1
|
Wang J, Lv ZY, Li P, Zhang Y, Li X, Shen DF. Lnc PVT1 facilitates TGF-β1-induced human cardiac fibroblast activation in vitro and ISO-induced myocardial fibrosis in vivo through regulating MYC. Mol Cell Biochem 2024:10.1007/s11010-024-05060-7. [PMID: 38997507 DOI: 10.1007/s11010-024-05060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Cardiac fibrosis is a commonly seen pathophysiological process in various cardiovascular disorders, such as coronary heart disorder, hypertension, and cardiomyopathy. Cardiac fibroblast trans-differentiation into myofibroblasts (MFs) is a key link in myocardial fibrosis. LncRNA PVT1 participates in fibrotic diseases in multiple organs; however, its role and mechanism in cardiac fibrosis remain largely unknown. Human cardiac fibroblasts (HCFs) were stimulated with TGF-β1 to induce myofibroblast; Immunofluorescent staining, Immunoblotting, and fluorescence in situ hybridization were used to detect the myofibroblasts phenotypes and lnc PVT1 expression. Cell biological phenotypes induced by lnc PVT1 knockdown or overexpression were detected by CCK-8, flow cytometry, and Immunoblotting. A mouse model of myocardial fibrosis was induced using isoproterenol (ISO), and the cardiac functions were examined by echocardiography measurements, cardiac tissues by H&E, and Masson trichrome staining. In this study, TGF-β1 induced HCF transformation into myofibroblasts, as manifested as significantly increased levels of α-SMA, vimentin, collagen I, and collagen III; the expression level of lnc PVT1 expression showed to be significantly increased by TGF-β1 stimulation. The protein levels of TGF-β1, TGFBR1, and TGFBR2 were also decreased by lnc PVT1 knockdown. Under TGF-β1 stimulation, lnc PVT1 knockdown decreased FN1, α-SMA, collagen I, and collagen III protein contents, inhibited HCF cell viability and enhanced cell apoptosis, and inhibited Smad2/3 phosphorylation. Lnc PVT1 positively regulated MYC expression with or without TGF-β1 stimulation; MYC overexpression in TGF-β1-stimulated HCFs significantly attenuated the effects of lnc PVT1 knockdown on HCF proliferation and trans-differentiation to MFs. In the ISO-induced myocardial fibrosis model, lnc PVT1 knockdown partially reduced fibrotic area, improved cardiac functions, and decreased the levels of fibrotic markers. In addition, lnc PVT1 knockdown decreased MYC and CDK4 levels but increased E-cadherin in mice heart tissues. lnc PVT1 is up-regulated in cardiac fibrosis and TGF-β1-stimulated HCFs. Lnc PVT1 knockdown partially ameliorates TGF-β1-induced HCF activation and trans-differentiation into MFs in vitro and ISO-induced myocardial fibrosis in vivo, potentially through interacting with MYC and up-regulating MYC.
Collapse
Affiliation(s)
- Juan Wang
- The Second Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Zhong-Yin Lv
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Peng Li
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Yin Zhang
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China
| | - Xia Li
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, Xinjiang, China.
- Department of Cardiology, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumchi, 830001, Xinjiang, China.
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
2
|
Kobayashi Y, Eguchi A, Imami K, Tempaku M, Izuoka K, Takase T, Kainuma K, Nagao M, Furuta N, Iwasa M, Nakagawa H, Fujisawa T, Togashi K. Circulating extracellular vesicles are associated with pathophysiological condition including metabolic syndrome-related dysmetabolism in children and adolescents with obesity. J Mol Med (Berl) 2024; 102:23-38. [PMID: 37874387 DOI: 10.1007/s00109-023-02386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/25/2023]
Abstract
Obesity of children and adolescents (OCA) is often accompanied by metabolic syndrome (MetS), which often leads to adult obesity and subsequent complications, yet the entire pathophysiological response is not fully understood. The number and composition of circulating extracellular vesicles (EV) reflect overall patient condition; therefore, we investigated the pathophysiological condition of OCA, including MetS-associated dysmetabolism, using circulating EVs. In total, 107 children and adolescents with or without obesity (boys, n = 69; girls, n = 38; median age, 10 years) were enrolled. Circulating EV number and EV protein composition were assessed via flow cytometry and liquid chromatography tandem-mass spectrometry, respectively. In a multivariate analysis, relative body weight (standardized partial regression coefficient (SPRC) 0.469, P = 0.012) and serum triglyceride level (SPRC 0.548, P < 0.001) were detected as independent parameters correlating with circulating EV number. Proteomic analysis identified 31 upregulated and 45 downregulated EV proteins in OCA. Gene ontology analysis revealed upregulated proteins to be involved in various biological processes, including intracellular protein transport, protein folding, stress response, leukocyte activation, innate immune response, and platelet degranulation, which can modulate lipid and glucose metabolism, skeletal and cardiac muscle development, inflammation, immune response, carcinogenesis, and cancer progression. Notably, several identified EV proteins are involved in neuro-development, neurotransmitter release, and neuro-protective agents in OCA. Circulating EVs were derived from adipocytes, hepatocytes, B cell lymphocytes, and neurons. Circulating EV number is significantly associated with MetS-related dysmetabolism and the EV protein cargo carries a special "signature" that reflects the alteration of various biological processes under the pathophysiological condition of OCA. KEY MESSAGES: Circulating EV number correlates with physical and laboratory parameters for obesity in children and adolescents. Relative body weight and triglyceride are independent factors for increased circulating EVs. EV composition is significantly changed in obesity of children and adolescents. Identified EV composition changes associated with obesity and involves in metabolism, immune response, and cancer progression. Circulating EVs are partially derived from adipocyte, hepatocytes, B cells, and neurons.
Collapse
Affiliation(s)
- Yoshinao Kobayashi
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Akiko Eguchi
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
- Biobank Center, Mie University Hospital, Tsu, Mie, 514-8507, Japan.
| | - Koshi Imami
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Mina Tempaku
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kiyora Izuoka
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takafumi Takase
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Keigo Kainuma
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Mizuho Nagao
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Noriko Furuta
- Center for Physical and Mental Health, Mie University Graduate School of Medicine, Tsu, Mie, 514-8507, Japan
| | - Motoh Iwasa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Takao Fujisawa
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Mie, 514-0125, Japan
| | - Kenji Togashi
- Department of Health and Physical Education, Faculty of Education, Mie University, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
3
|
Liu J, Xie M, Duan X, Liu F, Luo P, Liu Q. Upregulation of the Four and a Half LIM Domains 1 linked with familial venous dysplasia in a familial genetic examination. Am J Transl Res 2023; 15:5035-5046. [PMID: 37692954 PMCID: PMC10492050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND This study aimed to analyze the mutation site in a family diagnosed with venous dysplasia to identify possible pathogenic genes. METHODS A 15-year-old female presented with lower extremity venous tortuosity aggravated by ulceration. Only the young sister exhibited similar symptoms within the immediate family of the proband. Whole genome sequencing (WGS) was used to evaluate the mutation sites and chromosome copy number variations (CNV) within the family. The possible pathogenic genes located in the region with CNVs were identified, and the expression of the possible pathogenic genes was verified via quantitative polymerase chain reaction (Q-PCR) and western blotting (WB) analysis. In-vitro models were used to verify the role of possible pathogenic genes linked with the development of venous dysplasia. RESULTS The high-resolution karyotype analysis of the chromosomes found no abnormalities. The results of the WGS indicated that the proband and her sister shared the CNV events, including a microdeletion on chromosomes X: 13580000-1358555000 and microduplications of chromosome X: 136055000-136290000, chromosome X: 136475000-13671000. The results of the Q-PCR and WB showed that FHL1 was highly expressed in the proband and her sister, indicating that mutations of the FHL1 may have an important role in the development of vein malformations. The results of the in vitro experiments showed that FHL1 overexpression could inhibit venous development. CONCLUSION The CNV in the Xq26 region (136054501-136288300) was found to be linked with the development of venous malformations in this family. However, further studies are required to evaluate the genetic mechanisms involved in the development of venous malformations.
Collapse
Affiliation(s)
- Jianping Liu
- Suzhou Medical College of Soochow UniversitySuzhou, Jiangsu, China
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
| | - Mingfeng Xie
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
- Chinese & Western Integrative Medicine Discipline, Jiangxi University of Chinese MedicineNanchang, Jiangxi, China
- Jiangxi Key Laboratory of TCM for Prevention and Treatment on HemangiomaNanchang, Jiangxi, China
| | - Xunhong Duan
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
| | - Fengen Liu
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
| | - Pan Luo
- Chinese & Western Integrative Medicine Discipline, Jiangxi University of Chinese MedicineNanchang, Jiangxi, China
| | - Qian Liu
- Suzhou Medical College of Soochow UniversitySuzhou, Jiangsu, China
- Jiangxi Provincial Clinical Research Center for Vascular Anomalies, The First Affiliated Hospital of Gannan Medical UniversityGanzhou, Jiangxi, China
- Chinese & Western Integrative Medicine Discipline, Jiangxi University of Chinese MedicineNanchang, Jiangxi, China
- Jiangxi Key Laboratory of TCM for Prevention and Treatment on HemangiomaNanchang, Jiangxi, China
| |
Collapse
|
4
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
5
|
Wang Y, Li C, Zhao R, Qiu Z, Shen C, Wang Z, Liu W, Zhang W, Ge J, Shi B. CircUbe3a from M2 macrophage-derived small extracellular vesicles mediates myocardial fibrosis after acute myocardial infarction. Theranostics 2021; 11:6315-6333. [PMID: 33995660 PMCID: PMC8120198 DOI: 10.7150/thno.52843] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Objective: This study aimed to explore the role of circular RNAs (circRNAs) in M2 macrophage (M2M)-derived small extracellular vesicles (SEVs) in myocardial fibrosis development. Methods: The regulatory role of M2M-derived extracellular vesicles (EVs) was evaluated in a mouse model of acute myocardial infarction. Immunofluorescence, quantitative real-time PCR (RT-qPCR), nanoparticle tracking analysis, Western blot analysis and electron microscopy were used to identify macrophages, large extracellular vesicles (LEVs) and SEVs. The circRNA expression profiles of M0 macrophages (M0Ms) and M2Ms were determined by microarray analysis. Bioinformatic analysis, cell coculture and cell proliferation assays were performed to investigate the expression, function, and regulatory mechanisms of circUbe3a in vitro. qPCR, RNA immunoprecipitation (RIP), dual-luciferase reporter assays, RNA fluorescence in situ hybridization (RNA-FISH), Western blot analysis and a series of rescue experiments were used to verify the correlation among circUbe3a, miR-138-5p and RhoC. Results: CircUbe3a from M2M-derived SEVs triggered functional changes in cardiac fibroblasts (CFs). CircUbe3a was synthesized and loaded into SEVs during increased M2M infiltration after myocardial infarction. The fusion of the released SEVs with the plasma membrane likely caused the release of circUbe3a into the cytosol of CFs. Silencing or overexpressing circUbe3a altered CF proliferation, migration, and phenotypic transformation in vitro. We confirmed that circUbe3a plays a crucial role in enhancing functional changes in CFs by sponging miR-138-5p and then translationally repressing RhoC in vitro. In vivo, the addition of M2M-derived SEVs or overexpression of circUbe3a significantly exacerbated myocardial fibrosis after acute myocardial infarction, and these effects were partially abolished by circUbe3a-specific shRNA. Conclusions: Our findings suggest that M2M-derived circUbe3a-containing SEVs promote the proliferation, migration, and phenotypic transformation of CFs by directly targeting the miR-138-5p/RhoC axis, which may also exacerbate myocardial fibrosis after acute myocardial infarction.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Changyin Shen
- Department of Cardiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Zhenglong Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Wei Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
6
|
Ryser-Degiorgis MP, Robert N, Meier RK, Zürcher-Giovannini S, Pewsner M, Ryser A, Breitenmoser U, Kovacevic A, Origgi FC. Cardiomyopathy Associated With Coronary Arteriosclerosis in Free-Ranging Eurasian Lynx ( Lynx lynx carpathicus). Front Vet Sci 2020; 7:594952. [PMID: 33409296 PMCID: PMC7779598 DOI: 10.3389/fvets.2020.594952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/26/2020] [Indexed: 11/30/2022] Open
Abstract
The Eurasian lynx (subspecies Lynx lynx carpathicus) was reintroduced to Switzerland in the 1970's. Health monitoring of the reintroduced population started in the late 1980's. Since then, six lynx have been found affected by a myocardial disease. The earliest case was an animal that died after a field anesthesia. Two lynx were found dead, two were euthanized/culled because of disease signs, and one was hit by car. Two had a heart murmur at clinical examination. At necropsy, the first animal showed only lung edema but the other five had cardiomegaly associated with myocardial fibrosis. Three had multisystemic effusions. Histological examination of all six lynx showed mild to severe, multifocal, myocardial interstitial and perivascular fibrosis along with multifocal myocyte degeneration and loss, and replacement fibrosis. Moderate to severe multifocal arteriosclerosis with associated luminal stenosis of the small and medium-sized intramural coronary arteries and the presence of Anitschkow cells was also observed. The heart lesions may have led to sudden death in the first case and to a chronic right-sided heart failure in the remaining. None of the lynx showed lesions or signs suggestive of an acute or subacute infection. Given the common geographic origin of these animals and the severe loss of heterozygocity in this population, a genetic origin of the disease is hypothesized.
Collapse
Affiliation(s)
| | - Nadia Robert
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roman Kaspar Meier
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Mirjam Pewsner
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Alan Kovacevic
- Small Animal Clinic, Department of Clinical Veterinary Science, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Francesco C Origgi
- Centre for Fish and Wildlife Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
8
|
Exosomal CircHIPK3 Released from Hypoxia-Induced Cardiomyocytes Regulates Cardiac Angiogenesis after Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8418407. [PMID: 32733638 PMCID: PMC7376438 DOI: 10.1155/2020/8418407] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
Exosomes play critical roles in mediating cell-to-cell communication by delivering noncoding RNAs (including miRNAs, lncRNAs, and circRNAs). Our previous study found that cardiomyocytes (CMs) subjected to hypoxia released circHIPK3-rich exosomes to regulate oxidative stress damage in cardiac endothelial cells. However, the role of exosomes in regulating angiogenesis after myocardial infarction (MI) remains unknown. The aim of this study was to establish the effects of exosomes derived from hypoxia-induced CMs on the migration and angiogenic tube formation of cardiac endothelial cells. Here, we reported that hypoxic exosomes (HPC-exos) can effectively reduce the infarct area and promote angiogenesis in the border surrounding the infarcted area. HPC-exos can also promote cardiac endothelial cell migration, proliferation, and tube formation in vitro. However, these effects were weakened after silencing circHIPK3 in hypoxia-induced CMs. We further verified that silencing and overexpressing circHIPK3 changed cardiac endothelial cell proliferation, migration, and tube formation in vitro by regulating the miR-29a expression. In addition, exosomal circHIPK3 derived from hypoxia-induced CMs first led to increased VEGFA expression by inhibiting miR-29a activity and then promoted accelerated cell cycle progression and proliferation in cardiac endothelial cells. Overexpression of miR-29a mimicked the effect of silencing circHIPK3 on cardiac endothelial cell activity in vitro. Thus, our study provides a novel mechanism by which exosomal circRNAs are involved in the communication between CMs and cardiac endothelial cells.
Collapse
|
9
|
Wei X, Zhang H. Four and a half LIM domains protein 1 can be as a double-edged sword in cancer progression. Cancer Biol Med 2020; 17:270-281. [PMID: 32587768 PMCID: PMC7309467 DOI: 10.20892/j.issn.2095-3941.2019.0420] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/04/2020] [Indexed: 11/18/2022] Open
Abstract
Four and a half LIM domains protein 1 (FHL1), as the name suggests, contains four and a half LIM domains capable of interacting with various molecules, including structural proteins, kinases, and transcriptional machinery. FHL1 contains a zinc-finger domain and performs diverse roles in regulation of gene transcription, cytoarchitecture, cell proliferation, and signal transduction. Several studies have validated the importance of FHL1 in muscle development, myopathy, and cardiovascular diseases. Mutations in the FHL1 gene are associated with various myopathies. Recently, FHL1 was identified as a major host factor for chikungunya virus (CHIKV) infection in both humans and mice. Based on more recent findings over the last decade, FHL1 is proposed to play a dual role in cancer progression. On the one hand, FHL1 expression is suppressed in several cancer types, which correlates with increased metastatic disease and decreased survival. Moreover, FHL1 is reported to inhibit tumor cell growth and migration by associating with diverse signals, such as TGF-β and ER, and therefore considered a tumor suppressor. On the other hand, FHL1 can function as an oncogenic protein that promotes tumor progression upon phosphorylation, reflecting complex roles in cancer. This review primarily focuses on the dual role and underlying mechanisms of action of FHL1 in human cancer progression and its clinical relevance.
Collapse
Affiliation(s)
- Xiaofan Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Human Anatomy, Histology and Embryology, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
10
|
Chen T, Lu X, Shi Q, Guo J, Wang H, Wang Q, Yin X, Zhang Y, Pu C, Zhou D. FHL1-related myopathy may not be classified by reducing bodies in muscle biopsy. Neuromuscul Disord 2019; 30:165-172. [PMID: 32001145 DOI: 10.1016/j.nmd.2019.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/05/2019] [Accepted: 11/24/2019] [Indexed: 02/08/2023]
Abstract
FHL1-related myopathies, including reducing body myopathy (RBM), X-linked scapulo-axio-peroneal myopathy, rigid spine syndrome, X-linked myopathy with postural muscle atrophy (XMPMA), X-linked Emery-Dreifuss muscular dystrophy and hypertrophic cardiomyopathy, are clinically and pathologically heterogeneous disorders caused by FHL1 gene mutations. According to previous reports, the first three types are myopathies with reducing bodies observed in biopsies, and the last three are myopathies without reducing bodies. We report four FHL1-related myopathy patients, including an XMPMA patient and a RBM family with three patients. Clinical information, muscle biopsies, electromyograms and genetic testing were obtained. Muscle weakness and atrophy, spinal rigidity, and joint contracture were present in the RBM family. The XMPMA patient showed a pseudoathletic appearance with muscle weakness and atrophy, spinal rigidity and deformity. The index patient of the RBM family underwent two muscle biopsies to find reducing bodies. Interestingly, these muscle biopsies revealed reducing bodies and rimmed vacuoles not only in the RBM family but also in the XMPMA patient. Next-generation sequencing identified a reported single missense mutation c.448 C>T (p. C150R) in the RBM family and a novel mutation c.814T>C (p. S272P) in the XMPMA patient. Therefore, FHL1-related myopathies overlap substantially and may not be simply classified into subtypes depending on reducing bodies. Biopsies of additional affected muscles can aid in finding reducing bodies. We report the first XMPMA patient with a novel FHL1 mutation and reducing bodies in a muscle biopsy in China.
Collapse
Affiliation(s)
- Ting Chen
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Xianghui Lu
- Department of Neurology, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, China
| | - Qiang Shi
- Department of Neurology, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, China
| | - Junhong Guo
- Department of Neurology, the First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Huifang Wang
- Department of Neurology, the First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Qian Wang
- Department of Emergency, Chinese Armed Police General Hospital, 69 Yong Ding Road, Beijing 100039, China
| | - Xi Yin
- Department of Neurology, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, China
| | - Yutong Zhang
- Department of Neurology, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, China
| | - Chuanqiang Pu
- Department of Neurology, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing 100853, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Gaertner-Rommel A, Tiesmeier J, Jakob T, Strickmann B, Veit G, Bachmann-Mennenga B, Paluszkiewicz L, Klingel K, Schulz U, Laser KT, Karger B, Pfeiffer H, Milting H. Molecular autopsy and family screening in a young case of sudden cardiac death reveals an unusually severe case of FHL1 related hypertrophic cardiomyopathy. Mol Genet Genomic Med 2019; 7:e841. [PMID: 31293105 PMCID: PMC6687666 DOI: 10.1002/mgg3.841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Hypertrophic cardiomyopathy (HCM) is a genetic cardiomyopathy with a prevalence of about 1:200. It is characterized by left ventricular hypertrophy, diastolic dysfunction and interstitial fibrosis; HCM might lead to sudden cardiac death (SCD) especially in the young. Due to low autopsy frequencies of sudden unexplained deaths (SUD) the true prevalence of SCD and especially of HCM among SUD remains unclear. Even in cases of proven SCD genetic testing is not a routine procedure precluding appropriate risk stratification and counseling of relatives. METHODS Here we report a case of SCD in a 19-year-old investigated by combined forensic and molecular autopsy. RESULTS During autopsy of the index-patient HCM was detected. As no other possible cause of death could be uncovered by forensic autopsy the event was classified as SCD. Molecular autopsy identified two (probably) pathogenic genetic variants in FHL1 and MYBPC3. The MYBPC3 variant had an incomplete penetrance. The FHL1 variant was a de novo mutation. We detected reduced FHL1 mRNA levels and no FHL1 protein in muscle samples suggesting nonsense-mediated mRNA decay and/or degradation of the truncated protein in the SCD victim revealing a plausible disease mechanism. CONCLUSION The identification of the genetic cause of the SCD contributed to the rational counseling of the relatives and risk assessment within the family. Furthermore our study revealed evidences for the pathomechanism of FHL1 mutations.
Collapse
Affiliation(s)
- Anna Gaertner-Rommel
- Klinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie und Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Jens Tiesmeier
- Mühlenkreiskliniken, Krankenhaus Lübbecke-Rahden, Institut für Anästhesiologie, Intensiv- und Notfallmedizin, Medizin Campus OWL, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Jakob
- Klinikum Herford, Universitätsklinik für Anästhesiologie, Medizin Campus OWL, Ruhr-Universität Bochum, Herford, Germany
| | | | - Gunter Veit
- Mühlenkreiskliniken, Krankenhaus Lübbecke-Rahden, Institut für Anästhesiologie, Intensiv- und Notfallmedizin, Medizin Campus OWL, Ruhr-Universität Bochum, Bochum, Germany
| | - Bernd Bachmann-Mennenga
- Mühlenkreiskliniken, Johannes Wesling Klinikum, Universitätsinstitut für Anästhesiologie, Intensiv- und Notfallmedizin, Medizin Campus OWL, Ruhr-Universität Bochum, Minden, Germany
| | - Lech Paluszkiewicz
- Klinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie und Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Karin Klingel
- Kardiopathologie, Universitätsklinikum Tübingen, Institut für Pathologie und Neuropathologie, Tubingen, Germany
| | - Uwe Schulz
- Klinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie und Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Kai T Laser
- Zentrum für angeborene Herzfehler, Herz- und Diabeteszentrum NRW, Klinikum der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Bernd Karger
- Universitätsklinikum Münster, Institut für Rechtsmedizin, Münster, Germany
| | - Heidi Pfeiffer
- Universitätsklinikum Münster, Institut für Rechtsmedizin, Münster, Germany
| | - Hendrik Milting
- Klinikum der Ruhr-Universität Bochum, Klinik für Thorax- und Kardiovaskularchirurgie und Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| |
Collapse
|