1
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
2
|
Zhang ML, Li HB, Jin Y. Application and perspective of CRISPR/Cas9 genome editing technology in human diseases modeling and gene therapy. Front Genet 2024; 15:1364742. [PMID: 38666293 PMCID: PMC11043577 DOI: 10.3389/fgene.2024.1364742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
The Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) mediated Cas9 nuclease system has been extensively used for genome editing and gene modification in eukaryotic cells. CRISPR/Cas9 technology holds great potential for various applications, including the correction of genetic defects or mutations within the human genome. The application of CRISPR/Cas9 genome editing system in human disease research is anticipated to solve a multitude of intricate molecular biology challenges encountered in life science research. Here, we review the fundamental principles underlying CRISPR/Cas9 technology and its recent application in neurodegenerative diseases, cardiovascular diseases, autoimmune related diseases, and cancer, focusing on the disease modeling and gene therapy potential of CRISPR/Cas9 in these diseases. Finally, we provide an overview of the limitations and future prospects associated with employing CRISPR/Cas9 technology for diseases study and treatment.
Collapse
Affiliation(s)
- Man-Ling Zhang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Hong-Bin Li
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yong Jin
- Department of Rheumatology and Immunology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory for Pathogenesis and Diagnosis of Rheumatic and Autoimmune Diseases, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Asif M, Khan WJ, Aslam S, Aslam A, Chowdhury MA. The Use of CRISPR-Cas9 Genetic Technology in Cardiovascular Disease: A Comprehensive Review of Current Progress and Future Prospective. Cureus 2024; 16:e57869. [PMID: 38725755 PMCID: PMC11078688 DOI: 10.7759/cureus.57869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Over the last century, there have been major landmark developments in the field of medicine, enabling us to control and cure various diseases on a larger scale. A few of these include the discovery of antibiotics, the development of vaccines, and the origin of organ and tissue transplants. The continued quest for innovation in microbiology and medicine has helped humankind save millions of lives and decrease morbidity at the global level. Genetic medicine has grown significantly in the last two decades and appears to be the next frontier of curative therapies for chronic diseases. One important landmark in genetic medicine is the development of CRISPR (clustered, regularly interspaced short palindromic repeats) technology. In this article, we describe the basic structure and function of the CRISPR-Cas9 system, which, simply put, consists of an RNA part and a protein. It works as a molecular scissor that can perform targeted cuts followed by repairs in and around the genes of interest to attain favorable translational outcomes. We focused on summarizing recent studies using CRISPR-Cas9 technology in diagnosing and treating cardiovascular disease. These studies are primarily experimental and limited to animal models. However, their results are promising enough to anticipate that this technology will undoubtedly be available in clinical medicine in the coming years. CRISPR-Cas9-mediated gene editing has been used to study and potentially treat congenital heart disease, hyperlipidemias, arrhythmogenic cardiomyopathies, and the prevention of ischemia-reperfusion injury. Despite the current progress, we recognize the several challenges this technology faces, including funding for research, improving precision and reproducible results for human subjects, and establishing protocols for ethical compliance so that it is acceptable to the scientific community and the general public.
Collapse
Affiliation(s)
- Muhammad Asif
- Internal Medicine, University of South Dakota, Sioux Falls, USA
| | - Wahab J Khan
- Internal Medicine, University of South Dakota, Sioux Falls, USA
| | - Sadia Aslam
- Internal Medicine, University of South Dakota, Sioux Falls, USA
| | - Awais Aslam
- Internal Medicine, Essentia Health, Fargo, USA
| | | |
Collapse
|
4
|
Maddhesiya J, Mohapatra B. Understanding the Genetic and Non-Genetic Interconnections in the Aetiology of Syndromic Congenital Heart Disease: An Updated Review: Part 2. Curr Cardiol Rep 2024; 26:167-178. [PMID: 38358608 DOI: 10.1007/s11886-024-02020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE OF REVIEW Approximately 30% of syndromic cases diagnosed with CHD, which lure us to further investigate the molecular and clinical challenges behind syndromic CHD (sCHD). The aetiology of sCHD in a majority of cases remains enigmatic due to involvement of multiple factors, namely genetic, epigenetic and environmental modifiable risk factors for the development of the disease. Here, we aim to update the role of genetic contributors including chromosomal abnormalities, copy number variations (CNVs) and single gene mutations in cardiac specific genes, maternal lifestyle conditions, environmental exposures and epigenetic modifiers in causing CHD in different genetic syndromes. RECENT FINDINGS The exact aetiology of sCHD is still unknown. With the advancement of next-generation technologies including WGS, WES, transcriptome, proteome and methylome study, numerous novel genes and pathways have been identified. Moreover, our recent knowledge regarding epigenetic and environmental regulation during cardiogenesis is still evolving and may solve some of the mystery behind complex sCHD. Here, we focus to understand how the complex combination of genetic, environmental and epigenetic factors interact to interfere with developmental pathways, culminating into cardiac and extracardiac defects in sCHD.
Collapse
Affiliation(s)
- Jyoti Maddhesiya
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
5
|
Kühnisch J, Theisen S, Dartsch J, Fritsche-Guenther R, Kirchner M, Obermayer B, Bauer A, Kahlert AK, Rothe M, Beule D, Heuser A, Mertins P, Kirwan JA, Berndt N, MacRae CA, Hubner N, Klaassen S. Prdm16 mutation determines sex-specific cardiac metabolism and identifies two novel cardiac metabolic regulators. Cardiovasc Res 2024; 119:2902-2916. [PMID: 37842925 PMCID: PMC10874277 DOI: 10.1093/cvr/cvad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 10/17/2023] Open
Abstract
AIMS Mutation of the PRDM16 gene causes human dilated and non-compaction cardiomyopathy. The PRDM16 protein is a transcriptional regulator that affects cardiac development via Tbx5 and Hand1, thus regulating myocardial structure. The biallelic inactivation of Prdm16 induces severe cardiac dysfunction with post-natal lethality and hypertrophy in mice. The early pathological events that occur upon Prdm16 inactivation have not been explored. METHODS AND RESULTS This study performed in-depth pathophysiological and molecular analyses of male and female Prdm16csp1/wt mice that carry systemic, monoallelic Prdm16 gene inactivation. We systematically assessed early molecular changes through transcriptomics, proteomics, and metabolomics. Kinetic modelling of cardiac metabolism was performed in silico with CARDIOKIN. Prdm16csp1/wt mice are viable up to 8 months, develop hypoplastic hearts, and diminished systolic performance that is more pronounced in female mice. Prdm16csp1/wt cardiac tissue of both sexes showed reductions in metabolites associated with amino acid as well as glycerol metabolism, glycolysis, and the tricarboxylic acid cycle. Prdm16csp1/wt cardiac tissue revealed diminished glutathione (GSH) and increased inosine monophosphate (IMP) levels indicating oxidative stress and a dysregulated energetics, respectively. An accumulation of triacylglycerides exclusively in male Prdm16csp1/wt hearts suggests a sex-specific metabolic adaptation. Metabolic modelling using CARDIOKIN identified a reduction in fatty acid utilization in males as well as lower glucose utilization in female Prdm16csp1/wt cardiac tissue. On the level of transcripts and protein expression, Prdm16csp1/wt hearts demonstrate an up-regulation of pyridine nucleotide-disulphide oxidoreductase domain 2 (Pyroxd2) and the transcriptional regulator pre-B-cell leukaemia transcription factor interacting protein 1 (Pbxip1). The strongest concordant transcriptional up-regulation was detected for Prdm16 itself, probably through an autoregulatory mechanism. CONCLUSIONS Monoallelic, global Prdm16 mutation diminishes cardiac performance in Prdm16csp1/wt mice. Metabolic alterations and transcriptional dysregulation in Prdm16csp1/wt affect cardiac tissue. Female Prdm16csp1/wt mice develop a more pronounced phenotype, indicating sexual dimorphism at this early pathological window. This study suggests that metabolic dysregulation is an early event in the PRDM16 associated cardiac pathology.
Collapse
Affiliation(s)
- Jirko Kühnisch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Simon Theisen
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Josephine Dartsch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Raphaela Fritsche-Guenther
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benedikt Obermayer
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Bauer
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anne-Karin Kahlert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein, Kiel, Germany
- DZHK German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | | | - Dieter Beule
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Arnd Heuser
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Mertins
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Proteomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jennifer A Kirwan
- BIH Metabolomics Platform, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam—Rehbruecke (DIfE), Nuthetal, Germany
| | - Calum A MacRae
- Harvard Medical School and Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, USA
| | - Norbert Hubner
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Sabine Klaassen
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Lindenberger Weg 80, 13125 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Pediatric Cardiology, Deutsches Herzzentrum der Charité (DHZC), Berlin, Germany
| |
Collapse
|
6
|
Kovacs S, Scansen BA, Stern JA. The Genetics of Canine Pulmonary Valve Stenosis. Vet Clin North Am Small Anim Pract 2023; 53:1379-1391. [PMID: 37423844 DOI: 10.1016/j.cvsm.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
There have been recent advancements in understanding the genetic contribution to pulmonary valve stenosis (PS) in brachycephalic breeds such as the French Bulldog and Bulldog. The associated genes are transcriptions factors involved in cardiac development, which is comparable to the genes that cause PS in humans. However, validation studies and functional follow up is necessary before this information can be used for screening purposes.
Collapse
Affiliation(s)
- Samantha Kovacs
- Anatomic Pathology Service, School of Veterinary Medicine, University of California Davis, UC Davis VMTH, 1 Garrod Drive, Davis, CA 95616, USA.
| | - Brian A Scansen
- College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Veterinary Teaching Hospital, 300 West Drake Road, 1678 Campus Delivery, Fort Collins, CO 80523-1678, USA
| | - Joshua A Stern
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California Davis, UC Davis VMTH, 1 Garrod Drive, Davis, CA 95616, USA
| |
Collapse
|
7
|
Zou F, Liu M, Sui Y, Liu J. Comprehensive overview of the role of PBX1 in mammalian kidneys. Front Mol Biosci 2023; 10:1106370. [PMID: 37006624 PMCID: PMC10063971 DOI: 10.3389/fmolb.2023.1106370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) is a member of the TALE (three-amino acid loop extension) family and functions as a homeodomain transcription factor (TF). When dimerized with other TALE proteins, it can act as a pioneer factor and provide regulatory sequences via interaction with partners. In vertebrates, PBX1 is expressed during the blastula stage, and its germline variations in humans are interrelated with syndromic anomalies of the kidney, which plays an important role in hematopoiesis and immunity among vertebrates. Herein, we summarize the existing data on PBX1 functions and the impact of PBX1 on renal tumors, PBX1-deficient animal models, and blood vessels in mammalian kidneys. The data indicated that the interaction of PBX1 with different partners such as the HOX genes is responsible for abnormal proliferation and variation of the embryonic mesenchyme, while truncating variants were shown to cause milder phenotypes (mostly cryptorchidism and deafness). Although such interactions have been identified to be the cause of many defects in mammals, some phenotypic variations are yet to be understood. Thus, further research on the TALE family is required.
Collapse
Affiliation(s)
- Fei Zou
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- Department of Pediatrics, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingsheng Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Yutong Sui
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Jinyu Liu,
| |
Collapse
|
8
|
Genome Editing and Myocardial Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1396:53-73. [PMID: 36454459 DOI: 10.1007/978-981-19-5642-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Congenital heart disease (CHD) has a strong genetic etiology, making it a likely candidate for therapeutic intervention using genetic editing. Complex genetics involving an orchestrated series of genetic events and over 400 genes are responsible for myocardial development. Cooperation is required from a vast series of genetic networks, and mutations in such can lead to CHD and cardiovascular abnormalities, affecting up to 1% of all live births. Genome editing technologies are becoming better studied and with time and improved logistics, CHD could be a prime therapeutic target. Syndromic, nonsyndromic, and cases of familial inheritance all involve identifiable causative mutations and thus have the potential for genome editing therapy. Mouse models are well-suited to study and predict clinical outcome. This review summarizes the anatomical and genetic timeline of myocardial development in both mice and humans, the potential of gene editing in typical CHD categories, as well as the use of mice thus far in reproducing models of human CHD and correcting the mutations that create them.
Collapse
|
9
|
Alankarage D, Enriquez A, Steiner RD, Raggio C, Higgins M, Milnes D, Humphreys DT, Duncan EL, Sparrow DB, Giampietro PF, Chapman G, Dunwoodie SL. Myhre syndrome is caused by dominant-negative dysregulation of SMAD4 and other co-factors. Differentiation 2022; 128:1-12. [PMID: 36194927 PMCID: PMC10442510 DOI: 10.1016/j.diff.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
Myhre syndrome is a connective tissue disorder characterized by congenital cardiovascular, craniofacial, respiratory, skeletal, and cutaneous anomalies as well as intellectual disability and progressive fibrosis. It is caused by germline variants in the transcriptional co-regulator SMAD4 that localize at two positions within the SMAD4 protein, I500 and R496, with I500 V/T/M variants more commonly identified in individuals with Myhre syndrome. Here we assess the functional impact of SMAD4-I500V variant, identified in two previously unpublished individuals with Myhre syndrome, and provide novel insights into the molecular mechanism of SMAD4-I500V dysfunction. We show that SMAD4-I500V can dimerize, but its transcriptional activity is severely compromised. Our data show that SMAD4-I500V acts dominant-negatively on SMAD4 and on receptor-regulated SMADs, affecting transcription of target genes. Furthermore, SMAD4-I500V impacts the transcription and function of crucial developmental transcription regulator, NKX2-5. Overall, our data reveal a dominant-negative model of disease for SMAD4-I500V where the function of SMAD4 encoded on the remaining allele, and of co-factors, are perturbed by the continued heterodimerization of the variant, leading to dysregulation of TGF and BMP signaling. Our findings not only provide novel insights into the mechanism of Myhre syndrome pathogenesis but also extend the current knowledge of how pathogenic variants in SMAD proteins cause disease.
Collapse
Affiliation(s)
| | - Annabelle Enriquez
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Robert D Steiner
- Marshfield Clinic Health System, Marshfield, WI, 54449, USA; University of Wisconsin School of Medicine and Public Health, Madison, WI, 53792, USA
| | - Cathy Raggio
- Hospital for Special Surgery, Pediatrics Orthopedic Surgery, New York, NY, 10021, USA
| | - Megan Higgins
- Royal Brisbane and Women's Hospital, Butterfield St, Brisbane, QLD, 4072, Australia; University of Queensland, Brisbane, QLD, 4072, Australia
| | - Di Milnes
- Royal Brisbane and Women's Hospital, Butterfield St, Brisbane, QLD, 4072, Australia
| | - David T Humphreys
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, SE1 7EH, UK; Australian Translational Genomics Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Princess Alexandra Hospital, Woolloongabba, 4102, Australia; Faculty of Medicine, University of Queensland, Herston, 4006, Australia
| | - Duncan B Sparrow
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Philip F Giampietro
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL, 60612, USA
| | - Gavin Chapman
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia; School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia; Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
10
|
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 2022; 43:1125-1148. [PMID: 35451537 DOI: 10.1002/humu.24388] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Delphine Leclerc
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - David Gilot
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
11
|
Shi HY, Xie MS, Yang CX, Huang RT, Xue S, Liu XY, Xu YJ, Yang YQ. Identification of SOX18 as a New Gene Predisposing to Congenital Heart Disease. Diagnostics (Basel) 2022; 12:diagnostics12081917. [PMID: 36010266 PMCID: PMC9406965 DOI: 10.3390/diagnostics12081917] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Congenital heart disease (CHD) is the most frequent kind of birth deformity in human beings and the leading cause of neonatal mortality worldwide. Although genetic etiologies encompassing aneuploidy, copy number variations, and mutations in over 100 genes have been uncovered to be involved in the pathogenesis of CHD, the genetic components predisposing to CHD in most cases remain unclear. We recruited a family with CHD from the Chinese Han population in the present investigation. Through whole-exome sequencing analysis of selected family members, a new SOX18 variation, namely NM_018419.3:c.349A>T; p.(Lys117*), was identified and confirmed to co-segregate with the CHD phenotype in the entire family by Sanger sequencing analysis. The heterozygous variant was absent from the 384 healthy volunteers enlisted as control individuals. Functional exploration via luciferase reporter analysis in cultivated HeLa cells revealed that Lys117*-mutant SOX18 lost transactivation on its target genes NR2F2 and GATA4, two genes responsible for CHD. Moreover, the genetic variation terminated the synergistic activation between SOX18 and NKX2.5, another gene accountable for CHD. The findings strongly indicate SOX18 as a novel gene contributing to CHD, which helps address challenges in the clinical genetic diagnosis and prenatal prophylaxis of CHD.
Collapse
Affiliation(s)
- Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Meng-Shi Xie
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan University, Shanghai 200940, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
| | - Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xing-Yuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai 200240, China
- Correspondence: (Y.-J.X.); (Y.-Q.Y.)
| |
Collapse
|
12
|
Ruscitti F, Cerminara M, Iascone M, Pezzoli L, Rosti G, Romano F, Ronchetto P, Martucciello G, Buratti S, Buffelli F, Bocciardi R, Puliti A, Divizia MT. An example of parenchymal renal sparing in the context of complex malformations due to a novel mutation in the PBX1 gene. Birth Defects Res 2022; 114:674-681. [PMID: 35751431 DOI: 10.1002/bdr2.2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION PBX1 encodes the pre-B cell leukemia factor 1, a Three Amino acid Loop Extension (TALE) transcription factor crucial to regulate basic developmental processes. PBX1 loss-of-function variants have been initially described in association with renal malformations in both isolated and syndromic forms. CASE REPORT Herein, we report a male infant presenting multiple organ malformations (cleidosternal dysostosis, micrognathia, left lung hypoplasia, wide interatrial defect, pulmonary hypertension, total anomalous pulmonary venous return, intestinal malrotation) and carrying the heterozygous de novo c.868C > T (p.Arg290Trp) variant in PBX1. This novel variant affects the highly conserved homeodomain of the protein, leading to a non-conservative substitution and consequently altering its tridimensional structure and DNA-binding capacity. CONCLUSION So far, PBX1 has been reported in association with a broad spectrum of renal anomalies. However, given the role of this gene in many different developing processes, whole-exome sequencing can detect mutations in PBX1 even in patients with different phenotypes, not necessarily involving the renal primordium. This report presents a novel PBX1 variant with a predicted strong deleterious effect. The mutation leads to a non-conservative substitution in a very highly conserved domain of the protein, thus altering its tertiary structure and DNA-binding capacity.
Collapse
Affiliation(s)
| | - Maria Cerminara
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Pezzoli
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Giulia Rosti
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Patrizia Ronchetto
- UOC Laboratorio di Genetica Umana, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppe Martucciello
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Chirurgia Pediatrica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Buratti
- UOC Terapia Intensiva Neonatale e Pediatrica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Buffelli
- Fetal-Perinatal Pathology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Renata Bocciardi
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Aldamaria Puliti
- DINOGMI, University of Genoa, Genoa, Italy
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | |
Collapse
|
13
|
Huang RT, Guo YH, Yang CX, Gu JN, Qiu XB, Shi HY, Xu YJ, Xue S, Yang YQ. SOX7 loss-of-function variation as a cause of familial congenital heart disease. Am J Transl Res 2022; 14:1672-1684. [PMID: 35422912 PMCID: PMC8991148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION As the most frequent type of birth defect in humans, congenital heart disease (CHD) leads to a large amount of morbidity and mortality as well as a tremendous socioeconomic burden. Accumulating studies have convincingly substantiated the pivotal roles of genetic defects in the occurrence of familial CHD, and deleterious variations in a great number of genes have been reported to cause various types of CHD. However, owing to pronounced genetic heterogeneity, the hereditary components underpinning CHD remain obscure in most cases. This investigation aimed to identify novel genetic determinants underlying CHD. METHODS AND RESULTS A four-generation pedigree with high incidence of autosomal-dominant CHD was enrolled from the Chinese Han race population. Using whole-exome sequencing and Sanger sequencing assays of the family members available, a novel SOX7 variation in heterozygous status, NM_031439.4: c.310C>T; p.(Gln104*), was discovered to be in co-segregation with the CHD phenotype in the whole family. The truncating variant was absent in 500 unrelated healthy subjects utilized as control individuals. Functional measurements by dual-luciferase reporter analysis revealed that Gln104*-mutant SOX7 failed to transactivate its two important target genes, GATA4 and BMP2, which are both responsible for CHD. In addition, the nonsense variation invalidated the cooperative transactivation between SOX7 and NKX2.5, which is another recognized CHD-causative gene. CONCLUSION The present study demonstrates for the first time that genetically defective SOX7 predisposes to CHD, which sheds light on the novel molecular mechanism underpinning CHD, and implies significance for precise prevention and personalized treatment in a subset of CHD patients.
Collapse
Affiliation(s)
- Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Yu-Han Guo
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Jia-Ning Gu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong UniversityShanghai 200030, China
| | - Hong-Yu Shi
- Department of Cardiology, Zhongshan Hospital Wusong Branch, Fudan UniversityShanghai 200940, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghai 200127, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Cardiovascular Research Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan UniversityShanghai 200240, China
| |
Collapse
|
14
|
Safgren SL, Olson RJ, Pinto E Vairo F, Bothun ED, Hanna C, Klee EW, Schimmenti LA. De novo PBX1 variant in a patient with glaucoma, kidney anomalies, and developmental delay: An expansion of the CAKUTHED phenotype. Am J Med Genet A 2022; 188:919-925. [PMID: 34797033 DOI: 10.1002/ajmg.a.62576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/05/2021] [Accepted: 11/02/2021] [Indexed: 01/22/2023]
Abstract
An infant was referred for evaluation of congenital glaucoma and corneal clouding. In addition, he had a pelvic kidney, hypotonia, patent ductus arteriosus, abnormal pinnae, and developmental delay. Exome sequencing identified a previously unpublished de novo single nucleotide insertion in PBX1 c.400dupG (NM_002585.3), predicted to cause a frameshift resulting in a truncated protein with loss of function (p.Ala134Glyfs*65). Identification of this loss of function variant supports the diagnosis of congenital anomalies of the kidney and urinary tract syndrome with or without hearing loss, abnormal ears, or developmental delay (CAKUTHED). Here, we propose glaucoma as an extra-renal manifestation associated with PBX1-related disease due to the relationship of PBX1 with MEIS1, MEIS2, and FOXC1 transcription factors associated with eye development.
Collapse
Affiliation(s)
- Stephanie L Safgren
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rory J Olson
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Filippo Pinto E Vairo
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Erick D Bothun
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
| | - Christian Hanna
- Department of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric W Klee
- Department of Quantitative Health Sciences, Division of Computational Biology, Mayo Clinic, Rochester, Minnesota, USA
- Center of Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa A Schimmenti
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Otorhinolaryngology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Liu Y, Ao X, Zhou X, Du C, Kuang S. The regulation of PBXs and their emerging role in cancer. J Cell Mol Med 2022; 26:1363-1379. [PMID: 35068042 PMCID: PMC8899182 DOI: 10.1111/jcmm.17196] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Pre‐B‐cell leukaemia transcription factor (PBX) proteins are a subfamily of evolutionarily conserved, atypical homeodomain transcription factors that belong to the superfamily of three amino acid loop extension (TALE) homeodomain proteins. Members of the PBX family play crucial roles in regulating multiple pathophysiological processes, such as the development of organs, congenital cardiac defects and carcinogenesis. The dysregulation of PBXs has been shown to be closely associated with many diseases, particularly cancer. However, the detailed mechanisms of PBX dysregulation in cancer progression are still inconclusive. In this review, we summarize the recent advances in the structures, functions and regulatory mechanisms of PBXs, and discuss their underlying mechanisms in cancer progression. We also highlight the great potential of PBXs as biomarkers for the early diagnosis and prognostic evaluation of cancer as well as their therapeutic applications. The information reviewed here may expand researchers’ understanding of PBXs and could strengthen the clinical implication of PBXs in cancer treatment.
Collapse
Affiliation(s)
- Ying Liu
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xiang Ao
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Xuehao Zhou
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Chengcheng Du
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| | - Shouxiang Kuang
- Institute for Translational Medicine The Affiliated Hospital of Qingdao University Qingdao Medical College Qingdao University Qingdao China
- School of Basic Medical Sciences Qingdao Medical College Qingdao University Qingdao China
| |
Collapse
|
16
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
17
|
Emmert DB, Vukovic V, Dordevic N, Weichenberger CX, Losi C, D’Elia Y, Volpato C, Hernandes VV, Gögele M, Foco L, Pontali G, Mascalzoni D, Domingues FS, Paulmichl R, Pramstaller PP, Pattaro C, Rossini A, Rainer J, Fuchsberger C, De Bortoli M. Genetic and Metabolic Determinants of Atrial Fibrillation in a General Population Sample: The CHRIS Study. Biomolecules 2021; 11:1663. [PMID: 34827661 PMCID: PMC8615508 DOI: 10.3390/biom11111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 11/24/2022] Open
Abstract
Atrial fibrillation (AF) is a supraventricular arrhythmia deriving from uncoordinated electrical activation with considerable associated morbidity and mortality. To expand the limited understanding of AF biological mechanisms, we performed two screenings, investigating the genetic and metabolic determinants of AF in the Cooperative Health Research in South Tyrol study. We found 110 AF cases out of 10,509 general population individuals. A genome-wide association scan (GWAS) identified two novel loci (p-value < 5 × 10-8) around SNPs rs745582874, next to gene PBX1, and rs768476991, within gene PCCA, with genotype calling confirmed by Sanger sequencing. Risk alleles at both SNPs were enriched in a family detected through familial aggregation analysis of the phenotype, and both rare alleles co-segregated with AF. The metabolic screening of 175 metabolites, in a subset of individuals, revealed a 41% lower concentration of lysophosphatidylcholine lysoPC a C20:3 in AF cases compared to controls (p-adj = 0.005). The genetic findings, combined with previous evidence, indicate that the two identified GWAS loci may be considered novel genetic rare determinants for AF. Considering additionally the association of lysoPC a C20:3 with AF by metabolic screening, our results demonstrate the valuable contribution of the combined genomic and metabolomic approach in studying AF in large-scale population studies.
Collapse
Affiliation(s)
- David B. Emmert
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Vladimir Vukovic
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
- Centre for Disease Control and Prevention, Institute of Public Health of Vojvodina, 21000 Novi Sad, Serbia
| | - Nikola Dordevic
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Christian X. Weichenberger
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Chiara Losi
- Department of Cardiology, Tappeiner F. Merano Hospital, 39012 Merano, Italy; (C.L.); (R.P.)
| | - Yuri D’Elia
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Claudia Volpato
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Vinicius V. Hernandes
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Martin Gögele
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Luisa Foco
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Giulia Pontali
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38122 Trento, Italy
| | - Deborah Mascalzoni
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
- Centre for Research, Ethics and Bioethics Uppsala University, SE-751 05 Uppsala, Sweden
| | - Francisco S. Domingues
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Rupert Paulmichl
- Department of Cardiology, Tappeiner F. Merano Hospital, 39012 Merano, Italy; (C.L.); (R.P.)
| | - Peter P. Pramstaller
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Alessandra Rossini
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Johannes Rainer
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| | - Marzia De Bortoli
- Eurac Research, Institute for Biomedicine (Affiliated to the University of Lübeck), 39100 Bolzano, Italy; (D.B.E.); (V.V.); (N.D.); (C.X.W.); (Y.D.); (C.V.); (V.V.H.); (M.G.); (L.F.); (G.P.); (D.M.); (F.S.D.); (P.P.P.); (C.P.); (A.R.); (J.R.)
| |
Collapse
|
18
|
Song J, Zhang Q, Lu B, Gou Z, Wang T, Tang H, Xiang J, Jiang W, Deng X. Case Report: Candidate Genes Associated With Prenatal Ultrasound Anomalies in a Fetus With Prenatally Detected 1q23.3q31.2 Deletion. Front Genet 2021; 12:696624. [PMID: 34630509 PMCID: PMC8496901 DOI: 10.3389/fgene.2021.696624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Patients with deletions involving the long arm of chromosome 1 are rare, and the main aim of this study was to refine the genotype-phenotype correlation. Case Report: In this report, a 28-year-old pregnant woman, gravida 2 para 1, at 25+4 weeks of gestation underwent ultrasound examination in our institute. The ultrasonographic findings of the fetus were as follows: (1) fetal growth restriction; (2) cleft lip and palate; (3) bilateral renal hypoplasia; (4) lateral ventriculomegaly; (5) single umbilical artery; (6) absent stomach; (7) coronary sinus dilatation with persistent left superior vena cava, ventricular septal defect and unroofed coronary sinus syndrome. Chromosomal microarray analysis of amniotic fluid from the fetus revealed a 28.025 Mb deletion in 1q23.3q31.2, spanning from position 164,559,675 to 192,584,768 (hg19). Conclusion: Genotype-phenotype correlation might improve prenatal diagnosis of fetuses with chromosome 1q deletion. PBX1 could be a candidate gene for fetal growth restriction, renal hypoplasia and congenital heart disease. Fetal growth restriction was accompanied by decreased renal volume in the fetus. Combined with ultrasonic examination, the application of chromosomal microarray analysis will provide accurate prenatal diagnosis.
Collapse
Affiliation(s)
- Jiahao Song
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Bing Lu
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhongshan Gou
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ting Wang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Hui Tang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Center for Reproduction and Genetics, The Affiliated Suzhou Hospital Nanjing Medical University, Suzhou, China
| | - Wei Jiang
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xuedong Deng
- Center for Medical Ultrasound, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
19
|
Baas FS, Rishi G, Swinkels DW, Subramaniam VN. Genetic Diagnosis in Hereditary Hemochromatosis: Discovering and Understanding the Biological Relevance of Variants. Clin Chem 2021; 67:1324-1341. [PMID: 34402502 DOI: 10.1093/clinchem/hvab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hereditary hemochromatosis (HH) is a genetic disease, leading to iron accumulation and possible organ damage. Patients are usually homozygous for p. Cys282Tyr in the homeostatic iron regulator gene but may have mutations in other genes involved in the regulation of iron. Next-generation sequencing is increasingly being utilized for the diagnosis of patients, leading to the discovery of novel genetic variants. The clinical significance of these variants is often unknown. CONTENT Determining the pathogenicity of such variants of unknown significance is important for diagnostics and genetic counseling. Predictions can be made using in silico computational tools and population data, but additional evidence is required for a conclusive pathogenicity classification. Genetic disease models, such as in vitro models using cellular overexpression, induced pluripotent stem cells or organoids, and in vivo models using mice or zebrafish all have their own challenges and opportunities when used to model HH and other iron disorders. Recent developments in gene-editing technologies are transforming the field of genetic disease modeling. SUMMARY In summary, this review addresses methods and developments regarding the discovery and classification of genetic variants, from in silico tools to in vitro and in vivo models, and presents them in the context of HH. It also explores recent gene-editing developments and how they can be applied to the discussed models of genetic disease.
Collapse
Affiliation(s)
- Floor S Baas
- Translational Metabolic Laboratory (TML 831), Radboudumc, Nijmegen, the Netherlands.,Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Gautam Rishi
- Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Dorine W Swinkels
- Translational Metabolic Laboratory (TML 831), Radboudumc, Nijmegen, the Netherlands
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
20
|
Seok H, Deng R, Cowan DB, Wang DZ. Application of CRISPR-Cas9 gene editing for congenital heart disease. Clin Exp Pediatr 2021; 64:269-279. [PMID: 33677855 PMCID: PMC8181018 DOI: 10.3345/cep.2020.02096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) is an ancient prokaryotic defense system that precisely cuts foreign genomic DNA under the control of a small number of guide RNAs. The CRISPR-Cas9 system facilitates efficient double-stranded DNA cleavage that has been recently adopted for genome editing to create or correct inherited genetic mutations causing disease. Congenital heart disease (CHD) is generally caused by genetic mutations such as base substitutions, deletions, and insertions, which result in diverse developmental defects and remains a leading cause of birth defects. Pediatric CHD patients exhibit a spectrum of cardiac abnormalities such as septal defects, valvular defects, and abnormal chamber development. CHD onset occurs during the prenatal period and often results in early lethality during childhood. Because CRISPR-Cas9-based genome editing technology has gained considerable attention for its potential to prevent and treat diseases, we will review the CRISPR-Cas9 system as a genome editing tool and focus on its therapeutic application for CHD.
Collapse
Affiliation(s)
- Heeyoung Seok
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Rui Deng
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Zhao L, Jiang WF, Yang CX, Qiao Q, Xu YJ, Shi HY, Qiu XB, Wu SH, Yang YQ. SOX17 loss-of-function variation underlying familial congenital heart disease. Eur J Med Genet 2021; 64:104211. [PMID: 33794346 DOI: 10.1016/j.ejmg.2021.104211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/11/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
As the most prevalent form of human birth defect, congenital heart disease (CHD) contributes to substantial morbidity, mortality and socioeconomic burden worldwide. Aggregating evidence has convincingly demonstrated that genetic defects exert a pivotal role in the pathogenesis of CHD, and causative mutations in multiple genes have been causally linked to CHD. Nevertheless, CHD is of pronounced genetic heterogeneity, and the genetic components underpinning CHD in the overwhelming majority of patients remain obscure. In this research, a four-generation consanguineous family suffering from CHD transmitted in an autosomal dominant mode was recruited. By whole-exome sequencing and bioinformatics analyses as well as Sanger sequencing analyses of the family members, a new heterozygous SOX17 variation, NM_022454.4: c.553G > T; p.(Glu185*), was identified to co-segregate with CHD in the family, with complete penetrance. The nonsense variation was neither detected in 310 unrelated healthy volunteers used as controls nor retrieved in such population genetics databases as the Exome Aggregation Consortium database, Genome Aggregation Database, and the Single Nucleotide Polymorphism database. Functional assays by utilizing a dual-luciferase reporter assay system unveiled that the Glu185*-mutant SOX17 protein had no transcriptional activity on its two target genes NOTCH1 and GATA4, which have been reported to cause CHD. Furthermore, the mutation abrogated the synergistic transactivation between SOX17 and NKX2.5, another established CHD-causing transcription factor. These findings firstly indicate SOX17 loss-of-function mutation predisposes to familial CHD, which adds novel insight to the molecular mechanism of CHD, implying potential implications for genetic risk appraisal and individualized prophylaxis of the family members affected with CHD.
Collapse
Affiliation(s)
- Lan Zhao
- Department of Cardiology, Yantaishan Hospital, Yantai, 264003, Shandong Province, China
| | - Wei-Feng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chen-Xi Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qi Qiao
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shao-Hui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Cardiovascular Research Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China; Central Laboratory, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Villar D, Frost S, Deloukas P, Tinker A. The contribution of non-coding regulatory elements to cardiovascular disease. Open Biol 2020; 10:200088. [PMID: 32603637 PMCID: PMC7574544 DOI: 10.1098/rsob.200088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease collectively accounts for a quarter of deaths worldwide. Genome-wide association studies across a range of cardiovascular traits and pathologies have highlighted the prevalence of common non-coding genetic variants within candidate loci. Here, we review genetic, epigenomic and molecular approaches to investigate the contribution of non-coding regulatory elements in cardiovascular biology. We then discuss recent insights on the emerging role of non-coding variation in predisposition to cardiovascular disease, with a focus on novel mechanistic examples from functional genomics studies. Lastly, we consider the clinical significance of these findings at present, and some of the current challenges facing the field.
Collapse
Affiliation(s)
- Diego Villar
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Stephanie Frost
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | - Panos Deloukas
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Andrew Tinker
- William Harvey Research Institute, Heart Centre, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
23
|
Arts P, Garland J, Byrne AB, Hardy TS, Babic M, Feng J, Wang P, Ha T, King‐Smith SL, Schreiber AW, Crawford A, Manton N, Moore L, Barnett CP, Scott HS. Paternal mosaicism for a novel PBX1 mutation associated with recurrent perinatal death: Phenotypic expansion of the PBX1-related syndrome. Am J Med Genet A 2020; 182:1273-1277. [PMID: 32141698 PMCID: PMC7217179 DOI: 10.1002/ajmg.a.61541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/09/2020] [Accepted: 02/13/2020] [Indexed: 11/11/2022]
Abstract
Autosomal dominant (de novo) mutations in PBX1 are known to cause congenital abnormalities of the kidney and urinary tract (CAKUT), with or without extra-renal abnormalities. Using trio exome sequencing, we identified a PBX1 p.(Arg107Trp) mutation in a deceased one-day-old neonate presenting with CAKUT, asplenia, and severe bilateral diaphragmatic thinning and eventration. Further investigation by droplet digital PCR revealed that the mutation had occurred post-zygotically in the father, with different variant allele frequencies of the mosaic PBX1 mutation in blood (10%) and sperm (20%). Interestingly, the father had subclinical hydronephrosis in childhood. With an expected recurrence risk of one in five, chorionic villus sampling and prenatal diagnosis for the PBX1 mutation identified recurrence in a subsequent pregnancy. The family opted to continue the pregnancy and the second affected sibling was stillborn at 35 weeks, presenting with similar severe bilateral diaphragmatic eventration, microsplenia, and complete sex reversal (46, XY female). This study highlights the importance of follow-up studies for presumed de novo and low-level mosaic variants and broadens the phenotypic spectrum of developmental abnormalities caused by PBX1 mutations.
Collapse
Affiliation(s)
- Peer Arts
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jessica Garland
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
| | - Alicia B. Byrne
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| | - Tristan S.E. Hardy
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- RepromedDulwichAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Milena Babic
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Jinghua Feng
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Paul Wang
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Thuong Ha
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
| | - Sarah L. King‐Smith
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| | - Andreas W. Schreiber
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Biological SciencesUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - April Crawford
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Nick Manton
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Lynette Moore
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Department of Anatomical PathologySA Pathology, Women's and Children's HospitalNorth AdelaideSouth AustraliaAustralia
| | - Christopher P. Barnett
- Paediatric and Reproductive Genetics UnitWomen's and Children's HospitalAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Hamish S. Scott
- Genetics and Molecular Pathology Research Laboratory, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- School of Pharmacy and Medical SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- School of MedicineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- ACRF Cancer Genomics Facility, Centre for Cancer BiologyAn Alliance Between SA Pathology and the University of South AustraliaAdelaideSouth AustraliaAustralia
- Australian Genomics Health AllianceMelbourneVictoriaAustralia
| |
Collapse
|