1
|
Li W, Chen L, Zhao W, Li Y, Chen Y, Wen T, Liu Z, Huang C, Zhang L, Zhao L. Mutation of YFT3, an isomerase in the isoprenoid biosynthetic pathway, impairs its catalytic activity and carotenoid accumulation in tomato fruit. HORTICULTURE RESEARCH 2024; 11:uhae202. [PMID: 39308791 PMCID: PMC11415240 DOI: 10.1093/hr/uhae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024]
Abstract
Tomato fruit colors are directly associated with their appearance quality and nutritional value. However, tomato fruit color formation is an intricate biological process that remains elusive. In this work we characterized a tomato yellow fruited tomato 3 (yft3, e9292, Solanum lycopersicum) mutant with yellow fruits. By the map-based cloning approach, we identified a transversion mutation (A2117C) in the YFT3 gene encoding a putative isopentenyl diphosphate isomerase (SlIDI1) enzyme, which may function in the isoprenoid biosynthetic pathway by catalyzing conversion between isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The mutated YFT3 (A2117C) (designated YFT3 allele) and the YFT3 genes did not show expression difference at protein level, and their encoded YFT3 allelic (S126R) and YFT3 proteins were both localized in plastids. However, the transcript levels of eight genes (DXR, DXS, HDR, PSY1, CRTISO, CYCB, CYP97A, and NCED) associated with carotenoid synthesis were upregulated in fruits of both yft3 and YFT3 knockout (YFT3-KO) lines at 35 and 47 days post-anthesis compared with the red-fruit tomato cultivar (M82). In vitro and in vivo biochemical analyses indicated that YFT3 (S126R) possessed much lower enzymatic activities than the YFT3 protein, indicating that the S126R mutation can impair YFT3 activity. Molecular docking analysis showed that the YFT3 allele has higher ability to recruit isopentenyl pyrophosphate (IPP), but abolishes attachment of the Mg2+ cofactor to IPP, suggesting that Ser126 is a critical residue for YTF3 biochemical and physiological functions. As a result, the yft3 mutant tomato line has low carotenoid accumulation and abnormal chromoplast development, which results in yellow ripe fruits. This study provides new insights into molecular mechanisms of tomato fruit color formation and development.
Collapse
Affiliation(s)
- Wenzhen Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lulu Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetland, Yancheng Teachers University, 2 South Xiwang Avenue, Yancheng 224002, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuhang Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Chen
- Youlaigu Science and Technology Innovation Center, 588 West Chenfeng, Yushan town, Agriculture Service Center, Kunshan 215300, China
| | - Tengjian Wen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhengjun Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, 2708 South Huaxi Avenue, Guiyang 550025, China
| | - Chao Huang
- Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, College of Pharmaceutical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310053, China
| | - Lida Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Joint Tomato Research Institute, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Liu J, Zhang C, Sun H, Zang Y, Meng X, Zhai H, Chen Q, Li C. A natural variation in SlSCaBP8 promoter contributes to the loss of saline-alkaline tolerance during tomato improvement. HORTICULTURE RESEARCH 2024; 11:uhae055. [PMID: 38659442 PMCID: PMC11040208 DOI: 10.1093/hr/uhae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
Saline-alkaline stress is a worldwide problem that threatens the growth and yield of crops. However, how crops adapt to saline-alkaline stress remains less studied. Here we show that saline-alkaline tolerance was compromised during tomato domestication and improvement, and a natural variation in the promoter of SlSCaBP8, an EF-hand Ca2+ binding protein, contributed to the loss of saline-alkaline tolerance during tomato improvement. The biochemical and genetic data showed that SlSCaBP8 is a positive regulator of saline-alkaline tolerance in tomato. The introgression line Pi-75, derived from a cross between wild Solanum pimpinellifolium LA1589 and cultivar E6203, containing the SlSCaBP8LA1589 locus, showed stronger saline-alkaline tolerance than E6203. Pi-75 and LA1589 also showed enhanced saline-alkaline-induced SlSCaBP8 expression than that of E6203. By sequence analysis, a natural variation was found in the promoter of SlSCaBP8 and the accessions with the wild haplotype showed enhanced saline-alkaline tolerance compared with the cultivar haplotype. Our studies clarify the mechanism of saline-alkaline tolerance conferred by SlSCaBP8 and provide an important natural variation in the promoter of SlSCaBP8 for tomato breeding.
Collapse
Affiliation(s)
- Jian Liu
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Chi Zhang
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Heyao Sun
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Yinqiang Zang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Xianwen Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Huawei Zhai
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Qian Chen
- Beijing Key Laboratory for Agricultural Applications and New Techniques, Plant Science and Technology College, Beijing University of Agriculture, Beijing, 102206, China
| | - Chuanyou Li
- College of Life Science, Shandong Agricultural University, Tai’an, Shandong 271018, China
| |
Collapse
|
3
|
Gou N, Zhu X, Yin M, Zhao H, Bai H, Jiang N, Xu W, Wang C, Zhang Y, Wuyun T. 15- cis-Phytoene Desaturase and 15- cis-Phytoene Synthase Can Catalyze the Synthesis of β-Carotene and Influence the Color of Apricot Pulp. Foods 2024; 13:300. [PMID: 38254601 PMCID: PMC10815377 DOI: 10.3390/foods13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Fruit color affects its commercial value. β-carotene is the pigment that provides color for many fruits and vegetables. However, the molecular mechanism of β-carotene metabolism during apricot ripening is largely unknown. Here, we investigated whether β-carotene content affects apricot fruit color. First, the differences in β-carotene content between orange apricot 'JTY' and white apricot 'X15' during nine developmental stages (S1-S9) were compared. β-carotene contents highly significantly differed between 'JTY' and 'X15' from S5 (color transition stage) onwards. Whole-transcriptome analysis showed that the β-carotene synthesis genes 15-cis-phytoene desaturase (PaPDS) and 15-cis-phytoene synthase (PaPSY) significantly differed between the two cultivars during the color transition stage. There was a 5 bp deletion in exon 11 of PaPDS in 'X15', which led to early termination of amino acid translation. Gene overexpression and virus-induced silencing analysis showed that truncated PaPDS disrupted the β-carotene biosynthesis pathway in apricot pulp, resulting in decreased β-carotene content and a white phenotype. Furthermore, virus-induced silencing analysis showed that PaPSY was also a key gene in β-carotene biosynthesis. These findings provide new insights into the molecular regulation of apricot carotenoids and provide a theoretical reference for breeding new cultivars of apricot.
Collapse
Affiliation(s)
- Ningning Gou
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
| | - Xuchun Zhu
- School of Food and Health, Beijing Technology and Business University, Beijing 100037, China;
| | - Mingyu Yin
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
- Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Key Laboratory of Desert Ecosystem and Global Change, National Forestry and Grassland Administration, Beijing 100091, China
| | - Han Zhao
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
| | - Haikun Bai
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
| | - Nan Jiang
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
| | - Wanyu Xu
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
| | - Chu Wang
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
| | - Yujing Zhang
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
| | - Tana Wuyun
- Kernel-Apricot Engineering and Technology Research Center of State Forestry and Grassland Administration, Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, State Key Laboratory of Tree Genetics and Breeding, Zhengzhou 450003, China; (N.G.); (M.Y.); (H.Z.); (H.B.); (N.J.); (W.X.); (C.W.); (Y.Z.)
| |
Collapse
|
4
|
Lv J, Zhang R, Mo Y, Zhou H, Li M, Wu R, Cheng H, Zhang M, Wang H, Hua W, Deng Q, Zhao K, Deng M. Integrative Metabolome and Transcriptome Analyses Provide Insights into Carotenoid Variation in Different-Colored Peppers. Int J Mol Sci 2023; 24:16563. [PMID: 38068885 PMCID: PMC10706310 DOI: 10.3390/ijms242316563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Carotenoids are important pigments in pepper fruits. The colors of each pepper are mainly determined by the composition and content of carotenoid. The 'ZY' variety, which has yellow fruit, is a natural mutant derived from a branch mutant of 'ZR' with different colors. ZY and ZR exhibit obvious differences in fruit color, but no other obvious differences in other traits. To investigate the main reasons for the formation of different colored pepper fruits, transcriptome and metabolome analyses were performed in three developmental stages (S1-S3) in two cultivars. The results revealed that these structural genes (PSY1, CRTISO, CCD1, CYP97C1, VDE1, CCS, NCED1 and NCED2) related to carotenoid biosynthesis were expressed differentially in the two cultivars. Capsanthin and capsorubin mainly accumulated in ZR and were almost non-existent in ZY. S2 is the fruit color-changing stage; this may be a critical period for the development of different color formation of ZY and ZR. A combination of transcriptome and metabolome analyses indicated that CCS, NCED2, AAO4, VDE1 and CYP97C1 genes were key to the differences in the total carotenoid content. These new insights into pepper fruit coloration may help to improve fruit breeding strategies.
Collapse
Affiliation(s)
- Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Ruihao Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yunrong Mo
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Huidan Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Mengjuan Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Rui Wu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Hong Cheng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Mingxian Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Huasu Wang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Wei Hua
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Qiaoling Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Kai Zhao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| |
Collapse
|
5
|
Zhou M, Deng L, Yuan G, Zhao W, Ma M, Sun C, Du M, Li C, Li C. Rapid generation of a tomato male sterility system and its feasible application in hybrid seed production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:197. [PMID: 37608233 DOI: 10.1007/s00122-023-04428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
KEY MESSAGE A practical approach for the rapid generation and feasible application of green hypocotyl male-sterile (GHMS) tm6 dfr lines in tomato hybrid breeding was established. Male sterility enables reduced cost and high seed purity during hybrid seed production. However, progress toward its commercial application has been slow in tomato due to the disadvantages of most natural male-sterile mutants. Here, we developed a practical method for efficient tomato hybrid seed production using a male-sterile system with visible marker, which was rapidly generated by CRISPR/Cas9-mediated gene editing. Two closely linked genes, TM6 and DFR, which were reported to be candidates of ms15 (male sterile-15) and aw (anthocyanin without) locus, respectively, were knocked out simultaneously in two elite tomato inbred lines. Mutagenesis of both genes generated green hypocotyl male-sterile (GHMS) lines. The GHMS lines exhibited male sterility across different genetic backgrounds and environmental conditions. They also showed green hypocotyl due to defective anthocyanin accumulation, which serves as a reliable visible marker for selecting male-sterile plants at the seedling stage. We further proposed a strategy for multiplying the GHMS system and verified its high efficiency in stable male sterility propagation. Moreover, elite hybrid seeds were produced using GHMS system for potential side effects evaluation, and no adverse influences were found on seed yield, seed quality as well as important agronomic traits. This study provides a practical approach for the rapid generation and feasible application of male sterility in tomato hybrid breeding.
Collapse
Affiliation(s)
- Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoliang Yuan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Wei Zhao
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingyang Ma
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Changbao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
6
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
7
|
Wang W, Wang Y, Chen T, Qin G, Tian S. Current insights into posttranscriptional regulation of fleshy fruit ripening. PLANT PHYSIOLOGY 2023; 192:1785-1798. [PMID: 36250906 PMCID: PMC10315313 DOI: 10.1093/plphys/kiac483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 05/26/2023]
Abstract
Fruit ripening is a complicated process that is accompanied by the formation of fruit quality. It is not only regulated at the transcriptional level via transcription factors or DNA methylation but also fine-tuned after transcription occurs. Here, we review recent advances in our understanding of key regulatory mechanisms of fleshy fruit ripening after transcription. We mainly highlight the typical mechanisms by which fruit ripening is controlled, namely, alternative splicing, mRNA N6-methyladenosine RNA modification methylation, and noncoding RNAs at the posttranscriptional level; regulation of translation efficiency and upstream open reading frame-mediated translational repression at the translational level; and histone modifications, protein phosphorylation, and protein ubiquitination at the posttranslational level. Taken together, these posttranscriptional regulatory mechanisms, along with transcriptional regulation, constitute the molecular framework of fruit ripening. We also critically discuss the potential usage of some mechanisms to improve fruit traits.
Collapse
Affiliation(s)
- Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Feng Y, Kou X, Yuan S, Wu C, Zhao X, Xue Z, Li Q, Huang Z, Sun Y. CRISPR/Cas9-mediated SNAC9 mutants reveal the positive regulation of tomato ripening by SNAC9 and the mechanism of carotenoid metabolism regulation. HORTICULTURE RESEARCH 2023; 10:uhad019. [PMID: 37035856 PMCID: PMC10076210 DOI: 10.1093/hr/uhad019] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/03/2023] [Indexed: 06/19/2023]
Abstract
NAC transcriptional regulators are crucial for tomato ripening. Virus-induced gene silencing (VIGS) of SNAC9 (SlNAC19, Gene ID: 101248665) affects tomato ripening, and SNAC9 is involved in ethylene and abscisic acid (ABA) metabolic pathways. However, the function of SNAC9 in pigment metabolism in tomatoes remains unclear. This work seeks to discover the mechanism of SNAC9 involvement in pigment metabolism during tomato ripening by establishing a SNAC9 knockout model using CRISPR/Cas9 technology. The results indicated that fruit ripening was delayed in knockout (KO) mutants, and SNAC9 mutation significantly affected carotenoid metabolism. The chlorophyll (Chl) degradation rate, total carotenoid content, and lycopene content decreased significantly in the mutants. The transformation rate of chloroplasts to chromoplasts in mutants was slower, which was related to the carotenoid content. Furthermore, SNAC9 changed the expression of critical genes (PSY1, PDS, CRTISO, Z-ISO, SGR1, DXS2, LCYE, LCYB, and CrtR-b2) involved in pigment metabolism in tomato ripening. SNAC9 knockout also altered the expression levels of critical genes involved in the biosynthesis of ethylene and ABA. Accordingly, SNAC9 regulated carotenoid metabolism by directly regulating PSY1, DXS2, SGR1, and CrtR-b2. This research provides a foundation for developing the tomato ripening network and precise tomato ripening regulation.
Collapse
Affiliation(s)
- Yuan Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shuai Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyang Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qingxiu Li
- College of Food Science and Biological Engineering, Tianjin Agricultural University, Tianjin 300384, China
| | - Zhengyu Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yijie Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Mapping and Validation of BrGOLDEN: A Dominant Gene Regulating Carotenoid Accumulation in Brassica rapa. Int J Mol Sci 2022; 23:ijms232012442. [PMID: 36293299 PMCID: PMC9603932 DOI: 10.3390/ijms232012442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
In plants, the accumulation of carotenoids can maintain the balance of the photosystem and improve crop nutritional quality. Therefore, the molecular mechanisms underlying carotenoid synthesis and accumulation should be further explored. In this study, carotenoid accumulation differed significantly among parental Brassica rapa. Genetic analysis was carried out using the golden inner leaf ‘1900264′ line and the light−yellow inner leaf ‘1900262′ line, showing that the golden inner leaf phenotype was controlled by a single dominant gene. Using bulked−segregant analysis sequencing, BraA09g007080.3C encoding the ORANGE protein was selected as a candidate gene. Sequence alignment revealed that a 4.67 kb long terminal repeat insertion in the third exon of the BrGOLDEN resulted in three alternatively spliced transcripts. The spatiotemporal expression results indicated that BrGOLDEN might regulate the expression levels of carotenoid−synthesis−related genes. After transforming BrGOLDEN into Arabidopsis thaliana, the seed−derived callus showed that BrGOLDENIns and BrGOLDENDel lines presented a yellow color and the BrGOLDENLdel line presented a transparent phenotype. In addition, using the yeast two−hybrid assay, BrGOLDENIns, BrGOLDENLdel, and Brgoldenwt exhibited strong interactions with BrPSY1, but BrGOLDENDel did not interact with BrPSY1 in the split−ubiquitin membrane system. In the secondary and 3D structure analysis, BrGOLDENDel was shown to have lost the PNFPSFIPFLPPL sequences at the 125 amino acid position, which resulted in the α−helices of BrGOLDENDel being disrupted, restricting the formation of the 3D structure and affecting the functions of the protein. These findings may provide new insights into the regulation of carotenoid synthesis in B. rapa.
Collapse
|
10
|
Yang T, Ali M, Lin L, Li P, He H, Zhu Q, Sun C, Wu N, Zhang X, Huang T, Li CB, Li C, Deng L. Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. HORTICULTURE RESEARCH 2022; 10:uhac214. [PMID: 36643741 PMCID: PMC9832834 DOI: 10.1093/hr/uhac214] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 05/24/2023]
Abstract
Fruit color is an important horticultural trait, which greatly affects consumer preferences. In tomato, fruit color is determined by the accumulation of different pigments, such as carotenoids in the pericarp and flavonoids in the peel, along with the degradation of chlorophyll during fruit ripening. Since fruit color is a multigenic trait, it takes years to introgress all color-related genes in a single genetic background via traditional crossbreeding, and the avoidance of linkage drag during this process is difficult. Here, we proposed a rapid breeding strategy to generate tomato lines with different colored fruits from red-fruited materials by CRISPR/Cas9-mediated multiplex gene editing of three fruit color-related genes (PSY1, MYB12, and SGR1). Using this strategy, the red-fruited cultivar 'Ailsa Craig' has been engineered to a series of tomato genotypes with different fruit colors, including yellow, brown, pink, light-yellow, pink-brown, yellow-green, and light green. Compared with traditional crossbreeding, this strategy requires less time and can obtain transgene-free plants with different colored fruits in less than 1 year. Most importantly, it does not alter other important agronomic traits, like yield and fruit quality. Our strategy has great practical potential for tomato breeding and serves as a reference for improving multigene-controlled traits of horticultural crops.
Collapse
Affiliation(s)
| | | | | | - Ping Li
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Hongju He
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiang Zhu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | | | - Lei Deng
- Corresponding authors. E-mail: ;
| |
Collapse
|