1
|
Zubairu IK, Rakariyatham K, Bai-Ngew S, Leksawasdi N, Regenstein JM, Lao F, Hong H, Shin WS, Alzahrani KJ, Phimolsiripol Y. Nutritional and Therapeutic Potential of Longan Fruit By-products for Liver Diseases: Pathway to Functional Foods. Curr Nutr Rep 2025; 14:28. [PMID: 39907839 DOI: 10.1007/s13668-025-00617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
PURPOSE OF REVIEW The massive processing of longan fruit consequently generates a significant quantity of by-products that are a nuisance to the environment. This review aims to tap these by-products for sustainable applications in treating hepatic diseases. RECENT FINDINGS Ethnobotanical investigations show that longan fruit has been utilized in liver functioning for over two millennia and is supported by contemporary scientific findings. Recent studies highlighted that these by-products contain bioactive compounds that decrease oxidative stress and inflammation, key drivers of liver diseases, including liver fibrosis, hepatitis, and non-alcoholic fatty liver disease (NAFLD). These bioactive compounds modulate lipid metabolism, detoxification pathways, and oxidative stress-regulating metabolic pathways of hepatoprotection. In addition, using longan by-products provides a relatively more affordable nutraceutical substitute for synthetic pharmaceuticals. This literature revealed that polyphenolic compounds such as corilagin gallic acid, ellagic acid, and various flavonoids in longan by-products exhibit antioxidant, anti-inflammatory, and immunomodulatory activities that benefit liver health through different pathways including unexplored mechanisms. However, this review recommends exploring the potential functional application of these by-products in food. It emphasizes the need for clinical validation of longan by-product therapies for liver diseases.
Collapse
Affiliation(s)
- Idris Kaida Zubairu
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | | | - Shitapan Bai-Ngew
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Noppol Leksawasdi
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY, 14853-7201, USA
| | - Fei Lao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hui Hong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weon-Sun Shin
- College of Human Ecology, Hanyang University, Seoul, Republic of Korea
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | | |
Collapse
|
2
|
Amjad M, Wang Y, Han S, Haider MZ, Sami A, Batool A, Shafiq M, Ali Q, Dong J, Sabir IA, Manzoor MA. Genome wide identification of phenylalanine ammonia-lyase (PAL) gene family in Cucumis sativus (cucumber) against abiotic stress. BMC Genom Data 2024; 25:76. [PMID: 39187758 PMCID: PMC11348668 DOI: 10.1186/s12863-024-01259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Phenylalanine ammonia lyase (PAL) is a widely studied enzyme in plant biology due to its role in connecting primary metabolism to secondary phenylpropanoid metabolism, significantly influencing plant growth, development, and stress response. Although PAL genes have been extensively studied in various plant species but their exploration in cucumber has been limited. This study successfully identified 11 CsPAL genes in Cucumis sativus (cucumber). These CsPAL genes were categorized based on their conserved sequences revealing patterns through MEME analysis and multiple sequence alignment. Interestingly, cis-elements related to stress were found in the promoter regions of CsPAL genes, indicating their involvement in responding to abiotic stress. Furthermore, these gene's promoters contained components associated with light, development and hormone responsiveness. This suggests that they may have roles in hormone developmental processes. MicroRNAs were identified as a key regulators for the CsPAL genes, playing a crucial role in modulating their expression. This discovery underscores the complex regulatory network involved in the plant's response to various stress conditions. The influence of these microRNAs further highlights the complicated mechanisms that plants use to manage stress. Gene expression patterns were analyzed using RNA-seq data. The significant upregulation of CsPAL9 during HT3h (heat stress for 3 h) and the heightened upregulation of both CsPAL9 and CsPAL7 under HT6h (heat stress for 6 h) in the transcriptome study suggest a potential role for these genes in cucumber's tolerance to heat stress. This comprehensive investigation aims to enhance our understanding of the PAL gene family's versatility, offering valuable insights for advancements in cucumber genetics.
Collapse
Affiliation(s)
- Muskan Amjad
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- Department of Botany, Government Graduate College Township, Lahore, Pakistan
| | - Yuexia Wang
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China
| | - Shiming Han
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China.
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Adnan Sami
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Alia Batool
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, P.O BOX. 54590, Lahore, Pakistan.
| | - Jihong Dong
- School of Public Policy & Management, China University of Mining and Technology, Xuzhou, China
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Huang X, Liu H, Wu F, Wei W, Zeng Z, Xu J, Chen C, Hao Y, Xia R, Liu Y. Diversification of FT-like genes in the PEBP family contributes to the variation of flowering traits in Sapindaceae species. MOLECULAR HORTICULTURE 2024; 4:28. [PMID: 39010247 PMCID: PMC11251392 DOI: 10.1186/s43897-024-00104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Many species of Sapindaceae, such as lychee, longan, and rambutan, provide nutritious and delicious fruit. Understanding the molecular genetic mechanisms that underlie the regulation of flowering is essential for securing flower and fruit productivity. Most endogenous and exogenous flowering cues are integrated into the florigen encoded by FLOWERING LOCUS T. However, the regulatory mechanisms of flowering remain poorly understood in Sapindaceae. Here, we identified 60 phosphatidylethanolamine-binding protein-coding genes from six Sapindaceae plants. Gene duplication events led to the emergence of two or more paralogs of the FT gene that have evolved antagonistic functions in Sapindaceae. Among them, the FT1-like genes are functionally conserved and promote flowering, while the FT2-like genes likely serve as repressors that delay flowering. Importantly, we show here that the natural variation at nucleotide position - 1437 of the lychee FT1 promoter determined the binding affinity of the SVP protein (LcSVP9), which was a negative regulator of flowering, resulting in the differential expression of LcFT1, which in turn affected flowering time in lychee. This finding provides a potential molecular marker for breeding lychee. Taken together, our results reveal some crucial aspects of FT gene family genetics that underlie the regulation of flowering in Sapindaceae.
Collapse
Affiliation(s)
- Xing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Hongsen Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Fengqi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Wanchun Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Zaohai Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Jing Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China
| | - Yanwei Hao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China.
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- South China Agricultural University, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture and Rural Affair, South China Agricultural University, Guangdong Guangzhou, 510642, China.
- College of Plant Science and Technology, Huazhong Agricultural University, Hubei Wuhan, 430070, China.
| |
Collapse
|
4
|
Lomax J, Ford R, Bar I. Multi-omic applications for understanding and enhancing tropical fruit flavour. PLANT MOLECULAR BIOLOGY 2024; 114:83. [PMID: 38972957 PMCID: PMC11228007 DOI: 10.1007/s11103-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.
Collapse
Affiliation(s)
- Joshua Lomax
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia.
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| |
Collapse
|
5
|
Li Y, Ren R, Pan R, Bao Y, Xie T, Zeng L, Fang T. Comparative transcriptome analysis identifies candidate genes related to sucrose accumulation in longan ( Dimocarpus longan Lour.) pulp. FRONTIERS IN PLANT SCIENCE 2024; 15:1379750. [PMID: 38645392 PMCID: PMC11032017 DOI: 10.3389/fpls.2024.1379750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Sucrose content is one of the important factors to determine longan fruit flavor quality. To gain deep insight of molecular mechanism on sucrose accumulation in longan, we conducted comparative transcriptomic analysis between low sucrose content longan cultivar 'Qingkebaoyuan' and high sucrose content cultivar 'Songfengben'. A total of 12,350 unique differentially expressed genes (DEGs) were detected across various development stages and different varieties, including hexokinase (HK) and sucrose-phosphate synthase (SPS), which are intricately linked to soluble sugar accumulation and metabolism. Weighted gene co-expression network analysis (WGCNA) identified magenta module, including DlSPS gene, was significantly positively correlated with sucrose content. Furthermore, transient expression unveiled DlSPS gene play crucial role in sucrose accumulation. Moreover, 5 transcription factors (MYB, ERF, bHLH, C2H2, and NAC) were potentially involved in DlSPS regulation. Our findings provide clues for sucrose metabolism, and lay the foundation for longan breeding in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Lihui Zeng
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Fang
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Jue D, Li Z, Zhang W, Tang J, Xie T, Sang X, Guo Q. Identification and functional analysis of the LEAFY gene in longan flower induction. BMC Genomics 2024; 25:308. [PMID: 38528464 DOI: 10.1186/s12864-024-10229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.
Collapse
Affiliation(s)
- Dengwei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, Beibei, China
| | - Zhexin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
| | - Wenlin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
| | - Ting Xie
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
| | - Xuelian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China.
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, Beibei, China.
| |
Collapse
|
7
|
Kang H, Huang T, Duan G, Meng Y, Chen X, He S, Xia Z, Zhou X, Chao J, Tang B, Wang Z, Zhu J, Du Z, Sun Y, Zhang S, Xiao J, Tian W, Wang W, Zhao W. TCOD: an integrated resource for tropical crops. Nucleic Acids Res 2024; 52:D1651-D1660. [PMID: 37843152 PMCID: PMC10767838 DOI: 10.1093/nar/gkad870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023] Open
Abstract
Tropical crops are vital for tropical agriculture, with resource scarcity, functional diversity and extensive market demand, providing considerable economic benefits for the world's tropical agriculture-producing countries. The rapid development of sequencing technology has promoted a milestone in tropical crop research, resulting in the generation of massive amount of data, which urgently needs an effective platform for data integration and sharing. However, the existing databases cannot fully satisfy researchers' requirements due to the relatively limited integration level and untimely update. Here, we present the Tropical Crop Omics Database (TCOD, https://ngdc.cncb.ac.cn/tcod), a comprehensive multi-omics data platform for tropical crops. TCOD integrates diverse omics data from 15 species, encompassing 34 chromosome-level de novo assemblies, 1 255 004 genes with functional annotations, 282 436 992 unique variants from 2048 WGS samples, 88 transcriptomic profiles from 1997 RNA-Seq samples and 13 381 germplasm items. Additionally, TCOD not only employs genes as a bridge to interconnect multi-omics data, enabling cross-species comparisons based on homology relationships, but also offers user-friendly online tools for efficient data mining and visualization. In short, TCOD integrates multi-species, multi-omics data and online tools, which will facilitate the research on genomic selective breeding and trait biology of tropical crops.
Collapse
Affiliation(s)
- Hailong Kang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhao Huang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangya Duan
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyan Meng
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoning Chen
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuang He
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhiqiang Xia
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Xincheng Zhou
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinquan Chao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bixia Tang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zhonghuang Wang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Zhu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Zhenglin Du
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yanlin Sun
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Sisi Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Jingfa Xiao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weimin Tian
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenquan Wang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Wenming Zhao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jiang S, An P, Xia C, Ma W, Zhao L, Liang T, Liu Q, Xu R, Huang D, Xia Z, Zou M. Genome-Wide Identification and Expression Analysis of the SUT Family from Three Species of Sapindaceae Revealed Their Role in the Accumulation of Sugars in Fruits. PLANTS (BASEL, SWITZERLAND) 2023; 13:95. [PMID: 38202403 PMCID: PMC10780545 DOI: 10.3390/plants13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Sapindaceae is an economically important family of Sapindales and includes many fruit crops. The dominant transport and storage form of photoassimilates in higher plants is sucrose. Sucrose transporter proteins play an irreplaceable role in the loading, transportation, unloading, and distribution of sucrose. A few SUT (sugar transporter) family genes have been identified and characterized in various plant species. In this study, 15, 15, and 10 genes were identified in litchi, longan, and rambutan, respectively, via genome-wide screening. These genes were divided into four subgroups based on phylogenetics. Gene duplication analysis suggested these genes underwent potent purifying selection and tandem duplications during evolution. The expression levels of SlSut01 and SlSut08 were significantly increased in the fruits of Sapindaceae members. The homologs of these two genes in longan and rambutan were also highly expressed in the fruits. The expression pattern of SUTs in three organs of the two varieties was also explored. Subcellular colocalization experiments revealed that the proteins encoded by both genes were present in the plasma membrane. This report provides data for the functional study of SUTs in litchi and provides a basis for screening sugar accumulation-related genes in fruits of Sapindaceae.
Collapse
Affiliation(s)
- Sirong Jiang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Pengliang An
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Chengcai Xia
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Wanfeng Ma
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Long Zhao
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Tiyun Liang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Qi Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Rui Xu
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Dongyi Huang
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhiqiang Xia
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Meiling Zou
- College of Tropical Crops, Hainan University, Haikou 570228, China; (S.J.); (P.A.); (C.X.); (W.M.); (L.Z.); (T.L.); (Q.L.); (R.X.)
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| |
Collapse
|
9
|
Lv X, Tian S, Huang S, Wei J, Han D, Li J, Guo D, Zhou Y. Genome-wide identification of the longan R2R3-MYB gene family and its role in primary and lateral root. BMC PLANT BIOLOGY 2023; 23:448. [PMID: 37741992 PMCID: PMC10517564 DOI: 10.1186/s12870-023-04464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
R2R3-MYB is an important transcription factor family that regulates plant growth and development. Root development directly affects the absorption of water and nutrients by plants. Therefore, to understand the regulatory role of R2R3-MYB transcription factor family in root development of longan, this study identified the R2R3-MYB gene family members at the genome-wide level, and analyzed their phylogenetic characteristics, physical and chemical properties, gene structure, chromosome location and tissue expression. The analysis identified 124 R2R3-MYB family members in the longan genome. Phylogenetic analysis divided these members into 22 subfamilies, and the members of the unified subfamily had similar motifs and gene structures. The result of qRT-PCR showed that expression levels of DlMYB33, DlMYB34, DlMYB59, and DlMYB77 were significantly higher in main roots than in lateral as opposed to those of DlMYB35, DlMYB69, DlMYB70, and DlMYB83, which were significantly lower. SapBase database prediction and miRNAs sequencing results showed that 34 longan miRNAs could cleave R2R3-MYB, including 17 novel miRNAs unique to longan. The qRT-PCR and subcellular localization experiments of DlMYB92 and DlMYB98 showed that DlMYB92 is a key factor that regulates transcription in the nucleus and participates in the regulation of longan lateral root development. Longan also has a conserved miRNA-MYB-lateral root development regulation mechanism. This study provides a reference for further research on the transcriptional regulation of the miRNA-R2R3-MYB module in the root development of longan.
Collapse
Affiliation(s)
- Xinmin Lv
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shichang Tian
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junbin Wei
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Yan Zhou
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China.
| |
Collapse
|
10
|
Tang M, Gao X, Meng W, Lin J, Zhao G, Lai Z, Lin Y, Chen Y. Transcription factors NF-YB involved in embryogenesis and hormones responses in Dimocarpus Longan Lour. FRONTIERS IN PLANT SCIENCE 2023; 14:1255436. [PMID: 37841620 PMCID: PMC10570845 DOI: 10.3389/fpls.2023.1255436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023]
Abstract
Introduction NF-YB transcription factor is an important regulatory factor in plant embryonic development. Results In this study, 15 longan NF-YB (DlNF-YB) family genes were systematically identified in the whole genome of longan, and a comprehensive bioinformatics analysis of DlNF-YB family was performed. Comparative transcriptome analysis of DlNF-YBs expression in different tissues, early somatic embryogenesis (SE), and under different light and temperature treatments revealed its specific expression profiles and potential biological functions in longan SE. The qRT-PCR results implied that the expression patterns of DlNF-YBs were different during SE and the zygotic embryo development of longan. Supplementary 2,4-D, NPA, and PP333 in longan EC notably inhibited the expression of DlNF-YBs; ABA, IAA, and GA3 suppressed the expressions of DlNF-YB6 and DlNF-YB9, but IAA and GA3 induced the other DlNF-YBs. Subcellular localization indicated that DlNF-YB6 and DlNF-YB9 were located in the nucleus. Furthermore, verification by the modified 5'RNA Ligase Mediated Rapid Amplification of cDNA Ends (5' RLM-RACE) method demonstrated that DlNF-YB6 was targeted by dlo-miR2118e, and dlo-miR2118e regulated longan somatic embryogenesis (SE) by targeting DlNF-YB6. Compared with CaMV35S- actuated GUS expression, DlNF-YB6 and DlNF-YB9 promoters significantly drove GUS expression. Meanwhile, promoter activities were induced to the highest by GA3 but suppressed by IAA. ABA induced the activities of the promoter of DlNF-YB9, whereas it inhibited the promoter of DlNF-YB6. Discussion Hence, DlNF-YB might play a prominent role in longan somatic and zygotic embryo development, and it is involved in complex plant hormones signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yukun Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Lv X, Huang S, Wang J, Han D, Li J, Guo D, Zhu H. Genome-wide identification of Mg 2+ transporters and functional characteristics of DlMGT1 in Dimocarpus longan. FRONTIERS IN PLANT SCIENCE 2023; 14:1110005. [PMID: 36818860 PMCID: PMC9932547 DOI: 10.3389/fpls.2023.1110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Longan (Dimocarpus Longan) is one of the most important fruit crops in Southern China. Lack of available Mg in acidic soil conditions is a limitation to further increasing longan yield. Magnesium transporter (MGT/MRS2) mediates the uptake, transport, and redistribution of Mg2+ in higher plants. To understand the role of MGTs family members in longan Mg deficiency. We identified and analyzed the protein characteristics, phylogeny, expression changes, subcellular localization, and transcriptional regulation of DlMGTs members. The results showed that, twelve DlMGTs are localized in the cell membrane, chloroplast, and nucleus. The evolutionary differences in MGTs between herbaceous and woody species in different plants. The DlMGTs promoters contained many cis-acting elements and transcription factor binding sites related to the hormone, environmental, and stress response. Subcellular localization assays showed that DlMGT1 localizes in the cell membrane of Arabidopsis protoplasts. The candidate transcription factor DlGATA16, which may regulate the expression of DlMGT1, was localized in the nucleus of tobacco leaves. Dual luciferase analysis demonstrated that DlGATA16 is a potential factor regulating the transcriptional activity of DlMGT1. In this study, we identified and analyzed DlMGTs on a genome-wide scale and the subcellular localization and interaction of DlMGT1 and DlGATA16, which has important implications for further functional analysis studies of MGTs and the use of MGT for longan genetic improvement.
Collapse
Affiliation(s)
- Xinmin Lv
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Shilian Huang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Jing Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical Fruit Tree Research of Guangdong Province, Guangzhou, China
| | - Haifeng Zhu
- Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|
12
|
Ye L, Yang L, Wang B, Chen G, Jiang L, Hu Z, Shi Z, Liu Y, Chen S. The Chromosome-level genome of Aesculus wilsonii provides new insights into terpenoid biosynthesis and Aesculus evolution. FRONTIERS IN PLANT SCIENCE 2022; 13:1022169. [PMID: 36388583 PMCID: PMC9642078 DOI: 10.3389/fpls.2022.1022169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Aesculus L. (buckeye and horse chestnut) are woody plant species with important horticultural and medicinal values. Aesculus seeds are widely used as biomedicine and cosmetic ingredients due to their saponins. We report a chromosomal-scale genome of Aesculus wilsonii. Sequences amounting to a total of 579.01 Mb were assembled into 20 chromosomes. More than half of the genome (54.46%) were annotated as repetitive sequences, and 46,914 protein-coding genes were predicted. In addition to the widespread gamma event with core eudicots, a unique whole-genome duplication (WGD) event (17.69 Mya) occurred in Aesculus after buckeye differentiated from longan. Due to WGD events and tandem duplications, the related synthetic genes of triterpene saponins unique to Aesculus increased significantly. Combined with transcriptome characterization, the study preliminarily resolved the biosynthetic pathway of triterpenoid saponins like aescin in A. wilsonii genome. Analyses of the resequencing of 104 buckeye accessions revealed clear relationship between the geographic distribution and genetic differentiation of buckeye trees in China. We found that the buckeye species found in southern Shaanxi is A. wilsonii rather than A. chinensis. Population dynamics analysis further suggests that the population size and evolution of existing buckeye species have been influenced by climate fluctuations during the Pleistocene and recent domestication events. The genome of A. wilsonii and population genomics of Aesculus provide a resource for future research on Hippocastanaceae. These findings will contribute to the utilization and diversity protection of Aesculus.
Collapse
Affiliation(s)
- Lichun Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lulu Yang
- Genomics Project Department, Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Bo Wang
- Hubei Institute for Drug Control, Wuhan, China
| | - Gang Chen
- Genomics Project Department, Wuhan Benagen Tech Solutions Company Limited, Wuhan, China
| | - Liping Jiang
- Department of Pharmacy, Wuhan Hospital of Traditional and Western Medicine, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhaohua Shi
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, China
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shilin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Institute of herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Jue D, Liu L, Sang X, Shi S. A comparative proteomic analysis provides insight into the molecular mechanism of bud break in longan. BMC PLANT BIOLOGY 2022; 22:486. [PMID: 36224553 PMCID: PMC9558362 DOI: 10.1186/s12870-022-03868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The timing of bud break is very important for the flowering and fruiting of longan. To obtain new insights into the underlying regulatory mechanism of bud break in longan, a comparative analysis was conducted in three flower induction stages of two longan varieties with opposite flowering phenotypes by using isobaric tags for relative and absolute quantification (iTRAQ). RESULTS In total, 3180 unique proteins were identified in 18 samples, and 1101 differentially abundant proteins (DAPs) were identified. "SX" ("Shixia"), a common longan cultivated variety that needs an appropriate period of low temperatures to accumulate energy and nutrients for flower induction, had a strong primary inflorescence, had a strong axillary inflorescence, and contained high contents of sugars, and most DAPs during the bud break process were enriched in assimilates and energy metabolism. Combined with our previous transcriptome data, it was observed that sucrose synthase 6 (SS6) and granule-bound starch synthase 1 (GBSSI) might be the key DAPs for "SX" bud break. Compared to those of "SX", the primary inflorescence, axillary inflorescence, floral primordium, bract, and prophyll of "SJ" ("Sijimi") were weaker. In addition, light, rather than a high sugar content or chilling duration, might act as the key signal for triggering bud break. In addition, catalase isozyme 1, an important enzyme in the redox cycle, and RuBisCO, a key enzyme in the Calvin cycle of photosynthetic carbon assimilation, might be the key DAPs for SJ bud break. CONCLUSION Our results present a dynamic picture of the bud break of longan, not only revealing the temporal specific expression of key candidate genes and proteins but also providing a scientific basis for the genetic improvement of this fruit tree species.
Collapse
Affiliation(s)
- Dengwei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400715, Beibei, Chongqing, China
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091, Zhanjiang, China
| | - Xuelian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China.
| | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, 524091, Zhanjiang, China.
| |
Collapse
|
14
|
Guo L, Yao H, Chen W, Wang X, Ye P, Xu Z, Zhang S, Wu H. Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. HORTICULTURE RESEARCH 2022; 9:uhac223. [PMID: 36479585 PMCID: PMC9720450 DOI: 10.1093/hr/uhac223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Globally, medicinal plant natural products (PNPs) are a major source of substances used in traditional and modern medicine. As we human race face the tremendous public health challenge posed by emerging infectious diseases, antibiotic resistance and surging drug prices etc., harnessing the healing power of medicinal plants gifted from mother nature is more urgent than ever in helping us survive future challenge in a sustainable way. PNP research efforts in the pre-genomic era focus on discovering bioactive molecules with pharmaceutical activities, and identifying individual genes responsible for biosynthesis. Critically, systemic biological, multi- and inter-disciplinary approaches integrating and interrogating all accessible data from genomics, metabolomics, structural biology, and chemical informatics are necessary to accelerate the full characterization of biosynthetic and regulatory circuitry for producing PNPs in medicinal plants. In this review, we attempt to provide a brief update on the current research of PNPs in medicinal plants by focusing on how different state-of-the-art biotechnologies facilitate their discovery, the molecular basis of their biosynthesis, as well as synthetic biology. Finally, we humbly provide a foresight of the research trend for understanding the biology of medicinal plants in the coming decades.
Collapse
Affiliation(s)
- Li Guo
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Weikai Chen
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Ye
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sisheng Zhang
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
15
|
Liu X, Gong X, Liu Y, Liu J, Zhang H, Qiao S, Li G, Tang M. Application of High-Throughput Sequencing on the Chinese Herbal Medicine for the Data-Mining of the Bioactive Compounds. FRONTIERS IN PLANT SCIENCE 2022; 13:900035. [PMID: 35909744 PMCID: PMC9331165 DOI: 10.3389/fpls.2022.900035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/10/2022] [Indexed: 05/11/2023]
Abstract
The Chinese Herbal Medicine (CHM) has been used worldwide in clinic to treat the vast majority of human diseases, and the healing effect is remarkable. However, the functional components and the corresponding pharmacological mechanism of the herbs are unclear. As one of the main means, the high-throughput sequencing (HTS) technologies have been employed to discover and parse the active ingredients of CHM. Moreover, a tremendous amount of effort is made to uncover the pharmacodynamic genes associated with the synthesis of active substances. Here, based on the genome-assembly and the downstream bioinformatics analysis, we present a comprehensive summary of the application of HTS on CHM for the synthesis pathways of active ingredients from two aspects: active ingredient properties and disease classification, which are important for pharmacological, herb molecular breeding, and synthetic biology studies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology and Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sen Qiao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- Gang Li,
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Min Tang,
| |
Collapse
|