao-Chao Dong
- Department of Gynecology and Obstetrics, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Chang Liu
- Department of Gynecology and Obstetrics, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Guang-Chao Zhuo
- Central Laboratory, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yu Ding
- Central Laboratory, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Correspondence: Yu Ding, Central Laboratory, Hangzhou First People’s Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou, People’s Republic of China, Tel/Fax +86-571-5600-5600, Email
| |
Collapse
|
14
|
Yao S, Zhang X, Jin X, Yang M, Li Y, Yang L, Xu J, Lei B. Proteomic Profiling Reveals Increased Glycolysis, Decreased Oxidoreductase Activity and Fatty Acid Degradation in Skin Derived Fibroblasts from LHON Patients Bearing m.G11778A. Biomolecules 2022; 12:1568. [PMID: 36358916 PMCID: PMC9687919 DOI: 10.3390/biom12111568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 04/28/2024] Open
Abstract
LHON is a common blinding inherited optic neuropathy caused by mutations in mitochondrial genes. In this study, by using skin fibroblasts derived from LHON patients with the most common m.G11778A mutation and healthy objects, we performed proteomic analysis to document changes in molecular proteins, signaling pathways and cellular activities. Furthermore, the results were confirmed by functional studies. A total of 860 differential expression proteins were identified, containing 624 upregulated and 236 downregulated proteins. Bioinformatics analysis revealed increased glycolysis in LHON fibroblasts. A glycolysis stress test showed that ECAR (extra-cellular acidification rate) values increased, indicating an enhanced level of glycolysis in LHON fibroblasts. Downregulated proteins were mainly enriched in oxidoreductase activity. Cellular experiments verified high levels of ROS in LHON fibroblasts, indicating the presence of oxidative damage. KEGG analysis also showed the metabolic disturbance of fatty acid in LHON cells. This study provided a proteomic profile of skin fibroblasts derived from LHON patients bearing m.G11778A. Increased levels of glycolysis, decreased oxidoreductase activity and fatty acid metabolism could represent the in-depth mechanisms of mitochondrial dysfunction mediated by the mutation. The results provided further evidence that LHON fibroblast could be an alternative model for investigating the devastating disease.
Collapse
Affiliation(s)
- Shun Yao
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Xiaoli Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Xiuxiu Jin
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Mingzhu Yang
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ya Li
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Lin Yang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Jin Xu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Lei
- Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
15
|
Leber’s hereditary optic neuropathy plus dystonia caused by the mitochondrial ND1 gene m.4160 T > C mutation. Neurol Sci 2022; 43:5581-5592. [DOI: 10.1007/s10072-022-06165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
16
|
Nie Z, Wang C, Chen J, Ji Y, Zhang H, Zhao F, Zhou X, Guan MX. Abnormal morphology and function in retinal ganglion cells derived from patients-specific iPSCs generated from individuals with Leber's hereditary optic neuropathy. Hum Mol Genet 2022; 32:231-243. [PMID: 35947995 PMCID: PMC9840204 DOI: 10.1093/hmg/ddac190] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 01/19/2023] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease that results from degeneration of retinal ganglion cells (RGC). Mitochondrial ND4 11778G > A mutation, which affects structural components of complex I, is the most prevalent LHON-associated mitochondrial DNA (mtDNA) mutation worldwide. The m.11778G > A mutation is the primary contributor underlying the development of LHON and X-linked PRICKLE3 allele (c.157C > T, p.Arg53Trp) linked to biogenesis of ATPase interacts with m.11778G > A mutation to cause LHON. However, the lack of appropriate cell and animal models of LHON has been significant obstacles for deep elucidation of disease pathophysiology, specifically the tissue-specific effects. Using RGC-like cells differentiated from induced pluripotent stem cells (iPSCs) from members of one Chinese family (asymptomatic subjects carrying only m.11778G > A mutation or PRICKLE3 p.Arg53Trp mutation, symptomatic individuals bearing both m.11778G > A and PRICKLE3 p.Arg53Trp mutations and control lacking these mutations), we demonstrated the deleterious effects of mitochondrial dysfunctions on the morphology and functions of RGCs. Notably, iPSCs bearing only m.11778G > A or p.Arg53Trp mutation exhibited mild defects in differentiation to RGC-like cells. The RGC-like cells carrying only m.11778G > A or p.Arg53Trp mutation displayed mild defects in RGC morphology, including the area of soma and numbers of neurites, electrophysiological properties, ATP contents and apoptosis. Strikingly, those RGC-like cells derived from symptomatic individuals harboring both m.11778G > A and p.Arg53Trp mutations displayed greater defects in the development, morphology and functions than those in cells bearing single mutation. These findings provide new insights into pathophysiology of LHON arising from RGC deficiencies caused by synergy between m.11778G > A and PRICKLE3 p.Arg53Trp mutation.
Collapse
Affiliation(s)
| | | | | | - Yanchun Ji
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China,Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongxing Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- To whom correspondence should be addressed at: Institute of Genetics, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China. Tel: 86-571-88206916; Fax: 86-571-88982377;
| |
Collapse
|
17
|
Ji Y, Zhang J, Liang M, Meng F, Zhang M, Mo JQ, Wang M, Guan MX. Mitochondrial tRNA variants in 811 Chinese probands with Leber's hereditary optic neuropathy. Mitochondrion 2022; 65:56-66. [PMID: 35623556 DOI: 10.1016/j.mito.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 05/22/2022] [Indexed: 11/27/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is the maternal inheritance of eye disorder. LHON-linked mitochondrial DNA (mtDNA) mutations affect the ND1, ND4 or ND6 genes encoding essential subunits of complex I. However, the role of mitochondrial tRNA defects in the pathogenesis of LHON is poorly understood. In this report, Sanger sequence analysis of 22 mitochondrial tRNA genes identified 139 variants in a cohort of 811 Han Chinese probands and 485 control Chinese subjects. Among these, 32 (4 known and 28 novel/putative) tRNA variants in 69 probands may contribute to pathogenesis of LHON, as these exhibited (1) present in <1% of controls; (2) evolutionary conservation; (3) potential and significance of structural and functional modifications. Such variants may have potentially compromised structural and functional aspects in the processing of tRNAs, structure stability, tRNA charging, or codon-anticodon interactions during translation. These 32 variants presented either singly or with multiple mutations, with the primary LHON-linked ND1 3640G>A, ND4 11778G>A or ND6 14484T>C mutations in the probands. The thirty-eight pedigrees carrying only one of tRNA variants exhibited relatively low penetrances of LHON, ranging from 5.7% to 42.9%, with an average of 19%. Strikingly, the average penetrances of optic neuropathy among 33 Chinese families carrying both a known/putative tRNA variant and a primary LHON-associated mtDNA mutation were 40.1%. These findings suggested that mitochondrial tRNA variants represent a significant causative factor for LHON, accounting for 8.75% cases in this cohort. These new insights may lead to beneficial applications in the pathophysiology, disease management, and genetic counseling of LHON.
Collapse
Affiliation(s)
- Yanchun Ji
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Min Liang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei 051730, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Meng Wang
- Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China; Institute of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University, Hangzhou, Zhejiang 310058, China; Division of Mitochondrial Biomedicine, Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Jin WT, Guan JY, Dai XY, Wu GJ, Zhang LP, Storey KB, Zhang JY, Zheng RQ, Yu DN. Mitochondrial gene expression in different organs of Hoplobatrachus rugulosus from China and Thailand under low-temperature stress. BMC ZOOL 2022; 7:24. [PMID: 37170336 PMCID: PMC10127437 DOI: 10.1186/s40850-022-00128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hoplobatrachus rugulosus (Anura: Dicroglossidae) is distributed in China and Thailand and the former can survive substantially lower temperatures than the latter. The mitochondrial genomes of the two subspecies also differ: Chinese tiger frogs (CT frogs) display two identical ND5 genes whereas Thai tiger frogs (TT frogs) have two different ND5 genes. Metabolism of ectotherms is very sensitive to temperature change and different organs have different demands on energy metabolism at low temperatures. Therefore, we conducted studies to understand: (1) the differences in mitochondrial gene expression of tiger frogs from China (CT frogs) versus Thailand (TT frogs); (2) the differences in mitochondrial gene expression of tiger frogs (CT and TT frogs) under short term 24 h hypothermia exposure at 25 °C and 8 °C; (3) the differences in mitochondrial gene expression in three organs (brain, liver and kidney) of CT and TT frogs.
Results
Utilizing RT-qPCR and comparing control groups at 25 °C with low temperature groups at 8 °C, we came to the following results. (1) At the same temperature, mitochondrial gene expression was significantly different in two subspecies. The transcript levels of two identical ND5 of CT frogs were observed to decrease significantly at low temperatures (P < 0.05) whereas the two different copies of ND5 in TT frogs were not. (2) Under low temperature stress, most of the genes in the brain, liver and kidney were down-regulated (except for COI and ATP6 measured in brain and COI measured in liver of CT frogs). (3) For both CT and TT frogs, the changes in overall pattern of mitochondrial gene expression in different organs under low temperature and normal temperature was brain > liver > kidney.
Conclusions
We mainly drew the following conclusions: (1) The differences in the structure and expression of the ND5 gene between CT and TT frogs could result in the different tolerances to low temperature stress. (2) At low temperatures, the transcript levels of most of mitochondrial protein-encoding genes were down-regulated, which could have a significant effect in reducing metabolic rate and supporting long term survival at low temperatures. (3) The expression pattern of mitochondrial genes in different organs was related to mitochondrial activity and mtDNA replication in different organs.
Collapse
|
19
|
Liang M, Ji C, Zhang L, Wang X, Hu C, Zhang J, Zhu Y, Mo JQ, Guan MX. Leber's hereditary optic neuropathy (LHON)-associated ND6 14 484 T > C mutation caused pleiotropic effects on the complex I, RNA homeostasis, apoptosis and mitophagy. Hum Mol Genet 2022; 31:3299-3312. [PMID: 35567411 DOI: 10.1093/hmg/ddac109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 11/12/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mitochondrial DNA (mtDNA) mutations. LHON-linked ND6 14 484 T > C (p.M64V) mutation affected structural components of complex I but its pathophysiology is poorly understood. The structural analysis of complex I revealed that the M64 forms a nonpolar interaction Y59 in the ND6, Y59 in the ND6 interacts with E34 of ND4L, and L60 of ND6 interacts with the Y114 of ND1. These suggested that the m.14484 T > C mutation may perturb the structure and function of complex I. Mutant cybrids constructed by transferring mitochondria from lymphoblastoid cell lines of one Chinese LHON family into mtDNA-less (ρo) cells revealed decreases in the levels of ND6, ND1 and ND4L. The m.14484 T > C mutation may affect mitochondrial mRNA homeostasis, supported by reduced levels of SLIRP and SUPV3L1 involved in mRNA degradation and increasing expression of ND6, ND1 and ND4L genes. These alterations yielded decreased activity of complex I, respiratory deficiency, diminished mitochondrial ATP production and reduced membrane potential, and increased production of reactive oxygen species in the mutant cybrids. Furthermore, the m.14484 T > C mutation promoted apoptosis, evidenced by elevating Annexin V-positive cells, release of cytochrome c into cytosol, levels in apoptotic proteins BAX, caspases 3, 7, 9 and decreasing levels in anti-apoptotic protein Bcl-xL in the mutant cybrids. Moreover, the cybrids bearing the m.14484 T > C mutation exhibited the reduced levels of autophagy protein LC3, increased levels of substrate P62 and impaired PINK1/Parkin-dependent mitophagy. Our findings highlighted the critical role of m.14484 T > C mutation in the pathogenesis of LHON.
Collapse
Affiliation(s)
- Min Liang
- Department of Medical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Liyao Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xuan Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Cuifang Hu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Juanjuan Zhang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiwei Zhu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California 92123, USA
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
20
|
Xu C, Tong L, Rao J, Ye Q, Chen Y, Zhang Y, Xu J, Mao X, Meng F, Shen H, Lu Z, Cang X, Fu H, Wang S, Gu W, Lai EY, Guan M, Jiang P, Mao J. Heteroplasmic and homoplasmic m.616T>C in mitochondria tRNAPhe promote isolated chronic kidney disease and hyperuricemia. JCI Insight 2022; 7:157418. [PMID: 35472031 PMCID: PMC9220945 DOI: 10.1172/jci.insight.157418] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/22/2022] [Indexed: 11/22/2022] Open
Abstract
Inherited kidney diseases are the fifth most common cause of end-stage renal disease (ESRD). Mitochondrial dysfunction plays a vital role in the progression of inherited kidney diseases, while mitochondrial-transfer RNA (mt-tRNA) variants and their pathogenic contributions to kidney disease remain largely unclear. In this study, we identified the pathogenic mt-tRNAPhe 616T>C mutation in 3 families and documented that m.616T>C showed a high pathogenic threshold, with both heteroplasmy and homoplasmy leading to isolated chronic kidney disease and hyperuricemia without hematuria, proteinuria, or renal cyst formation. Moreover, 1 proband with homoplamic m.616T>C presented ESRD as a child. No symptoms of nervous system evolvement were observed in these families. Lymphoblast cells bearing m.616T>C exhibited swollen mitochondria, underwent active mitophagy, and showed respiratory deficiency, leading to reduced mitochondrial ATP production, diminished membrane potential, and overproduction of mitochondrial ROS. Pathogenic m.616T>C abolished a highly conserved base pair (A31-U39) in the anticodon stem-loop which altered the structure of mt-tRNAPhe, as confirmed by a decreased melting temperature and slower electrophoretic mobility of the mutant tRNA. Furthermore, the unstable structure of mt-tRNAPhe contributed to a shortage of steady-state mt-tRNAPhe and enhanced aminoacylation efficiency, which resulted in impaired mitochondrial RNA translation and a significant decrease in mtDNA–encoded polypeptides. Collectively, these findings provide potentially new insights into the pathogenesis underlying inherited kidney disease caused by mitochondrial variants.
Collapse
Affiliation(s)
- Chengxian Xu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingxiao Tong
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
| | - Qing Ye
- Zhejiang Key Laboratory for Neonatal Diseases, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxia Chen
- Department of Rehabilitation Medicine, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yingying Zhang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jie Xu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaoting Mao
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Feilong Meng
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Huijun Shen
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihong Lu
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohui Cang
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Haidong Fu
- Department of Nephrology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shugang Wang
- Chigene (Beijing) Translational Medical Research Center, Chigene (Beijing) Translational Medical Research Center, Guangzhou, China
| | - Weiyue Gu
- Chigene (Beijing) Translational Medical Research Center, Chigene (Beijing) Translational Medical Research Center, Guangzhou, China
| | - En Yin Lai
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Minxin Guan
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Pingping Jiang
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
21
|
Jiang Z, Cai X, Kong J, Zhang R, Ding Y. Maternally transmitted diabetes mellitus may be associated with mitochondrial ND5 T12338C and tRNA Ala T5587C variants. Ir J Med Sci 2022; 191:2625-2633. [PMID: 34993838 DOI: 10.1007/s11845-021-02911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/25/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Mutations/variants in mitochondrial genomes are found to be associated with type 2 diabetes mellitus (T2DM), but the pathophysiology of this disease remains largely unknown. AIM The aim of this study is to investigate the relationship between mitochondrial DNA (mtDNA) variants and T2DM. METHODOLOGY A maternally inherited T2DM pedigree is underwent clinical, genetic, and molecular assessment. Moreover, the complete mitochondrial genomes of the matrilineal relatives of this family are PCR amplified and sequenced. We also utilize the phylogenetic conservation analysis, haplogroup classification, and the pathogenicity scoring system to determine the T2DM-associated potential pathogenic mtDNA variants. RESULT Four of seven matrilineal relatives of this pedigree suffered from T2DM with variable ages of onset. Screening for the entire mtDNA genes of matrilineal members reveals co-existence of ND5 T12338C and tRNAAla T5587C variants, as well as 21 genetic polymorphisms which belong to East Asian haplogroup F2. Interestingly, the T12338C variant causes the alternation of first amino acid Met to Thr, shortened two amino acids of ND5 protein. Furthermore, T5587C variant is located at position 73 in the 3'end of mt-tRNAAla and may have structural and functional consequences. CONCLUSIONS The co-occurrence of ND5 T12338C and tRNAAla T5587C variants may impair the mitochondrial function, which are associated with the development of T2DM in this family.
Collapse
Affiliation(s)
- Zhaochang Jiang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Cai
- Department of Pathology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, China
| | - Jing Kong
- Department of Endocrinology and Metabolism, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyi Zhang
- Department of Pathology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
22
|
Li M, Gong S, Han X, Zhou L, Zhang S, Ren Q, Cai X, Luo Y, Liu W, Zhu Y, Zhou X, Li Y, Ji L. Contribution of mitochondrial gene variants in diabetes and diabetic kidney disease. Front Endocrinol (Lausanne) 2022; 13:953631. [PMID: 36313763 PMCID: PMC9597463 DOI: 10.3389/fendo.2022.953631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES Mitochondrial DNA (mtDNA) plays an important role in the pathogenesis of diabetes. Variants in mtDNA have been reported in diabetes, but studies on the whole mtDNA variants were limited. Our study aims to explore the association of whole mtDNA variants with diabetes and diabetic kidney disease (DKD). METHODS The whole mitochondrial genome was screened by next-generation sequencing in cohort 1 consisting of 50 early-onset diabetes (EOD) patients with a maternally inherited diabetes (MID) family history. A total of 42 variants possibly associated with mitochondrial diseases were identified according to the filtering strategy. These variants were sequenced in cohort 2 consisting of 90 EOD patients with MID. The association between the clinical phenotype and these variants was analyzed. Then, these variants were genotyped in cohort 3 consisting of 1,571 type 2 diabetes mellitus patients and 496 subjects with normal glucose tolerance (NGT) to analyze the association between variants with diabetes and DKD. RESULTS Patients with variants in the non-coding region had a higher percentage of obesity and levels of fasting insulin (62.1% vs. 24.6%, P = 0.001; 80.0% vs. 26.5% P < 0.001). The patients with the variants in rRNA had a higher prevalence of obesity (71.4% vs. 30.3%, P = 0.007), and the patients with the variants in mitochondrial complex I had a higher percentage of the upper tertile of FINS (64.3% vs. 34.3%, P = 0.049). Among 20 homogeneous variants successfully captured, two known variants (m.A3943G, m.A10005G) associated with other mitochondrial diseases were only in the diabetic group, but not in the NGT group, which perhaps indicated its possible association with diabetes. The prevalence of DKD was significantly higher in the group with the 20 variants than those without these variants (18.7% vs. 14.6%, P = 0.049) in the participants with diabetes of cohort 3. CONCLUSION MtDNA variants are associated with MID and DKD, and our findings advance our understanding of mtDNA in diabetes and DKD. It will have important implications for the individual therapy of mitochondrial diabetes.
Collapse
Affiliation(s)
- Meng Li
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Department of Endocrinology, Pinggu Teaching Hospital, Capital Medical University, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Peking University Diabetes Center, Beijing, China
- *Correspondence: Linong Ji,
| |
Collapse
|
23
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:3068-3082. [DOI: 10.1093/hmg/ddac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
|
24
|
Zhang XH, Xie Y, Xu QG, Cao K, Xu K, Jin ZB, Li Y, Wei SH. Mitochondrial Mutations in Ethambutol-Induced Optic Neuropathy. Front Cell Dev Biol 2021; 9:754676. [PMID: 34676220 PMCID: PMC8525703 DOI: 10.3389/fcell.2021.754676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Ethambutol-induced optic neuropathy (EON) is a well-recognized ocular complication in patients who take ethambutol as a tuberculosis treatment. The aim of the current study was to investigate the presence of mitochondrial mutations, including OPA1 and Leber's hereditary optic neuropathy (LHON)-mitochondrial DNA (mtDNA), in patients with EON and to determine their effect on clinical features of these patients. Methods: All 47 patients underwent clinical evaluations, including best-corrected visual acuity, fundus examination, and color fundus photography; 37 patients were then followed up over time. Molecular screening methods, including PCR-based sequencing of the OPA1 gene and LHON-mtDNA mutations, together with targeted exome sequencing, were used to detect mutations. Results: We detected 15 OPA1 mutations in 18 patients and two LHON-mtDNA mutations in four patients, for an overall mutation detection rate of 46.8%. The mean presentation age was significantly younger in the patients with the mitochondrial mutations (27.5 years) than in those without mutations (48 years). Fundus examination revealed a greater prevalence of optic disc hyperemia in the patients with mutations (70.5%) than without mutations (48%). Half of the patients with mutations and 91% of the patients without mutations had improved vision. After adjusting for confounders, the logistic regression revealed that the patients with optic disc pallor on the first visit (p = 0.004) or the patients with the mitochondrial mutations (p < 0.001) had a poorer vision prognosis. Conclusion: Our results indicated that carriers with OPA1 mutations might be more vulnerable for the toxicity of EMB to develop EON.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China.,Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yue Xie
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Quan-Gang Xu
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| | - Kai Cao
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ke Xu
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zi-Bing Jin
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Li
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shi-Hui Wei
- Department of Ophthalmology, The Chinese People's Liberation Army General Hospital, The Chinese People's Liberation Army Medical School, Beijing, China
| |
Collapse
|
25
|
Villarejo-Zori B, Jiménez-Loygorri JI, Zapata-Muñoz J, Bell K, Boya P. New insights into the role of autophagy in retinal and eye diseases. Mol Aspects Med 2021; 82:101038. [PMID: 34620506 DOI: 10.1016/j.mam.2021.101038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Autophagy is a fundamental homeostatic pathway that mediates the degradation and recycling of intracellular components. It serves as a key quality control mechanism, especially in non-dividing cells such as neurons. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. The retina is a light-sensitive tissue located in the back of the eye that detects and processes visual images. Vision is a highly demanding process, making the eye one of the most metabolically active tissues in the body and photoreceptors display glycolytic metabolism, even in the presence of oxygen. The retina and eye are also exposed to other stressors that can impair their function, including genetic mutations and age-associated changes. Autophagy, among other pathways, is therefore a key process for the preservation of retinal homeostasis. Here, we review the roles of both canonical and non-canonical autophagy in normal retinal function. We discuss the most recent studies investigating the participation of autophagy in eye diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy and its role protecting photoreceptors in several forms of retinal degeneration. Finally, we consider the therapeutic potential of strategies that target autophagy pathways to treat prevalent retinal and eye diseases.
Collapse
Affiliation(s)
- Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain
| | - Katharina Bell
- Singapore Eye Research Institute, Singapore National Eye Centre, Republic of Singapore
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Margarita Salas Center for Biological Research, CSIC, Ramiro de Maetzu, 9, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Zhang J, Ji Y, Chen J, Xu M, Wang G, Ci X, Lin B, Mo JQ, Zhou X, Guan MX. Assocation Between Leber's Hereditary Optic Neuropathy and MT-ND1 3460G>A Mutation-Induced Alterations in Mitochondrial Function, Apoptosis, and Mitophagy. Invest Ophthalmol Vis Sci 2021; 62:38. [PMID: 34311469 PMCID: PMC8322717 DOI: 10.1167/iovs.62.9.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-linked MT-ND1 3460G>A mutation. Methods Cybrid cell models were generated by fusing mitochondrial DNA-less ρ0 cells with enucleated cells from a patient carrying the m.3460G>A mutation and a control subject. The impact of m.3460G>A mutations on oxidative phosphorylation was evaluated using Blue Native gel electrophoresis, and measurements of oxygen consumption were made with an extracellular flux analyzer. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Assays for apoptosis and mitophagy were undertaken via immunofluorescence analysis. Results Nineteen Chinese Han pedigrees bearing the m.3460G>A mutation exhibited variable penetrance and expression of LHON. The m.3460G>A mutation altered the structure and function of MT-ND1, as evidenced by reduced MT-ND1 levels in mutant cybrids bearing the mutation. The instability of mutated MT-ND1 manifested as defects in the assembly and activity of complex I, respiratory deficiency, diminished mitochondrial adenosine triphosphate production, and decreased membrane potential, in addition to increased production of mitochondrial ROS in the mutant cybrids carrying the m.3460G>A mutation. The m.3460G>A mutation mediated apoptosis, as evidenced by the elevated release of cytochrome c into the cytosol and increasing levels of the apoptotic-associated proteins BAK, BAX, and PARP, as well as cleaved caspases 3, 7, and 9, in the mutant cybrids. The cybrids bearing the m.3460G>A mutation exhibited reduced levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PTEN-induced kinase 1/parkin-dependent mitophagy. Conclusions Our findings highlight the critical role of m.3460G>A mutation in the pathogenesis of LHON, manifested by mitochondrial dysfunction and alterations in apoptosis and mitophagy.
Collapse
Affiliation(s)
- Juanjuan Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jie Chen
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Man Xu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoping Wang
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaorui Ci
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bing Lin
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California at San Diego School of Medicine, San Diego, California, United States
| | - Xiangtian Zhou
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Xin Guan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Jin X, Zhang J, Yi Q, Meng F, Yu J, Ji Y, Mo JQ, Tong Y, Jiang P, Guan MX. Leber's Hereditary Optic Neuropathy Arising From the Synergy Between ND1 3635G>A Mutation and Mitochondrial YARS2 Mutations. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 34156427 PMCID: PMC8237128 DOI: 10.1167/iovs.62.7.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose To investigate the mechanism underlying the synergic interaction between Leber's hereditary optic neuropathy (LHON)-associated ND1 and mitochondrial tyrosyl-tRNA synthetase (YARS2) mutations. Methods Molecular dynamics simulation and differential scanning fluorimetry were used to evaluate the structure and stability of proteins. The impact of ND1 3635G>A and YARS2 p.G191V mutations on the oxidative phosphorylation machinery was evaluated using blue native gel electrophoresis and enzymatic activities assays. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analysis of effect of mutations on autophagy was undertaken via flow cytometry for autophagic flux. Results Members of one Chinese family bearing both the YARS2 p.191Gly>Val and m.3635G>A mutations exhibited much higher penetrance of optic neuropathy than those pedigrees carrying only the m.3635G>A mutation. The m.3635G>A (p.Ser110Asn) mutation altered the ND1 structure and function, whereas the p.191Gly>Val mutation affected the stability of YARS2. Lymphoblastoid cell lines harboring both m.3635G>A and p.191Gly>Val mutations revealed more reductions in the levels of mitochondrion-encoding ND1 and CO2 than cells bearing only the m.3635G>A mutation. Strikingly, both m.3635G>A and p.191Gly>Val mutations exhibited decreases in the nucleus-encoding subunits of complex I and IV. These deficiencies manifested greater defects in the stability and activities of complex I and complex IV and overproduction of ROS and promoted greater autophagy in cell lines harboring both m.3635G>A and p.191Gly>Val mutations compared with cells bearing only the m.3635G>A mutation. Conclusions Our findings provide new insights into the pathophysiology of LHON arising from the synergy between ND1 3635G>A mutation and mitochondrial YARS2 mutations.
Collapse
Affiliation(s)
- Xiaofen Jin
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jialing Yu
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jun Q Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, United States
| | - Yi Tong
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping Jiang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Key Laboratory of Reproductive Genetics, Ministry of Education of PRC, The Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, and National Clinic Research Center for Child Health, Hangzhou, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Hangzhou, Zhejiang, China.,Zhejiang University-University of Toronto Joint Institute of Genetics and Genome Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Summerhill VI, Sukhorukov VN, Eid AH, Nedosugova LV, Sobenin IA, Orekhov AN. Pathophysiological Aspects of the Development of Abdominal Aortic Aneurysm with a Special Focus on Mitochondrial Dysfunction and Genetic Associations. Biomol Concepts 2021; 12:55-67. [PMID: 34115932 DOI: 10.1515/bmc-2021-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a complex degenerative vascular disease, with considerable morbidity and mortality rates among the elderly population. The mortality of AAA is related to aneurysm expansion (the enlargement of the aortic diameter up to 30 mm and above) and the subsequent rupture. The pathogenesis of AAA involves several biological processes, including aortic mural inflammation, oxidative stress, vascular smooth muscle cell apoptosis, elastin depletion, and degradation of the extracellular matrix. Mitochondrial dysfunction was also found to be associated with AAA formation. The evidence accumulated to date supports a close relationship between environmental and genetic factors in AAA initiation and progression. However, a comprehensive pathophysiological understanding of AAA formation remains incomplete. The open surgical repair of AAA is the only therapeutic option currently available, while a specific pharmacotherapy is still awaited. Therefore, there is a great need to clarify pathophysiological cellular and molecular mechanisms underlying AAA formation that would help to develop effective pharmacological therapies. In this review, pathophysiological aspects of AAA development with a special focus on mitochondrial dysfunction and genetic associations were discussed.
Collapse
Affiliation(s)
- Volha I Summerhill
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia
| | - Vasily N Sukhorukov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut-Lebanon
| | - Ludmila V Nedosugova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 8/2 Trubenskaya Street, Moscow 119991, Russia
| | - Igor A Sobenin
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia.,Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Street, Moscow 121552, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| | - Alexander N Orekhov
- Department of Basic Research, Institute for Atherosclerosis Research, Moscow 121609, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 3 Tsyurupa Street, Moscow 117418, Russia
| |
Collapse
|
29
|
Mechanistic insights into mitochondrial tRNA Ala 3'-end metabolism deficiency. J Biol Chem 2021; 297:100816. [PMID: 34023389 PMCID: PMC8212662 DOI: 10.1016/j.jbc.2021.100816] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial tRNA 3’-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3’-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber’s hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3’-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5587A>G mutation altered tRNAAla 3’-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3’-end processing of tRNAAla precursors by RNase Z and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3’-end metabolism deficiency.
Collapse
|
30
|
Orekhov AN, Gerasimova EV, Sukhorukov VN, Poznyak AV, Nikiforov NG. Do Mitochondrial DNA Mutations Play a Key Role in the Chronification of Sterile Inflammation? Special Focus on Atherosclerosis. Curr Pharm Des 2021; 27:276-292. [PMID: 33045961 DOI: 10.2174/1381612826666201012164330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The aim of the elucidation of mechanisms implicated in the chronification of inflammation is to shed light on the pathogenesis of disorders that are responsible for the majority of the incidences of diseases and deaths, and also causes of ageing. Atherosclerosis is an example of the most significant inflammatory pathology. The inflammatory response of innate immunity is implicated in the development of atherosclerosis arising locally or focally. Modified low-density lipoprotein (LDL) was regarded as the trigger for this response. No atherosclerotic changes in the arterial wall occur due to the quick decrease in inflammation rate. Nonetheless, the atherosclerotic lesion formation can be a result of the chronification of local inflammation, which, in turn, is caused by alteration of the response of innate immunity. OBJECTIVE In this review, we discussed potential mechanisms of the altered response of the immunity in atherosclerosis with a particular emphasis on mitochondrial dysfunctions. CONCLUSION A few mitochondrial dysfunctions can be caused by the mitochondrial DNA (mtDNA) mutations. Moreover, mtDNA mutations were found to affect the development of defective mitophagy. Modern investigations have demonstrated the controlling mitophagy function in response to the immune system. Therefore, we hypothesized that impaired mitophagy, as a consequence of mutations in mtDNA, can raise a disturbed innate immunity response, resulting in the chronification of inflammation in atherosclerosis.
Collapse
Affiliation(s)
- Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, 125315 Moscow, Russian Federation
| | - Elena V Gerasimova
- V. A. Nasonova Institute of Rheumatology, 115522 Moscow, Russian Federation
| | | | | | - Nikita G Nikiforov
- Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
| |
Collapse
|
31
|
Ji K, Wang W, Lin Y, Xu X, Liu F, Wang D, Zhao Y, Yan C. Mitochondrial encephalopathy Due to a Novel Pathogenic Mitochondrial tRNA Gln m.4349C>T Variant. Ann Clin Transl Neurol 2021; 7:980-991. [PMID: 32588991 PMCID: PMC7318088 DOI: 10.1002/acn3.51069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Mitochondrial diseases are a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA, among which, mutations in mitochondrial tRNA genes possessing prominent status. In most of the cases, however, the detailed molecular pathogenesis of these tRNA gene mutations remains unclear. METHODS We performed the clinical emulation, muscle histochemistry, northern blotting analysis of tRNA levels, biochemical measurement of respiratory chain complex activities and mitochondrial respirations in muscle tissue and cybrid cells. RESULTS We found a novel m.4349C>T mutation in mitochondrial tRNAGln gene in a patient present with encephalopathy, epilepsy, and deafness. We demonstrated molecular pathomechanisms of this mutation. This mutation firstly disturbed the translation machinery of mitochondrial tRNAGln and impaired mitochondrial respiratory chain complex activities, followed by remarkable mitochondrial dysfunction and ROS production. INTERPRETATION This study illustrated the pathogenicity of a novel m.4349C>T mutation and provided a better understanding of the phenotype associated with mutations in mitochondrial tRNAGln gene.
Collapse
Affiliation(s)
- Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Wei Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Xuebi Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Fuchen Liu
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Dongdong Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Shandong University, Jinan, Shandong, 250000, China.,Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, 266035, China.,Brain Science Research Institute, Shandong University, Jinan, Shandong, 250000, China
| |
Collapse
|
32
|
田 雨, 陈 正. [Progress in genetic susceptibility to aminoglycoside-induced deafness]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:375-379. [PMID: 33794642 PMCID: PMC10128447 DOI: 10.13201/j.issn.2096-7993.2021.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 06/12/2023]
Abstract
Aminoglycoside antibiotics can cause irreversible hearing loss, but they are still widely used because of their low production cost and broad-spectrum effect on most infections. Although it has been studied for decades, the mechanism of aminoglycoside-induced deafness has not been fully elucidated. Since patients'individual susceptibility to aminoglycoside-ototoxicity varies considerably, it is necessary to identify high-risk patients. This review summarizes the genetic mutations linked to aminoglycoside-induced deafness, in order to provide reference for further prevention and treatment of aminoglycoside-induced deafness.
Collapse
Affiliation(s)
- 雨鑫 田
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海交通大学耳鼻咽喉科研究所 上海市睡眠呼吸障碍疾病重点实验室(上海,200233)
| | - 正侬 陈
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海交通大学耳鼻咽喉科研究所 上海市睡眠呼吸障碍疾病重点实验室(上海,200233)
| |
Collapse
|
33
|
Engvall M, Kawasaki A, Carelli V, Wibom R, Bruhn H, Lesko N, Schober FA, Wredenberg A, Wedell A, Träisk F. Case Report: A Novel Mutation in the Mitochondrial MT-ND5 Gene Is Associated With Leber Hereditary Optic Neuropathy (LHON). Front Neurol 2021; 12:652590. [PMID: 33841319 PMCID: PMC8027302 DOI: 10.3389/fneur.2021.652590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Leber hereditary optic neuropathy (LHON) is a mitochondrial disease causing severe bilateral visual loss, typically in young adults. The disorder is commonly caused by one of three primary point mutations in mitochondrial DNA, but a number of other rare mutations causing or associated with the clinical syndrome of LHON have been reported. The mutations in LHON are almost exclusively located in genes encoding subunits of complex I in the mitochondrial respiratory chain. Here we report two patients, a mother and her son, with the typical LHON phenotype. Genetic investigations for the three common mutations were negative, instead we found a new and previously unreported mutation in mitochondrial DNA. This homoplasmic mutation, m.13345G>A, is located in the MT-ND5 gene, encoding a core subunit in complex I in the mitochondrial respiratory chain. Investigation of the patients mitochondrial respiratory chain in muscle found a mild defect in the combined activity of complex I+III. In the literature six other mutations in the MT-ND5 gene have been associated with LHON and by this report a new putative mutation in the MT-ND5 can be added.
Collapse
Affiliation(s)
- Martin Engvall
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Aki Kawasaki
- Hopital Ophtalmique Jules Gonin, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Valerio Carelli
- Programma di Neurogenetica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Rolf Wibom
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helene Bruhn
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicole Lesko
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Florian A Schober
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wredenberg
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Träisk
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Solna, Sweden.,Department of Neuro-Ophthalmology, St.Erik Eye Hospital, Solna, Sweden
| |
Collapse
|
34
|
Skeie JM, Nishimura DY, Wang CL, Schmidt GA, Aldrich BT, Greiner MA. Mitophagy: An Emerging Target in Ocular Pathology. Invest Ophthalmol Vis Sci 2021; 62:22. [PMID: 33724294 PMCID: PMC7980050 DOI: 10.1167/iovs.62.3.22] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial function is essential for the viability of aerobic eukaryotic cells, as mitochondria provide energy through the generation of adenosine triphosphate (ATP), regulate cellular metabolism, provide redox balancing, participate in immune signaling, and can initiate apoptosis. Mitochondria are dynamic organelles that participate in a cyclical and ongoing process of regeneration and autophagy (clearance), termed mitophagy specifically for mitochondrial (macro)autophagy. An imbalance in mitochondrial function toward mitochondrial dysfunction can be catastrophic for cells and has been characterized in several common ophthalmic diseases. In this article, we review mitochondrial homeostasis in detail, focusing on the balance of mitochondrial dynamics including the processes of fission and fusion, and provide a description of the mechanisms involved in mitophagy. Furthermore, this article reviews investigations of ocular diseases with impaired mitophagy, including Fuchs endothelial corneal dystrophy, primary open-angle glaucoma, diabetic retinopathy, and age-related macular degeneration, as well as several primary mitochondrial diseases with ocular phenotypes that display impaired mitophagy, including mitochondrial encephalopathy lactic acidosis stroke, Leber hereditary optic neuropathy, and chronic progressive external ophthalmoplegia. The results of various studies using cell culture, animal, and human tissue models are presented and reflect a growing awareness of mitophagy impairment as an important feature of ophthalmic disease pathology. As this review indicates, it is imperative that mitophagy be investigated as a targetable mechanism in developing therapies for ocular diseases characterized by oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jessica M. Skeie
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Darryl Y. Nishimura
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Cheryl L. Wang
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
| | | | - Benjamin T. Aldrich
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| | - Mark A. Greiner
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States
- Iowa Lions Eye Bank, Coralville, Iowa, United States
| |
Collapse
|
35
|
Meng F, Zhou M, Xiao Y, Mao X, Zheng J, Lin J, Lin T, Ye Z, Cang X, Fu Y, Wang M, Guan MX. A deafness-associated tRNA mutation caused pleiotropic effects on the m1G37 modification, processing, stability and aminoacylation of tRNAIle and mitochondrial translation. Nucleic Acids Res 2021; 49:1075-1093. [PMID: 33398350 PMCID: PMC7826259 DOI: 10.1093/nar/gkaa1225] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/16/2023] Open
Abstract
Defects in the posttranscriptional modifications of mitochondrial tRNAs have been linked to human diseases, but their pathophysiology remains elusive. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAIle 4295A>G mutation affecting a highly conserved adenosine at position 37, 3′ adjacent to the tRNA’s anticodon. Primer extension and methylation activity assays revealed that the m.4295A>G mutation introduced a tRNA methyltransferase 5 (TRMT5)-catalyzed m1G37 modification of tRNAIle. Molecular dynamics simulations suggested that the m.4295A>G mutation affected tRNAIle structure and function, supported by increased melting temperature, conformational changes and instability of mutated tRNA. An in vitro processing experiment revealed that the m.4295A>G mutation reduced the 5′ end processing efficiency of tRNAIle precursors, catalyzed by RNase P. We demonstrated that cybrid cell lines carrying the m.4295A>G mutation exhibited significant alterations in aminoacylation and steady-state levels of tRNAIle. The aberrant tRNA metabolism resulted in the impairment of mitochondrial translation, respiratory deficiency, decreasing membrane potentials and ATP production, increasing production of reactive oxygen species and promoting autophagy. These demonstrated the pleiotropic effects of m.4295A>G mutation on tRNAIle and mitochondrial functions. Our findings highlighted the essential role of deficient posttranscriptional modifications in the structure and function of tRNA and their pathogenic consequence of deafness.
Collapse
Affiliation(s)
- Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Mi Zhou
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoting Mao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing Zheng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Jiaxi Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tianxiang Lin
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhenzhen Ye
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Fu
- Division of Otolaryngology-Head and Neck Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
36
|
Association Study Between Genetic Variation in Whole Mitochondrial Genome and Ischemic Stroke. J Mol Neurosci 2021; 71:2152-2162. [PMID: 33447902 DOI: 10.1007/s12031-020-01778-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Mitochondrial DNA (mtDNA) affects the mitochondrial function, which is potentially related to susceptibility to ischemic stroke (IS). However, study on IS genetics by whole mitochondrial genome sequencing has not been extensively explored. Therefore, a two-stage study was designed to explore the relationship between the whole mitochondrial genome variants and IS. In the first stage, whole mitochondrial genomes of 52 IS patients and 55 controls were sequenced by next-generation sequencing. Fifty-three mtDNA mutation sites which may be related to the pathogenesis of IS were discovered. Nine unreported mtDNA variation sites were found for the first time. In the second larger Chinese cohort, we confirmed that m.T195C and m.T12338C in the mitochondrial D-loop region were the protective factors of IS, especially m.T195C and m.C311T in the LAA subtype. In conclusion, our study provided population genetic information and a reference for IS-relevant research, with wide applications in diagnosis, therapeutic treatments and prediction of IS.
Collapse
|
37
|
Sun D, Niu Z, Zheng HX, Wu F, Jiang L, Han TQ, Wei Y, Wang J, Jin L. A Mitochondrial DNA Variant Elevates the Risk of Gallstone Disease by Altering Mitochondrial Function. Cell Mol Gastroenterol Hepatol 2020; 11:1211-1226.e15. [PMID: 33279689 PMCID: PMC8053626 DOI: 10.1016/j.jcmgh.2020.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Gallstone disease (cholelithiasis) is a cholesterol-related metabolic disorders with strong familial predisposition. Mitochondrial DNA (mtDNA) variants accumulated during human evolution are associated with some metabolic disorders related to modified mitochondrial function. The mechanistic links between mtDNA variants and gallstone formation need further exploration. METHODS In this study, we explored the possible associations of mtDNA variants with gallstone disease by comparing 104 probands and 300 controls in a Chinese population. We constructed corresponding cybrids using trans-mitochondrial technology to investigate the underlying mechanisms of these associations. Mitochondrial respiratory chain complex activity and function and cholesterol metabolism were assessed in the trans-mitochondrial cell models. RESULTS Here, we found a significant association of mtDNA 827A>G with an increased risk of familial gallstone disease in a Chinese population (odds ratio [OR]: 4.5, 95% confidence interval [CI]: 2.1-9.4, P=1.2×10-4). Compared with 827A cybrids (haplogroups B4a and B4c), 827G cybrids (haplogroups B4b and B4d) had impaired mitochondrial respiratory chain complex activity and function and activated JNK and AMPK signaling pathways. Additionally, the 827G cybrids showed disturbances in cholesterol transport and accelerated development of gallstones. Specifically, cholesterol transport through the transporter ABCG5/8 was increased via activation of the AMPK signaling pathway in 827G cybrids. CONCLUSIONS Our findings reveal that mtDNA 827A>G induces aberrant mitochondrial function and abnormal cholesterol transport, resulting in increased occurrence of gallstones. The results provide an important biological basis for the clinical diagnosis and prevention of gallstone disease in the future.
Collapse
Affiliation(s)
- Dayan Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Zhenmin Niu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Academy of Science and Technology, Shanghai, China
| | - Hong-Xiang Zheng
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Fei Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Liuyiqi Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Tian-Quan Han
- Shanghai Institute of Digestive Surgery, Department of Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yang Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China; Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China; Taizhou Institute of Health Sciences, Fudan University, Taizhou, China.
| |
Collapse
|
38
|
Xiao Y, Wang M, He Q, Xu L, Zhang Q, Meng F, Jia Z, Zhang F, Wang H, Guan MX. Asymmetrical effects of deafness-associated mitochondrial DNA 7516delA mutation on the processing of RNAs in the H-strand and L-strand polycistronic transcripts. Nucleic Acids Res 2020; 48:11113-11129. [PMID: 33045734 PMCID: PMC7641755 DOI: 10.1093/nar/gkaa860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
In this report, we investigated the molecular mechanism underlying a deafness-associated m.7516delA mutation affecting the 5′ end processing sites of mitochondrial tRNAAsp and tRNASer(UCN). An in vitro processing experiment demonstrated that m.7516delA mutation caused the aberrant 5′ end processing of tRNASer(UCN) and tRNAAsp precursors, catalyzed by RNase P. Using cytoplasmic hybrids (cybrids) derived from one hearing-impaired Chinese family bearing the m.7516delA mutation and control, we demonstrated the asymmetrical effects of m.7516delA mutation on the processing of tRNAs in the heavy (H)-strand and light (L)-strand polycistronic transcripts. Specially, the m.7516delA mutation caused the decreased levels of tRNASer(UCN) and downstream five tRNAs, including tRNATyr from the L-strand transcripts and tRNAAsp from the H-strand transcripts. Strikingly, mutant cybrids exhibited the lower level of COX2 mRNA and accumulation of longer and uncleaved precursors of COX2 from the H-strand transcripts. Aberrant RNA metabolisms yielded variable reductions in the mitochondrial proteins, especially marked reductions in the levels of ND4, ND5, CO1, CO2 and CO3. The impairment of mitochondrial translation caused the proteostasis stress and respiratory deficiency, diminished ATP production and membrane potential, increased production of reactive oxygen species and promoted apoptosis. Our findings provide new insights into the pathophysiology of deafness arising from mitochondrial tRNA processing defects.
Collapse
Affiliation(s)
- Yun Xiao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qiufen He
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Qinghai Zhang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zidong Jia
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China
| | - Fengguo Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong 250022, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
39
|
Ji K, Lin Y, Xu X, Wang W, Wang D, Zhang C, Li W, Zhao Y, Yan C. MELAS-associated m.5541C>T mutation caused instability of mitochondrial tRNA Trp and remarkable mitochondrial dysfunction. J Med Genet 2020; 59:79-87. [PMID: 33208382 DOI: 10.1136/jmedgenet-2020-107323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/13/2020] [Accepted: 10/24/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episode (MELAS) is a group of genetic diseases caused by mutations in mitochondrial DNA and nuclear DNA. The causative mutations of MELAS have drawn much attention, among them, mutations in mitochondrial tRNA genes possessing prominent status. However, the detailed molecular pathogenesis of these tRNA gene mutations remains unclear and there are very few effective therapies available to date. METHODS We performed muscle histochemistry, genetic analysis, molecular dynamic stimulation and measurement of oxygen consumption rate and respiratory chain complex activities to demonstrate the molecular pathomechanisms of m.5541C>T mutation. Moreover, we use cybrid cells to investigate the potential of taurine to rescue mitochondrial dysfunction caused by this mutation. RESULTS We found a pathogenic m.5541C>T mutation in the tRNATrp gene in a large MELAS family. This mutation first affected the maturation and stability of tRNATrp and impaired mitochondrial respiratory chain complex activities, followed by remarkable mitochondrial dysfunction. Surprisingly, we identified that the supplementation of taurine almost completely restored mitochondrial tRNATrp levels and mitochondrial respiration deficiency at the in vitro cell level. CONCLUSION The m.5541C>T mutation disturbed the translation machinery of mitochondrial tRNATrp and taurine supplementation may be a potential treatment for patients with m.5541C>T mutation. Further studies are needed to explore the full potential of taurine supplementation as therapy for patients with this mutation.
Collapse
Affiliation(s)
- Kunqian Ji
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases of Shandong University, Jinan, China
| | - Yan Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuebi Xu
- Department of Neurology, Wenzhou Medical University First Affiliated Hospital, Wenzhou, Zhejiang, China
| | - Wei Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongdong Wang
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chen Zhang
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingda, China
| | - Wei Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yuying Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, Shandong, China .,Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases of Shandong University, Jinan, China.,Brain Science Research Institute of Shandong University, Jinan, China
| |
Collapse
|
40
|
Whole Mitochondrial Genome Analysis in Serbian Cases of Leber's Hereditary Optic Neuropathy. Genes (Basel) 2020; 11:genes11091037. [PMID: 32887465 PMCID: PMC7565519 DOI: 10.3390/genes11091037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Leber’s hereditary optic neuropathy (LHON) is a maternally inherited disorder that affects central vision in young adults and is typically associated with mitochondrial DNA (mtDNA) mutations. This study is based on a mutational screening of entire mtDNA in eight Serbian probands clinically and genetically diagnosed with LHON and four of their family members, who are asymptomatic mutation carriers. All obtained sequence variants were compared to human mtDNA databases, and their potential pathogenic characteristics were assessed by bioinformatics tools. Mitochondrial haplogroup analysis was performed by MITOMASTER. Our study revealed two well-known primary LHON mutations, m.11778G>A and m.3460G>A, and one rare LHON mutation, m.8836A>G. Various secondary mutations were detected in association with the primary mutations. MITOMASTER analysis showed that the two well-known primary mutations belong to the R haplogroup, while the rare LHON m.8836A>G was detected within the N1b haplogroup. Our results support the need for further studies of genetic background and its role in the penetrance and severity of LHON.
Collapse
|
41
|
Yu J, Liang X, Ji Y, Ai C, Liu J, Zhu L, Nie Z, Jin X, Wang C, Zhang J, Zhao F, Mei S, Zhao X, Zhou X, Zhang M, Wang M, Huang T, Jiang P, Guan MX. PRICKLE3 linked to ATPase biogenesis manifested Leber's hereditary optic neuropathy. J Clin Invest 2020; 130:4935-4946. [PMID: 32516135 PMCID: PMC7456240 DOI: 10.1172/jci134965] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease. X-linked nuclear modifiers were proposed to modify the phenotypic manifestation of LHON-associated mitochondrial DNA (mtDNA) mutations. By whole-exome sequencing, we identified the X-linked LHON modifier (c.157C>T, p.Arg53Trp) in PRICKLE3 encoding a mitochondrial protein linked to biogenesis of ATPase in 3 Chinese families. All affected individuals carried both ND4 11778G>A and p.Arg53Trp mutations, while subjects bearing only a single mutation exhibited normal vision. The cells carrying the p.Arg53Trp mutation exhibited defective assembly, stability, and function of ATP synthase, verified by PRICKLE3-knockdown cells. Coimmunoprecipitation indicated the direct interaction of PRICKLE3 with ATP synthase via ATP8. Strikingly, cells bearing both p.Arg53Trp and m.11778G>A mutations displayed greater mitochondrial dysfunction than those carrying only a single mutation. This finding indicated that the p.Arg53Trp mutation acted in synergy with the m.11778G>A mutation and deteriorated mitochondrial dysfunctions necessary for the expression of LHON. Furthermore, we demonstrated that Prickle3-deficient mice exhibited pronounced ATPase deficiencies. Prickle3-knockout mice recapitulated LHON phenotypes with retinal deficiencies, including degeneration of retinal ganglion cells and abnormal vasculature. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutations and X-linked nuclear modifiers.
Collapse
Affiliation(s)
- Jialing Yu
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
| | - Xiaoyang Liang
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanchun Ji
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Ai
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Junxia Liu
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Zhu
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Nie
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofen Jin
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
| | - Chenghui Wang
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Juanjuan Zhang
- Institute of Genetics and
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fuxin Zhao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shuang Mei
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxu Zhao
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Institute of Genetics and
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou, China
- Joint Institute of Genetics and Genomic Medicine, Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Ji Y, Zhang J, Lu Y, Yi Q, Chen M, Xie S, Mao X, Xiao Y, Meng F, Zhang M, Yang R, Guan MX. Complex I mutations synergize to worsen the phenotypic expression of Leber's hereditary optic neuropathy. J Biol Chem 2020; 295:13224-13238. [PMID: 32723871 DOI: 10.1074/jbc.ra120.014603] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternal inheritance of eye disease because of the mitochondrial DNA (mtDNA) mutations. We previously discovered a 3866T>C mutation within the gene for the ND1 subunit of complex I as possibly amplifying disease progression for patients bearing the disease-causing 11778G>A mutation within the gene for the ND4 subunit of complex I. However, whether and how the ND1 mutation exacerbates the ND4 mutation were unknown. In this report, we showed that four Chinese families bearing both m.3866T>C and m.11778G>A mutations exhibited higher penetrances of LHON than 6 Chinese pedigrees carrying only the m.3866T>C mutation or families harboring only the m.11778G>A mutation. The protein structure analysis revealed that the m.3866T>C (I187T) and m.11778G>A (R340H) mutations destabilized the specific interactions with other residues of ND1 and ND4, thereby altering the structure and function of complex I. Cellular data obtained using cybrids, constructed by transferring mitochondria from the Chinese families into mtDNA-less (ρ°) cells, demonstrated that the mutations perturbed the stability, assembly, and activity of complex I, leading to changes in mitochondrial ATP levels and membrane potential and increasing the production of reactive oxygen species. These mitochondrial dysfunctions promoted the apoptotic sensitivity of cells and decreased mitophagy. Cybrids bearing only the m.3866T>C mutation displayed mild mitochondrial dysfunctions, whereas those harboring both m.3866T>C and m.11778G>A mutations exhibited greater mitochondrial dysfunctions. These suggested that the m.3866T>C mutation acted in synergy with the m.11778G>A mutation, aggravating mitochondrial dysfunctions and contributing to higher penetrance of LHON in these families carrying both mtDNA mutations.
Collapse
Affiliation(s)
- Yanchun Ji
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Lu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuzi Yi
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengquan Chen
- Department of Lab Medicine, Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Shipeng Xie
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Xiaoting Mao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Xiao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Rulai Yang
- Department of Genetics and Metabolic Diseases, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang, China; Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Bahr T, Welburn K, Donnelly J, Bai Y. Emerging model systems and treatment approaches for Leber's hereditary optic neuropathy: Challenges and opportunities. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165743. [PMID: 32105823 PMCID: PMC9252426 DOI: 10.1016/j.bbadis.2020.165743] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/24/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial disease mainly affecting retinal ganglion cells (RGCs). The pathogenesis of LHON remains ill-characterized due to a historic lack of effective disease models. Promising models have recently begun to emerge; however, less effective models remain popular. Many such models represent LHON using non-neuronal cells or assume that mutant mtDNA alone is sufficient to model the disease. This is problematic because context-specific factors play a significant role in LHON pathogenesis, as the mtDNA mutation itself is necessary but not sufficient to cause LHON. Effective models of LHON should be capable of demonstrating processes that distinguish healthy carrier cells from diseased cells. In light of these considerations, we review the pathophysiology of LHON as it relates to old, new and future models. We further discuss treatments for LHON and unanswered questions that might be explored using these new model systems.
Collapse
Affiliation(s)
- Tyler Bahr
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. First Author
| | - Kyle Welburn
- University of the Incarnate Word School of Medicine 7615 Kennedy Hill Drive, San Antonio, Texas 78235 Contributing Author
| | - Jonathan Donnelly
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229. Contributing author
| | - Yidong Bai
- University of Texas Health Science Center at San Antonio 7703 Floyd Curl Drive San Antonio, Texas 78229
| |
Collapse
|
44
|
Orekhov AN, Nikiforov NN, Ivanova EA, Sobenin IA. Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on Atherosclerosis. J Clin Med 2020; 9:jcm9040978. [PMID: 32244740 PMCID: PMC7230212 DOI: 10.3390/jcm9040978] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronification of inflammation is the process that lies at the basis of several human diseases that make up to 80% of morbidity and mortality worldwide. It can also explain a great deal of processes related to aging. Atherosclerosis is an example of the most important chronic inflammatory pathology in terms of public health impact. Atherogenesis is based on the inflammatory response of the innate immunity arising locally or focally. The main trigger for this response appears to be modified low-density lipoprotein (LDL), although other factors may also play a role. With the quick resolution of inflammation, atherosclerotic changes in the arterial wall do not occur. However, a violation of the innate immunity response can lead to chronification of local inflammation and, as a result, to atherosclerotic lesion formation. In this review, we discuss possible mechanisms of the impaired immune response with a special focus on mitochondrial dysfunction. Some mitochondrial dysfunctions may be due to mutations in mitochondrial DNA. Several mitochondrial DNA mutations leading to defective mitophagy have been identified. The regulatory role of mitophagy in the immune response has been shown in recent studies. We suggest that defective mitophagy promoted by mutations in mitochondrial DNA can cause innate immunity disorders leading to chronification of inflammation.
Collapse
Affiliation(s)
- Alexander N. Orekhov
- Laboratory for Angiopathology, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Laboratory of Infection Pathology and Molecular Microecology, Institute of Human Morphology, 117418 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Nikita N. Nikiforov
- Centre of Collective Usage, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia;
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia
| | - Ekaterina A. Ivanova
- Department of Basic Research, Institute for Atherosclerosis Research, 121609 Moscow, Russia
- Correspondence: (A.N.O.); (E.A.I.); Tel.: +7-903-169-08-66 (A.N.O.)
| | - Igor A. Sobenin
- Laboratory of Medical Genetics, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, 121552 Moscow, Russia;
| |
Collapse
|
45
|
Ji Y, Zhang J, Yu J, Wang Y, Lu Y, Liang M, Li Q, Jin X, Wei Y, Meng F, Gao Y, Cang X, Tong Y, Liu X, Zhang M, Jiang P, Zhu T, Mo JQ, Huang T, Jiang P, Guan MX. Contribution of mitochondrial ND1 3394T>C mutation to the phenotypic manifestation of Leber's hereditary optic neuropathy. Hum Mol Genet 2020; 28:1515-1529. [PMID: 30597069 DOI: 10.1093/hmg/ddy450] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/05/2018] [Accepted: 12/22/2018] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations have been associated with Leber's hereditary optic neuropathy (LHON) and their pathophysiology remains poorly understood. In this study, we investigated the pathophysiology of a LHON susceptibility allele (m.3394T>C, p.30Y>H) in the Mitochondrial (MT)-ND1 gene. The incidence of m.3394T>C mutation was 2.7% in the cohort of 1741 probands with LHON. Extremely low penetrances of LHON were observed in 26 pedigrees carrying only m.3394T>C mutation, while 21 families bearing m.3394T>C, together with m.11778G>A or m.14484T>C mutation, exhibited higher penetrance of LHON than those in families carrying single mtDNA mutation(s). The m.3394T>C mutation disrupted the specific electrostatic interactions between Y30 of p.MT-ND1 with the sidechain of E4 and backbone carbonyl group of M1 of NDUFA1 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1) of complex I, thereby altering the structure and function of complex I. We demonstrated that these cybrids bearing only m.3394T>C mutation caused mild mitochondrial dysfunctions and those harboring both m.3394T>C and m.11778G>A mutations exhibited greater mitochondrial dysfunctions than cybrids carrying only m.11778G>A mutation. In particular, the m.3394T>C mutation altered the stability of p.MT-ND1 and complex I assembly. Furthermore, the m.3394T>C mutation decreased the activities of mitochondrial complexes I, diminished mitochondrial ATP levels and membrane potential and increased the production of reactive oxygen species in the cybrids. These m.3394T>C mutation-induced alterations aggravated mitochondrial dysfunctions associated with the m.11778G>A mutation. These resultant biochemical defects contributed to higher penetrance of LHON in these families carrying both mtDNA mutations. Our findings provide new insights into the pathophysiology of LHON arising from the synergy between mitochondrial ND1 and ND4 mutations.
Collapse
Affiliation(s)
- Yanchun Ji
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juanjuan Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jialing Yu
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Wang
- Department of Ophthalmology, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yuanyuan Lu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Liang
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiang Li
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofen Jin
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinsheng Wei
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feilong Meng
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinglong Gao
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Cang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi Tong
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Liu
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Minglian Zhang
- Department of Ophthalmology, Hebei Provincial Eye Hospital, Xingtai, Hebei, China
| | - Peifang Jiang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Zhu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Qin Mo
- Department of Pathology, Rady Children's Hospital, University of California School of Medicine, San Diego, California, USA
| | - Taosheng Huang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, China.,Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang, China
| |
Collapse
|
46
|
Gao Z, Yuan YS. Screening for mitochondrial 12S rRNA C1494T mutation in 655 patients with non-syndromic hearing loss: An observational study. Medicine (Baltimore) 2020; 99:e19373. [PMID: 32221064 PMCID: PMC7220552 DOI: 10.1097/md.0000000000019373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mutations in mitochondrial DNA, especially in 12S rRNA gene, are the most important causes for hearing loss. In particular, the A1555G and C1494T mutations have been found to be associated with both aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. To determine the frequency of C1494T mutation in deaf patients, in the current study, we screened this mutation in 655 patients with non-syndromic hearing loss and 300 control subjects. After PCR amplification of mitochondrial 12S rRNA gene and direct sequence analysis, we found that there were 2 patients carrying the C1494T mutation; however, this mutation was not detected in 300 healthy subjects. Further genetic counseling suggested that only 1 patient had an obvious family history of hearing impairment. Clinical evaluation showed that 3 of 10 matrilineal relatives suffered from hearing loss, with different age at onset of hearing loss. Molecular analysis revealed the presence of homoplasmic 12S rRNA C1494T and ND5 T12338C mutations, together with a set of polymorphisms belonging to human mitochondrial haplogroup F2. Interestingly, T12338C mutation resulted in the replacement of the first amino acid, a translation-initiating methionine with a threonine, shortening 2 amino acids of ND5 polypeptide. Moreover, this mutation is located in 2 nucleotides adjacent to the 3' end of the mt-tRNALeu(CUN) gene. Therefore, this mutation may alter ND5 mRNA metabolism and the processing of RNA precursors. Thus, the combination of T12338C and C1494T mutations may contribute to deafness expression in this family. Taken together, our data suggested that the C1494T mutation was the molecular basis for hearing loss, screening for the mitochondrial DNA pathogenic mutations was recommended for early detection, prevention, and diagnosis of mitochondrial deafness.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Ya-Sheng Yuan
- Department of Otology and Skull Base Surgery, Eye & ENT Hospital
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
47
|
Gong S, Wang X, Meng F, Cui L, Yi Q, Zhao Q, Cang X, Cai Z, Mo JQ, Liang Y, Guan MX. Overexpression of mitochondrial histidyl-tRNA synthetase restores mitochondrial dysfunction caused by a deafness-associated tRNAHis mutation. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49906-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
48
|
Zhang X, Zheng Y, Chen Z. Autophagy and Mitochondrial Encephalomyopathies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:103-110. [PMID: 32671741 DOI: 10.1007/978-981-15-4272-5_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Mitochondrial encephalomyopathies are a group of disorders affecting skeletal muscles and brain. Although the symptoms vary among these disorders, mitochondrial DNA mutation or loss is the common characteristic. The abnormality of mitochondrial genome usually causes the dysfunction of mitochondrial respiratory and even mitochondrial damage. As a critical way of degradation, attention has been paid to the involvement of autophagy in encephalomyopathies. Autophagy is found activated in these encephalomyopathies-relevant cells as a compensatory manner to eliminate these damaged and dysfunctional mitochondria. However, accumulating evidences indicate that autophagy is incompetent to clear them. The insufficient mitophagy may ultimately accelerate cell death. Here we discuss the involvement of autophagy in encephalomyopathies based on the current evidence. We further look into the future to rescue encephalomyopathies by regulating autophagy. Only five encephalomyopathies are included in this chapter due to the availability of evidence. Nevertheless, these encephalomyopathies share a variety of common features and autophagy may also be regulated in the other encephalomyopathies.
Collapse
Affiliation(s)
- Xiangnan Zhang
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanrong Zheng
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Wang L, Zheng M, Zhang S, Zhao C, Kang W, Wang K. Roles of mtDNA damage and disordered Ca 2+ homeostasis in the joint toxicities of cadmium and BDE209. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109767. [PMID: 31610358 DOI: 10.1016/j.ecoenv.2019.109767] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Cadmium, a typical heavy metal, causes serious toxicities on many organs and tissues. As the last partially controlled class of polybrominated diphenyl ethers (PBDEs), BDE209 can also induce various health issues. Although apoptosis mediated by mitochondria has been known to be a key player in inducing toxicities by cadmium, the detailed mechanisms are incompletely understood. Moreover, co-existence of cadmium and PBDEs has been found in various environment context and human body. However, studies on the joint toxicity of cadmium and PBDEs are still limited with largely unknown mechanisms. In the present study, we investigated the adverse effects and mechanisms of single or combined treatment of CdCl2 and BDE209 on hepatocytes. We observed that apoptosis were significantly induced by CdCl2, and the combined treatment of CdCl2 and BDE209 greatly promoted the progression of apoptosis. BDE209 induced mild apoptosis. Mitochondria was the pivot of several mechanisms to induce apoptosis, including ROS production, decreased mitochondrial membrane potential (MMP), mtDNA damage and disordered calcium (Ca2+) homeostasis. However, we found that mtDNA damage and disordered Ca2+ homeostasis were the main mechanisms for CdCl2-induced apoptosis while ROS production played important roles in BDE209-induced apoptosis. Less mtDNA damage occurred in BDE209-treated cells. In the cells with combined treatment, CdCl2 and BDE209 exhibited a complementary pattern for the underlying mechanisms of apoptosis, leading to the joint toxicities, in which CdCl2 showed more contributions. In a conclusion, our results demonstrated that combined exposure to cadmium and BDE209 causes joint adverse effects on hepatocytes through diverse mechanisms as mediated by mitochondria.
Collapse
Affiliation(s)
- Lixin Wang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050011, China; School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
| | - Miaomiao Zheng
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Pollution Prevention Biotechnology Laboratory of Hebei Province, Shijiazhuang, 050018, China
| | - Shuping Zhang
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chuan Zhao
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050011, China
| | - Weijun Kang
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ke Wang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050011, China.
| |
Collapse
|
50
|
Zhao X, Cui L, Xiao Y, Mao Q, Aishanjiang M, Kong W, Liu Y, Chen H, Hong F, Jia Z, Wang M, Jiang P, Guan MX. Hypertension-associated mitochondrial DNA 4401A>G mutation caused the aberrant processing of tRNAMet, all 8 tRNAs and ND6 mRNA in the light-strand transcript. Nucleic Acids Res 2019; 47:10340-10356. [PMID: 31504769 PMCID: PMC6821173 DOI: 10.1093/nar/gkz742] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial tRNA processing defects were associated with human diseases but their pathophysiology remains elusively. The hypertension-associated m.4401A>G mutation resided at a spacer between mitochondrial tRNAMet and tRNAGln genes. An in vitro processing experiment revealed that the m.4401A>G mutation caused 59% and 69% decreases in the 5' end processing efficiency of tRNAGln and tRNAMet precursors, catalyzed by RNase P, respectively. Using human umbilical vein endothelial cells-derived cybrids, we demonstrated that the m.4401A>G mutation caused the decreases of all 8 tRNAs and ND6 and increases of longer and uncleaved precursors from the Light-strand transcript. Conversely, the m.4401A>G mutation yielded the reduced levels of tRNAMet level but did not change the levels of other 13 tRNAs, 12 mRNAs including ND1, 12S rRNA and 16S rRNA from the Heavy-strand transcript. These implicated the asymmetrical processing mechanisms of H-strand and L-strand polycistronic transcripts. The tRNA processing defects play the determined roles in the impairing mitochondrial translation, respiratory deficiency, diminishing membrane potential, increasing production of reactive oxygen species and altering autophagy. Furthermore, the m.4401A>G mutation altered the angiogenesis, evidenced by aberrant wound regeneration and weaken tube formation in mutant cybrids. Our findings provide new insights into the pathophysiology of hypertension arising from mitochondrial tRNA processing defects.
Collapse
Affiliation(s)
- Xiaoxu Zhao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Limei Cui
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xiao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qin Mao
- Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Maerhaba Aishanjiang
- Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wanzhong Kong
- Department of Clinical Laboratory, Wenzhou Traditional Chinese Medicine Hospital, Wenzhou, Zhejiang 325000, China
| | - Yuqi Liu
- Cardiac Department, Chinese PLA General Hospital, Beijing 100853, China
| | - Hong Chen
- Emergy Medicine Department, Ningbo First Hospital, Zhejiang University School of Medicine, Ningbo, Zhejiang 315000, China
| | - Fang Hong
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zidong Jia
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Meng Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Min-Xin Guan
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Institute of Genetics, and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,Key lab of Reproductive Genetics, Ministry of Education of PRC, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Joint Institute of Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, Zhejiang 310058, China
| |
Collapse
|