1
|
Zhang X, Wei Y, Wu F, Li M, Han C, Huo C, Li Z, Tang F, He W, Zhao Y, Li Y. UBE2L3 expression in human gastric cancer and its clinical significance. J Cancer Res Clin Oncol 2024; 150:210. [PMID: 38656363 PMCID: PMC11043109 DOI: 10.1007/s00432-024-05669-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/25/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Gastric cancer (GC) is prevalent as one of the most common malignant tumors globally, with a particularly high incidence in China. The role of UBE2L3 in the initiation and progression of various cancers has been well documented, but its specific significance in GC is not yet fully elucidated. The objective of this study is to examine the expression and importance of UBE2L3 in human gastric cancer tissues. METHODS Immunohistochemical staining and survival analysis were conducted on 125 cases of GC. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were employed to assess the expression of UBE2L3 in GC cell lines. Cell lines with UBE2L3 knockdown and overexpression were cultured through lentivirus transfection and subsequently assessed using Western blot analysis. The involvement of UBE2L3 in the proliferation, invasion, and apoptosis of GC cells was confirmed through in vitro experiments, and its capacity to facilitate tumor growth was also validated in in vivo studies. RESULTS The up-regulation of UBE2L3 expression was observed in GC, and its high expression was found to be significantly associated with the degree of differentiation (χ2 = 6.153, P = 0.0131), TNM stage (χ2 = 6.216, P = 0.0447), and poor overall survival. In vitro, UBE2L3 has been shown to enhance functions in GC cell lines, such as promoting proliferation and invasion, and inhibiting apoptosis. In vivo experiments have validated the role of UBE2L3 in promoting tumor growth. CONCLUSIONS The findings of our study demonstrate the significant involvement of UBE2L3 in the pathogenesis and advancement of gastric cancer, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yujie Wei
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Fanqi Wu
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Pneumology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Mei Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Cong Han
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Chengdong Huo
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Zhi Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Department of Ophthalmology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Futian Tang
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Wenting He
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China
| | - Yang Zhao
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| | - Yumin Li
- Department of the Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
2
|
Hernangomez-Laderas A, Cilleros-Portet A, Martínez Velasco S, Marí S, Legarda M, González-García BP, Tutau C, García-Santisteban I, Irastorza I, Fernandez-Jimenez N, Bilbao JR. Sex bias in celiac disease: XWAS and monocyte eQTLs in women identify TMEM187 as a functional candidate gene. Biol Sex Differ 2023; 14:86. [PMID: 38072919 PMCID: PMC10712119 DOI: 10.1186/s13293-023-00572-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Celiac disease (CeD) is an immune-mediated disorder that develops in genetically predisposed individuals upon gluten consumption. HLA risk alleles explain 40% of the genetic component of CeD, so there have been continuing efforts to uncover non-HLA loci that can explain the remaining heritability. As in most autoimmune disorders, the prevalence of CeD is significantly higher in women. Here, we investigated the possible involvement of the X chromosome on the sex bias of CeD. METHODS We performed a X chromosome-wide association study (XWAS) and a gene-based association study in women from the CeD Immunochip (7062 cases, 5446 controls). We also constructed a database of X chromosome cis-expression quantitative trait loci (eQTLs) in monocytes from unstimulated (n = 226) and lipopolysaccharide (LPS)-stimulated (n = 130) female donors and performed a Summary-data-based MR (SMR) analysis to integrate XWAS and eQTL information. We interrogated the expression of the potentially causal gene (TMEM187) in peripheral blood mononuclear cells (PBMCs) from celiac patients at onset, on a gluten-free diet, potential celiac patients and non-celiac controls. RESULTS The XWAS and gene-based analyses identified 13 SNPs and 25 genes, respectively, 22 of which had not been previously associated with CeD. The X chromosome cis-eQTL analysis found 18 genes with at least one cis-eQTL in naïve female monocytes and 8 genes in LPS-stimulated female monocytes, 2 of which were common to both situations and 6 were unique to LPS stimulation. SMR identified a potentially causal association of TMEM187 expression in naïve monocytes with CeD in women, regulated by CeD-associated, eQTL-SNPs rs7350355 and rs5945386. The CeD-risk alleles were correlated with lower TMEM187 expression. These results were replicated using eQTLs from LPS-stimulated monocytes. We observed higher levels of TMEM187 expression in PBMCs from female CeD patients at onset compared to female non-celiac controls, but not in male CeD individuals. CONCLUSION Using X chromosome genotypes and gene expression data from female monocytes, SMR has identified TMEM187 as a potentially causal candidate in CeD. Further studies are needed to understand the implication of the X chromosome in the higher prevalence of CeD in women.
Collapse
Affiliation(s)
- Alba Hernangomez-Laderas
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Silvia Martínez Velasco
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Sergi Marí
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - María Legarda
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Bárbara Paola González-García
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Carlos Tutau
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
| | - Iñaki Irastorza
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain
- Pediatric Gastroenterology Unit, Cruces University Hospital, Barakaldo, Basque Country, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain.
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Basque Country, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Basque Country, Spain.
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
3
|
Functional implications of the CpG island methylation in the pathogenesis of celiac disease. Mol Biol Rep 2022; 49:10051-10064. [PMID: 35633417 DOI: 10.1007/s11033-022-07585-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Investigation of gene-environment cross talk through epigenetic modifications led to better understanding of the number of complex diseases. Clinical heterogeneity and differential treatment response often contributed by the epigenetic signatures which could be personal. DNA methylation at CpG islands presents a critical nuclear process as a result of gene-environment interactions. These CpG islands are frequently present near the promoter sequence of genes and get differentially methylated under specific environmental conditions. Technical advancements facilitate in high throughput screening of differentially methylated CpG islands. Recent epigenetic studies unraveled several CD susceptibility genes expressed in peripheral blood lymphocytes (PBLs), duodenal mucosa, lamina and epithelial cells that are influenced by differentially methylated CpG islands. Here we highlighted these susceptibility genes; classify these genes based on cellular functions and tissue of expression. We further discussed how these genes interacts with each other to influence critical pathways like NF-κB signaling pathway, IL-17 signaling cascade, RIG-I like receptor signaling pathway, NOD-like receptor pathways among several others. This review also shed light on how gut microbiota may lead to the differential methylation of CpG islands of CD susceptibility genes. Large scale epigenetic studies followed by estimation of heritability of these CpG methylation and polygenic risk score estimation of these genes would prioritize potentially druggable targets for better therapeutics. In vivo studies are warranted to unravel further cellular responses to CpG methylation.
Collapse
|
4
|
Gandini A, Gededzha MP, De Maayer T, Barrow P, Mayne E. Diagnosing coeliac disease: A literature review. Hum Immunol 2021; 82:930-936. [PMID: 34462157 DOI: 10.1016/j.humimm.2021.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
Coeliac disease (CD) is an autoimmune gastroenteropathy triggered by gliadin and gliadin-tissue transglutaminase (tTG) complexes. CD is one of the few autoimmune diseases with an accurate, non-invasive serological test. Anti-endomysial, anti-tTG and anti-deaminated gliadin peptides (DGP) antibodies are currently used for serological tests with tTG ELISAs being the superior test. Duodenal biopsy, although invasive, is the gold standard for CD diagnosis. HLA genotyping and flow cytometry can also be used as supplementary tests. The incidence of CD is rising globally although the reasons for this remain unclear. In addition, the true incidence of coeliac disease in African populations remains unknown although recent work suggests that South African populations express the alleles associated with this disease. This review examines the pathogenesis and diagnosis of coeliac disease and considers novel and innovative biomarkers in its diagnosis specifically in an African population.
Collapse
Affiliation(s)
- Anastasia Gandini
- University of Witwatersrand, South Africa; National Health Laboratory Service, South Africa; Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Maemu P Gededzha
- University of Witwatersrand, South Africa; National Health Laboratory Service, South Africa; Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tim De Maayer
- University of Witwatersrand, South Africa; Rahima Moosa Mother and Child Hospital, South Africa
| | - Peter Barrow
- University of Witwatersrand, South Africa; Wits University Donald Gordon Medical Centre, South Africa
| | - Elizabeth Mayne
- University of Witwatersrand, South Africa; National Health Laboratory Service, South Africa; Department of Immunology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
Tolone C, Piccirillo M, Dolce P, Alfiero S, Arenella M, Sarnataro M, Iardino P, Pucciarelli A, Strisciuglio C. Celiac disease in pediatric patients according to HLA genetic risk classes: a retrospective observational study. Ital J Pediatr 2021; 47:107. [PMID: 33952340 PMCID: PMC8097774 DOI: 10.1186/s13052-021-01052-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune enteropathy in which HLA-DQ haplotypes define susceptibility. Our aim was to evaluate if belonging to a certain HLA-DQ class risk could be associated to the clinical, serological and histological presentation of CD. METHODS We performed a retrospective observational monocentric study including all 300 patients diagnosed with CD, who underwent HLA typing. Clinical, serological and histological data was collected from clinical records and their association with HLA-DQ class risk was verified through statistical tests. RESULTS In our sample mean age at onset was 6.7 ± 4.2 years, with a prevalence of females (n = 183; 61%), typical symptoms (n = 242; 80.6%) and anti-tTG IgA ≥ 100 U/mL (n = 194; 64.7%). Family history was present only in 19% (n = 57) of patients, and it was not significantly associated with any of the clinical and demographical data analyzed or the belonging to a certain HLA-DQ class risk. We found in the male population more frequently a coexistence of CD and atopic syndrome (males: n = 47; 40.2%; females: n = 50; 27.3%; p = 0.020). Early age of onset, instead, was associated with typical symptoms (m = 6.4 ± 4; p = 0.045) and elevated liver enzymes (m = 5 ± 3.8; p < 0.001), while later age of onset was associated with presence of other autoimmune diseases (m = 8.2 ± 4; p = 0.01). We observed statistically significant influences of HLA class risk on antibodies and liver enzymes levels: G1, G4 and G2 classes showed more frequently anti-tTG IgA ≥ 100 U/mL (n = 44; 80%, n = 16; 69.6%, n = 48; 67.6% respectively; p-value = 0.037), and in patients from G2 class we found enhanced liver enzymes (n = 28; 39.4%; p-value = 0.005). HLA class risk was still significantly associated with anti-tTG ≥ 100 (p = 0.044) and with hypertransaminasemia (p = 0.010) after a multiple logistic regression adjusted for the effect of gender, age at onset and family history. CONCLUSIONS We failed to prove an association between HLA-DQ genotypes and the clinical features in our CD pediatric patients. Although, our results suggest an effect of the DQB1-02 allele not only on the level of antibodies to tTG, but possibly also on liver involvement.
Collapse
Affiliation(s)
- Carlo Tolone
- Department of Pediatrics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marisa Piccirillo
- Department of Pediatrics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Pasquale Dolce
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Salvatore Alfiero
- Department of Pediatrics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Mattia Arenella
- Department of Pediatrics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Marina Sarnataro
- Department of Pediatrics, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Patrizia Iardino
- UOC Clinic and Molecular Pathology, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Alessia Pucciarelli
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | |
Collapse
|
6
|
van der Graaf A, Zorro MM, Claringbould A, Võsa U, Aguirre-Gamboa R, Li C, Mooiweer J, Ricaño-Ponce I, Borek Z, Koning F, Kooy-Winkelaar Y, Sollid LM, Qiao SW, Kumar V, Li Y, Franke L, Withoff S, Wijmenga C, Sanna S, Jonkers I. Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFNγ Signaling in Celiac Disease. Front Genet 2021; 11:562434. [PMID: 33569077 PMCID: PMC7868554 DOI: 10.3389/fgene.2020.562434] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022] Open
Abstract
Celiac disease (CeD) is a complex T cell-mediated enteropathy induced by gluten. Although genome-wide association studies have identified numerous genomic regions associated with CeD, it is difficult to accurately pinpoint which genes in these loci are most likely to cause CeD. We used four different in silico approaches-Mendelian randomization inverse variance weighting, COLOC, LD overlap, and DEPICT-to integrate information gathered from a large transcriptomics dataset. This identified 118 prioritized genes across 50 CeD-associated regions. Co-expression and pathway analysis of these genes indicated an association with adaptive and innate cytokine signaling and T cell activation pathways. Fifty-one of these genes are targets of known drug compounds or likely druggable genes, suggesting that our methods can be used to pinpoint potential therapeutic targets. In addition, we detected 172 gene combinations that were affected by our CeD-prioritized genes in trans. Notably, 41 of these trans-mediated genes appear to be under control of one master regulator, TRAF-type zinc finger domain containing 1 (TRAFD1), and were found to be involved in interferon (IFN)γ signaling and MHC I antigen processing/presentation. Finally, we performed in vitro experiments in a human monocytic cell line that validated the role of TRAFD1 as an immune regulator acting in trans. Our strategy confirmed the role of adaptive immunity in CeD and revealed a genetic link between CeD and IFNγ signaling as well as with MHC I antigen processing, both major players of immune activation and CeD pathogenesis.
Collapse
Affiliation(s)
- Adriaan van der Graaf
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maria M. Zorro
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Annique Claringbould
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Urmo Võsa
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Raúl Aguirre-Gamboa
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Chan Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Joram Mooiweer
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Isis Ricaño-Ponce
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Zuzanna Borek
- Deutsches Rheumaforschungszentrum Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Gastroenterology, Infectious Diseases and Rheumatology, Berlin, Germany
| | - Frits Koning
- Department of Immunology, Leiden University, Leiden, Netherlands
| | | | - Ludvig M. Sollid
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Shuo-Wang Qiao
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Vinod Kumar
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Yang Li
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover Medical School, Hanover, Germany
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sebo Withoff
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | - Serena Sanna
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Istituto di Ricerca Genetica e Biomedica (IRGB) del Consiglio Nazionale delle Ricerche (CNR), Monserrato, Italy
| | - Iris Jonkers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Immunology, K. G. Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway
| | | |
Collapse
|
7
|
García-Santisteban I, Romero-Garmendia I, Cilleros-Portet A, Bilbao JR, Fernandez-Jimenez N. Celiac disease susceptibility: The genome and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:1-45. [PMID: 33707051 DOI: 10.1016/bs.ircmb.2020.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Celiac Disease (CeD) is an immune-mediated complex disease that is triggered by the ingestion of gluten and develops in genetically susceptible individuals. It has been known for a long time that the Human Leucocyte Antigen (HLA) molecules DQ2 and DQ8 are necessary, although not sufficient, for the disease development, and therefore other susceptibility genes and (epi)genetic events must participate in CeD pathogenesis. The advances in Genomics during the last 15 years have made CeD one of the immune-related disorders with the best-characterized genetic component. In the present work, we will first review the main Genome-Wide Association Studies (GWAS) carried out in the disorder, and emphasize post-GWAS discoveries, including diverse integrative strategies, SNP prioritization approaches, and insights into the Microbiome through the host Genomics. Second, we will explore CeD-related Epigenetics and Epigenomics, mostly focusing on the emerging knowledge of the celiac methylome, and the vast but yet under-explored non-coding RNA (ncRNA) landscape. We conclude that much has been done in the field although there are still completely unvisited areas in the post-Genomics of CeD. Chromatin conformation and accessibility, and Epitranscriptomics are promising domains that need to be unveiled to complete the big picture of the celiac Genome.
Collapse
Affiliation(s)
- Iraia García-Santisteban
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Irati Romero-Garmendia
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Ariadna Cilleros-Portet
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain
| | - Jose Ramon Bilbao
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain; Spanish Biomedical Research Center in Diabetes and associated Metabolic Disorders, CIBERDEM, Madrid, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU) and Biocruces-Bizkaia Health Research Institute, Leioa, Spain.
| |
Collapse
|