1
|
Su Q, Feng Y, Li X, Wang Z, Zhong Y, Zhao Z, Yang H. Allelic variation in an expansin, MdEXP-A1, contributes to flesh firmness at harvest in apples. MOLECULAR HORTICULTURE 2025; 5:3. [PMID: 39828743 PMCID: PMC11744834 DOI: 10.1186/s43897-024-00121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/17/2024] [Indexed: 01/22/2025]
Abstract
Flesh firmness is a core quality trait in apple breeding because of its correlation with ripening and storage. Quantitative trait loci (QTLs) were analyzed through bulked segregant analysis sequence (BSA-seq) and comparative transcriptome analysis (RNA-seq) to explore the genetic basis of firmness formation. In this study, phenotypic data were collected at harvest from 251 F1 hybrids derived from 'Ruiyang' and 'Scilate', the phenotype values of flesh firmness at harvest were extensively segregated for two consecutive years. A total of 11 candidate intervals were identified on chromosomes 03, 05, 06, 07, 13, and 16 via BSA-seq analysis. We characterized a major QTL on chromosome 16 and selected a candidate gene encoding expansin MdEXP-A1 by combining RNA-seq analysis. Furthermore, the genotype of Del-1166 (homozygous deletion) in the MdEXP-A1 promoter was closely associated with the super-hard phenotype of F1 hybrids, which could be used as a functional marker for marker-assisted selection (MAS) in apple. Functional identification revealed that MdEXP-A1 positively expedited fruit softening in both apple fruits and tomatoes that overexpressed MdEXP-A1. Moreover, the promoter sequence of TE-1166 was experimentally validated containing two binding motifs of MdNAC1, and the absence of the MdEXP-A1 promoter fragment reduced its transcription activity. MdNAC1 also promotes the expression of MdEXP-A1, indicating its potential modulatory role in quality breeding. These findings provide novel insight into the genetic control of flesh firmness by MdEXP-A1.
Collapse
Affiliation(s)
- Qiufang Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yifeng Feng
- College of Horticulture and Forestry, Tarim University, Alaer, 843300, Xinjiang, China
| | - Xianglu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zidun Wang
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Yuanwen Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huijuan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Wang M, Song T, Jin Q, Zhang Z, Shen Y, Lv G, Fan L, Feng W, Qu Y, Wang M, Shen M, Lou H, Cai W. From White to Reddish-Brown: The Anthocyanin Journey in Stropharia rugosoannulata Driven by Auxin and Genetic Regulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:954-966. [PMID: 39719358 DOI: 10.1021/acs.jafc.4c10753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Stropharia rugosoannulata, or wine-cap Stropharia, is a well-known edible mushroom cultivated globally. The pileipellis color is a crucial quality attribute of S. rugosoannulata, exhibiting significant variation throughout its developmental stages. However, the pigment types and regulatory mechanisms behind color variation remain unclear. The metabolome analysis found that the anthocyanin biosynthesis pathway was significantly enriched and anthocyanins accumulated steadily in fruiting bodies during three developmental stages. The pileipellis pigment was extracted, and HPLC-MS confirmed the presence of anthocyanins. Notably, significant differences in anthocyanin content were observed among the various colored varieties. Thus, anthocyanins contribute to the pileipellis color of S. rugosoannulata. Through further investigation, this study elucidated, for the first time, the relationship between the "SrNFYA-SrDRF2" regulatory module and anthocyanin accumulation. Combined multiomics assays and HPLC analysis revealed that auxin functions as a signaling molecule that regulates the accumulation of anthocyanins in the pileipellis. Subsequently, the hub gene of anthranilate synthase for auxin synthesis was identified as SrTRP1, and the transcription factor SrMYB1 was verified as a regulator of SrTRP1, influencing auxin accumulation. These findings provide a valuable resource for the targeted enhancement of the quality of S. rugosoannulata.
Collapse
Affiliation(s)
- Mei Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Tingting Song
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Qunli Jin
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zuofa Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yingyue Shen
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Guoying Lv
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Lijun Fan
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Weilin Feng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yingmin Qu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Mengyu Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Meng Shen
- Jiaxing Academy of Agricultural Science, Jiaxing, Zhejiang 314024, China
| | - Heqiang Lou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Weiming Cai
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| |
Collapse
|
3
|
Li Y, Zhang Y, He X, Guo Z, Yang N, Bai G, Zhao J, Xu D. The Mitochondrial Blueprint: Unlocking Secondary Metabolite Production. Metabolites 2024; 14:711. [PMID: 39728492 DOI: 10.3390/metabo14120711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/08/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial metabolism plays a pivotal role in regulating the synthesis of secondary metabolites, which are crucial for the survival and adaptation of organisms. These metabolites are synthesized during specific growth stages or in response to environmental stress, reflecting the organism's ability to adapt to changing conditions. Mitochondria, while primarily known for their role in energy production, directly regulate secondary metabolite biosynthesis by providing essential precursor molecules, energy, and reducing equivalents necessary for metabolic reactions. Furthermore, they indirectly influence secondary metabolism through intricate signaling pathways, including reactive oxygen species (ROS), metabolites, and redox signaling, which modulate various metabolic processes. This review explores recent advances in understanding the molecular mechanisms governing mitochondrial metabolism and their regulatory roles in secondary metabolite biosynthesis, which highlights the involvement of transcription factors, small RNAs, and post-translational mitochondrial modifications in shaping these processes. By integrating current insights, it aims to inspire future research into mitochondrial regulatory mechanisms in Arabidopsis thaliana, Solanum tuberosum, Nicotiana tabacum, and others that may enhance their secondary metabolite production. A deeper understanding of the roles of mitochondria in secondary metabolism could contribute to the development of new approaches in biotechnology applications.
Collapse
Affiliation(s)
- Yang Li
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Yujia Zhang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Xinyu He
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Ziyi Guo
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, China
| | - Ning Yang
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| | - Guohui Bai
- Department of Cell Biology, Zunyi Medical University, Zunyi 563099, China
| | - Juanjuan Zhao
- Department of Immunology, Zunyi Medical University, Zunyi 563099, China
| | - Delin Xu
- Department of Medical Instrumental Analysis, Zunyi Medical University, Zunyi 563099, China
| |
Collapse
|
4
|
Gao Z, Sun Y, Zhu Z, Ni N, Sun S, Nie M, Du W, Irfan M, Chen L, Zhang L. Transcription factors LvBBX24 and LvbZIP44 coordinated anthocyanin accumulation in response to light in lily petals. HORTICULTURE RESEARCH 2024; 11:uhae211. [PMID: 39372289 PMCID: PMC11450212 DOI: 10.1093/hr/uhae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/23/2024] [Indexed: 10/08/2024]
Abstract
Lily (Lilium spp.), a horticultural crop serving both ornamental and edible functions, derives its coloration primarily from anthocyanins. However, limited studies have been conducted on the accumulation of anthocyanins within lilies. In this study, we cloned a light-induced transcription factor named as LvBBX24 in lilies. Through genetic and biochemical analysis, we determined that LvBBX24 could upregulate the transcription of LvMYB5 and facilitate anthocyanin synthesis. Moreover, we identified that darkness promoted the degradation of LvBBX24 protein. Through screening a yeast library, we identified LvbZIP44 acts as its interacting partner. Genetic testing confirmed that LvbZIP44 also plays a role in promoting lily anthocyanin synthesis. This indicates a potential synergistic regulatory effect between LvBBX24 and LvbZIP44. Our study indicates that LvBBX24 and LvbZIP44 cooperate to regulate anthocyanin accumulation in lily petals. These findings provide compelling evidence supporting the idea that LvBBX24 and LvbZIP44 may form a looped helix surrounding the LvMYB5 promoter region to regulate anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Zhenhua Gao
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Yibo Sun
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Ziman Zhu
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Na Ni
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Shaokun Sun
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Mengyao Nie
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Weifeng Du
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha Pakistan
| | - Lijing Chen
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| | - Li Zhang
- Key Laboratory of Agriculture Biotechnology, Key Laboratory of Protected Horticulture (Ministry of Education), College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110161, China
| |
Collapse
|
5
|
Ying J, Wen S, Cai Y, Ye Y, Li L, Qian R. Decoding anthocyanin biosynthesis regulation in Asparagus officinalis peel coloration: Insights from integrated metabolomic and transcriptomic analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108980. [PMID: 39102766 DOI: 10.1016/j.plaphy.2024.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Asparagus is a key global vegetable crop with significant economic importance. Purple asparagus, rich in anthocyanins, stands out for its nutritional value. Despite its prominence, the molecular mechanisms driving purple peel coloration in asparagus remain unclear. This study focuses on three asparagus varieties with distinct peel colors to analyze anthocyanins in both the metabolome and transcriptome, unraveling the regulatory mechanisms. Our findings identify 30 anthocyanins, categorized into five major anthocyanin aglycones across diverse asparagus peel colors. Notably, among the 30 differentially expressed metabolites (DEMs), 18 anthocyanins displayed significantly up-regulated expression in the 'Purple Passion' variety. Key contributors include Cyanidin-3-O-rutinoside-5-O-glucoside and Cyanidin-3-O-sophoroside. Cyanidin-3-O-glucoside is most abundant in 'Purple Passion', while Petunidin-glucoside-galactoside is the least. Analysis of differentially expressed genes (DEGs) displayed 21 structural genes in anthocyanin synthesis, with F3H, DFR, ANS, and one of three UFGTs showing significantly higher expression in the 'Purple Passion' compared to 'Grande' and 'Erasmus'. Additionally, transcription factors (TFs), including 38 MYB, 33 bHLH, and 13 bZIP, also display differential expression in this variety. Validation through real-time qPCR supports the idea that increased expression of anthocyanin structural genes contribute to anthocyanin accumulation. Transient overexpression of AoMYB17 in tobacco further showed that it had the vital function of increasing anthocyanin content. This study sheds light on the mechanisms behind anthocyanin coloration in three distinct asparagus peels. Therefore, it lays the foundation for potential genetic enhancements, aiming to develop new purple-fleshed asparagus germplasms with heightened anthocyanin content.
Collapse
Affiliation(s)
- Jiali Ying
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China.
| | - Shuangshuang Wen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Yunfei Cai
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Youju Ye
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China
| | - Lebin Li
- Wenzhou Shenlu Seeds Co., Ltd, Wenzhou, 325005, Zhejiang, China
| | - Renjuan Qian
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou, 325005, Zhejiang, China.
| |
Collapse
|
6
|
Gai S, Du B, Xiao Y, Zhang X, Turupu M, Yao Q, Wang X, Yan Y, Li T. bZIP Transcription Factor PavbZIP6 Regulates Anthocyanin Accumulation by Increasing Abscisic Acid in Sweet Cherry. Int J Mol Sci 2024; 25:10207. [PMID: 39337692 PMCID: PMC11432629 DOI: 10.3390/ijms251810207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) play a crucial role in anthocyanin accumulation in plants. In addition to bZIP TFs, abscisic acid (ABA) increases anthocyanin biosynthesis. Therefore, this study aimed to investigate whether bZIP TFs are involved in ABA-induced anthocyanin accumulation in sweet cherry and elucidate the underlying molecular mechanisms. Specifically, the BLAST method was used to identify bZIP genes in sweet cherry. Additionally, we examined the expression of ABA- and anthocyanin-related genes in sweet cherry following the overexpression or knockdown of a bZIP candidate gene. In total, we identified 54 bZIP-encoding genes in the sweet cherry genome. Basic leucine zipper 6 (bZIP6) showed significantly increased expression, along with increased anthocyanin accumulation in sweet cherry. Additionally, yeast one-hybrid and dual-luciferase assays indicated that PavbZIP6 enhanced the expression of anthocyanin biosynthetic genes (PavDFR, PavANS, and PavUFGT), thereby increasing anthocyanin accumulation. Moreover, PavbZIP6 interacted directly with the PavBBX6 promoter, thereby regulating PavNCED1 to promote abscisic acid (ABA) synthesis and enhance anthocyanin accumulation in sweet cherry fruit. Conclusively, this study reveals a novel mechanism by which PavbZIP6 mediates anthocyanin biosynthesis in response to ABA and contributes to our understanding of the mechanism of bZIP genes in the regulation of anthocyanin biosynthesis in sweet cherry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tianhong Li
- Frontiers Science Center for Molecular Design Breeding, College of Horticulture, China Agricultural University, Beijing 100193, China; (S.G.); (B.D.); (Y.X.); (X.Z.); (M.T.); (Q.Y.); (X.W.); (Y.Y.)
| |
Collapse
|
7
|
Dai J, Xu Z, Fang Z, Zheng X, Cao L, Kang T, Xu Y, Zhang X, Zhan Q, Wang H, Hu Y, Zhao C. NAC Transcription Factor PpNAP4 Promotes Chlorophyll Degradation and Anthocyanin Synthesis in the Skin of Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19826-19837. [PMID: 39213503 DOI: 10.1021/acs.jafc.4c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, P.R. China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xuyang Zheng
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708, United States
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Qianjin Zhan
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Hong Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, P.R. China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| |
Collapse
|
8
|
Lin L, Yuan K, Qi K, Xie Z, Huang X, Zhang S. Synergistic Interaction Between PbbZIP88 and PbSRK2E Enhances Drought Resistance in Pear Through Regulation of PbATL18 Expression and Stomatal Closure. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39222041 DOI: 10.1111/pce.15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Drought poses significant challenges to agricultural production, ecological stability and global food security. While wild pear trees exhibit strong drought resistance, cultivated varieties show weaker drought tolerance. This study aims to elucidate the molecular mechanisms underlying pear trees' response to drought stress. We identified a drought resistance-related transcription factor, PbbZIP88, which binds to and activates the expression of the drought-responsive gene PbATL18. Overexpression of PbbZIP88 in Arabidopsis and pear seedlings resulted in enhanced drought resistance and significantly improved physiological parameters under drought stress. We discovered that PbbZIP88 interacts with the key protein PbSRK2E in the ABA signalling pathway. This interaction enhances PbbZIP88's ability to activate PbATL18 expression, leading to higher levels of PbATL18. Furthermore, the PbbZIP88 and PbSRK2E interaction accelerates the regulation of stomatal closure under ABA treatment conditions, reducing water loss more effectively. Experimental evidence showed that silencing PbbZIP88 and PbSRK2E genes significantly decreased drought resistance in pear seedlings. In conclusion, this study reveals the synergistic role of PbbZIP88 and PbSRK2E in enhancing drought resistance in pear trees, particularly in the upregulation of PbATL18 expression, and the accelerated promotion of stomatal closure. These findings provide new candidate genes for breeding drought-resistant varieties and offer a theoretical foundation and technical support for achieving sustainable agriculture.
Collapse
Affiliation(s)
- Likun Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kaili Yuan
- Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
9
|
Zhao J, Zou Q, Bao T, Kong M, Gu T, Jiang L, Wang T, Xu T, Wang N, Zhang Z, Chen X. Transcription factor MdbZIP44 targets the promoter of MdPPO2 to regulate browning in Malus domestica Borkh. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108934. [PMID: 39003974 DOI: 10.1016/j.plaphy.2024.108934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Apple (Malus domestica Borkh.) is among the most widely planted and economically valuable horticultural crops globally. Over time, the apple fruit's cut surface undergoes browning, and the degree of browning varies among different apple varieties. Browning not only affects the appearance of fruits but also adversely affects their taste and flavor. In the present study, we observed browning in different apple varieties over time and analyzed the expression of genes in the polyphenol oxidase gene family. The results indicated a strong correlation between the browning degree of the fruit and the relative expression of the polyphenol oxidase gene MdPPO2. With the MdPPO2 promoter as bait, the basic leucine zipper (bZIP) transcription factor MdbZIP44 was identified using the yeast single-hybrid screening method. Further investigation revealed that the overexpression of MdbZIP44 in 'Orin' callus could enhance the expression of MdPPO2 and promote browning of the callus. However, knocking out MdbZIP44 resulted in a callus with no apparent browning phenotype. In addition, our results confirmed the interaction between MdbZIP44 and MdbZIP11. In conclusion, the results indicated that MdbZIP44 can induce apple fruit browning by activating the MdPPO2 promoter. The results provide a theoretical basis for further clarifying the browning mechanism of apple fruit.
Collapse
Affiliation(s)
- Jianwen Zhao
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Qi Zou
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tiantian Bao
- Tai'an Academy of Agricultural Sciences, 271000, Tai'an, Shandong, China
| | - Meng Kong
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tingting Gu
- College of Agricultural Science and Technology, Shandong Agricultural and Engineering University, 250100, Jinan, Shandong, China
| | - Lepu Jiang
- Key Laboratory of Biological Resources Protection and Utilization Corps of Tarim Basin, Tarim University, 843300, Alar, Xinjiang, China
| | - Tong Wang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Tongyao Xu
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Nan Wang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
| | - Xuesen Chen
- College of Horticulture Sciences and Engineering, Shandong Agricultural University, 271018, Tai'an, Shandong, China.
| |
Collapse
|
10
|
Tang L, Zhang Z, Sun L, Gao X, Zhao X, Chen X, Zhu X, Li A, Sun L. In Vivo Detection of Abscisic Acid in Tomato Leaves Based on a Disposable Stainless Steel Electrochemical Immunosensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17666-17674. [PMID: 39051566 DOI: 10.1021/acs.jafc.4c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Abscisic acid (ABA) plays an important regulatory role in plants. It is very critical to obtain the dynamic changes of ABA in situ for botanical research. Herein, coupled with paper-based analysis devices, electrochemical immunoelectrodes based on disposable stainless steels sheet were developed for ABA detection in plants in situ. The stainless steel sheets were modified with carbon cement, ferrocene-graphene oxide-multi walled carbon nanotubes nanocomposites, and ABA antibodies. The system can detect the ABA in the range of 1 nM to 100 μM, with a limit of detection of 100 pM. The ABA content in tomato leaves under high salinity was detected in situ. The trend of ABA changes was similar to the expression of SlNCED1 and SlNCED2. Overall, this study offers an approach for in situ detection of ABA in plants, which will help to study the regulation mechanism of ABA in plants and to promote the development of precision agriculture.
Collapse
Affiliation(s)
- Lingjuan Tang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
- Analysis and Testing Center, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Ling Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xu Gao
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Xinyue Zhao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xinru Chen
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xingyu Zhu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
11
|
Li X, Gong X, Lin H, Rao S, Shen L, Chen C, Wu Z, Li H, Liu Q, Zhong Y. Genome-wide analysis of the bZIP gene family in Cinnamomum camphora ('Gantong 1') reveals the putative function in anthocyanin biosynthesis. Heliyon 2024; 10:e34311. [PMID: 39082037 PMCID: PMC11284375 DOI: 10.1016/j.heliyon.2024.e34311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Basic leucine zipper (bZIP) transcription factors (TFs) regulate plant development, growth, and secondary metabolism. The formation of red bark of new ornamental cultivar 'Gantong 1' is regulated mainly by anthocyanin anabolism. However, it is unclear whether and which bZIP TFs are involved in this process. We identified 89 genes encoding CcbZIP TFs in Cinnamomum camphora genome that could be divided into 14 subfamilies with similar gene structures and conserved motifs. CcbZIP38 and CcbZIP57 were highly conserved compared to HY5 in Arabidopsis thaliana and they were highly expressed in the bark and leaves of 'Gantong 1' at different stages. The target gene enrichment analysis showed that indicating indirect involvement of CcbZIP38 and CcbZIP57 in the regulation of anthocyanin synthesis. Our study contributes to understanding the molecular mechanism of anthocyanin synthesis regulation by CcbZIP TFs and provides a theoretical basis for genetic improvement of ornamental traits in C. camphora.
Collapse
Affiliation(s)
- Xiuqi Li
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Xue Gong
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Hanbin Lin
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Shupei Rao
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Le Shen
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Caihui Chen
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Zhaoxiang Wu
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Huihu Li
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Qiaoli Liu
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yongda Zhong
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, 330096, China
| |
Collapse
|
12
|
Lei C, Dang Z, Zhu M, Zhang M, Wang H, Chen Y, Zhang H. Identification of the ERF gene family of Mangifera indica and the defense response of MiERF4 to Xanthomonas campestris pv. mangiferaeindicae. Gene 2024; 912:148382. [PMID: 38493974 DOI: 10.1016/j.gene.2024.148382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
An important regulatory role for ethylene-responsive transcription factors (ERFs) is in plant growth and development, stress response, and hormone signaling. However, AP2/ERF family genes in mango have not been systematically studied. In this study, a total of 113 AP2/ERF family genes were identified from the mango genome and phylogenetically classified into five subfamilies: AP2 (28 genes), DREB (42 genes), ERF (33 genes), RAV (6 genes), and Soloist (4 genes). Of these, the ERF family, in conjunction with Arabidopsis and rice, forms a phylogenetic tree divided into seven groups, five of which have MiERF members. Analysis of gene structure and cis-elements showed that each MiERF gene contains only one AP2 structural domain, and that MiERF genes contain a large number of cis-elements associated with hormone signaling and stress response. Collinearity tests revealed a high degree of homology between MiERFs and CsERFs. Tissue-specific and stress-responsive expression profiling revealed that MiERF genes are primarily involved in the regulation of reproductive growth and are differentially and positively expressed in response to external hormones and pathogenic bacteria. Physiological results from a gain-of-function analysis of MiERF4 transiently overexpressed in tobacco and mango showed that transient expression of MiERF4 resulted in decreased colony count and callose deposition, as well as varying degrees of response to hormonal signals such as ETH, JA, and SA. Thus, MiERF4 may be involved in the JA/ETH signaling pathway to enhance plant defense against pathogenic bacteria. This study provides a basis for further research on the function and regulation of MiERF genes and lays a foundation for the selection of disease-resistant genes in mango.
Collapse
Affiliation(s)
- Chen Lei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhiguo Dang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min Zhu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Mengting Zhang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Huiliang Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yeyuan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China.
| | - He Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
13
|
Tang Q, Wang X, Ma S, Fan S, Chi F, Song Y. Molecular mechanism of abscisic acid signaling response factor VcbZIP55 to promote anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108611. [PMID: 38615439 DOI: 10.1016/j.plaphy.2024.108611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
A high content of anthocyanin in blueberry (Vaccinium corymbosum) is an important indicator to evaluate fruit quality. Abscisic acid (ABA) can promote anthocyanin biosynthesis, but since the molecular mechanism is unclear, clarifying the mechanism will improve for blueberry breeding and cultivation regulation. VcbZIP55 regulating anthocyanin synthesis in blueberry were screened and mined using the published Isoform-sequencing, RNA-Seq and qRT-PCR at different fruit developmental stages. Blueberry genetic transformation and transgenic experiments confirmed that VcbZIP55 could promote anthocyanin biosynthesis in blueberry adventitious buds, tobacco leaves, blueberry leaves and blueberry fruit. VcbZIP55 responded to ABA signals and its expression was upregulated in blueberry fruit. In addition, using VcbZIP55 for Yeast one hybrid assay (Y1H) and transient expression in tobacco leaves demonstrated an interaction between VcbZIP55 and a G-Box motif on the VcMYB1 promoter to activate the expression of VcMYB1. This study will lay the theoretical foundation for the molecular mechanisms of phytohormone regulation responsible for anthocyanin synthesis and provide theoretical support for blueberry quality improvement.
Collapse
Affiliation(s)
- Qi Tang
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Xuan Wang
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Shurui Ma
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Shutian Fan
- Institute of Special Animal and Plant Sciences CAAS, Jilin Changchun, 130122, China.
| | - Fumei Chi
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| | - Yang Song
- Research Institute of Pomology of CAAS, Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Xingcheng, Liaoning, 125100, China.
| |
Collapse
|
14
|
Luo L, Molthoff J, Li Q, Liu Y, Luo S, Li N, Xuan S, Wang Y, Shen S, Bovy AG, Zhao J, Chen X. Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant ( pind) in eggplant ( Solanum melongena L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1282661. [PMID: 38169942 PMCID: PMC10758619 DOI: 10.3389/fpls.2023.1282661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype '14-345'. The bagged pind fruits were light purple, whereas those of '14-345' were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in '14-345'. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jos Molthoff
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
15
|
Xu T, Yu L, Huang N, Liu W, Fang Y, Chen C, Jiang L, Wang T, Zhao J, Zhang Z, Xu Y, Wang N, Chen X. The regulatory role of MdNAC14-Like in anthocyanin synthesis and proanthocyanidin accumulation in red-fleshed apples. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108068. [PMID: 37852067 DOI: 10.1016/j.plaphy.2023.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Flavonoids, such as anthocyanins and proanthocyanidins (PAs), play essential roles in plant growth, development, and stress response. Red-fleshed apples represent a valuable germplasm resource with high flavonoid content. Understanding and enriching the regulatory network controlling flavonoid synthesis in red-fleshed apples holds significant importance for cultivating high-quality fruits. In this study, we successfully isolated an NAC transcription factor, MdNAC14-Like, which exhibited a significant negative correlation with the content of anthocyanin. Transient injection of apple fruit and stable expression of callus confirmed that MdNAC14-Like acts as an inhibitor of anthocyanin synthesis. Through yeast monohybrid, electrophoretic mobility shift, and luciferase reporter assays, we demonstrated the ability of MdNAC14-Like to bind to the promoters of MdMYB9, MdMYB10, and MdUFGT, thus inhibiting their transcriptional activity and subsequently suppressing anthocyanin synthesis. Furthermore, our investigation revealed that MdNAC14-Like interacts with MdMYB12, enhancing the transcriptional activation of MdMYB12 on the downstream structural gene MdLAR, thereby promoting PA synthesis. This comprehensive functional characterization of MdNAC14-Like provides valuable insights into the intricate regulatory network governing anthocyanin and PA synthesis in apple.
Collapse
Affiliation(s)
- Tongyao Xu
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Lei Yu
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Ningwang Huang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Wenjun Liu
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Yue Fang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Cong Chen
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Lepu Jiang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Tong Wang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Jianwen Zhao
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Zongying Zhang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China
| | - Yuehua Xu
- Penglai City Fruit Tree Work Station, Penglai, Shandong 265600, China
| | - Nan Wang
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China.
| | - Xuesen Chen
- College of Horticulture Sciences, Shandong Agricultural University, No. 61 Daizong Road, 271018, Tai'an, Shandong, China.
| |
Collapse
|
16
|
Chen Y, Huang Q, Hua X, Zhang Q, Pan W, Liu G, Yu C, Zhong F, Lian B, Zhang J. A homolog of AtCBFs, SmDREB A1-4, positively regulates salt stress tolerance in Arabidopsis thaliana and Salix matsudana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107963. [PMID: 37595402 DOI: 10.1016/j.plaphy.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
CBFs (C-repeat binding factors) have multiple functions in abiotic stress adaption; functional research of these genes will provide precious gene resources for plant genetic improvement. In this study, a homolog of AtCBFs, SmDREB A1-4 was cloned and its role in salt tolerance was explored. SmDREB A1-4 is a member of DREB A1 subgroup with 10 members. SmDREB A1-4 localized in nuclei and cytoplasm and expressed ubiquitously in different tissue and organs. The expression level of SmDREB A1-4 could be induced by NaCl treatment and the TC-rich repeat and DREB motif on the SmDREB A1-4 gene promoter may mediate the NaCl-induced expression pattern. Overexpression of the SmDREB A1-4 gene in Arabidopsis enhanced the salt tolerance of transgenic Arabidopsis lines, while down-regulated the expression level in Salix plantlets by Virus induce gene silencing decreased the salt tolerance capacity in VIGS Salix plantlets. Experiments data from both sides confirmed that SmDREB A1-4 is a positive regulatory factor in salt stress tolerance. qRT-PCR and luciferase reporter assays revealed that SOS1 and DREB2A are downstream genes of SmDREB A1-4. Through upregulating the expression of SOS1 and DREB2A, SmDREB A1-4 enhanced plant tolerance to salinity by regulating ion homeostasis, reduction of Na+/K+ ratio, and improvement of proline biosynthesis. This research offers a potentially valuable gene resource for the stress-resistant varieties breeding of Salix matsudana in the future.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Qianhui Huang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Xuan Hua
- School of Life Sciences, Nantong University, Nantong, China.
| | - Qi Zhang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Wenjia Pan
- School of Life Sciences, Nantong University, Nantong, China.
| | - Guoyuan Liu
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Chunmei Yu
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Fei Zhong
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Bolin Lian
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| |
Collapse
|
17
|
Yang L, Chen Y, Wang M, Hou H, Li S, Guan L, Yang H, Wang W, Hong L. Metabolomic and transcriptomic analyses reveal the effects of grafting on blood orange quality. FRONTIERS IN PLANT SCIENCE 2023; 14:1169220. [PMID: 37360739 PMCID: PMC10286243 DOI: 10.3389/fpls.2023.1169220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
Introduction Blood orange (Citrus sinensis L.) is a valuable source of nutrition because it is enriched in anthocyanins and has high organoleptic properties. Grafting is commonly used in citriculture and has crucial effects on various phenotypes of the blood orange, including its coloration, phenology, and biotic and abiotic resistance. Still, the underlying genetics and regulatory mechanisms are largely unexplored. Methods In this study, we investigated the phenotypic, metabolomic, and transcriptomic profiles at eight developmental stages of the lido blood orange cultivar (Citrus sinensis L. Osbeck cv. Lido) grafted onto two rootstocks. Results and discussion The Trifoliate orange rootstock provided the best fruit quality and flesh color for Lido blood orange. Comparative metabolomics suggested significant differences in accumulation patterns of metabolites and we identified 295 differentially accumulated metabolites. The major contributors were flavonoids, phenolic acids, lignans and coumarins, and terpenoids. Moreover, transcriptome profiling resulted in the identification of 4179 differentially expressed genes (DEGs), and 54 DEGs were associated with flavonoids and anthocyanins. Weighted gene co-expression network analysis identified major genes associated to 16 anthocyanins. Furthermore, seven transcription factors (C2H2, GANT, MYB-related, AP2/ERF, NAC, bZIP, and MYB) and five genes associated with anthocyanin synthesis pathway (CHS, F3H, UFGT, and ANS) were identified as key modulators of the anthocyanin content in lido blood orange. Overall, our results revealed the impact of rootstock on the global transcriptome and metabolome in relation to fruit quality in lido blood orange. The identified key genes and metabolites can be further utilized for the quality improvement of blood orange varieties.
Collapse
Affiliation(s)
- Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yang Chen
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Huifang Hou
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Ling Guan
- Biotechnology Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Haijian Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Wu Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|