1
|
Vancheri C, Quatrana A, Morini E, Mariotti C, Mongelli A, Fichera M, Rufini A, Condò I, Testi R, Novelli G, Malisan F, Amati F. An RNA-seq study in Friedreich ataxia patients identified hsa-miR-148a-3p as a putative prognostic biomarker of the disease. Hum Genomics 2024; 18:50. [PMID: 38778374 PMCID: PMC11110315 DOI: 10.1186/s40246-024-00602-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.
Collapse
Affiliation(s)
- Chiara Vancheri
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Muscular and Neurodegenerative Diseases Laboratory, Bambino Gesù, Children's Hospital, IRCCS, Rome, Italy
| | - Elena Morini
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, 20133, Italy
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, 00131, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy
- Neuromed Institute, IRCCS, Pozzilli, 86077, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Florence Malisan
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| | - Francesca Amati
- Department of Biomedicine and Prevention, Genetics Unit, Tor Vergata University of Rome, Via Montpellier 1, Rome, 00133, Italy.
| |
Collapse
|
2
|
Luffarelli R, Panarello L, Quatrana A, Tiano F, Fortuni S, Rufini A, Malisan F, Testi R, Condò I. Interferon Gamma Enhances Cytoprotective Pathways via Nrf2 and MnSOD Induction in Friedreich's Ataxia Cells. Int J Mol Sci 2023; 24:12687. [PMID: 37628866 PMCID: PMC10454386 DOI: 10.3390/ijms241612687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/27/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Friedreich's ataxia (FRDA) is a rare monogenic disease characterized by multisystem, slowly progressive degeneration. Because of the genetic defect in a non-coding region of FXN gene, FRDA cells exhibit severe deficit of frataxin protein levels. Hence, FRDA pathophysiology is characterized by a plethora of metabolic disruptions related to iron metabolism, mitochondrial homeostasis and oxidative stress. Importantly, an impairment of the antioxidant defences exacerbates the oxidative damage. This appears closely associated with the disablement of key antioxidant proteins, such as the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and the mitochondrial superoxide dismutase (MnSOD). The cytokine interferon gamma (IFN-γ) has been shown to increase frataxin expression in FRDA cells and to improve functional deficits in FRDA mice. Currently, IFN-γ represents a potential therapy under clinical evaluation in FRDA patients. Here, we show that IFN-γ induces a rapid expression of Nrf2 and MnSOD in different cell types, including FRDA patient-derived fibroblasts. Our data indicate that IFN-γ signals two separate pathways to enhance Nrf2 and MnSOD levels in FRDA fibroblasts. MnSOD expression increased through an early transcriptional regulation, whereas the levels of Nrf2 are induced by a post-transcriptional mechanism. We demonstrate that the treatment of FRDA fibroblasts with IFN-γ stimulates a non-canonical Nrf2 activation pathway through p21 and potentiates antioxidant responses under exposure to hydrogen peroxide. Moreover, IFN-γ significantly reduced the sensitivity to hydrogen peroxide-induced cell death in FRDA fibroblasts. Collectively, these results indicate the presence of multiple pathways triggered by IFN-γ with therapeutic relevance to FRDA.
Collapse
Affiliation(s)
- Riccardo Luffarelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Luca Panarello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Andrea Quatrana
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Francesca Tiano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Silvia Fortuni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (R.L.); (L.P.); (A.Q.); (F.T.); (S.F.); (A.R.); (F.M.); (R.T.)
| |
Collapse
|
3
|
Rufini A, Malisan F, Condò I, Testi R. Drug Repositioning in Friedreich Ataxia. Front Neurosci 2022; 16:814445. [PMID: 35221903 PMCID: PMC8863941 DOI: 10.3389/fnins.2022.814445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.
Collapse
Affiliation(s)
- Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
- *Correspondence: Alessandra Rufini,
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
| |
Collapse
|
4
|
Quatrana A, Morini E, Tiano F, Vancheri C, Panarello L, Romano S, Marcotulli C, Casali C, Mariotti C, Mongelli A, Fichera M, Rufini A, Condò I, Novelli G, Testi R, Amati F, Malisan F. Hsa-miR223-3p circulating level is upregulated in Friedreich's ataxia and inversely associated with HCLS1 associated protein X-1, HAX-1. Hum Mol Genet 2022; 31:2010-2022. [PMID: 35015850 DOI: 10.1093/hmg/ddac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 11/12/2022] Open
Abstract
Frataxin (FXN) deficiency is responsible for Friedreich's ataxia (FRDA) in which, besides the characteristic features of spinocerebellar ataxia, two thirds of patients develop hypertrophic cardiomyopathy that often progresses to heart failure and premature death. Different mechanisms might underlie FRDA pathogenesis. Among them, the role of miRNAs deserves investigations. We carried out a miRNA PCR-array analysis of plasma samples of early-, intermediate- and late-onset FRDA groups, defining a set of 30 differentially expressed miRNAs. Hsa-miR223-3p is the only miRNA shared between the three patient groups and appears upregulated in all of them. The upregulation of hsa-miR223-3p was further validated in all enrolled patients (n = 37, Fc = +2.3; p < 0.0001). Using a Receiver Operating Characteristic (ROC) curve analysis, we quantified the predictive value of circulating hsa-miR223-3p for FRDA, obtaining an AUC (Area Under the ROC Curve) value of 0.835 (p < 0.0001) for all patients. Interestingly, we found a significant positive correlation between hsa-miR223-3p expression and cardiac parameters in typical FRDA patients (onset < 25 years). Moreover, a significant negative correlation between hsa-miR223-3p expression and HAX-1 (HCLS1 associated protein X-1) at mRNA and protein level was observed in all FRDA patients. In silico analyses suggested HAX-1 as a target gene of hsa-miR223-3p. Accordingly, we report that HAX-1 is negatively regulated by hsa-miR223-3p in cardiomyocytes (AC16) and neurons (SH-SY5Y), which are critically affected cell types in FRDA. This study describes for the first time the association between hsa-miR223-3p and HAX-1 expression in FRDA, thus supporting a potential role of this microRNA as non-invasive epigenetic biomarker for FRDA.
Collapse
Affiliation(s)
- Andrea Quatrana
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Elena Morini
- Section of Medical Genetics, Dept. of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Francesca Tiano
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy.,Unit of Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Chiara Vancheri
- Section of Medical Genetics, Dept. of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Luca Panarello
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Silvia Romano
- Neurosciences, Mental Health and Sensory Organs (NESMOS) Department, Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | | | - Carlo Casali
- Dept. of Medical Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University of Rome, 04100 Latina, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Alessandra Rufini
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy.,Fratagene Therapeutics Srl, Rome, 00144 Rome, Italy.,Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Giuseppe Novelli
- Section of Medical Genetics, Dept. of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.,Neuromed Institute, IRCCS, 86077 Pozzilli, Italy
| | - Roberto Testi
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy.,Fratagene Therapeutics Srl, Rome, 00144 Rome, Italy
| | - Francesca Amati
- Section of Medical Genetics, Dept. of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.,Department for the Promotion of Human Science and Quality of Life, University San Raffaele, 00166 Rome, Italy
| | - Florence Malisan
- Laboratory of Signal Transduction, Dept. of Biomedicine and Prevention; University of Rome "Tor Vergata", 00133 Rome, Italy
| |
Collapse
|
5
|
Vancheri C, Morini E, Prandi FR, Alkhoury E, Celotto R, Romeo F, Novelli G, Amati F. Two RECK Splice Variants (Long and Short) Are Differentially Expressed in Patients with Stable and Unstable Coronary Artery Disease: A Pilot Study. Genes (Basel) 2021; 12:genes12060939. [PMID: 34205376 PMCID: PMC8234100 DOI: 10.3390/genes12060939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Primary prevention is crucial for coronary heart disease (CAD) and the identification of new reliable biomarkers might help risk stratification or predict adverse coronary events. Alternative splicing (AS) is a less investigated genetic factors implicated in CAD etiology. We performed an RNA-seq study on PBMCs from CAD patients and control subjects (CTR) and observed 113 differentially regulated AS events (24 up and 89 downregulated) in 86 genes. The RECK (Reversion-inducing-cysteine-rich protein with Kazal motifs) gene was further analyzed in a larger case study (24 CTR subjects, 72 CAD and 32 AMI patients) for its Splicing-Index FC (FC = −2.64; p = 0.0217), the AS event involving an exon (exon 18), and its role in vascular inflammation and remodeling. We observed a significant downregulation of Long RECK splice variant (containing exon 18) in PBMCs of AMI compared to CTR subjects (FC = −3.3; p < 0.005). Interestingly, the Short RECK splice variant (lacking exon 18) was under-expressed in AMI compared to both CTR (FC = −4.5; p < 0.0001) and CAD patients (FC = −4.2; p < 0.0001). A ROC curve, constructed combining Long and Short RECK expression data, shows an AUC = 0.81 (p < 0.001) to distinguish AMI from stable CAD patients. A significant negative correlation between Long RECK and triglycerides in CTR group and a positive correlation in the AMI group was found. The combined evaluation of Long and Short RECK expression levels is a potential genomic biomarker for the discrimination of AMI from CAD patients. Our results underline the relevance of deeper studies on the expression of these two splice variants to elucidate their functional role in CAD development and progression.
Collapse
Affiliation(s)
- Chiara Vancheri
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Elena Morini
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
| | - Francesca Romana Prandi
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Elie Alkhoury
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Roberto Celotto
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
| | - Francesco Romeo
- Unit of Cardiology, University Hospital “Tor Vergata”, 00133 Rome, Italy; (F.R.P.); (E.A.); (R.C.); (F.R.)
- Unicamillus International Medical University, 00131 Rome, Italy
| | - Giuseppe Novelli
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Medical Genetics Laboratories, Tor Vergata University Hospital, PTV, 00133 Rome, Italy
- Neuromed IRCCS Institute, 86077 Pozzilli, Italy
- School of Medicine, Reno University of Nevada, Reno, NV 1664, USA
| | - Francesca Amati
- Genetics Unit, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy; (C.V.); (E.M.); (G.N.)
- Department for the Promotion of Human Science and Quality of Life, University San Raffaele, 00166 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Rossi M, Wainsztein N, Merello M. Cardiac Involvement in Movement Disorders. Mov Disord Clin Pract 2021; 8:651-668. [PMID: 34307738 DOI: 10.1002/mdc3.13188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Background Several conditions represented mainly by movement disorders are associated with cardiac disease, which can be overlooked in clinical practice in the context of a prominent primary neurological disorder. Objectives To review neurological conditions that combine movement disorders and primary cardiac involvement. Methods A comprehensive and structured literature search following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria was conducted to identify disorders combining movement disorders and cardiac disease. Results Some movement disorders are commonly or prominently associated with cardiac disease. Neurological and cardiac symptoms may share underlying physiopathological mechanisms in diseases, such as Friedreich's ataxia and Wilson's disease, and in certain metabolic disorders, including Refsum disease, Gaucher disease, a congenital disorder of glycosylation, or cerebrotendinous xanthomatosis. In certain conditions, such as Sydenham's chorea or dilated cardiomyopathy with ataxia syndrome (ATX-DNAJC19), heart involvement can present early in the course of disease, whereas in others such as Friedreich's ataxia or Refsum disease, cardiac symptoms tend to present in later stages. In another 68 acquired or inherited conditions, cardiac involvement or movement disorders are seldom reported. Conclusions As cardiac disease is part of the phenotypic spectrum of several movement disorders, heart involvement should be carefully investigated and increased awareness of this association encouraged as it may represent a leading cause of morbidity and mortality.
Collapse
Affiliation(s)
- Malco Rossi
- Sección Movimientos Anormales, Departamento de Neurociencias Instituto de Investigaciones Neurológicas Raúl Carrea, Fleni Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council Buenos Aires Argentina
| | - Nestor Wainsztein
- Departamento de Medicina Interna Unidad de Cuidados Críticos, Fleni Buenos Aires Argentina
| | - Marcelo Merello
- Sección Movimientos Anormales, Departamento de Neurociencias Instituto de Investigaciones Neurológicas Raúl Carrea, Fleni Buenos Aires Argentina.,Argentine National Scientific and Technological Research Council Buenos Aires Argentina.,Pontificia Universidad Católica Argentina Buenos Aires Argentina
| |
Collapse
|
7
|
Cerebellar Kv3.3 potassium channels activate TANK-binding kinase 1 to regulate trafficking of the cell survival protein Hax-1. Nat Commun 2021; 12:1731. [PMID: 33741962 PMCID: PMC7979925 DOI: 10.1038/s41467-021-22003-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in KCNC3, which encodes the Kv3.3 potassium channel, cause degeneration of the cerebellum, but exactly how the activity of an ion channel is linked to the survival of cerebellar neurons is not understood. Here, we report that Kv3.3 channels bind and stimulate Tank Binding Kinase 1 (TBK1), an enzyme that controls trafficking of membrane proteins into multivesicular bodies, and that this stimulation is greatly increased by a disease-causing Kv3.3 mutation. TBK1 activity is required for the binding of Kv3.3 to its auxiliary subunit Hax-1, which prevents channel inactivation with depolarization. Hax-1 is also an anti-apoptotic protein required for survival of cerebellar neurons. Overactivation of TBK1 by the mutant channel leads to the loss of Hax-1 by its accumulation in multivesicular bodies and lysosomes, and also stimulates exosome release from neurons. This process is coupled to activation of caspases and increased cell death. Our studies indicate that Kv3.3 channels are directly coupled to TBK1-dependent biochemical pathways that determine the trafficking of cellular constituents and neuronal survival. How the activity of the neuronal Kv3.3 voltage-dependent channel is regulated is unclear. Here, the authors show that the known Kv3.3 channel complex with Hax1, which affects spinal cerebellar ataxia, regulates the enzyme Tank Binding Kinase 1, modulating survival of cerebellar neurons.
Collapse
|
8
|
D’Apice MR, De Dominicis A, Murdocca M, Amati F, Botta A, Sangiuolo F, Lattanzi G, Federici M, Novelli G. Cutaneous and metabolic defects associated with nuclear abnormalities in a transgenic mouse model expressing R527H lamin A mutation causing mandibuloacral dysplasia type A (MADA) syndrome. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:320-335. [PMID: 33458588 PMCID: PMC7783430 DOI: 10.36185/2532-1900-036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
LMNA gene encodes for lamin A/C, attractive proteins linked to nuclear structure and functions. When mutated, it causes different rare diseases called laminopathies. In particular, an Arginine change in Histidine in position 527 (p.Arg527His) falling in the C-terminal domain of lamin A precursor form (prelamin A) causes mandibuloacral dysplasia Type A (MADA), a segmental progeroid syndrome characterized by skin, bone and metabolic anomalies. The well-characterized cellular models made difficult to assess the tissue-specific functions of 527His prelamin A. Here, we describe the generation and characterization of a MADA transgenic mouse overexpressing 527His LMNA gene, encoding mutated prelamin A. Bodyweight is slightly affected, while no difference in lifespan was observed in transgenic animals. Mild metabolic anomalies and thinning and loss of hairs from the back were the other observed phenotypic MADA manifestations. Histological analysis of tissues relevant for MADA syndrome revealed slight increase in adipose tissue inflammatory cells and a reduction of hypodermis due to a loss of subcutaneous adipose tissue. At cellular levels, transgenic cutaneous fibroblasts displayed nuclear envelope aberrations, presence of prelamin A, proliferation, and senescence rate defects. Gene transcriptional pattern was found differentially modulated between transgenic and wildtype animals, too. In conclusion, the presence of 527His Prelamin A accumulation is further linked to the appearance of mild progeroid features and metabolic disorder without lifespan reduction.
Collapse
Affiliation(s)
| | | | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Federica Sangiuolo
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Giovanna Lattanzi
- Center for Atherosclerosis, School of Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Massimo Federici
- Center for Atherosclerosis, School of Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
| | - Giuseppe Novelli
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Neuromed IRCCS Institute, Pozzilli (IS), Italy
- School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
9
|
D'Apice MR, De Dominicis A, Murdocca M, Amati F, Botta A, Sangiuolo F, Lattanzi G, Federici M, Novelli G. Cutaneous and metabolic defects associated with nuclear abnormalities in a transgenic mouse model expressing R527H lamin A mutation causing mandibuloacral dysplasia type A (MADA) syndrome. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39. [PMID: 33458588 PMCID: PMC7783430 DOI: 10.36185/2532-1900-036&set/a 907644967+854571971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
LMNA gene encodes for lamin A/C, attractive proteins linked to nuclear structure and functions. When mutated, it causes different rare diseases called laminopathies. In particular, an Arginine change in Histidine in position 527 (p.Arg527His) falling in the C-terminal domain of lamin A precursor form (prelamin A) causes mandibuloacral dysplasia Type A (MADA), a segmental progeroid syndrome characterized by skin, bone and metabolic anomalies. The well-characterized cellular models made difficult to assess the tissue-specific functions of 527His prelamin A. Here, we describe the generation and characterization of a MADA transgenic mouse overexpressing 527His LMNA gene, encoding mutated prelamin A. Bodyweight is slightly affected, while no difference in lifespan was observed in transgenic animals. Mild metabolic anomalies and thinning and loss of hairs from the back were the other observed phenotypic MADA manifestations. Histological analysis of tissues relevant for MADA syndrome revealed slight increase in adipose tissue inflammatory cells and a reduction of hypodermis due to a loss of subcutaneous adipose tissue. At cellular levels, transgenic cutaneous fibroblasts displayed nuclear envelope aberrations, presence of prelamin A, proliferation, and senescence rate defects. Gene transcriptional pattern was found differentially modulated between transgenic and wildtype animals, too. In conclusion, the presence of 527His Prelamin A accumulation is further linked to the appearance of mild progeroid features and metabolic disorder without lifespan reduction.
Collapse
Affiliation(s)
| | | | - Michela Murdocca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesca Amati
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Federica Sangiuolo
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanna Lattanzi
- Center for Atherosclerosis, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Massimo Federici
- Center for Atherosclerosis, School of Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Giuseppe Novelli
- Laboratory of Medical Genetics, Tor Vergata Hospital, Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Neuromed IRCCS Institute, Pozzilli (IS), Italy.,School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|