1
|
Metpally RP, Vishweswaraiah S, Krishnamurthy S, Saiyed N, Stahl RC, Golden A, Denisenko A, Staples J, Gonzaga-Jauregui C, Carey DJ, Bechara F, Jemec GBE, Williams H, Radhakrishna U. Identification of Novel Genetic Risk Variants Associated with Hidradenitis Suppurativa in an Exome Sequencing Cohort of 92,455 Individuals. Dermatology 2024; 240:739-749. [PMID: 39396498 DOI: 10.1159/000540359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 07/08/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Hidradenitis suppurativa (HS) is a prevalent and persistent inflammatory skin disorder, lacking a known cure or effective biomarkers for early diagnosis at present. The genetic determinants of HS have not been fully documented, but it is believed to result from a combination of genetic and environmental factors. METHODS To identify relevant HS gene variants in sporadic HS patients, this study utilized longitudinal electronic health records (EHRs) and whole-exome sequencing. DNA exome sequencing data from 92,455 participant samples in the MyCode biobank, linked to Geisinger's EHR, were analyzed. This cohort included 1,092 HS cases and 91,363 healthy controls. The MyCode EHR has a median longitudinal follow-up of 15 years per participant, with an average of 87 clinical encounters, 687 laboratory tests, and 7 procedures. RESULTS There were 1,092 (901 females and 191 males) participants aged 14-89 years (median 47 years) with HS (L73.2), indicating a 1.18% prevalence and accounting for a 4.7:1 female-to-male ratio among the individuals presenting for clinical care. γ-secretase complex, syndromic, and autoinflammatory gene variants were assessed. Potential pathogenic variants were identified among 66 individuals in the HS genes studied. Molecularly, the estimated HS variant prevalence was 1:1,400 in the cohort, 12.3% of variant carriers had HS diagnosis in EHR. CONCLUSIONS Using longitudinal EHR data, genomic screening identified HS-associated gene variants in a defined group of sporadic HS patients to augment the clinical diagnosis, particularly in cases of ambiguity. Based on this study, the field of skin disorders can benefit from a personalized approach to HS diagnosis using large-scale sequencing.
Collapse
Affiliation(s)
- Raghu P Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, Pennsylvania, USA
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Sarathbabu Krishnamurthy
- Center for Precision Medicine and Genomics, Columbia University Irving Medical Center, New York, New York, USA
| | - Nazia Saiyed
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
| | - Richard C Stahl
- Department of Molecular and Functional Genomics, Geisinger, Danville, Pennsylvania, USA
| | - Alicia Golden
- Department of Molecular and Functional Genomics, Geisinger, Danville, Pennsylvania, USA
| | | | - Jeffrey Staples
- Regeneron Pharmaceuticals Inc, Regeneron Genetics Center, Tarrytown, New York, USA
| | - Claudia Gonzaga-Jauregui
- Center for Precision Medicine and Genomics (CPMG), Columbia University Irving Medical Center, New York, New York, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, Pennsylvania, USA
| | - Falk Bechara
- Dermatologic Surgery Department, Department of Dermatology, Venereology and Allergology Ruhr-University Bochum Gudrunstr, Bochum, Germany
| | - Gregor B E Jemec
- Department of Dermatology, Zealand University Hospital, Roskilde, Denmark
- Health Sciences Faculty, University of Copenhagen, Copenhagen, Denmark
| | | | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan, USA
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Muret K, Le Goff V, Dandine-Roulland C, Hotz C, Jean-Louis F, Boisson B, Mesrob L, Sandron F, Daian D, Olaso R, Le Floch E, Meyer V, Wolkenstein P, Casanova JL, Lévy Y, Bonnet E, Deleuze JF, Hüe S. Comprehensive Catalog of Variants Potentially Associated with Hidradenitis Suppurativa, Including Newly Identified Variants from a Cohort of 100 Patients. Int J Mol Sci 2024; 25:10374. [PMID: 39408704 PMCID: PMC11476843 DOI: 10.3390/ijms251910374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic skin disease characterized by painful, recurrent abscesses, nodules, and scarring, primarily in skin folds. The exact causes of HS are multifactorial, involving genetic, hormonal, and environmental factors. It is associated with systemic diseases such as metabolic syndrome and inflammatory bowel disease. Genetic studies have identified mutations in the γ-secretase complex that affect Notch signaling pathways critical for skin cell regulation. Despite its high heritability, most reported HS cases do not follow a simple genetic pattern. In this article, we performed whole-exome sequencing (WES) on a cohort of 100 individuals with HS, and we provide a comprehensive review of the variants known to be described or associated with HS. 91 variants were associated with the γ-secretase complex, and 78 variants were associated with other genes involved in the Notch pathway, keratinization, or immune response. Through this new genetic analysis, we have added ten new variants to the existing catalogs. All variants are available in a .vcf file and are provided as a resource for future studies.
Collapse
Affiliation(s)
- Kévin Muret
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Vincent Le Goff
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Claire Dandine-Roulland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Claire Hotz
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
- Transversal Dermatology Unit, Jacques Puel Hospital Center, 12000 Rodez, France
| | - Francette Jean-Louis
- Team 16, Vaccine Research Institute (VRI), INSERM U955, Institut Mondor de Recherche Biomédicale (IMRB), Henri-Mondor Hospital, UPEC, 94000 Créteil, France
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Lilia Mesrob
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), Paris Cité University, 75014 Paris, France
| | - Florian Sandron
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Delphine Daian
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Edith Le Floch
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Pierre Wolkenstein
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, 75015 Paris, France
- Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Yves Lévy
- Public Health Department, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, 91000 Evry, France; (K.M.)
- Centre d’Etude du Polymorphisme Humain (CEPH), Fondation Jean Dausset, 75010 Paris, France
- Centre de Référence, d’Innovation, d’Expertise et de Transfert (CREFIX), 91000 Evry, France
| | - Sophie Hüe
- Team 16, Vaccine Research Institute (VRI), INSERM U955, Institut Mondor de Recherche Biomédicale (IMRB), Henri-Mondor Hospital, UPEC, 94000 Créteil, France
- Biologic Immunology-Hematology Department, DMU Biologie, Henri-Mondor Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 94000 Créteil, France
| |
Collapse
|
3
|
Quan W, Qin Y, Li J, Wang L, Song J, Xu J, Chen J. Causal role of myeloid cells in Parkinson's disease: Mendelian randomization study. Inflamm Res 2024; 73:809-818. [PMID: 38538756 DOI: 10.1007/s00011-024-01867-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 04/30/2024] Open
Abstract
BACKGROUND Previous studies have observed elevated myeloid cells in the peripheral blood of patients with Parkinson's disease (PD), but the causal relationship between them remains to be elucidated. We investigated whether there is a causal relationship between different subtypes of peripheral blood myeloid cells and PD using Mendelian randomization (MR) combined with bioinformatics analysis. Exploring the etiology of PD from the perspective of genetics can remove confounding factors and provide a more reliable theoretical basis for elucidating the pathogenesis of PD. METHODS Comprehensive two-sample MR analysis and sensitivity analyses were conducted to explore the causal associations between 64 myeloid cell signatures and PD risk. The Venn diagram and protein-protein interaction network analysis of instrumental variables (IV) corresponding genes were used to further investigate the potential mechanism of myeloid cells influencing the pathogenesis of PD. RESULTS We investigated the impact of four immunophenotypes on the risk of PD, including Im MDSC% CD33dim HLA DR- CD66b- (relative count), CD33dim HLA DR+ CD11b+% CD33dim HLA DR+ (relative count), and CD11b on Mo MDSC (MFI) and CD11b on CD33br HLA DR+ CD14dim (MFI), while an immunophenotype's protective effect on PD was observed CD45 on Im MDSC (MFI). The results of bioinformatics analysis showed that CD33, NTRK2, PLD2, GRIK2 and RELN had protein interactions with the risk genes of PD. CONCLUSIONS Our study has demonstrated a close genetic correlation between different subtypes of myeloid cells and PD, providing guidance for early identification and immunotherapeutic development in patients with PD.
Collapse
Affiliation(s)
- Wei Quan
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Yidan Qin
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jia Li
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Lin Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jia Song
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jing Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xian Tai Road, Changchun, 130021, Jilin, China.
| |
Collapse
|
4
|
Mansilla-Polo M, Escutia-Muñoz B, Botella-Estrada R. Narrative Review and Update on Biologic and Small Molecule Drugs for Hidradenitis Suppurativa: An Entity With a Promising Future. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:T772-T783. [PMID: 37541580 DOI: 10.1016/j.ad.2023.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 08/06/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory entity characterized by the appearance of multiple nodules, abscesses, and fistulas, predominantly in apocrine regions. In addition to its dermatological involvement, it is associated with multiple systemic comorbidities. Its treatment is combined: topical pharmacological, systemic pharmacological and surgical. Regarding biologic or small molecule drugs, currently only adalimumab is approved. A narrative review of the literature on biological or small molecule drugs used in the treatment of hidradenitis suppurativa is presented. The arsenal we found is large, with multiple targets: inhibitors of tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-17, IL-23, IL-1, inhibitors of the janus kinase (JAK) pathway, and multiple other drugs in study. New prospective studies and comparative trials are needed to analyze the effectiveness and safety of these treatments, in an entity with a promising future.
Collapse
Affiliation(s)
- M Mansilla-Polo
- Departmento de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, España.
| | - B Escutia-Muñoz
- Departmento de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, España
| | - R Botella-Estrada
- Departmento de Dermatología, Hospital Universitario y Politécnico La Fe, Valencia, España; Instituto de Investigación Sanitaria (IIS) La Fe, Valencia, España; Universitat de Valéncia, Valencia, España
| |
Collapse
|
5
|
Mansilla-Polo M, Escutia-Muñoz B, Botella-Estrada R. Narrative Review and Update on Biologic and Small Molecule Drugs for Hidradenitis Suppurativa: An Entity With a Promising Future. ACTAS DERMO-SIFILIOGRAFICAS 2023; 114:772-783. [PMID: 37211274 DOI: 10.1016/j.ad.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory entity characterized by the appearance of multiple nodules, abscesses, and fistulas, predominantly in apocrine regions. In addition to its dermatological involvement, it is associated with multiple systemic comorbidities. Its treatment is combined: topical pharmacological, systemic pharmacological and surgical. Regarding biologic or small molecule drugs, currently only adalimumab is approved. A narrative review of the literature on biological or small molecule drugs used in the treatment of hidradenitis suppurativa is presented. The arsenal we found is large, with multiple targets: inhibitors of tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-17, IL-23, IL-1, inhibitors of the janus kinase (JAK) pathway, and multiple other drugs in study. New prospective studies and comparative trials are needed to analyze the effectiveness and safety of these treatments, in an entity with a promising future.
Collapse
Affiliation(s)
- M Mansilla-Polo
- Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Health Research Institute (IIS) La Fe, Valencia, Spain.
| | - B Escutia-Muñoz
- Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Health Research Institute (IIS) La Fe, Valencia, Spain
| | - R Botella-Estrada
- Department of Dermatology, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Health Research Institute (IIS) La Fe, Valencia, Spain; Departament of Dermatology. Universitat de Valéncia, Valencia, Spain; Dermatology, Valencia, Spain
| |
Collapse
|
6
|
Nowak-Liduk A, Kitala D, Ochała-Gierek G, Łabuś W, Bergler-Czop B, Pietrauszka K, Niemiec P, Szyluk K, Gierek M. Hidradenitis Suppurativa: An Interdisciplinary Problem in Dermatology, Gynecology, and Surgery-Pathogenesis, Comorbidities, and Current Treatments. Life (Basel) 2023; 13:1895. [PMID: 37763299 PMCID: PMC10532726 DOI: 10.3390/life13091895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hidradenitis suppurativa (HS), also known as acne inversa, is a chronic inflammatory disease that manifests as painful nodules, abscesses, draining dermal tunnels, and scarring in intertriginous areas such as the axillae, groin, and breasts. The nature of the disease and its chronicity have a destructive impact on mental health and quality of life. HS has an estimated global prevalence of 0.00033-4.1% and it disproportionately affects females compared to males. HS involving the female anogenital regions is reported rarely in the gynecological literature, and it can often be mistaken for other vulvar diseases. The distinct phenotypes and HS rarity cause delayed diagnosis and the implementation of effective treatment. Acne inversa is associated with several comorbidities, including metabolic disease, diabetes mellitus, inflammatory bowel diseases, and spondyloarthropathies. Although HS etiology and pathogenesis remain unclear, studies have shown that lifestyle, immunological processes, genetics, and hormonal predispositions may promote follicular hyperkeratosis, dilatation, and rupture, leading to the development of chronic tissue inflammation. This article provides updated information on HS pathogenesis, comorbidities, and treatment methods. Furthermore, we share our experience in the surgical treatment of the disease, which often proves most effective, and highlight that an interdisciplinary management approach ensures optimal outcomes.
Collapse
Affiliation(s)
- Agnieszka Nowak-Liduk
- Department of Perinatology, Gynaecology and Obstetrics, General Hospital in Ruda Śląska, Wincentego Lipa Street 2, 41-703 Ruda Śląska, Poland;
| | - Diana Kitala
- Dr. Stanislaw Sakiel Centre for Burns Treatment, Siemianowice Ślaskie, Jana Pawła II Street 2, 43-100 Siemianowice Śląskie, Poland; (D.K.); (W.Ł.)
| | - Gabriela Ochała-Gierek
- Department of Dermatology and Venerology, City Hospital in Sosnowiec, Zegadlowicza Street 3, 41-200 Sosnowiec, Poland;
| | - Wojciech Łabuś
- Dr. Stanislaw Sakiel Centre for Burns Treatment, Siemianowice Ślaskie, Jana Pawła II Street 2, 43-100 Siemianowice Śląskie, Poland; (D.K.); (W.Ł.)
| | - Beata Bergler-Czop
- Department of Dermatology, Medical University of Silesia in Katowice, Francuska Street 20-24, 40-027 Katowice, Poland; (B.B.-C.); (K.P.)
| | - Kornelia Pietrauszka
- Department of Dermatology, Medical University of Silesia in Katowice, Francuska Street 20-24, 40-027 Katowice, Poland; (B.B.-C.); (K.P.)
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medykow Street 18, 40-752 Katowice, Poland;
| | - Karol Szyluk
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Street, 41-940 Piekary Slaskie, Poland
| | - Marcin Gierek
- Dr. Stanislaw Sakiel Centre for Burns Treatment, Siemianowice Ślaskie, Jana Pawła II Street 2, 43-100 Siemianowice Śląskie, Poland; (D.K.); (W.Ł.)
| |
Collapse
|
7
|
Yang Y, Bagyinszky E, An SSA. Presenilin-1 (PSEN1) Mutations: Clinical Phenotypes beyond Alzheimer's Disease. Int J Mol Sci 2023; 24:8417. [PMID: 37176125 PMCID: PMC10179041 DOI: 10.3390/ijms24098417] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Presenilin 1 (PSEN1) is a part of the gamma secretase complex with several interacting substrates, including amyloid precursor protein (APP), Notch, adhesion proteins and beta catenin. PSEN1 has been extensively studied in neurodegeneration, and more than 300 PSEN1 mutations have been discovered to date. In addition to the classical early onset Alzheimer's disease (EOAD) phenotypes, PSEN1 mutations were discovered in several atypical AD or non-AD phenotypes, such as frontotemporal dementia (FTD), Parkinson's disease (PD), dementia with Lewy bodies (DLB) or spastic paraparesis (SP). For example, Leu113Pro, Leu226Phe, Met233Leu and an Arg352 duplication were discovered in patients with FTD, while Pro436Gln, Arg278Gln and Pro284Leu mutations were also reported in patients with motor dysfunctions. Interestingly, PSEN1 mutations may also impact non-neurodegenerative phenotypes, including PSEN1 Pro242fs, which could cause acne inversa, while Asp333Gly was reported in a family with dilated cardiomyopathy. The phenotypic diversity suggests that PSEN1 may be responsible for atypical disease phenotypes or types of disease other than AD. Taken together, neurodegenerative diseases such as AD, PD, DLB and FTD may share several common hallmarks (cognitive and motor impairment, associated with abnormal protein aggregates). These findings suggested that PSEN1 may interact with risk modifiers, which may result in alternative disease phenotypes such as DLB or FTD phenotypes, or through less-dominant amyloid pathways. Next-generation sequencing and/or biomarker analysis may be essential in clearly differentiating the possible disease phenotypes and pathways associated with non-AD phenotypes.
Collapse
Affiliation(s)
- Youngsoon Yang
- Department of Neurology, Soonchunhyang University College of Medicine, Cheonan Hospital, Cheonan 31151, Republic of Korea;
| | - Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
8
|
Hidradenitis Suppurativa Burdens on Mental Health: A Literature Review of Associated Psychiatric Disorders and Their Pathogenesis. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010189. [PMID: 36676137 PMCID: PMC9865498 DOI: 10.3390/life13010189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Skin, mental health and the central nervous system (CNS) are connected by a deep link. It is not only the aesthetic and sometimes the disfiguring aspects of dermatological conditions that can cause a severe psychological burden; also, different studies have shown how chronic skin-inflammatory diseases may influence the activity of the CNS and vice versa. Moreover, the skin and brain share a common embryogenic origin. Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease affecting the hair follicles of the apocrine regions. The main clinical features are nodules, abscesses, cysts, fistulae and disfiguring scars. Pain and stinking discharge from fistulae are often present. It is not surprising that the psychological burden associated with HS is frequently a challenge in dermatologists' daily routines. Patients often suffer from depression and anxiety, but also from substance abuse, psychotic and bipolar disorders and an increased suicide risk. The aim of this article is to review the main psychiatric disorders associated with HS and their pathophysiology. Research on Pubmed was conducted with the key words Hidradenitis suppurativa, psychiatric, depression, anxiety, bipolar, schizophrenia, abuse, suicidal. A high incidence of psychiatric disorders has been described in HS compared to controls. Hidradenitis suppurativa is not a rare disease, and acknowledging the HS psychological burden, psychiatric-associated diseases and associated biomolecular pathways will help dermatologists to better care for their patients.
Collapse
|
9
|
Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022; 23:ijms231810970. [PMID: 36142879 PMCID: PMC9504248 DOI: 10.3390/ijms231810970] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Presenilin-1 (PSEN1) has been verified as an important causative factor for early onset Alzheimer's disease (EOAD). PSEN1 is a part of γ-secretase, and in addition to amyloid precursor protein (APP) cleavage, it can also affect other processes, such as Notch signaling, β-cadherin processing, and calcium metabolism. Several motifs and residues have been identified in PSEN1, which may play a significant role in γ-secretase mechanisms, such as the WNF, GxGD, and PALP motifs. More than 300 mutations have been described in PSEN1; however, the clinical phenotypes related to these mutations may be diverse. In addition to classical EOAD, patients with PSEN1 mutations regularly present with atypical phenotypic symptoms, such as spasticity, seizures, and visual impairment. In vivo and in vitro studies were performed to verify the effect of PSEN1 mutations on EOAD. The pathogenic nature of PSEN1 mutations can be categorized according to the ACMG-AMP guidelines; however, some mutations could not be categorized because they were detected only in a single case, and their presence could not be confirmed in family members. Genetic modifiers, therefore, may play a critical role in the age of disease onset and clinical phenotypes of PSEN1 mutations. This review introduces the role of PSEN1 in γ-secretase, the clinical phenotypes related to its mutations, and possible significant residues of the protein.
Collapse
|
10
|
Chopra D, Arens RA, Amornpairoj W, Lowes MA, Tomic-Canic M, Strbo N, Lev-Tov H, Pastar I. Innate immunity and microbial dysbiosis in hidradenitis suppurativa - vicious cycle of chronic inflammation. Front Immunol 2022; 13:960488. [PMID: 35967376 PMCID: PMC9368759 DOI: 10.3389/fimmu.2022.960488] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/01/2022] [Indexed: 11/29/2022] Open
Abstract
Hidradenitis Suppurativa (HS) is a chronic multifactorial inflammatory skin disease with incompletely understood mechanisms of disease pathology. HS is characterized by aberrant activation of the innate immune system, resulting in activation of pathways that aim to protect against pathogenic microorganisms, and also contribute to failure to resolve inflammation. Imbalance in innate immunity is evident in deregulation of host antimicrobial peptides (AMPs) and the complement system associated with the microbiome dysbiosis. The pathology is further complicated by ability of pathogens associated with HS to overcome host immune response. Potential roles of major AMPs, cathelicidin, defensins, dermcidin, S100 proteins, RNAse 7 and complement proteins are discussed. Dysregulated expression pattern of innate immunity components in conjunction with bacterial component of the disease warrants consideration of novel treatment approaches targeting both host immunity and pathogenic microbiome in HS.
Collapse
Affiliation(s)
- Divya Chopra
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rachel A. Arens
- College of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Watcharee Amornpairoj
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Michelle A. Lowes
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Hadar Lev-Tov
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
11
|
Chen K, Liang B, Ma W, Wan G, Chen B, Lu C, Luo Y, Gu X. Immunological and prognostic analysis of PSENEN in low-grade gliomas: An immune infiltration-related prognostic biomarker. Front Mol Neurosci 2022; 15:933855. [PMID: 35966015 PMCID: PMC9366120 DOI: 10.3389/fnmol.2022.933855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
Metformin is widely used in the treatment of type 2 diabetes (T2D) and plays a role in antitumor and antiobesity processes. A recent study identified its direct molecular target, PEN2 (PSENEN). PSENEN is the minimal subunit of the multiprotein complex γ-secretase, which promotes the differentiation of oligodendrocyte progenitors into astrocytes in the central nervous system. This study was mainly based on gene expression data and clinical data from the TCGA and CGGA databases. Analysis of differential expression of PSENEN between tissues from 31 cancers and paracancerous tissues revealed that it had high expression levels in most cancers except 2 cancers. Using univariate Cox regression analysis and Kaplan-Meier survival analysis, a high expression level of PSENEN was shown to be a risk factor in low-grade gliomas (LGG). Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses indicated that PSENEN is widely involved in immune-related signaling pathways in LGG. PSENEN expression level was significantly associated with TMB, MSI, tumor stemness index, and the expression levels of immunomodulatory genes in LGG. Finally, immune infiltration analysis revealed that PSENEN level was associated with the presence of various immune infiltrating cells, among which PSENEN was strongly associated with the presence of M2 macrophages and played a synergistic pro-cancer role. In conclusion, PSENEN may partially influence prognosis by modulating immune infiltration in patients with LGG, and PSENEN may be a candidate prognostic biomarker for determining prognosis associated with immune infiltration in LGG.
Collapse
Affiliation(s)
- Kaijie Chen
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, The University of Shanghai for Science and Technology, Shanghai, China
| | - Beibei Liang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, The University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Wenhao Ma
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, The University of Shanghai for Science and Technology, Shanghai, China
| | - Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Bing Chen
- Department of Neurosurgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- *Correspondence: Changlian Lu,
| | - Yuzhou Luo
- Business School, Guilin University of Technology, Guilin, China
- Yuzhou Luo,
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, The University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Xuefeng Gu,
| |
Collapse
|
12
|
Lewandowski M, Świerczewska Z, Barańska‐Rybak W. Hidradenitis suppurativa: a review of current treatment options. Int J Dermatol 2022; 61:1152-1164. [DOI: 10.1111/ijd.16115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/09/2022] [Accepted: 01/09/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Miłosz Lewandowski
- Department of Dermatology, Venereology and Allergology Medical University of Gdansk Gdansk Poland
| | - Zuzanna Świerczewska
- Department of Dermatology, Venereology and Allergology Medical University of Gdansk Gdansk Poland
| | - Wioletta Barańska‐Rybak
- Department of Dermatology, Venereology and Allergology Medical University of Gdansk Gdansk Poland
| |
Collapse
|
13
|
Hermasch MA, Janning H, Perera RP, Schnabel V, Rostam N, Ramos-Gomes F, Muschalek W, Bennemann A, Alves F, Ralser DJ, Betz RC, Schön MP, Dosch R, Frank J. Evolutionary distinct roles of γ-secretase subunit nicastrin in zebrafish and humans. J Dermatol Sci 2022; 105:80-87. [PMID: 35016821 DOI: 10.1016/j.jdermsci.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/20/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Mutations in the genes that encode the human γ-secretase subunits Presenilin-1, Presenilin Enhancer Protein 2, and Nicastrin (NCSTN) are associated with familial hidradenitis suppurativa (HS); and, regarding Presenilin Enhancer Protein 2, also with comorbidity for the hereditary pigmentation disorder Dowling-Degos disease. OBJECTIVE Here, the consequences of targeted inactivation of ncstn, the zebrafish homologue of human NCSTN, were studied. METHODS After morpholino (MO)-mediated ncstn-knockdown, the possibilities of phenotype rescue through co-injection of ncstn-MO with wildtype zebrafish ncstn or human NCSTN mRNA were investigated. Further, the effects of the co-injection of a human missense, nonsense, splice-site, and frameshift mutation were studied. RESULTS MO-mediated ncstn-knockdown resulted in a significant reduction in melanophore morphology, size and number; and alterations in their patterns of migration and distribution. This phenotype was rescued by co-injection of zebrafish ncstn RNA, human NCSTN RNA, or a construct encoding the human NCSTN missense mutation p.P211R. CONCLUSION Human NCSTN mutations encoding null alleles confer loss-of-function regarding pigmentation homeostasis in zebrafisch. In contrast, the human missense mutation p.P211R was less harmful, asserting sufficient residual ncstn activity to maintain pigmentation in zebrafish. Since fish lack the anatomical structures affected by HS, our data suggest that the zebrafish ncstn gene and the human NCSTN gene have probably acquired different functions during evolution. In fish, one major role of ncstn is the maintenance of pigmentation homeostasis. In contrast, one of the roles of NCSTN in humans is the prevention of inflammatory processes in the adnexal structures of the skin, as seen in familial HS.
Collapse
Affiliation(s)
- Matthias Andreas Hermasch
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Helena Janning
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Viktor Schnabel
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadia Rostam
- Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Max Planck Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany
| | - Wiebke Muschalek
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Anette Bennemann
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Frauke Alves
- Max Planck Institute for Experimental Medicine, Translational Molecular Imaging, Göttingen, Germany; Clinic of Hematology and Oncology, University Medical Center Göttingen, Germany; Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen, Germany
| | | | - Regina Christine Betz
- Institute of Human Genetics, University of Bonn, Medical Faculty and University Hospital Bonn, Bonn, Germany
| | - Michael Peter Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany; Lower Saxony Institute of Occupational Dermatology, University Medical Center Göttingen, Göttingen, Germany
| | - Roland Dosch
- Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Jorge Frank
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Qu H, Gao L. Botulinum toxin type A for the management of hidradenitis suppurativa. Am J Transl Res 2021; 13:14115-14120. [PMID: 35035756 PMCID: PMC8748176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/14/2021] [Indexed: 06/14/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic, recurrent, inflammatory skin disease that centers around the hair follicle and occurs as a result of follicular occlusion. HS primarily presents as painful, inflamed lesions that begin during puberty and occur most commonly in areas with numerous apocrine glands. The etiology and pathogenesis of HS involve internal and external factors, including genetic susceptibility, inflammation and immunity, microorganisms, obesity, and smoking. Management of HS is difficult, and the current aim of treatment is to control the frequency and duration of disease flare-ups and improve the quality of life. Medical treatments include antibiotics, retinoids, biologics, immunosuppressive agents, and antiandrogen agents. Adjuvant treatment includes surgery, laser, and light therapy. However, the efficacy of these treatment modalities varies from person to person. In recent years, related reports have shown that injection of botulinum toxin type A has a positive effect in the management of HS. This article reviews the pathogenesis, clinical manifestations, diagnosis, and traditional treatment methods for the management of HS and investigates the use of botulinum toxin type A as a treatment option for this disease.
Collapse
Affiliation(s)
- Huanhuan Qu
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| | - Lin Gao
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University Xi'an, China
| |
Collapse
|
15
|
Zhang H, Zhang D, Tang K, Sun Q. The Relationship Between Alzheimer's Disease and Skin Diseases: A Review. Clin Cosmet Investig Dermatol 2021; 14:1551-1560. [PMID: 34729018 PMCID: PMC8554316 DOI: 10.2147/ccid.s322530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is the most common type of dementia placing a heavy burden on the healthcare system worldwide. Skin diseases are also one of the most common health problems. Several skin diseases are associated with Alzheimer's disease through different mechanisms. This review summarizes the relationship between Alzheimer's disease and several types of skin diseases, including bullous pemphigoid, hidradenitis suppurativa, psoriasis, skin cancer, and cutaneous amyloidosis, and provides suggestions based on these associations. Neurologists, dermatologists, and general practitioners should be aware of the relationship between Alzheimer's disease and skin diseases. Dermatology/neurology consultation or referral is necessary when needed.
Collapse
Affiliation(s)
- Hanlin Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Skin and Immune Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Dingyue Zhang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Skin and Immune Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Keyun Tang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Skin and Immune Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Qiuning Sun
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, National Clinical Research Center for Skin and Immune Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| |
Collapse
|
16
|
Abstract
O-Linked glycosylation such as O-fucose, O-glucose, and O-N-acetylglucosamine are considered to be unusual. As suggested by the high levels of evolutional conservation, these O-glycans are fundamentally important for life. In the last two decades, our understanding of the importance of these glycans has greatly advanced. In particular, identification of the glycosyltransferases responsible for the biosynthesis of these glycans has accelerated basic research on the functional significance and molecular mechanisms by which these O-glycans regulate protein functions as well as clinical research on human diseases due to changes in these types of O-glycosylation. Notably, Notch receptor signaling is modified with and regulated by these types of O-glycans. Here, we summarize the current view of the structures and the significance of these O-glycans mainly in the context of Notch signaling regulation and human diseases.
Collapse
|
17
|
Vellaichamy G, Dimitrion P, Zhou L, Ozog D, Lim HW, Liao W, Hamzavi IH, Mi QS. Insights from γ-Secretase: Functional Genetics of Hidradenitis Suppurativa. J Invest Dermatol 2021; 141:1888-1896. [PMID: 33836848 PMCID: PMC8316262 DOI: 10.1016/j.jid.2021.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 01/09/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic, relapsing, and remitting inflammatory disease of the skin with significant heritability and racial disposition. The pathogenesis of HS remains enigmatic, but occlusion of the terminal hair follicle and dysregulation of the local innate immune response may contribute to pathogenesis. Genetic predisposition might also contribute to disease susceptibility and phenotypic heterogeneity because mutations in γ-secretase have been found to underlie a minor but characteristic subset of patients with HS. In this review, we synthesized the current data on γ-secretase in HS, evaluated its importance in the context of disease pathobiology, and discussed avenues of future studies.
Collapse
Affiliation(s)
- Gautham Vellaichamy
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA
| | - Peter Dimitrion
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Li Zhou
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA
| | - David Ozog
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Henry W Lim
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California, USA
| | - Iltefat H Hamzavi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA
| | - Qing-Sheng Mi
- Center for Cutaneous Biology and Immunology Research, Department of Dermatology, Henry Ford Health System, Detroit, Michigan, USA; Immunology Research Program, Henry Ford Cancer Institute, Henry Ford Health System, Detroit, Michigan, USA; Wayne State University School of Medicine, Detroit, Michigan, USA; Department of Internal Medicine, Henry Ford Health System, Detroit, Michigan, USA.
| |
Collapse
|
18
|
Zhou P, Liu J, Xu T, Guo Y, Han Y, He Y, Lin L, Xiao X. Mutations in γ-secretase subunit-encoding PSENEN gene alone may not be sufficient for the development of acne inversa. J Dermatol Sci 2021; 103:73-81. [PMID: 34330582 DOI: 10.1016/j.jdermsci.2021.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/11/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND The effects of PSENEN mutations in patients with acne inversa (AI) are poorly understood. Hyperproliferation of follicular keratinocytes and resulting occlusion may constitute the initial pathophysiology. OBJECTIVE To investigate the effects of PSENEN knockdown on γ-secretase subunits, biological behaviors, and related signaling pathways in keratinocytes. METHODS HaCaT cells were divided into an experimental group (PSENEN knock down), a negative control group, and a blank control group. Whole transcriptome sequencing was used to measure differences in mRNA expression of the whole genome; real-time PCR and Western blotting were performed to determine the interference efficiency and the effects of interference on the components of γ-secretase and related molecules. CCK-8 was used to measure cell proliferation, and flow cytometry was used to measure apoptosis and the cell cycle. RESULTS A comparison of five healthy controls with three patients with PSENEN mutation (c.66delG, c.279delC, c.229_230insCACC) revealed decreased expression of mRNA and protein in skin lesions of the experimental group. In this group, expression of the other components of γ-secretase presenilin C-terminal fragment decreased, expression of immature nicastrin increased, expression of mature nicastrin decreased, and expression of anterior pharynx defective-1 remained unchanged. KEGG analysis revealed that differentially expressed molecules were enriched in m-TOR signaling pathways. Subsequent verification confirmed that differences in PI3K-AKT-mTOR signaling pathway molecules, cell proliferation, apoptosis, cell cycle and the expression levels of Ki-67, KRT1, and IVL between the groups were not statistically significant. CONCLUSIONS PSENEN mutations alone may be insufficient to cause the development of AI, or they may only induce a mild phenotype of AI.
Collapse
Affiliation(s)
- Pengjun Zhou
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fujian, China; Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jingjing Liu
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fujian, China
| | - Tianxing Xu
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanni Guo
- Department of Dermatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yue Han
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fujian, China
| | - Yanyan He
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Jiangsu, China
| | - Lihang Lin
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fujian, China.
| | - Xuemin Xiao
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fujian, China.
| |
Collapse
|
19
|
Schell SL, Schneider AM, Nelson AM. Yin and Yang: A disrupted skin microbiome and an aberrant host immune response in hidradenitis suppurativa. Exp Dermatol 2021; 30:1453-1470. [PMID: 34018644 DOI: 10.1111/exd.14398] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
The skin microbiome plays an important role in maintaining skin homeostasis by controlling inflammation, providing immune education and maintaining host defense. However, in many inflammatory skin disorders the skin microbiome is disrupted. This dysbiotic community may contribute to disease initiation or exacerbation through the induction of aberrant immune responses in the absence of infection. Hidradenitis suppurativa (HS) is a complex, multifaceted disease involving the skin, innate and adaptive immunity, microbiota and environmental stimuli. Herein, we discuss the current state of HS skin microbiome research and how microbiome components may activate pattern recognition receptor (PRR) pathways, metabolite sensing pathways and antigenic receptors to drive antimicrobial peptide, cytokine, miRNA and adaptive immune cell responses in HS. We highlight the major open questions that remain to be addressed and how antibiotic therapies for HS likely influence both microbial burden and inflammation. Ultimately, we hypothesize that the two-way communication between the skin microbiome and host immune response in HS skin generates a chronic positive feed-forward loop that perpetuates chronic inflammation, tissue destruction and disease exacerbation.
Collapse
Affiliation(s)
- Stephanie L Schell
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Andrea M Schneider
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Amanda M Nelson
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
20
|
Cappilli S, Giovanardi G, Di Stefani A, Longo C, Perino F, Chiricozzi A, Peris K. Real-Time Confocal Imaging for Hidradenitis Suppurativa: Description of Morphological Aspects and Focus on the Role of Follicular Ostia. Dermatology 2021; 237:705-711. [PMID: 33588411 DOI: 10.1159/000513918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/16/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is a chronic, recurrent, inflammatory skin disease involving the follicular unit. Growing evidence suggests a crucial role of hyperkeratosis, infundibular plugging and perifolliculitis in its pathogenesis. OBJECTIVES To characterize the microscopic morphology of open comedos using in vivo reflectance confocal microscopy (RCM) and define alterations occurring in HS normal-appearing perilesional skin compared to healthy skin of a control group, discussing therefore microscopic differences. MATERIALS AND METHODS Twenty patients (11 males, 9 females; aged 19-51 years) affected by HS were recruited. RCM was performed on open comedos of axillary/inguinal regions and on normal-appearing skin areas distant at least 1.5 cm from HS lesions. Ten healthy individuals (6 males, 4 females) were included as control group. RESULTS RCM aspects of 78 open comedos were explored, observing circular/ovoidal structures disclosing a hyperrefractive amorphous material (72/78, 92.3%) within the infundibular cavity surrounded with a bright (51/78, 65.4%) and regular (52/78, 66.2%) border. Follicular ostia of HS perilesional skin (n = 541) compared to follicular ostia of a control group (n = 321) were characterized by a larger infundibular diameter (183.4 vs. 85.8 µm) and diverged in terms of material collected inside infundibula (44.5 vs. 21%) and keratinization of the border (47.6 vs. 25.5%). CONCLUSION In vivo characterization of open comedos and the recognition of microscopic subclinical alterations of HS normal-appearing skin, compared to healthy skin, could add further insights into the definition of biological events leading to HS manifestations, including the dysregulated process of keratinization.
Collapse
Affiliation(s)
- Simone Cappilli
- Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Giovanardi
- Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Di Stefani
- Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Caterina Longo
- Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale, Reggio Emilia, Italy.,Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Perino
- Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Chiricozzi
- Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ketty Peris
- Dermatologia, Università Cattolica del Sacro Cuore, Rome, Italy, .,Dermatologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy,
| |
Collapse
|
21
|
Abstract
The history of Alzheimer's disease (AD) started in 1907, but we needed to wait until the end of the century to identify the components of pathological hallmarks and genetic subtypes and to formulate the first pathogenic hypothesis. Thanks to biomarkers and new technologies, the concept of AD then rapidly changed from a static view of an amnestic dementia of the presenium to a biological entity that could be clinically manifested as normal cognition or dementia of different types. What is clearly emerging from studies is that AD is heterogeneous in each aspect, such as amyloid composition, tau distribution, relation between amyloid and tau, clinical symptoms, and genetic background, and thus it is probably impossible to explain AD with a single pathological process. The scientific approach to AD suffers from chronological mismatches between clinical, pathological, and technological data, causing difficulty in conceiving diagnostic gold standards and in creating models for drug discovery and screening. A recent mathematical computer-based approach offers the opportunity to study AD in real life and to provide a new point of view and the final missing pieces of the AD puzzle.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
22
|
Rafiei-Sefiddashti R, Hejrati A, Mohammadi S, Gholami A, Hejrati L, Rohani M. Hidradenitis suppurativa; classification, remedies, etiology, and comorbidities; a narrative review. J Family Med Prim Care 2021; 10:4009-4016. [PMID: 35136760 PMCID: PMC8797099 DOI: 10.4103/jfmpc.jfmpc_795_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition that is more common in females, especially during puberty and menopause. These inflammatory lesions include painful deep-seated nodules and abscesses, draining sinus tracts, and fibrotic scars. This article is a narrative review to explain whole disease aspects, including complication, causes, epidemiology, history, classification, prognosis, comorbidities, the effect of sex hormone, and potent treatments. Most patients with HS, who are not aware of their primary disease, visit primary care physicians to superinfection lesions instead of specialists. If these physicians suspect HS, their illness will not get misdiagnosed. This brief and comprehensive information in this article may help doctors to decide better about the same situation.
Collapse
|
23
|
Nguyen T, Damiani G, Orenstein L, Hamzavi I, Jemec G. Hidradenitis suppurativa: an update on epidemiology, phenotypes, diagnosis, pathogenesis, comorbidities and quality of life. J Eur Acad Dermatol Venereol 2020; 35:50-61. [DOI: 10.1111/jdv.16677] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022]
Affiliation(s)
- T.V. Nguyen
- Bellevue Dermatology Clinic & Clinical Research Center Bellevue WA USA
| | - G. Damiani
- Department of Dermatology Emory University School of Medicine Atlanta GA USA
| | - L.A.V. Orenstein
- Dipartimento di Fisiopatologia Medico‐Chirurgica e dei Trapianti Università degli Studi di Milano Unità Operativa di Dermatologia IRCCS Fondazione Ca' GrandaOspedale Maggiore Policlinico Milano Italy
| | - I. Hamzavi
- Department of Dermatology Henry Ford Hospital Detroit MI USA
| | - G.B. Jemec
- Department of Dermatology Zealand University Hospital Roskilde Denmark
| |
Collapse
|
24
|
Impact of 970 nm photobiomodulation therapy on wound healing in cellular models of hidradenitis suppurativa. Lasers Med Sci 2020; 36:691-698. [PMID: 32647934 DOI: 10.1007/s10103-020-03097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
|
25
|
Nomura T. Hidradenitis Suppurativa as a Potential Subtype of Autoinflammatory Keratinization Disease. Front Immunol 2020; 11:847. [PMID: 32508815 PMCID: PMC7251184 DOI: 10.3389/fimmu.2020.00847] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory skin condition, clinically characterized by boiled cysts, comedones, abscesses, hypertrophic scars, and/or sinus tracts typically in the apocrine-gland-rich areas such as the axillae, groin, and/or buttocks. Although its precise pathogenic mechanisms remain unknown, I herein emphasize the importance of the following three recent discoveries in the pathogenesis of HS: First, heterozygous loss-of-function mutations in the genes encoding γ-secretase, including NCSTN, PSENEN, and PSEN1, have been identified in some patients with HS. Such genetic alterations result in hyperkeratosis, dysregulated hair follicle differentiation, and cyst formation via aberrant Notch signaling. Furthermore, Psen1-/Psen2-, Psen1-, Ncstn+/-, and Notch1-/Notch2- mice share common phenotypes of human HS, suggesting a role of aberrant keratinization in the development of HS. Second, upregulation of interleukin 1β, interleukin-36, caspase-1, and NLRP3 and dysregulation of the Th17:Treg cell axis have been demonstrated in HS samples, suggesting that autoinflammation is a key event in the pathophysiology of the disease. Notably, HS may be complicated with other autoinflammatory diseases such as inflammatory bowel diseases and pyoderma gangrenosum, again highlighting the importance of autoinflammation in HS. Last, biologics such as adalimumab, infliximab, anakinra, ustekinumab, and secukinumab are reportedly effective for moderate-to-severe HS. These findings collectively suggest that HS is closely linked with aberrant keratinization and autoinflammation, raising the question whether it represents an autoinflammatory keratinization disease, a recently proposed disease entity. In this mini review, I introduce the concept of autoinflammatory keratinization disease and attempt to address this clinically important question.
Collapse
Affiliation(s)
- Toshifumi Nomura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Vossen ARJV, van Straalen KR, Swagemakers SMA, de Klein JEMM, Stubbs AP, Venter DJ, van der Zee HH, van der Spek PJ, Prens EP. A novel nicastrin mutation in a three-generation Dutch family with hidradenitis suppurativa: a search for functional significance. J Eur Acad Dermatol Venereol 2020; 34:2353-2361. [PMID: 32078194 PMCID: PMC7586943 DOI: 10.1111/jdv.16310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Background Mutations in the γ‐secretase enzyme subunits have been described in multiple kindreds with familial hidradenitis suppurativa (HS). Objective In this study, we report a novel nicastrin (NCSTN) mutation causing HS in a Dutch family. We sought to explore the immunobiological function of NCSTN mutations using data of the Immunological Genome Project. Methods Blood samples of three affected and two unaffected family members were collected. Whole‐genome sequencing was performed using genomic DNA isolated from peripheral blood leucocytes. Sanger sequencing was done to confirm the causative NCSTN variant and the familial segregation. The microarray data set of the Immunological Genome Project was used for thorough dissection of the expression and function of wildtype NCSTN in the immune system. Results In a family consisting of 23 members, we found an autosomal dominant inheritance pattern of HS and detected a novel splice site mutation (c.1912_1915delCAGT) in the NCSTN gene resulting in a frameshift and subsequent premature stop. All affected individuals had HS lesions on non‐flexural and atypical locations. Wildtype NCSTN appears to be upregulated in myeloid cells like monocytes and macrophages, and in mesenchymal cells such as fibroblastic reticular cells and fibroblasts. In addition, within the 25 highest co‐expressed genes with NCSTN we identified CAPNS1,ARNT and PPARD. Conclusion This study reports the identification a novel NCSTN gene splice site mutation which causes familial HS. The associated immunobiological functions of NCSTN and its co‐expressed genes ARNT and PPARD link genetics to the most common environmental and metabolic HS risk factors which are smoking and obesity.
Collapse
Affiliation(s)
- A R J V Vossen
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - K R van Straalen
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S M A Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J E M M de Klein
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A P Stubbs
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - D J Venter
- Department of Pathology, Mater Health Services, South Brisbane, Queensland, Australia
| | - H H van der Zee
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - P J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E P Prens
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Seyed Jafari SM, Hunger RE, Schlapbach C. Hidradenitis Suppurativa: Current Understanding of Pathogenic Mechanisms and Suggestion for Treatment Algorithm. Front Med (Lausanne) 2020; 7:68. [PMID: 32195261 PMCID: PMC7064439 DOI: 10.3389/fmed.2020.00068] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
Hidradenitis suppurativa is one of the most distressing dermatological conditions and has a significant negative impact on patients' quality of life. However, the exact pathogenic mechanisms remain incompletely understood and-therefore-efficient therapies are still lacking. The current manuscript focuses on new findings on its pathogenic mechanisms and aims to provide practical therapy recommendations.
Collapse
|
28
|
Common J, Barker J, Steensel M. What does acne genetics teach us about disease pathogenesis? Br J Dermatol 2019; 181:665-676. [DOI: 10.1111/bjd.17721] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Affiliation(s)
- J.E.A. Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
| | - J.N. Barker
- St John's Institute of Dermatology Faculty of Life Sciences and Medicine King's College London London U.K
| | - M.A.M. Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A*STAR) Singapore
- Lee Kong Chian School of Medicine Nanyang Technological University Clinical Sciences Building Novena Singapore
| |
Collapse
|