1
|
Yu S, Zhang J, Cao Y, Zhong C, Xie J. Comparative transcriptomic and metabolomic analyses reveal key regulatory gene for methyl jasmonate-induced steroidal saponins synthesis in Dioscorea composita. Int J Biol Macromol 2024; 280:135788. [PMID: 39307487 DOI: 10.1016/j.ijbiomac.2024.135788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Dioscorea composita (D. composita) is a perennial herb with abundant steroidal saponins that have gained worldwide attention for their remarkable efficacy in cardiovascular diseases. However, few studies have been worked on the regulatory network of steroidal saponins biosynthesis under phytohormone induced. In this study, we combined the transcriptome and metabolome analysis to reveal the variation of diosgenin and steroidal saponins in transcriptional and metabolism levels under methyl-jasmonate (MeJA) treatment. Although the application of MeJA indeed significantly increased the accumulation of diosgenin of D. composita, different types of steroidal saponins exhibited different accumulation patterns. Consistently, the expression levels of UDP-glycosyltransferases and Cytochrome P450 monooxygenases genes that highly related to the accumulation of steroidal saponins were either up- or down-regulated. Correlation analyses of transcription factors (TFs)-steroidal saponins and structural genes-TFs were further to identified the TFs potentially involved in the regulation of steroidal saponins biosynthesis. Silencing of DcWRKY11 in Dioscorea composita decreases the accumulation of steroidal saponins by regulating the expression steroidal saponins synthesis genes, suggesting that DcWRKY11 is a positive regulator in the regulation of steroidal saponins biosynthesis. Our findings take a deeper understanding of the regulatory network of MeJA-mediated steroidal saponins biosynthesis in D. composita.
Collapse
Affiliation(s)
- Shangjie Yu
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China
| | - Jiani Zhang
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China
| | - Yinxing Cao
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China
| | - Chunmei Zhong
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China.
| | - Jun Xie
- Institute of Biomass Engineering, South China Agricultural University, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Sun SX, Li Y, Jia L, Ye S, Luan Y. Identification of genetic variants controlling diosgenin content in Dioscorea zingiberensis tuber by genome-wide association study. BMC PLANT BIOLOGY 2024; 24:540. [PMID: 38872080 DOI: 10.1186/s12870-024-05133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS). RESULTS The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population. CONCLUSIONS This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.
Collapse
Affiliation(s)
- Shi Xian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, 650224, China
| | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650021, China.
| |
Collapse
|
3
|
Sun S, Guan B, Xing Y, Li X, Liu L, Li Y, Jia L, Ye S, Dossa K, Zheng L, Luan Y. Genome-wide association analysis and transgenic characterization for amylose content regulating gene in tuber of Dioscorea zingiberensis. BMC PLANT BIOLOGY 2024; 24:524. [PMID: 38853253 PMCID: PMC11163818 DOI: 10.1186/s12870-024-05122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/09/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly advantageous for diabetic patients' diet. However, the genetic machinery underlying amylose production remains elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for accelerating the genetic engineering of yams with respect to amylose content variation. RESULTS To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher amylose content in lines transformed with the AGPase-G allele. CONCLUSIONS Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the development of amylose-enriched genotypes.
Collapse
Affiliation(s)
- Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China
| | - Binbin Guan
- College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Yue Xing
- Department of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Lanlan Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, 650224, China
| | - Komivi Dossa
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34398, France
| | - Li Zheng
- Eco-development Academy, Southwest Forestry University, Kunming, 650224, China.
| | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
- Engineering Research Center for inheritance and innovation of Traditional Chinese Medicine, Kunming, 650034, China.
| |
Collapse
|
4
|
Li Z, Li Y, Geng L, Wang J, Ouyang Y, Li J. Genome-wide methylation, transcriptome and characteristic metabolites reveal the balance between diosgenin and brassinosteroids in Dioscorea zingiberensis. HORTICULTURE RESEARCH 2024; 11:uhae056. [PMID: 38659444 PMCID: PMC11040209 DOI: 10.1093/hr/uhae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/14/2024] [Indexed: 04/26/2024]
Abstract
Diosgenin (DG) is a bioactive metabolite isolated from Dioscorea species, renowned for its medicinal properties. Brassinosteroids (BRs) are a class of crucial plant steroidal hormones. Cholesterol and campesterol are important intermediates of DG and BR biosynthesis, respectively. DG and BRs are structurally similar components; however, the regulatory network and metabolic interplays have not been fully elucidated. In an effort to decode these complex networks, we conducted a comprehensive study integrating genome-wide methylation, transcriptome and characteristic metabolite data from Dioscorea zingiberensis. Leveraging these data, we were able to construct a comprehensive regulatory network linking DG and BRs. Mass spectrometry results enabled us to clarify the alterations in cholesterol, campesterol, diosgenin, and castasterone (one of the major active BRs). The DG content decreased by 27.72% at 6 h after brassinolide treatment, whereas the content increased by 85.34% at 6 h after brassinazole treatment. Moreover, we pinpointed DG/BR-related genes, such as CASs, CYP90s, and B3-ARFs, implicated in the metabolic pathways of DG and BRs. Moreover, CASs and CYP90s exhibit hypomethylation, which is closely related to their high transcription. These findings provide robust evidence for the homeostasis between DG and BRs. In conclusion, our research revealed the existence of a balance between DG and BRs in D. zingiberensis. Furthermore, our work not only provides new insights into the relationship between the two pathways but also offers a fresh perspective on the functions of secondary metabolites.
Collapse
Affiliation(s)
- Zihao Li
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Li
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| | - Luyu Geng
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiachen Wang
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, College Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
Lu R, Hu K, Sun X, Chen M. Low-coverage whole genome sequencing of diverse Dioscorea bulbifera accessions for plastome resource development, polymorphic nuclear SSR identification, and phylogenetic analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1373297. [PMID: 38510439 PMCID: PMC10950973 DOI: 10.3389/fpls.2024.1373297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Dioscorea bulbifera (Dioscoreaceae), a versatile herbaceous climber native to Africa and Asia, holds significant nutritional and medicinal value. Despite extensive characterization and genetic variability analyses of African accessions, studies on the genetic variation of this species in China are limited. To address this gap, we conducted low-coverage whole genome sequencing on D. bulbifera accessions from diverse regions across mainland China and Taiwan island. Our initial investigation encompassed comprehensive comparative plastome analyses of these D. bulbifera accessions, and developing plastome resources (including plastome-derived repetitive sequences, SSRs, and divergent hotspots). We also explored polymorphic nuclear SSRs and elucidated the intraspecific phylogeny of these accessions. Comparative plastome analyses revealed that D. bulbifera plastomes exhibited a conserved quadripartite structure with minimal size variation mainly attributed to intergenic spacer regions, reinforcing prior observations of a high degree of conservation within a species. We identified 46 to 52 dispersed repeats and 151 to 163 plastome-derived SSRs, as well as highlighted eight key divergent hotspots in these D. bulbifera accessions. Furthermore, we developed 2731 high-quality candidate polymorphic nuclear SSRs for D. bulbifera. Intraspecific phylogenetic analysis revealed three distinct clades, where accessions from Southeast China formed a sister group to those from South China and Taiwan island, and collectively, these two clades formed a sister group to the remaining accessions, indicating potential regional genetic divergence. These findings not only contributed to the understanding of the genetic variation of D. bulbifera, but also offered valuable resources for future research, breeding efforts, and utilization of this economically important plant species.
Collapse
Affiliation(s)
- Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Ke Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| |
Collapse
|
6
|
Wang T, Long C, Chang M, Wu Y, Su S, Wei J, Jiang S, Wang X, He J, Xing D, He Y, Ran Y, Li W. Genome-wide identification of the B3 transcription factor family in pepper (Capsicum annuum) and expression patterns during fruit ripening. Sci Rep 2024; 14:2226. [PMID: 38278802 PMCID: PMC10817905 DOI: 10.1038/s41598-023-51080-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/30/2023] [Indexed: 01/28/2024] Open
Abstract
In plants, B3 transcription factors play important roles in a variety of aspects of their growth and development. While the B3 transcription factor has been extensively identified and studied in numerous species, there is limited knowledge regarding its B3 superfamily in pepper. Through the utilization of genome-wide sequence analysis, we identified a total of 106 B3 genes from pepper (Capsicum annuum), they are categorized into four subfamilies: RAV, ARF, LAV, and REM. Chromosome distribution, genetic structure, motif, and cis-acting element of the pepper B3 protein were analyzed. Conserved gene structure and motifs outside the B3 domain provided strong evidence for phylogenetic relationships, allowing potential functions to be deduced by comparison with homologous genes from Arabidopsis. According to the high-throughput transcriptome sequencing analysis, expression patterns differ during different phases of fruit development in the majority of the 106 B3 pepper genes. By using qRT-PCR analysis, similar expression patterns in fruits from various time periods were discovered. In addition, further analysis of the CaRAV4 gene showed that its expression level decreased with fruit ripening and located in the nucleus. B3 transcription factors have been genome-wide characterized in a variety of crops, but the present study is the first genome-wide analysis of the B3 superfamily in pepper. More importantly, although B3 transcription factors play key regulatory roles in fruit development, it is uncertain whether B3 transcription factors are involved in the regulation of the fruit development and ripening process in pepper and their specific regulatory mechanisms because the molecular mechanisms of the process have not been fully explained. The results of the study provide a foundation and new insights into the potential regulatory functions and molecular mechanisms of B3 genes in the development and ripening process of pepper fruits, and provide a solid theoretical foundation for the enhancement of the quality of peppers and their selection and breeding of high-yield varieties.
Collapse
Affiliation(s)
- Tao Wang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Cha Long
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China
| | - Meixia Chang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Yuan Wu
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Shixian Su
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Jingjiang Wei
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China
| | - Suyan Jiang
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xiujun Wang
- College of Brewing and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Jianwen He
- Pepper Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Dan Xing
- Pepper Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Yangbo He
- Agriculture Development and Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Yaoqi Ran
- Agriculture Development and Research Institute of Guizhou Province, Guiyang, 550006, China
| | - Wei Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Vegetable Research Institute, Guizhou University, Guiyang, 550025, China.
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.
| |
Collapse
|
7
|
Hu K, Chen M, Li P, Sun X, Lu R. Intraspecific phylogeny and genomic resources development for an important medical plant Dioscorea nipponica, based on low-coverage whole genome sequencing data. FRONTIERS IN PLANT SCIENCE 2023; 14:1320473. [PMID: 38148859 PMCID: PMC10749966 DOI: 10.3389/fpls.2023.1320473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Dioscorea nipponica Makino, a perennial twining herb with medicinal importance, has a disjunctive distribution in the Sino-Japanese Floristic Region. It has a long history in traditional Chinese medicine, with demonstrated efficacy against various health conditions. However, the limited genomic data and knowledge of genetic variation have hindered its comprehensive exploration, utilization and conservation. In this study, we undertook low-coverage whole genome sequencing of diverse D. nipponica accessions to develop both plastome (including whole plastome sequences, plastome-derived SSRs and plastome-divergent hotspots) and nuclear genomic resources (including polymorphic nuclear SSRs and single-copy nuclear genes), as well as elucidate the intraspecific phylogeny of this species. Our research revealed 639 plastome-derived SSRs and highlighted six key mutational hotspots (namely CDS ycf1, IGS trnL-rpl32, IGS trnE-trnT, IGS rps16-trnQ, Intron 1 of clpP, and Intron trnG) within these accessions. Besides, three IGS regions (i.e., ndhD-cssA, trnL-rpl32, trnD-trnY), and the intron rps16 were identified as potential markers for distinguishing D. nipponica from its closely related species. In parallel, we successfully developed 988 high-quality candidate polymorphic nuclear SSRs and identified 17 single-copy nuclear genes for D. nipponica, all of which empower us to conduct in-depth investigations into phylogenetics and population genetics of this species. Although our phylogenetic analyses, based on plastome sequences and single-copy nuclear genes revealed cytonuclear discordance within D. nipponica, both findings challenged the current subspecies classification. In summary, this study developed a wealth of genomic resources for D. nipponica and enhanced our understanding of the intraspecific phylogeny of this species, offering valuable insights that can be instrumental in the conservation and strategic utilization of this economically significant plant.
Collapse
Affiliation(s)
- Ke Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Min Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| | - Pan Li
- Laboratory of Systematic & Evolutionary Botany and Biodiversity, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
- Jiangsu Provincial Science and Technology Resources Coordination Platform (Agricultural Germplasm Resources) Germplasm Resources Nursery of Medicinal Plants, Nanjing, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, China
| |
Collapse
|
8
|
Li Y, Li Z, Zhang F, Li S, Gu Y, Tian W, Tian W, Wang J, Wen J, Li J. Integrated evolutionary pattern analyses reveal multiple origins of steroidal saponins in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:823-839. [PMID: 37522396 DOI: 10.1111/tpj.16411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023]
Abstract
Steroidal saponins are a class of specialized metabolites essential for plant's response to biotic and abiotic stresses. They are also important raw materials for the industrial production of steroid drugs. Steroidal saponins are present in some monocots, such as Dioscorea and Paris, but their distribution, origin, and evolution in plants remain poorly understood. By reconstructing the evolutionary history of the steroidal saponin-associated module (SSAM) in plants, we reveal that the steroidal saponin pathway has its origin in Asparagus and Dioscorea. Through evaluating the distribution and evolutionary pattern of steroidal saponins in angiosperms, we further show that steroidal saponins originated multiple times in angiosperms, and exist in early diverged lineages of certain monocot lineages including Asparagales, Dioscoreales, and Liliales. In these lineages, steroidal saponins are synthesized through the high copy and/or high expression mechanisms of key genes in SSAM. Together with shifts in gene evolutionary rates and amino acid usage, these molecular mechanisms shape the current distribution and diversity of steroidal saponins in plants. Consequently, our results provide new insights into the distribution, diversity and evolutionary history of steroidal saponins in plants, and enhance our understanding of plants' resistance to abiotic and biotic stresses. Additionally, fundamental understanding of the steroidal saponin biosynthesis will facilitate their industrial production and pharmacological applications.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zihao Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Furui Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Song Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yongbing Gu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weijun Tian
- Yunnan Baotian Agricultural Technology Co., Ltd, Kunming, 650101, China
| | - Weirong Tian
- Yunnan Baotian Agricultural Technology Co., Ltd, Kunming, 650101, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, 20013-7012, DC, USA
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
9
|
Wen F, Chen S, Wang Y, Wu Q, Yan J, Pei J, Zhou T. The synthesis of Paris saponin VII mainly occurs in leaves and is promoted by light intensity. FRONTIERS IN PLANT SCIENCE 2023; 14:1199215. [PMID: 37575916 PMCID: PMC10420111 DOI: 10.3389/fpls.2023.1199215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023]
Abstract
Unraveling the specific organs and tissues involved in saponin synthesis, as well as the light regulatory mechanisms, is crucial for improving the quality of artificially cultivated medicinal materials of Paris plants. Paris saponin VII (PS VII), a high-value active ingredient, is found in almost all organs of Paris plant species. In this study, we focused on Paris polyphylla var. yunnanensis (Franch.) Hand. - Mzt. (PPY) and found that PS VII synthesis predominantly occurs in leaves and is increased by high light intensity. This intriguing discovery has unveiled the potential for manipulating non-traditional medicinal organ leaves to improve the quality of medicinal organ rhizomes. The analysis of the impact of organ differences on saponin concentration in P. polyphylla var. chinensis (Franch.) Hara (PPC), P. fargesii Franch. (PF), and PPY revealed consistency among the three Paris species and was mainly dominated by PS VII. Notably, the leaves and stems exhibited much higher proportions of PS VII than other organs, accounting for 80-90% of the four main saponins. Among the three Paris species, PPY had the highest concentration of PS VII and was selected for subsequent experiments. Further investigations on saponin subcellular localization, temporal variation, and stem wound fluid composition demonstrated that PS VII is synthesized in mesophyll cells, released into the intercellular space through exocytosis, and then transported to the rhizome via vascular tissue. These findings confirm the significant role of leaves in PS VII synthesis. Additionally, a 13C-glucose feeding to trace PS VII biosynthesis revealed that only PS VII in the leaves exhibited incorporation of the labeled carbon, despite conducting 13C-glucose feeding in leaves, stems, rhizomes, and roots. Thus, the leaves are indeed the primary organ for PS VII synthesis in PPY. Furthermore, compared with plants under 100 μmol m-2 s-1, plants under 400 μmol m-2 s-1 exhibited a higher PS VII concentration, particularly in the upper epidermal cells of the leaves. We propose that high light intensity promotes PS VII synthesis in leaves through three mechanisms: (1) increased availability of substrates for saponin synthesis; (2) protection of leaves from high light damage through enhanced saponin synthesis; and (3) enhanced compartmentalization of saponins within the leaves, which in turn feedback regulates saponin synthesis.
Collapse
Affiliation(s)
- Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Siyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Chang Y, Sun H, Liu S, He Y, Zhao S, Wang J, Wang T, Zhang J, Gao J, Yang Q, Li M, Zhao X. Identification of BBX gene family and its function in the regulation of microtuber formation in yam. BMC Genomics 2023; 24:354. [PMID: 37365511 DOI: 10.1186/s12864-023-09406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
BBX proteins play important roles in all of the major light-regulated developmental processes. However, no systematic analysis of BBX gene family regarding the regulation of photoperiodic microtuber formation has been previously performed in yam. In this study, a systematic analysis on the BBX gene family was conducted in three yam species, with the results, indicating that this gene plays a role in regulating photoperiodic microtuber formation. These analyses included identification the BBX gene family in three yam species, their evolutionary relationships, conserved domains, motifs, gene structure, cis-acting elements, and expressional patterns. Based on these analyses, DoBBX2/DoCOL5 and DoBBX8/DoCOL8 showing the most opposite pattern of expression during microtuber formation were selected as candidate genes for further investigation. Gene expression analysis showed DoBBX2/DoCOL5 and DoBBX8/DoCOL8 were highest expressed in leaves and exhibited photoperiod responsive expression patterns. Besides, the overexpression of DoBBX2/DoCOL5 and DoBBX8/DoCOL8 in potato accelerated tuber formation under short-day (SD) conditions, whereas only the overexpression of DoBBX8/DoCOL8 enhanced the accelerating effect of dark conditions on tuber induction. Tuber number was increased in DoBBX8/DoCOL8 overexpressing plants under dark, as well as in DoBBX2/DoCOL5 overexpressing plants under SD. Overall, the data generated in this study may form the basis of future functional characterizations of BBX genes in yam, especially regarding their regulation of microtuber formation via the photoperiodic response pathway.
Collapse
Affiliation(s)
- Yingying Chang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Haoyuan Sun
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shiyu Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yulong He
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Shanshan Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Jiage Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Tianle Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province / Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Xinxiang, 453007, China
| | - Jiangli Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province / Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Xinxiang, 453007, China
| | - Jin Gao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Xinxiang, 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
- Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Xinxiang, 453007, China
| | - Mingjun Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province / Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Xinxiang, 453007, China.
| | - Xiting Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
- Engineering Technology Research Center of Nursing and Utilization of Genuine Chinese Crude Drugs in Henan Province / Engineering Laboratory of Green Medicinal Material Biotechnology of Henan Province, Xinxiang, 453007, China.
| |
Collapse
|
11
|
Wang W, Hou L, Li S, Li J. The Functional Characterization of DzCYP72A12-4 Related to Diosgenin Biosynthesis and Drought Adaptability in Dioscorea zingiberensis. Int J Mol Sci 2023; 24:ijms24098430. [PMID: 37176134 PMCID: PMC10179397 DOI: 10.3390/ijms24098430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Dioscorea zingiberensis is a perennial herb famous for the production of diosgenin, which is a valuable initial material for the industrial synthesis of steroid drugs. Sterol C26-hydroxylases, such as TfCYP72A616 and PpCYP72A613, play an important role in the diosgenin biosynthesis pathway. In the present study, a novel gene, DzCYP72A12-4, was identified as C26-hydroxylase and was found to be involved in diosgenin biosynthesis, for the first time in D. zingiberensis, using comprehensive methods. Then, the diosgenin heterogenous biosynthesis pathway starting from cholesterol was created in stable transgenic tobacco (Nicotiana tabacum L.) harboring DzCYP90B71(QPZ88854), DzCYP90G6(QPZ88855) and DzCYP72A12-4. Meanwhile, diosgenin was detected in the transgenic tobacco using an ultra-performance liquid chromatography system (Vanquish UPLC 689, Thermo Fisher Scientific, Bremen, Germany) tandem MS (Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer, Thermo Fisher Scientific, Bremen, Germany). Further RT-qPCR analysis showed that DzCYP72A12-4 was highly expressed in both rhizomes and leaves and was upregulated under 15% polyethylene glycol (PEG) treatment, indicating that DzCYP72A12-4 may be related to drought resistance. In addition, the germination rate of the diosgenin-producing tobacco seeds was higher than that of the negative controls under 15% PEG pressure. In addition, the concentration of malonaldehyde (MDA) was lower in the diosgenin-producing tobacco seedlings than those of the control, indicating higher drought adaptability. The results of this study provide valuable information for further research on diosgenin biosynthesis in D. zingiberensis and its functions related to drought adaptability.
Collapse
Affiliation(s)
- Weipeng Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lixiu Hou
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Song Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Cheng Q, Zeng L, Wen H, Brown SE, Wu H, Li X, Lin C, Liu Z, Mao Z. Steroidal saponin profiles and their key genes for synthesis and regulation in Asparagus officinalis L. by joint analysis of metabolomics and transcriptomics. BMC PLANT BIOLOGY 2023; 23:207. [PMID: 37081391 PMCID: PMC10116787 DOI: 10.1186/s12870-023-04222-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Asparagus officinalis L. is a worldwide cultivated vegetable enrichened in both nutrient and steroidal saponins with multiple pharmacological activities. The upstream biosynthetic pathway of steroidal saponins (USSP) for cholesterol (CHOL) synthesis has been studied, while the downstream pathway of steroidal saponins (DSSP) starting from cholesterol and its regulation in asparagus remains unknown. RESULTS Metabolomics, Illumina RNAseq, and PacBio IsoSeq strategies were applied to different organs of both cultivated green and purple asparagus to detect the steroidal metabolite profiles & contents and to screen their key genes for biosynthesis and regulation. The results showed that there is a total of 427 compounds, among which 18 steroids were detected with fluctuated concentrations in roots, spears and flowering twigs of two garden asparagus cultivars. The key genes of DSSP include; steroid-16-hydroxylase (S16H), steroid-22-hydroxylase (S22H) and steroid-22-oxidase-16-hydroxylase (S22O-16H), steroid-26-hydroxylase (S26H), steroid-3-β-glycosyltransferase (S3βGT) and furostanol glycoside 26-O-beta-glucosidases (F26GHs) which were correlated with the contents of major steroidal saponins were screened, and the transcriptional factors (TFs) co-expressing with the resulted from synthetic key genes, including zinc fingers (ZFs), MYBs and WRKYs family genes were also screened. CONCLUSIONS Based on the detected steroidal chemical structures, profiles and contents which correlated to the expressions of screened synthetic and TFs genes, the full steroidal saponin synthetic pathway (SSP) of asparagus, including its key regulation networks was proposed for the first time.
Collapse
Affiliation(s)
- Qin Cheng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Liangqin Zeng
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Hao Wen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
| | - Xingyu Li
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, 650201, Yunnan, China.
- Institute of Improvement and Utilization of Characteristic Resource Plants, YNAU, Kunming, China.
- The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
13
|
Zhang X, Zhang Y, Guo Y, Xue P, Xue Z, Zhang Y, Zhang H, Ito Y, Dou J, Guo Z. Research progress of diosgenin extraction from Dioscorea zingiberensis C. H. Wright: Inspiration of novel method with environmental protection and efficient characteristics. Steroids 2023; 192:109181. [PMID: 36642106 DOI: 10.1016/j.steroids.2023.109181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Diosgenin was the starting materials to synthesize various hormone drugs and mainly generated from Dioscorea zingiberensis C. H. Wright by acidolysis, enzymolysis, microbiological fermentation, and integrated manner. Only acidic hydrolysis with strong acid such as hydrochloric acid or sulfuric acid was used in practice in diosgenin enterprises due to their feasibility and simplicity, nevertheless finally resulting in a great deal of unmanageable wastewater and severely polluted the surrounding environment. Aiming to provide a comprehensive and up-to date information of researches on diosgenin production from this plant, 151 cases were collected from scientific databases including Web of Science, Pubmed, Science Direct, Wiley, Springer, and China Knowledge Resource Integrated (CNKI). Their advantages and disadvantages with different production methods were analyzed based on these available data in this review paper. Considering the fact that nearly all of diosgenin enterprises were closed for the environmental protection and the life health of the people, this review paper was beneficial for providing useful guidelines to develop novel technologies with environmentally-friendly and cleaner features for diosgenin production or facilitate the transformation of other methods like enzymolysis, microbiological fermentation, or integrated methods from laboratory scale to industry scale.
Collapse
Affiliation(s)
- Xinxin Zhang
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yu Zhang
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuting Guo
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peiyun Xue
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Zhaowei Xue
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Zhang
- Xi'an Medical University, Xi'an, Shaanxi, China
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China
| | - Yoichiro Ito
- Laboratory of Bio-separation Technologies, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianwei Dou
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zengjun Guo
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
14
|
Li Y, Yang H, Li Z, Li S, Li J. Advances in the Biosynthesis and Molecular Evolution of Steroidal Saponins in Plants. Int J Mol Sci 2023; 24:ijms24032620. [PMID: 36768941 PMCID: PMC9917158 DOI: 10.3390/ijms24032620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Steroidal saponins are an important type of plant-specific metabolite that are essential for plants' responses to biotic and abiotic stresses. Because of their extensive pharmacological activities, steroidal saponins are also important industrial raw materials for the production of steroidal drugs. In recent years, more and more studies have explored the biosynthesis of steroidal saponins in plants, but most of them only focused on the biosynthesis of their molecular skeleton, diosgenin, and their subsequent glycosylation modification mechanism needs to be further studied. In addition, the biosynthetic regulation mechanism of steroidal saponins, their distribution pattern, and their molecular evolution in plants remain unclear. In this review, we summarized and discussed recent studies on the biosynthesis, molecular regulation, and function of steroidal saponins. Finally, we also reviewed the distribution and molecular evolution of steroidal saponins in plants. The elucidation of the biosynthesis, regulation, and molecular evolutionary mechanisms of steroidal saponins is crucial to provide new insights and references for studying their distribution, diversity, and evolutionary history in plants. Furthermore, a deeper understanding of steroidal saponin biosynthesis will contribute to their industrial production and pharmacological applications.
Collapse
Affiliation(s)
| | | | | | | | - Jiaru Li
- Correspondence: ; Tel.: +86-27-6875-3599
| |
Collapse
|
15
|
Hou L, Zhang F, Yuan X, Li S, Tian W, Tian W, Li J. Comparative transcriptome analysis reveals key genes for polyphyllin difference in five Paris species. PHYSIOLOGIA PLANTARUM 2022; 174:e13810. [PMID: 36326141 DOI: 10.1111/ppl.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Paris species accumulate a large amount of steroidal saponins, which have numerous pharmacological activities and have become an essential component in many patented drugs. However, only two among all Paris species. Paris are identified as official sources due to high level of bioactive compounds. To clarify the composition of steroidal saponins and the molecular basis behind the differences between species, we investigated transcriptome and metabolic profiles of leaves and rhizomes in Paris polyphylla var. chinensis (PPC), Paris polyphylla var. yunnanensis (PPY), Paris polyphylla var. stenophylla (PPS), Paris fargesii (PF), and Paris mairei (PM). Phytochemical results displayed that the accumulation of steroidal saponins was tissue- and species-specific. PF and PPS contained more steroidal saponins in leaves than rhizomes, while PPY accumulated more steroidal saponins in rhizomes than leaves. PPC and PM contained similar amounts of steroidal saponins in leaves and rhizomes. Transcriptome analysis illustrated that most differentially expressed genes related to the biosynthesis of steroidal saponins were abundantly expressed in rhizomes than leaves. Meanwhile, more biosynthetic genes had significant correlations with steroidal saponins in rhizomes than in leaves. The result of CCA indicated that ACAT, DXS, DWF1, and CYP90 constrained 97.35% of the variance in bioactive compounds in leaves, whereas CYP72, UGT73, ACAT, and GPPS constrained 98.61% of the variance in phytochemicals in rhizomes. This study provided critical information for enhancing the production of steroidal saponins by biotechnological approaches and methodologies.
Collapse
Affiliation(s)
- Lixiu Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Furui Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xincheng Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weijun Tian
- Yunnan Baotian Agricultural Technology Co., Ltd., Kunming, China
| | - Weirong Tian
- Yunnan Baotian Agricultural Technology Co., Ltd., Kunming, China
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|